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Abstract

The versatility to learn from a handful of samples is the hallmark of human intelligence. Few-
shot learning is an endeavour to transcend this capability down to machines. Inspired by the
promise and power of probabilistic deep learning, we propose a novel variational inference
network for few-shot classification (coined as TRIDENT) to decouple the representation of an
image into context and label latent variables, and simultaneously infer them in an intertwined
fashion. To induce task-awareness, as part of the inference mechanics of TRIDENT, we exploit
information across both query and support images of a few-shot task using a novel built-
in attention-based transductive feature extraction module (we call AttFEX). Our extensive
experimental results corroborate the efficacy of TRIDENT and demonstrate that, using the
simplest of backbones and a meta-learning strategy, it sets a new state-of-the-art in the most
commonly adopted datasets miniImageNet and tieredImageNet (offering up to 4% and 5%
improvements, respectively), as well as for the recent challenging cross-domain miniImagenet
→ CUB scenario offering a significant margin (up to 20% improvement) beyond the best
existing baselines1.

1 Introduction

Deep learning algorithms are usually data hungry and require massive amounts of training data to reach a
satisfactory level of performance on any task. To tackle this limitation, few-shot classification aims to learn
to classify images from various unseen tasks in a data-deficient setting. In this exciting space, metric learning
proposes to learn a shared feature extractor to embed the samples into a metric space of aggregated class
embeddings (Sung et al., 2018; Vinyals et al., 2016; Snell et al., 2017; Wang et al., 2019; Liu et al., 2020).
Due to limited data per class, these embeddings suffer from sample-bias and fail to efficiently represent class
characteristics. Furthermore, sharing a feature extractor across tasks implies that the discriminative infor-
mation learnt from the seen classes are equally effective on any arbitrary unseen classes, which is not true in
most cases. Transductive task-aware few-shot learning approaches (Bateni et al., 2022; Ye et al., 2020; Cui &
Guo, 2021) address these limitations by exploiting information hidden in the unlabeled data. As a result, the
model learns task-specific embeddings by aligning the features of the labelled and unlabelled task instances
for optimal distance metric based label assignment. Since the alignment of these embeddings is still subject
to the relevance of the characteristics captured by the shared feature extractors, task-aware methods some-
times fail to extract meaningful representations particularly relevant to classification. Probabilistic methods
address sample-bias by relaxing the need to find point estimates to approximate data-dependent distribu-
tions of either high-dimensional model weights (Nguyen et al., 2019; Ravi & Beatson, 2019; Gordon et al.,
2019; Hu et al., 2020) or lower-dimensional class prototypes (Sun et al., 2021; Zhang et al., 2019). However,
inferring a high-dimensional posterior of model parameters is inefficient in low-data regimes and estimating
distributions of class prototypes involves using hand-crafted non-parametric aggregation techniques which
may not be well suited for every unseen task.

1Codebase available at https://github.com/anujinho/trident.
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Figure 1: High-level process flow of TRIDENT. Inferred label latent variable zl contains class-characterizing informa-
tion, as is reflected by better separation of the distributions when compared to their context latent counterparts zc.
AttFEX module generates task-aware feature maps by exploiting information from both support and query images,
which compensates for the lack of label vectors Y in inferring zl.

Although fit for purpose, all these approaches seem to overlook an important perspective. An image is
composed of different attributes such as style, design, backdrop and setting which are not necessarily relevant
discriminative characteristics for classification. Here, we refer to these attributes as contextual information.
On the other hand, other class-characterizing attributes (such as wings of a bird, trunk of an elephant,
hump on a camel’s back) are critical for classification, irrespective of context. We refer to such attributes
as label information. Typically, contextual information is majorly governed by context attributes, whereas
the label characteristics are subtly embedded throughout an image. In other words, contextual information
can be predominantly present across an image, whereas attending to subtle label information determines
how effective a classification algorithm would be. Thus, we argue that attention to label-specific information
should be ingrained into the mechanics of the classifier, decoupling it from contextual information. This
becomes even more important in a few-shot setting where the network has to quickly learn from little
data. Building upon this idea, we propose transductive variational inference of decoupled latent variables
(coined as TRIDENT), to simultaneously infer decoupled label and context information using two intertwined
variational networks. To induce task-awareness while constructing the variational inference mechanics of
TRIDENT, we introduce a novel attention-based transductive feature extraction module (we call AttFEX)
which further enhances the discriminative power of the inferred label attributes. This way TRIDENT infers
distributions instead of point estimates and injects a handcrafted inductive-bias into the network to guide
the classification process. Our main contributions can be summarized as:

1. We propose TRIDENT, a variational inference network to simultaneously infer two salient decoupled
attributes of an image (label and context), by inferring these two using two intertwined variational
sub-networks (Fig. 1).

2. We introduce an attention-based transductive feature extraction module, AttFEX, to enable TRIDENT
see through and compare all images within a task, inducing transductive task-cognizance in the
inference of label information.

3. We perform extensive evaluations to demonstrate that TRIDENT sets a new state-of-the-art by
outperforming all existing baselines on the most commonly adopted datasets miniImagenet and
tieredImagenet (up to 4% and 5%), as well as for the challenging cross-domain scenario of
miniImagenet → CUB (up to 20% improvement).

2 Related Work

Metric-based learning. This body of work involves mapping input samples into a lower-dimensional
embedding space and then classifying the unlabelled samples based on a distance or similarity metric. By
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parameterizing these mappings with neural networks and using differentiable similarity metrics for classi-
fication, these networks can be trained in an episodic manner (Vinyals et al., 2016) to perform few-shot
classification. Prototypical Nets (Snell et al., 2017), Simple Shot (Wang et al., 2019), FRN (Wertheimer
et al., 2021), Relation Networks (Sung et al., 2018), Matching Networks (Vinyals et al., 2016) variants of
Graph Neural Nets (Satorras & Estrach, 2018; Yang et al., 2020), are a few examples of seminal ideas here.

Transductive Feature-Extraction and Inference. Transductive feature extraction or transductive task-
aware learning is a variant of metric-learning with an adaptation mechanism that aligns support and query
feature vectors in the embedding space for better representation of task-specific discriminative information.
This not only improves the discriminative ability of classifiers across tasks, but also alleviates the problem
of overfitting on limited support set since information from the query set is also used for extracting features
of images in a task. CNAPS (Requeima et al., 2019), Transductive-CNAPS (Bateni et al., 2022), FEAT (Ye
et al., 2020), Assoc-Align (Afrasiyabi et al., 2020), TPMN (Wu et al., 2021) and CTM (Li et al., 2019) are
prime examples of such methods. Next to transduction for task-aware feature extraction, there are methods
that use transductive inference to classify all the query samples at once by jointly assigning them labels,
as opposed to their inductive counterparts where prediction is done on the samples one at a time. This
is either done by iteratively propagating labels from the support to the query samples or by fine-tuning
a pre-trained backbone using an additional entropy loss on all query samples, which encourages confident
class predictions at query samples. TPN (Liu et al., 2019), Ent-Min (Dhillon et al., 2020), TIM (Boudiaf
et al., 2020), Transductive-CNAPS (Bateni et al., 2022), LaplacianShot (Ziko et al., 2020), DPGN (Yang
et al., 2020) and ReRank (SHEN et al., 2021) are a few notable examples in this space that usually report
state-of-the-art results in certain few-shot classification settings (Liu et al., 2019). That being said, TRIDENT
can be regarded as a transductive feature-extraction method, owing to AttFEX’s unique ability to see through
and compare all images within a task.

Optimization-based meta-learning. These methods optimize for model parameters that are sensitive to
task objective functions for fast gradient-based adaptation to new tasks. MAML (Finn et al., 2017) and its
variants (Rajeswaran et al., 2019; Nichol et al., 2018b), (Oh et al., 2021) are a few prominent examples while
LEO (Rusu et al., 2019) efficiently meta-updates its parameters in a lower dimensional latent space. Meta-
learner LSTM (Ravi & Larochelle, 2017b) uses a separate meta-learner model to learn the exact optimization
algorithm used to train another ‘learner’ neural network classifier.

Probabilistic learning. The estimated parameters of typical gradient-based meta-learning methods dis-
cussed earlier (Finn et al., 2017; Rusu et al., 2019; Mishra et al., 2018; Nichol et al., 2018b; Rajeswaran et al.,
2019), have high variance due to the small task sample size. To deal with this, a natural extension is to
model the uncertainty by treating these parameters as latent variables in a Bayesian framework as proposed
in Neural Statistician (Edwards & Storkey, 2017), PLATIPUS (Finn et al., 2018), VAMPIRE (Nguyen et al.,
2019), ABML (Ravi & Beatson, 2019), VERSA (Gordon et al., 2019), SIB (Hu et al., 2020), SAMOVAR
(Iakovleva et al., 2020). Methods like ABPML (Sun et al., 2021) and VariationalFSL (Zhang et al., 2019)
infer latent variables of class prototypes to perform classification and avoid inferring high-dimensional model
parameters. ABPML (Sun et al., 2021) and VariationalFSL (Zhang et al., 2019) are the closest to our ap-
proach. In contrast to these two methods, we avoid hand-crafting class-level aggregations. Additionally, we
enhance variational inference by incorporating a classification-relevant inductive bias through decoupling of
label and context information.

3 Problem Definition

Consider a labelled dataset D = {(xi, yi) | i ∈ [1, N ′]} of images xi and class labels yi. This dataset D
is divided into three disjoint subsets: D = {Dtr ∪ Dval ∪ Dtest}, respectively, referring to the training,
validation, and test subsets. The validation dataset Dval is used for model selection and the testing dataset
Dtest for final evaluation. Following standard few-shot classification settings, as proposed in Vinyals et al.
(2016); Sung et al. (2018); Snell et al. (2017), we use episodic training on a set of tasks Ti ∼ p(T ). The
tasks are constructed by drawing K random samples from N different classes, which we denote as an (N -
way, K-shot) task. Concretely, each task Ti is composed of a support and a query set. The support set
S = {(xS

kn, yS
kn) | k ∈ [1, K], n ∈ [1, N ]} contains K samples per class and the query set Q = {(xQ

kn, yQ
kn) | k ∈
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Figure 2: Generative Model of TRIDENT. Dotted lines indicate variational inference and solid lines refer to generative
processes. The inference and generative parameters are color coded to correspond to their respective architectures
indicated in Fig.1 and Fig.4.

[1, Q], n ∈ [1, N ]} contains Q samples per class. For a given task, the NQ query and NK support images
are disjoint to assess the generalization performance.

4 The Proposed Method: TRIDENT

Let us start with the high-level idea. The proposed approach is devised to learn meaningful representations
that capture two pivotal characteristics of an image by modelling them as separate latent variables: (i) zc

representing context, and (ii) zl embodying class labels. Inferring these two latent variables simultaneously
allows zl to learn meaningful distributions of class-discriminating characteristics decoupled from context
features represented by zc. We argue that learning zl as the sole latent variable for classification results
in capturing a mixture of true label and other context information. This in turn can lead to sub-optimal
classification performance, especially in a few-shot setting where the information per class is scarce and the
network has to adapt and generalize quickly. By inferring decoupled label and context latent variables, we
inject a handcrafted inductive-bias that incorporates only relevant characteristics, and thus, ameliorates the
network’s classification performance.

4.1 Generative Process

The directed graphical model in Fig. 2 illustrates the common underlying generative process p such that
pi = p(xi, yi | zli, zci). For the sake of brevity, in the following we drop the sample index i as we always
refer to terms associated with a single data sample. We work on the logical premise that the label latent
variable zl is responsible for generating class label as well as for image reconstruction, whereas the context
latent variable zc is only responsible for image reconstruction (solid lines in the figure). Formally, the data is
explained by the generative processes: pθ1(y | zl) = Cat(y | zl) and pθ2(x | zl, zc) = gθ2(x; zl, zc), where Cat(.)
refers to a multinomial distribution and gθ2(x; zl, zc) is a suitable likelihood function such as a Gaussian
or Bernoulli distribution. The likelihoods of both these generative processes are parameterized using deep
neural networks and the priors of the latent variables are chosen to be standard multivariate Gaussian
distributions (Kingma & Welling, 2014; Kingma et al., 2014): p(zc) = N (zc |0, I) and p(zl) = N (zl |0, I).

4.2 Variational Inference of Decoupled Zl and Zc

Computing exact posterior distributions is intractable due to high dimensionality and non-linearity of the
deep neural network parameter space. Following Kingma & Welling (2014); Kingma et al. (2014), we
instead construct an approximate posterior over the latent variables by introducing a fixed-form distribution
q(zl, zc |x, y) parameterized by ϕ. By using qϕ(.) as an inference network, the inference is rendered tractable,
scalable and amortized since ϕ now acts as the global variational parameter. We assume qϕ has a factorized
form qϕ (zc, zl | x, y) = qϕ1 (zl | x, zc) qϕ2 (zc | x), where qϕ1(.), qϕ2(.) are assumed to be multivariate Gaussian
distributions. As is also depicted in Fig. 2, we use zc as input to qϕ1(.) to infer zl because of their conditional
dependence given x. This way we forge a path to allow necessary context latent information flow through
the label inference network. On the other hand, the opposite direction (using zl to infer zc) is unnecessary,

4



Published in Transactions on Machine Learning Research (02/2023)

because label information does not directly contribute to the extraction of context features. We will further
reflect on this design choice in the next subsection. Neural networks are then used to parameterize both
inference networks as:

qϕ2 (zc |x) = N
(
zc |µϕ2(x), diag(σ2

ϕ2
(x))

)
,

qϕ1 (zl |x, zc) = N
(
zl |µϕ1(x, zc), diag(σ2

ϕ1
(x, zc))

)
.

(1)

To find the optimal approximate posterior, we derive the evidence lower bound (ELBO) on the marginal
likelihood of the data to form our objective function:

p(x, y) =
∫∫

p(x, y | zc, zl) p(zs,zl) dzc dzl,

= Eq(zc,zl | x)

[
p(x | zl, zc)p(y | zl)p(zl)p(zc)

q(zl, zc |x)

]
.

ln p(x, y) ⩾ Eq(zc,zl|x)

[
ln
(

p(x | zl, zc)p(y | zl)p(zl)p(zc)
q(zc, zl |x)

)]
,

= Eqϕ2

[
Eqϕ1

[
ln
(

p(x | zc, zl)p(y | zl)p(zc)p(zl)
q(zc |x)q(zl |x, zc)

)]]
.

Denoting Ψ = (θ1, θ2, ϕ1, ϕ2), the negative ELBO can be given by

L(Ψ) = −Eqϕ2
Eqϕ1

[ln pθ2(x | zc, zl) + ln pθ1(y | zl)] +
Eqϕ2

[
DKL

(
qϕ1(zl |x, zc)∥ p(zl)

)]
+

DKL

(
qϕ2(zc |x)∥ p(zc)

)
,

(2)

where the second line follows the graphical model in Fig 2, and E(.) and ln(.) denote the expectation
operator and the natural logarithm, respectively. We avoid computing biased gradients by following the
re-parameterization trick from Kingma & Welling (2014). Note that in equation 1 we deliberately choose
to exclude the label information y as input to qϕ1(.) to be able to exploit the associated generative network
pθ1(y | zl) as a classifier. The consequence and the proposed solution to accommodate this design choice are
discussed in the next subsection.

4.3 AttFEX for Transductive Feature Extraction

Our design choice to omit label information y when inferring zl (as discussed for equation 1) can be an
information bottleneck and counter-productive to the discriminative power zl holds. However, this allows
us to employ zl for classification and not reconstruction of the label. To compensate for this bottleneck,
we introduce an attention-based transductive feature extractor (AttFEX) module that allows the network
qϕ1(zl |x, zc) see through and compare images across all classes within each task (irrespective of being from
the query or support sets), thus, induces task-cognizance in the inference network. We first extract the feature
maps of all images in the task using a convolutional block F = ConvEnc(X) where X ∈ RN(K+Q)×C×W ×H ,
F ∈ RN(K+Q)×C′×W ′×H′ . The feature map tensor F is then transposed into F′ ∈ RC′×N(K+Q)×W ′×H′

and fed into two consecutive 1 × 1 convolution blocks. This helps the network utilize information across
corresponding pixels of all images in a task Ti, which can be considered as a parametric comparison of
classes. We leverage the fact that ConvEnc already extracts local pixel information by using larger kernels,
and thus, use parameter-light 1 × 1 convolutions subsequently to focus only on individual pixels. Let F′

i

denote the ith channel (or feature map layer) out of total of C ′ available and ReLU denote the rectified linear
unit activation. The 1× 1 convolution block (Conv1×1) is formulated as follows:

Mi = ReLU
(
Conv1×1(F′

i, WM )
)
,∀i ∈ [1, C ′];

Nj = ReLU
(
Conv1×1(Mj , WN )

)
,∀j ∈ [1, C ′];

(3)

where N ∈ RC′×32×W ′×H′ and WM ∈ R64×N(K+Q)×1×1, WN ∈ R32×64×1×1 denote the learnable weights.
Next, we want to blend information across feature maps for which we use a self-attention mechanism (Vaswani
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Support Set Feature Maps Query Set Feature Maps

Figure 3: AttFEX module depicting colors as images and shades as feature maps. We illustrate only 3 image feature
maps and 3 channels instead of 32 for N, for the sake of simplicity.

et al., 2017) across Nj ,∀j ∈ [1, 32]. To do so, we feed N to query, key and value extraction networks
fq(, ; WQ), fk(.; WK), fv(.; WV ) which are also designed to be 1× 1 convolutions as:

Qi = ReLU (Conv1×1(Ni, WQ)) , ∀i ∈ [1, C ′];
Ki = ReLU (Conv1×1(Ni, WK)) , ∀i ∈ [1, C ′];
Vi = ReLU (Conv1×1(Ni, WV )) , ∀i ∈ [1, C ′];

(4)

where WQ, WK , WV ∈ R1×32×1×1 are the learnable weights and Q, K, V ∈ RC′×1×W ′×H′ are the query, key
and value tensors. Next, each feature map Nj is mapped to its output tensor Gj by computing a weighted
sum of the values, where each weight (within parentheses in equation 5) measures the compatibility (or
similarity) between the query and its corresponding key tensor using an inner-product:

Gi =
C′∑

j=1

(
exp (Qi ·Kj)

√
dk.
∑C′

k=1 exp (Qi ·Kk)

)
Vi, (5)

where dk = W ′ × H ′, and Gi ∈ R1×C′×W ′×H′ , ∀i. Finally, we transform the original feature maps F by
applying a Hadamard product between the feature mask G and F, thus, rendering the required feature maps
transductive:

F̃S = G ◦ FS or F̃Q = G ◦ FQ.

Here, FS and FQ represent the feature maps corresponding to the support and query images, respectively.
As a result of operating on this channel-pixel distribution across images in a task, FS and FQ are rendered
transductive. Unlike other attention-based few-shot learning methods (Ye et al., 2020; Vinyals et al., 2016),
we do not compute an attention-based transform on the flattened support and query vectors, but rather
on the outputs of the Conv1×1(.; WN ) to effectively fuse information from multiple class-pixel comparisons.
Note that the query tensor Q must not be confused with the query set Q of a task.

4.4 TRIDENT’s Transductive ELBO

AttFEX’s transductive feature extraction process introduces task-level dependencies in the variational for-
mulation of qϕ1 . To incorporate this dependency in equation 2, we now revise the derivation of our negative
ELBO to be defined in terms of the entire task set and not individual data points. Let X = XS ∪XQ denote
the tensor containing all images sampled in a task, Y = Y S ∪ Y Q denote all the labels corresponding to the
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images in the task and N ′ = NK + NQ be the total number of samples in a task. Considering all samples
to be independently and identically distributed (I.I.D.), the likelihood of the entire task can be written as:

p(X, Y ) =
N ′∏
i=1

∫∫
p(xi, yi | zci, zli) p(zci,zli) dzci dzli. (6)

Since the generative networks pθ2(x | zc, zl) and pθ1(y | zl) remain inductive, while the approximate inference
network qϕ1 (zl |X, zc) becomes transductive (via AttFEX), the log-likelihood now becomes:

ln p(X, Y ) ≥
N ′∑
i=1

Eqϕ2

[
Eqϕ1

[
ln
(

p(xi | zci, zli)p(y | zli)p(zc)p(zl)
q(zci |xi)q(zli |X, zci)

)]]
. (7)

Finally, the overall negative ELBO for the entire task can be given by

L(Ψ) = −
N ′∑
i=1

Eqϕ2
Eqϕ1

[ln pθ2(xi | zci, zli) + ln pθ1(yi | zli)] +

Eqϕ2

[
DKL

(
qϕ1(zli |X, zci)∥ p(zl)

)]
+

DKL

(
qϕ2(zci |xi)∥ p(zc)

)
.

(8)

Assuming Gaussian distributions for the priors as well as the variational distributions allows us to compute
the KL Divergences of zl and zc (last two terms in equation 8) analytically (Kingma & Welling, 2014). By
considering a multivariate Gaussian distribution and a multinomial distribution as the likelihood functions
for pθ2 (x | zc, zl) and pθ1 (y | zl), respectively, the negative log-likelihood of x becomes the mean squared
error (MSE) between the reconstructed images x̃ and the ground-truth images x while the negative log-
likelihood of y becomes the cross-entropy between the actual labels y and the predicted labels ỹ. After
working equation 8 out, we arrive at our overall objective function L = LR + LC , where:

LR = α1

N ′∑
i=1
∥xi − x̃i∥2 −KL(µci, σci),

LC = −α2

N ′∑
i=1

N∑
n=1

[yi]n ln pθ1(ỹi = n | zl)−KL(µli, σli).

(9)

where KL(µ, σ) = 1
2
∑D

d=1
(
1 + 2 ln(σd) − (µd)2 − (σd)2), [yi]n denotes the n-th dimension of the i-th one-

hot encoded ground-truth vector y, D denotes the dimension of the latent space, N is the total number
of classes in an (N -way, K-shot) task, α1, α2 are constant scaling factors, µc and σ2

c denote the mean and
variance vectors of context latent distribution, and µl and σ2

l denote the mean and variance vectors of
label latent distribution. The hyper-parameters α1, α2 only scale the evidence lower-bound appropriately,
since the reconstruction loss is in practice three orders of magnitude greater than the cross-entropy loss.
Moreover, these scaling factors can be understood as gradient-scaling parameters which help improve training
in heterogeneous likelihoods (Gaussian and Categorical in our case) (Javaloy et al., 2022).

4.5 Algorithmic Overview and Training Strategy

Overview of TRIDENT. The complete architecture of TRIDENT is illustrated in Fig. 4. The ConvEnc feature
extractor and the linear layers µϕ2(.), σ2

ϕ2
(.) constitute the inference network qϕ2 of the context latent

variable (bottom row of Fig. 4). The AttFEX module, another ConvEnc, and linear layers µϕ1(.) and σ2
ϕ1

(.)
make up the inference network qϕ1 of the label latent variable (top row of Fig. 4). The proposed approach,
TRIDENT, is described in Algorithm 1. Note that TRIDENT is trained in a MAML (Finn et al., 2017) fashion,
where depending on the inner or outer loop, the support or query set (g ∈ {S,Q}) will be the reference,
respectively. First, the lower ConvEnc block extracts feature maps Xg

CE = ConvEnc(Xg). Xg
CE’s are then

flattened and passed onto µϕ2(.), σ2
ϕ2

(.), which respectively output the mean and variance vectors of the
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Figure 4: TRIDENT is comprised of two intertwined variational networks. Zc
g is concatenated with the output of

AttFEX, and used for inferring Zg
l , where g ∈ {S, Q}. Next, both Zg

l and Zc
g are used to reconstruct images X̃g while

Zg
l is used to extract Ỹ g.

Algorithm 1: TRIDENT

Require: XS , XQ, Y g, Xg
CE, where g ∈ {S,Q}

1 Sample: Zc
g ∼ qϕ2

(
Zc |µϕ2(Xg

CE), diag
(
σ2

ϕ2
(Xg

CE)
))

2 Compute task-cognizant embeddings: [F̃S
, F̃Q] = AttFEX(ConvEnc(X)); X = XS ∪XQ

3 Concatenate Zc
g and F̃g into [F̃g, Zc

g] and sample: Zg
l ∼ qϕ1

(
Zl |µϕ1([F̃g

, Zc
g]), diag(σ2

ϕ1
([F̃g

, Zc
g]))
)

4 Reconstruct Xg using X̃g = pθ2(X |Zg
l , Zc

g)
5 Extract class-conditional probabilities using: p

(
Ỹ g |Zg

l

)
= softmax

(
pθ1(Y g |Zg

l )
)

6 Compute Lg = Lg
R + Lg

C using equation 9
Return: Lg

context latent distribution, as discussed in equation 1. This is done either for the entire support or the query
images Xg, where g ∈ {S, Q} for a given task Ti. We then sample a set of vectors Zg

c (subscript c for context)
from their corresponding Gaussian distributions using the re-parameterization trick (line 1, Algorithm 1).
Upon passing X = XS ∪XQ through the upper ConvEnc, the AttFEX module of qϕ1 comes into play to create
task-cognizant feature maps F̃g for either S or Q (line 2). Zg

c together with F̃g are passed onto the linear
layers µϕ1(.), σ2

ϕ1
(.) to generate the mean and variance vectors of the label latent Gaussian distributions (line

3). After sampling the set of vectors Zg
l (subscript l for label) from their corresponding distributions, we

use Zg
l and Zg

c to reconstruct images X̃g using the generative network pθ2 (line 4). Next, Zg
l ’s are input to

the classifier network pθ1 to generate the class logits, which are normalized using a softmax(.), resulting in
class-conditional probabilities p(Ỹ g |Zg

l ) (line 5). Finally (in line 6), using the outputs of all the components
discussed earlier, we calculate the loss Lg as formulated in equation 8, 9.

Training strategy. An important aspect of the training procedure of TRIDENT is that its set of parameters
Ψ = (θ1, θ2, ϕ1, ϕ2) are meta-learnt by back-propagating through the adaptation procedure on the support
set, as proposed in MAML (Finn et al., 2017) and illustrated here in Algorithm 2. This increases the
sensitivity of the parameters Ψ towards the loss function for fast adaptation to unseen tasks and reduces
generalization errors on the query set Q, as discussed from a dynamical systems standpoint in Finn et al.
(2017). First, we randomly initialize the parameters Ψ (line 1, Algorithm 2) to compute the objective
function over the support set LSi(Ψ) using equation 9, and perform a number of gradient descent steps on
the parameters Ψ to adapt them to the support set (lines 5 to 9). This is called the inner-update and is done
separately for all the support sets corresponding to their B different tasks (line 3). Once the inner-update is
computed for each of the B parameter sets, the loss is evaluated on the query set LQi(Ψ′

i) (line 12), following
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Algorithm 2: End to End Meta-Training of TRIDENT

Require: Dtr, α, β, B
1 Randomly initialise Ψ = (ϕ1, ϕ2, θ1, θ2)
2 while not converged do
3 Sample B tasks Ti = Si ∪Qi from Dtr

4 for each task Ti do
5 for number of adaptation steps do
6 Compute LSi(Ψ) = TRIDENT(Ti − {Y Qi})
7 Evaluate ∇(Ψ)LSi(Ψ)
8 Ψ← Ψ− α∇ΨLSi(Ψ)
9 end

10 (Ψ′)i = Ψ
11 end
12 Compute LQi(Ψ′

i) = TRIDENT(Ti − {Y Si});∀i ∈ [1, B]
13 Meta-update on Qi: Ψ← Ψ− β∇Ψ

∑B
i=1 LQi(Ψ′

i)
14 end

which a meta-update is conducted over all the corresponding query sets, which involves computing a gradient
through a gradient procedure as described in Finn et al. (2017) (line 13).

5 Experimental Evaluation

The goal of this section is to address the following four questions: (i) How well does TRIDENT perform when
compared against the state-of-the-art methods for few-shot classification? (ii) How reliable is TRIDENT in
terms of the confidence and uncertainty metrics? (iii) How well does TRIDENT perform in a cross-domain
setting where there is a domain shift between the training and testing datasets? (iv) Does TRIDENT actually
decouple latent variables?

Benchmark Datasets. We evaluate TRIDENT on the three most commonly adopted datasets: miniImagenet
(Ravi & Larochelle, 2017a), tieredImagenet (Ren et al., 2018) and CUB (Welinder et al., 2010).
miniImagenet (Vinyals et al., 2016) is a subset of ImageNet (Deng et al., 2009) for few-shot classifi-
cation. It contains 100 classes with 600 samples each. We follow the predominantly adopted settings of Ravi
& Larochelle (2017a); Chen et al. (2019) where we split the entire dataset into 64 classes for training, 16 for
validation and 20 for testing. tieredImagenet is a larger subset of ImageNet with 608 classes and 779, 165
total images, which are grouped into 34 higher-level nodes in the ImageNet human-curated hierarchy. This
set of nodes is partitioned into 20, 6, and 8 disjoint sets of training, validation, and testing nodes, and the
corresponding classes form the respective meta-sets. CUB (Welinder et al., 2010) dataset has a total of
200 classes, split into training, validation and test sets following Chen et al. (2019). We use this dataset to
simulate the effect of a domain shift where the model is first trained on a (5-way, 1 or 5-shot) configuration
of miniImagenet and then tested on the test classes of CUB, as used in Chen et al. (2019); Boudiaf et al.
(2020); Ziko et al. (2020); Long et al. (2018).

Implementational Details. We use PyTorch (Paszke et al., 2019) and learn2learn (Arnold et al.,
2020) for all our implementations. We use a commonly adopted Conv4 architecture (Ravi & Larochelle,
2017a; Finn et al., 2017; Patacchiola et al., 2020; Afrasiyabi et al., 2020; Wang et al., 2019; Boudiaf
et al., 2020) as ConvEnc to obtain the generic feature maps. Following the standard setting in the lit-
erature (Finn et al., 2017; Ravi & Larochelle, 2017a), the Conv4 has four convolutional blocks where
each block has a 3 × 3 convolution layer with 32 feature maps, followed by a batch normalization (BN)
(Ioffe & Szegedy, 2015) layer, a 2 × 2 max-pooling layer and a LeakyReLU(0.2) activation. The gen-
erative network pθ1 for zl is a classifier with two linear layers and a LeakyReLU(0.2) activation in be-
tween, while pθ2 for zc consists of four blocks of a 2-D upsampling layer, followed by a 3 × 3 convo-
lution and LeakyReLU(0.2) activation. Both latent variables zl and zc have a dimensionality of 64.
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Table 1: H.P. values when training TRIDENT.
miniImagenet tieredImagenet

H.P. 5-way, 1-shot 5-way, 5-shot 5-way, 1-shot 5-way, 5-shot
α1 1e-2 1e-2 1e-2 1e-2
α2 100 100 150 150
α 1e-3 1e-3 1.5e-3 1.7e-3
β 1e-4 1e-4 1.5e-4 1.7e-4
B 20 20 20 20
n 5 5 5 5

Following Nichol et al. (2018a); Liu et al. (2019);
Vaswani et al. (2017), images are resized to 84× 84
for all configurations and we train and report test
accuracy of (5-way, 1 and 5-shot) settings with 10
query images per class for all datasets. The hyper-
parameter values (H.P.) used for training TRIDENT
on miniImagenet and tieredImagenet are shown in
Table 1. We apply the same hyperparameters for
the cross-domain testing scenario of miniImagenet
→ CUB used for training TRIDENT on miniImagenet,
for the given (N -way, K-shot) configuration. Hyperparameters are kept fixed throughout training, valida-
tion and testing for a given configuration. Adam (Kingma & Ba, 2015) optimizer is used for inner and
meta-updates. Finally, the query, key and value extraction networks fq(, ; WQ), fk(.; WK), fv(.; WV ) of
the AttFEX module only use Conv1×1(.) and not the LeakyReLU(0.2) activation function for (5-way, 1-shot)
tasks, irrespective of the dataset. We observed that utilizing BatchNorm (Ioffe & Szegedy, 2015) in the
decoder of zc (pθ2) to train TRIDENT on (5-way, 5-shot) tasks of miniImagenet and on (5-way, 1-shot) tasks
of tieredImagenet leads to better scores and improved stability during training. We used the ReLU activa-
tion function instead of LeakyReLU(0.2) to carry out training on (5-way, 1-shot) tasks of tieredImagenet.
Meta-learning objectives can lead to unstable optimization processes in practice, especially when coupled
with stochastic sampling in latent spaces, as also previously observed in Antreas Antoniou et al. (2019);
Rusu et al. (2019). For ease of experimentation, we clip the meta-gradient norm at an absolute value of 1.
Since AttFEX operates on all samples available in a task, scaling to a larger number of ways and shots per
task requires more computational resources. TRIDENT converges in 82, 000 and 22, 500 epochs for (5-way,
1-shot) and (5-way, 5-shot) tasks of miniImagenet, respectively and takes 67, 500 and 48, 000 epochs for
convergence on (5-way, 1-shot) and (5-way, 5-shot) tasks of tieredImagenet, respectively. This translates to
an average training time of 110 hours on an 11GB NVIDIA 1080Ti GPU. Note that we did not employ any
data augmentation, feature averaging or any other data apart from the corresponding training subset Dtr,
during training.

5.1 Evaluation Results

We report test accuracies indicating 95% confidence intervals over 600 tasks for miniImagenet, and 2000
tasks for both tieredImagenet and CUB, as is customary across the literature (Chen et al., 2019; Dhillon
et al., 2020; Bateni et al., 2022). We compare our performance against a wide variety of state-of-the-art
few-shot classification methods such as: (i) metric-learning (Wang et al., 2019; Bateni et al., 2020; Afrasiyabi
et al., 2020; Yang et al., 2020), (ii) transductive feature-extraction based (Oreshkin et al., 2018; Ye et al.,
2020; Li et al., 2019; Xu et al., 2021), (iii) optimization-based (Finn et al., 2017; Mishra et al., 2018; Oh
et al., 2021; Lee et al., 2019; Rusu et al., 2019), (iv) transductive inference-based (Bateni et al., 2022; Boudiaf
et al., 2020; Ziko et al., 2020; Liu et al., 2019), and (v) Bayesian (Iakovleva et al., 2020; Zhang et al., 2019;
Hu et al., 2020; Patacchiola et al., 2020; Ravi & Beatson, 2019) approaches. Previous works such as Liu
et al. (2019), and Hou et al. (2019) have demonstrated the superiority of transductive inference methods
over their inductive counterparts. In this light, we compare against a larger number of transductive (18
baselines) rather than inductive (7 baselines) methods for a fair comparison. It is important to note that
TRIDENT is only a transductive feature-extraction based method as we utilize the query set images to extract
task-aware feature embeddings; it is not a transductive inference based method since we perform inference
of class-labels over the entire domain of definition and not just for the selected query samples (Vapnik,
2006; Gammerman et al., 1998). The results on miniImagenet and tieredImagenet for both (5-way, 1 and
5-shot) settings are summarized in Table 2. We accentuate on the fact that we also compare against Transd-
CNAPS+FETI (Bateni et al., 2022), where the authors pre-train the ResNet-18 backbone on the entire
train split of Imagenet. We, however, avoid training on additional datasets, in favor of fair comparison
with the rest of literature. Regardless of the choice of backbone (simplest in our case), TRIDENT sets a new
state-of-the-art on miniImagenet and tieredImagenet for both (5-way, 1 and 5-shot) settings, offering up to
5% gain over the prior art. Recently, a more challenging cross-domain setting has been proposed for few-shot
classification to assess its generalization capabilities to unseen datasets. The commonly adopted setting is
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Table 2: Accuracies in (% ± std). The predominant methodology of the baselines: Ind.: inductive inference, TF:
transductive feature extraction methods, TI: transductive inference methods. Conv: convolutional blocks, RN: ResNet
backbone, †: extra data. Style: best and second best. TRIDENT employs a transductive feature extraction module
(TF), and the simplest of backbones (Conv4).

miniImagenet tieredImagenet mini→CUB
Methods Backbone Approach 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot
MAML (Finn et al., 2017) Conv4 Ind. 48.70 ± 1.84 63.11 ± 0.92 51.67 ± 1.81 70.30 ± 0.08 34.01 ± 1.25 48.83 ± 0.62
ABML (Ravi & Beatson, 2019) Conv4 Ind. 40.88 ± 0.25 58.19 ± 0.17 - - 31.51 ± 0.32 47.80 ± 0.51
OVE(PL) (Patacchiola et al., 2020) Conv4 Ind. 48.00 ± 0.24 67.14 ± 0.23 - - 37.49 ± 0.11 57.23 ± 0.31
DKT+Cos (Patacchiola et al., 2020) Conv4 Ind. 48.64 ± 0.45 62.85 ± 0.37 - - 40.22 ± 0.54 55.65 ± 0.05
BOIL (Oh et al., 2021) Conv4 Ind. 49.61 ± 0.16 48.58 ± 0.27 66.45 ± 0.37 69.37 ± 0.12 - -
LFWT (Tseng et al., 2020) RN10 TF+TI 66.32 ± 0.80 81.98 ± 0.55 - - 47.47 ± 0.75 66.98 ± 0.68
FRN (Wertheimer et al., 2021) RN12 Ind. 66.45 ± 0.19 82.83 ± 0.13 71.16 ± 0.22 86.01 ± 0.15 54.11 ± 0.19 77.09 ± 0.15
DPGN (Yang et al., 2020) RN12 TF+TI 67.77 84.6 72.45 87.24 - -
PAL (Ma et al., 2021) RN12 TF+TI 69.37 ± 0.64 84.40 ± 0.44 72.25 ± 0.72 86.95 ± 0.47 - -
Proto-Completion (Zhang et al., 2021a) RN12 TF+TI 73.13 ± 0.85 82.06 ± 0.54 81.04 ± 0.89 87.42 ± 0.57 - -
TPMN (Wu et al., 2021) RN12 TF+TI 67.64 ± 0.63 83.44 ± 0.43 72.24 ± 0.70 86.55 ± 0.63 - -
LIF-EMD (Li et al., 2021) RN12 TF+TI 68.94 ± 0.28 85.07 ± 0.50 73.76 ± 0.32 87.83 ± 0.59 - -
Transd-CNAPS (Bateni et al., 2022) RN18 TF+TI 55.6 ± 0.9 73.1 ± 0.7 65.9 ± 1.0 81.8 ± 0.7 - -
Baseline++ (Chen et al., 2019) RN18 TF 51.87 ± 0.77 75.68 ± 0.63 - - 42.85 ± 0.69 62.04 ± 0.76
FEAT (Ye et al., 2020) RN18 TF 66.78 82.05 70.80 84.79 50.67 ± 0.78 71.08 ± 0.73
SimpleShot (Wang et al., 2019) WRN Ind. 63.32 80.28 69.98 85.45 48.56 65.63
Assoc-Align (Afrasiyabi et al., 2020) WRN TF 65.92 ± 0.60 82.85 ± 0.55 74.40 ± 0.68 86.61 ± 0.59 47.25 ± 0.76 72.37 ± 0.89
ReRank (SHEN et al., 2021) WRN TF+TI 72.4±0.6 80.2±0.4 79.5±0.6 84.8±0.4 - -
TIM-GD (Boudiaf et al., 2020) WRN TI 77.8 87.4 82.1 89.8 - 71
LaplacianShot (Ziko et al., 2020) WRN TI 74.9 84.07 80.22 87.49 55.46 66.33
S2M2 (Mangla et al., 2020) WRN TF 64.93 ± 0.18 83.18 ± 0.11 73.71 ± 0.22 88.59 ± 0.14 48.24 ± 0.84 70.44 ± 0.75
MetaQDA (Zhang et al., 2021b) WRN TF 67.83 ± 0.64 84.28 ± 0.69 74.33 ± 0.65 89.56 ± 0.79 53.75 ± 0.72 71.84 ± 0.66
BAVARDAGE (Hu et al., 2022b) WRN TI 82.7 89.5 83.5 89.0 - -
EASY (Bendou et al., 2022) WRN TF+TI 84.04 ± 0.23 89.14 ± 0.11 84.29 ± 0.24 89.76 ± 0.14 - -
PT+MAP (Hu et al., 2021) WRN TF+TI 82.92 ± 0.26 88.82 ± 0.13 85.67 ± 0.26 90.45 ± 0.14 62.49 ± 0.32 76.51 ± 0.18
PEMnE-BMS (Hu et al., 2022a) WRN TF+TI 83.35 ± 0.25 89.53 ± 0.13 86.07 ± 0.25 91.09 ± 0.14 63.90 ± 0.31 79.15 ± 0.18
Transd-CNAPS+FETI (Bateni et al., 2022) RN18† TF+TI 79.9 ± 0.8 91.50 ± 0.4 73.8 ± 0.1 87.7 ± 0.6 - -
TRIDENT(Ours) Conv4 TF 86.11 ± 0.59 95.95 ± 0.28 86.97 ± 0.50 96.57 ± 0.17 84.61 ± 0.33 80.74 ± 0.35

where one trains on miniImagenet and tests on CUB (Chen et al., 2019). The results of this experiment are
also presented in Table 2. We compare against any existing baselines for which this cross-domain experiment
has been conducted. As can be seen, and to the best of our knowledge, TRIDENT again sets a new state-
of-the-art by a significant margin of 20% for (5-way, 1-shot) setting, and 1.5% for (5-way, 5-shot) setting.

Table 3: Parameter count of TRIDENT against competitors.
Conv4 µϕ σϕ AttFEX TRIDENT Conv4 RN18 WRN

qϕ1 28896 51264 51264 6994
qϕ2 28896 51264 51264 -

pθ1+ pθ2 2245 + 132009
412,238 190, 410 12.4M 36.482M

Table 4: Calibration errors of TRIDENT. Style: best and
second best.

Metrics MAML PLATIPUS ABPML ABML BMAML VAMPIRE TRIDENT

ECE 0.046 0.032 0.013 0.026 0.025 0.008 0.00365-way,
1-shot MCE 0.073 0.108 0.037 0.058 0.092 0.038 0.029

ECE 0.032 - 0.006 - 0.027 - 0.00155-way,
5-shot MCE 0.044 - 0.030 - 0.049 - 0.018

Table 5: Style: best and second best.
Methods ECE MCE Brier
Feature Transfer(Chen et al., 2019) 0.275 0.646 0.772
Baseline(Chen et al., 2019) 0.315 0.537 0.716
Proto Nets(Snell et al., 2017) 0.009 0.025 0.604
DKT+Cos(Patacchiola et al., 2020) 0.236 0.426 0.670
BMAML+Chaser(Yoon et al., 2018) 0.066 0.260 0.639
LogSoftGP(ML)(Galy-Fajou et al., 2020) 0.220 0.513 0.709
LogSoftGP(PL)(Galy-Fajou et al., 2020) 0.022 0.042 0.564
OVE(ML)(Snell & Zemel, 2021) 0.049 0.066 0.576
OVE(PL)(Snell & Zemel, 2021) 0.020 0.032 0.556
TRIDENT(Ours) 0.009 0.02 0.276

Computational Complexity. Most of the re-
ported baselines in Table 2 use stronger backbones
such as ResNet12, ResNet18 and WRN which contain
11.5, 12.4 and 36.4 millions of parameters respec-
tively. On the other hand, we use three Conv4s along
with two fully connected layers and an AttFEX mod-
ule which accounts for 410,958 and 412,238 param-
eters in the (5-way, 1-shot) and (5-way, 5-shot) sce-
narios, respectively. This is summarized in details in
Table 3. Even though we are more parameter heavy
than approaches that use a single Conv4 as feature
extractor, TRIDENT’s total parameters still lies in the
same order of magnitude as these approaches. In
summary, when it comes to complexity in param-
eter space, we are considerably more efficient than
the vast majority of the cited competitors.

Reliability Metrics. A complementary set of met-
rics are typically used in probabilistic settings to
measure the uncertainty and reliability of predic-
tions. More specifically, expected calibration er-
ror (ECE) and maximum calibration error (MCE)
respectively measure the expected and maximum
binned difference between confidence and accuracy
(Guo et al., 2017). This is illustrated in Table 4
where TRIDENT offers superior calibration on miniImagenet (5-way, 1 and 5-shot) as compared to other
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Table 6: Ablation study for miniImagenet (5-way, 1-shot) tasks. Accuracies in (% ± std.).

(B, n) (5, 3) (5, 5) (10, 3) (10, 5) (20, 3) (20, 5)
- 67.43 ± 0.75 69.21 ± 0.66 74.6 ± 0.84 80.82 ± 0.68 86.11 ± 0.59

(dim(zl),
dim(zc))

(32, 32) (32, 64) (32, 128) (64, 32) (64, 64) (64, 128) (128, 32) (128, 64) (128, 128)
76.29 ± 0.72 75.44 ± 0.81 79.1 ± 0.57 82.93 ± 0.8 86.11 ± 0.59 85.62 ± 0.52 81.49 ± 0.65 82.89 ± 0.48 84.42 ± 0.59

(dim(WM ),
dim(WN ))

(32, 32) (32, 64) (32, 128) (64, 32) (64, 64) (64, 128) (128, 32) (128, 64) (128, 128)
78.4 ± 0.23 77.89 ± 0.39 79.55 ± 0.87 86.11 ± 0.59 84.87 ± 0.45 82.11 ± 0.35 84.67 ± 0.7 85.8 ± 0.58 83.92 ± 0.63

probabilistic approaches, and MAML (Finn et al., 2017). To further examine the reliability and calibration
of our method, we assess the ECE, MCE (Guo et al., 2017) and Brier scores (BRIER, 1950) of TRIDENT on
the challenging cross-domain scenario of miniImagenet → CUB for (5-way, 5-shot) tasks. When compared
against other baselines that report these metrics on the aforementioned scenario, TRIDENT proves to be the
most calibrated with the best reliability scores. This is shown in Table 5.

5.2 Decoupling Analysis

Figure 5: Better class separation upon meta-update is
confirmed by lower DBI scores. Different colors/markers
indicate classes.

As a qualitative demonstration, we visualize the la-
bel and context latent means (µl and µc) of query
images for a randomly selected (5-way, 5-shot) task
from the test split of miniImagenet, before and af-
ter the MAML meta-update procedure. The UMAP
(McInnes et al., 2018) plots in Fig. 5 illustrate sig-
nificant improvement in class-conditional separation
of query samples for label latent space upon meta-
update, whereas negligible improvement is visible
on the context latent space. This is qualitative evi-
dence that Zl captures more class-discriminating in-
formation as compared to Zc. To substantiate this
quantitatively, the clustering capacity of these latent
spaces is also measured by the Davies-Bouldin score
(DBI) (Davies & Bouldin, 1979), where, the lower
the DBI score, the better both the inter-cluster sep-
aration and intra-cluster “tightness". Fig. 5 shows
that the DBI score drops significantly more after
meta-update in the case of Zl as compared to Zc,
indicating better clustering of features in the former
than the latter. This aligns with the proposed de-
coupling strategy of TRIDENT and corroborates the
validity of our proposition to put an emphasis on la-
bel latent information for the downstream few-shot
tasks.

5.3 Ablation Study

We analyze the classification performance of TRIDENT across various paramaters and hyper-parameters, as is
summarized in Table 6. We use miniImagenet (5-way, 1-shot) setting to carry out ablation study experiments.
To cover different design perspectives, we carry out ablation on: (i) MAML-style training parameters: meta-
batch size B and number of inner adaption steps n, (ii) latent space dimensionality: zl and zc to assess
the impact of their size, (iii) AttFEX features: number of features extracted by WM , WN . Looking at the
results, TRIDENT’s performance is directly proportional to the number of tasks and inner-adaptation steps, as
is previously demonstrated in Antreas Antoniou et al. (2019); Finn et al. (2017) for MAML based training.
Regarding latent space dimensions, a correlation between a higher dimension of zl and zc and a better
performance can be observed. Even though, the results show that increasing both dimensions beyond 64
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leads to performance degradation. As such, (64, 64) seems to be the sweet spot. Finally, on feature space
dimensions of AttFEX, the performance improves when WM > WN , and the best performance is achieved
when the parameters are set to (64, 32). Notably, the exact set of parameters return the best performance
for (5-way, 5-shot) setting. To sum up, (B, n, dim(zl), dim(zc), dim(WM ), dim(WN )) = (20, 5, 64, 64, 64, 32)
turns out to be the best setting for (5-way, 1-shot), consistently the same for (5-way, 5-shot).

5.4 Impact of AttFEX and the Decoupled Inference Strategy

In order to study the impact of the transductive feature extractor AttFEX, we exclude it dur-
ing training and train the remaining architecture. Training proceeds exactly as mentioned in Al-
gorithm 2. As can be seen in Table 7, the exclusion of AttFEX from TRIDENT (AttFEX OFF)
results in a substantial drop in classification performance across both datasets and task settings.
Empirically, this further substantiates the importance of AttFEX’s ability to render the feature
maps transductive/task-aware. As explained earlier in section 4.3, the derivation of TRIDENT’s
ELBO implies that y should be included as an input to qϕ1 due to its dependence on zl.

Table 7: Impact of AttFEX on classification accuracies.
miniImagenet tieredImagenet

(5-way, 1-shot) (5-way, 5-shot) (5-way, 1-shot) (5-way, 5-shot)
AttFEX OFF 67.68 ± 0.55 78.53 ± 0.21 69.32 ± 0.76 79.32 ± 0.76

TRIDENT (EP) 69.84 ± 0.5 80.15 ± 0.67 73.29 ± 0.60 82.17 ± 0.65
TRIDENT (FEAT) 80.11 ± 0.43 87.61 ± 0.12 82.39 ± 0.45 88.78 ± 0.39
TRIDENT (LSTM) 75.41 ± 0.49 83.89 ± 0.45 79.72 ± 0.52 86.20 ± 0.92

ConvFEX 51.46 ± 0.91 62.35 ± 0.72 55.89 ± 0.31 64.56 ± 0.29
TRIDENT(Ours) 86.11 ± 0.59 95.95 ± 0.28 86.97 ± 0.50 96.57 ± 0.17

However, in order to utilize TRIDENT as a classifi-
cation and not a label reconstruction network, we
choose not to input y to qϕ1(.), but rather do so
indirectly by inducing a semblance of label charac-
teristics in the features extracted from the images
in a task. Thus, it is important to realize that this
ability of AttFEX to render feature maps transduc-
tive is not just an adhoc performance enhancer, but
rather an essential part of TRIDENT. To further un-
derstand the impact of AttFEX on TRIDENT, we train
TRIDENT with a transductive feature extraction module different from AttFEX. The three modules that we
replace AttFEX with are:

(i) Embedding propagation module (EP): This has been adapted from Embedding Propagation Networks
(Rodríguez et al., 2020). Here, a non-parametric graph-based propagation matrix helps smoothen the em-
bedding manifold to remove undesirable noise from the support and query feature vectors;

(ii) Attention-based feature adaption module (FEAT): This has been adapted from FEAT (Ye et al., 2020).
A self-attention module is used to transform the support and query set by computing a weighted average of
all the feature vectors in a task. The weights are calculated using a dot-product between each pair of feature
vectors;

(iii) LSTM-based feature adaption module (LSTM): We introduce the LSTM-based transductive task-
encoding procedure from Transductive CNAPS (Bateni et al., 2022) in place of AttFEX and carry out
the same training procedure. The results for each of these experiments, when trained with TRIDENT on
miniImagenet and tieredImagenet, are shown in Table 7.

TRIDENT’s superior results corroborate the importance of our design choices in AttFEX. Furthermore, to
empirically verify the contribution of the decoupled variational inference vs AttFEX, we trained a simplified
network ConvFEX = Conv4 + AttFEX as the inference network q(z |x) to generate class labels y using an
MLP p(y | z). ConvFEX embodies the inference and generative mechanics of zl while omitting the second
latent variable zc, thus dropping the decoupled inference strategy. As shown in Table 7, the classification
accuracies across both datasets and task settings for ConvFEX corroborate that when label-specific and
context information are coupled, we observe a significant performance degradation as compared to TRIDENT,
thus reaffirming the importance of our decoupled variational inference strategy.
5.5 Impact of End-to-End Meta-Learning

To understand the importance of end-to-end meta-training of the entire network architecture, we
train parts of TRIDENT in different steps. More specifically, we pre-train a ConvEnc on the train-
ing split of miniImagenet to perform 64-way classification. Note that during this pre-training
phase, training proceeds by sampling random batches from the entire training split without defin-
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ing support or query sets. We use the pre-trained feature extractors in TRIDENT’s inference net-
works qϕ1 and qϕ2 for fine-tuning. We then conduct three different experiments for fine-tuning the
network: (i) freeze both the ConvEnc’s and fine-tune episodically without any MAML-style meta-
learning; (ii) fine-tune the entire architecture episodically without any MAML-style meta-learning;

Table 8: Impact of meta-learning on accuracies.
miniImagenet

(5-way, 1-shot) (5-way, 5-shot)
Frozen ConvEnc (Episodic) 67.68 ± 0.55 78.53 ± 0.21

Fine-tune ConvEnc (Episodic) 69.84 ± 0.5 80.15 ± 0.67
Frozen ConvEnc (Meta-Learn) 80.11 ± 0.43 87.61 ± 0.12

TRIDENT(Ours) 86.11 ± 0.59 95.95 ± 0.28

(iii) freeze both the ConvEnc’s and fine-tune using
MAML-style meta-learning. Fine-tuning proceeds
by sampling (N -way, K-shot) tasks from the train-
ing split of miniImagenet. Notably, in (i) and (ii),
we do not have separate updates for the support and
query sets following simple episodic training. There-
fore, employing an MLP for classification is a sub-
optimal utilization of the labelled samples. To ad-
dress this, we use a prototypical classification frame-
work as proposed in Prototypical Networks (Snell
et al., 2017). The results of all the experimentation
is illustrated in Table 8. It can be observed that episodic fine-tuning is not as effective as meta-learning the
entire network architecture. This can be attributed to the ability of MAML-style meta-learning to render
the network’s weights sensitive to the loss function, thus enabling quicker generalization to unseen tasks
(Finn et al., 2017).

6 Concluding Remarks

We introduce a novel variational inference network (coined as TRIDENT) that simultaneously infers decoupled
latent variables representing context and label information of an image. The proposed network is comprised
of two intertwined variational sub-networks responsible for inferring the context and label information sepa-
rately, the latter being enhanced using an attention-based transductive feature extraction module (AttFEX).
Our extensive experimental results corroborate the efficacy of this transductive decoupling strategy on a
variety of few-shot classification settings demonstrating superior performance and setting a new state-of-the-
art for the most commonly adopted datasets mini and tieredImagenet as well as for the recent challenging
cross-domain scenario of miniImagenet → CUB. As future work, we plan to demonstrate the applicability
of TRIDENT in semi-supervised and unsupervised settings by including the likelihood of unlabelled samples
derived from the graphical model. This would render TRIDENT as an all-inclusive holistic approach towards
solving few-shot classification.
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