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Abstract

Generating realistic 3D human-object interactions (HOIs) remains a challenging
task due to the difficulty of modeling detailed interaction dynamics. Existing
methods treat human and object motions independently, resulting in physically
implausible and causally inconsistent behaviors. In this work, we present HOI-
Dyn, a novel framework that formulates HOI generation as a driver-responder
system, where human actions drive object responses. At the core of our method is
a lightweight transformer-based interaction dynamics model that explicitly predicts
how objects should react to human motion. To further enforce consistency, we
introduce a residual-based dynamics loss that mitigates the impact of dynamics
prediction errors and prevents misleading optimization signals. The dynamics
model is used only during training, preserving inference efficiency. Through
extensive qualitative and quantitative experiments, we demonstrate that our ap-
proach not only enhances the quality of HOI generation but also establishes a
feasible metric for evaluating the quality of generated interactions. Project web-
site:https://wulin97.github.io/hoi-dyn

1 Introduction

Synthesizing complex and realistic 3D human-object interactions (HOIs) is essential for progress in
VR/AR, computer animation, and robotics [1–4], yet remains a significant challenge. Compared to
human motion generation—whether for single or multiple people [5, 6]—HOI is significantly more
difficult. Human motion generation typically involves relatively free movement, making it easier to
generate plausible sequences [7, 8]. However, HOI requires capturing intricate interaction dynamics,
such as stable contact, forces, and action-response relationships. Simply applying human motion
generation frameworks to HOI often produces independent motion of the human and object, leading
to physically unrealistic and causally inconsistent behaviors.

Previous works on HOI generation mainly focused on interactions between humans and static objects
or scenes [9–12], such as sitting on a sofa. Recent advances have shifted toward controllable synthesis
of dynamic HOI, where both the human and object move synchronously [13, 14]. For example, given
an initial state and a textual instruction, the system can generate a motion sequence where a human
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picks up an object, such as a bench, and places it elsewhere. This approach enables more flexible
motion generation and a wide range of applications.

However, existing methods often fail to capture the core interaction dynamics between humans and
objects. These approaches typically focus on modeling either object affordances or contact points [1,
4, 15], or simply integrating human and object motions through diffusion-based models [2, 13].
However, they do not fully address how objects should respond to human actions, often leading to
physical and causal inconsistencies.

In this work, we propose a new perspective: framing HOI generation as a driver-responder sys-
tem [16], where human actions serve as the driver and objects respond accordingly. At the heart of
this approach is the modeling of interaction dynamics, which describes how objects should naturally
react to human motions. This view offers several advantages:

• Contact is implicitly governed by the dynamics—no need to explicitly model it. If there is no
contact, there is no response; if contact occurs, the object’s response is naturally determined
by the interaction dynamics.

• Object motion is not independent—each step of their movement is driven by the human’s
actions and controlled through specific instructions or context, ensuring a coherent and
physically plausible interaction.

Building on this perspective, we design a new HOI generation framework that explicitly incorporates
interaction dynamics into the motion synthesis process, yielding state-of-the-art performance on chal-
lenging HOI benchmarks and offering a physically grounded solution to HOI generation. Specifically,
our contributions are as follows:

• We introduce a novel driver–responder formulation for HOI generation from a synchro-
nized control perspective, modeling the causal dependencies between human actions and
object responses in a dynamic and physically consistent manner.

• We propose a lightweight transformer-based interaction dynamics model that answers how
objects should react dynamically to human actions, taking into account the context of human
motion and specific contact situations.

• We introduce a residual-based interaction dynamics loss that serves HOI motion diffusion,
compensating for prediction noise in the dynamics model. This loss helps prevent misleading
optimization gradients and ensures the focus remains on core generative inconsistencies,
thereby improving the quality of the generated motion sequences.

• We demonstrate the effectiveness of our approach through extensive qualitative and quantita-
tive experiments, highlighting that the proposed model not only improves HOI generation but
also serves as a reliable evaluation metric for assessing the quality of generated interactions.

2 Related Work

2.1 Object-Guided HOI Generation

A subset of HOI generation methods leverages object trajectories or waypoints to guide human
motion. OMOMO [1] takes a full sequence of object states as input and generates the corresponding
human poses, whereas CHOIS [13] and Wu et al. [2] rely on sparse object waypoints (e.g., roughly
one waypoint every 30 frames), leaving the object’s detailed responses to be implicitly determined by
the model. These methods typically add auxiliary supervision or constraints to encourage plausible
human-object contact. However, such guidance mainly steers the diffusion process toward ensuring
that contact occurs, rather than modeling the underlying interaction itself. While this strategy can
yield globally coherent sequences, it remains at a high level: the model is not trained to capture how
objects physically react to human actions in a fine-grained and causally consistent manner, leaving
the central challenge of realistic HOI underexplored.

2.2 Joint Human-Object Motion Generation

Another line of work generates HOIs jointly without conditioning on future object states. HOI-
Diff [17] relies on affordance prediction and estimated contact points to guide interactions, while
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CG-HOI [15] leverages contact fields on the human mesh as strong priors. THOR [14] models
relational cues for coordinated motions, HIMO [18] employs a dual-branch conditional diffusion
with a mutual interaction module for cross-modal fusion, and ChainHOI [19] adopts a spatiotemporal
graph architecture with a kinematics-aware module to capture joint- and chain-level dependencies.

Despite these advances, common challenges remain. First, predicting accurate contact points or
modeling interactions precisely at contact regions is inherently difficult. Second, although high-level
constraints or interaction modules encourage consistency, they often fail to capture the causal and
fine-grained dynamics of object responses to human actions. As a result, object behaviors may appear
temporally inconsistent or physically implausible, even when global plausibility is achieved. This
highlights a missing perspective: explicitly treating human actions as the driver and object motions as
their causal responses. Such a formulation is crucial for achieving physically realistic HOI generation.

2.3 Driver-Responder Synchronization

Driver-Responder Synchronization, also referred to as master-slave synchronization, has been widely
observed in coupled systems across biological and physical domains [20–22]. In these systems,
controllers achieve synchronization through adaptive and feedback strategies [23, 24]. Drawing
inspiration from these systems, we conceptualize HOI generation as a Driver-Responder System,
where human actions serve as the driver, controlling the object’s response. Unlike prior methods
that treat human and object motions independently [13, 25, 26], this perspective captures the causal
relationship between human movements and object reactions, ensuring more coherent and physically
consistent interactions. By introducing an internal control mechanism, the Driver-Responder formu-
lation provides a principled framework for generating HOIs with refined temporal coherence and
realistic object dynamics, addressing the limitations of previous high-level constrained approaches.

3 Methodology

Our goal is to synthesize synchronized HOIs while maintaining internal causal consistency, by
leveraging controllable signals such as textual descriptions and object geometry. We propose the
HOI-Dyn framework (see Fig. 1) that explicitly models interaction dynamics, enabling the generation
of more plausible and coherent motion sequences. The framework consists of two key components:
Motion Diffusion and Interaction Dynamics. The Motion Diffusion component, based on a
Transformer-based conditional diffusion model, jointly encodes the human, object, and interaction
context into a unified representation. The Interaction Dynamics component provides auxiliary
supervision to reinforce fine-grained causal consistency during motion generation.

Figure 1: Overview of the proposed HOI-Dyn framework. (a) Conditional Motion Diffusion
synthesizes human-object interactions τ̂0 = {Ĥ, Ô, X̂} using a Transformer-based diffusion model,
where Ĥ := {ĥt}T−1

t=0 and Ô := {ôt}T−1
t=0 . (b) The full framework integrates motion generation with

interaction dynamics supervision. (c) Interaction Dynamics models object responses ∆ô∗t based on
human relative motion ∆ĥt, object pose ôt, and interaction context ŝt.

3



3.1 Interaction Dynamics

In diffusion-based motion generation, the output typically reflects clean motion rather than noise. The
denoising process allows the model to internalize human-specific dynamics, resulting in physically
plausible free movement. In contrast, object motion is externally driven and inherently constrained by
physical laws—it cannot occur autonomously. To reflect this asymmetry, we decouple their roles as
follows: the human follows internally guided dynamics, while the object responds to external control.
This interaction is formalized as

Driver (Human) :

{
h(t+1) = h(t) +∆t · Fh(h

(t))

y
(t)
h = gh(h

(t))
,

Responder (Object) :

{
o(t+1) = o(t) +∆t · Fo(o

(t), s(t), u(t))

y
(t)
o = go(o

(t))
,

(1)

where h(t) and o(t) denote the latent states of the human and the object at time step t, respectively.
The functions Fh(·) and Fo(·) describe their respective internal dynamics, while gh and go project
these latent states to the observable outputs y(t)h and y

(t)
o . ∆t is the sampling time step. The control

signal u(t) is determined based on the error feedback e(y
(t)
h , y

(t)
o ), which reflects the discrepancy

between the human’s intent and the object’s behavior. The term s(t) denotes the interaction context,
which includes factors such as contact state, object geometry, and other environment- or task-specific
conditions influencing the object’s motion.

In practice, we observe that existing diffusion models often fail to generate causally consistent
interactions due to the absence of precise control signal u(t), which is essential for aligning the
object’s motion with human intent [13, 14]. To address this limitation, we propose the interaction
dynamics as a supervisory signal to implicitly optimize it in the diffusion process. Based on (1), we
can derive the object’s relative motion as

∆o(t) = o(t+1) − o(t) = ∆t · Fo(o
(t), s(t), u(t)) ≈ D(s(t), o(t),∆h(t); θD), (2)

where ∆h(t) = h(t+1) − h(t) denotes the human’s relative motion, and D(·) is a learnable function
parameterized by θD. This formulation emphasizes that object dynamics are governed not only by
their internal state but also by human-induced interactions and the context.

To enhance sensitivity to varying interaction magnitudes, we extend the HOI prediction horizon
from 1 to k, with k being selected randomly from [1,K]. As shown in Fig. 1(c), the model takes as
input the current object state o(t), interaction context s(t), and the cumulative human motion over the
horizon ∆ht→t+k = h(t+k) − h(t), and predicts the corresponding object motion:

∆o∗t→t+k ≈ D(s(t), o(t),∆ht→t+k; θD). (3)

The above predicted motion is further represented as a rigid-body transformation comprising a
rotation R̂(t→t+k) ∈ SO(3) and translation T̂ (t→t+k) ∈ R3, i.e., ∆o∗=[R̂|T̂ ], applied to a set of
object’s points P(t) to yield the predicted future configuration as follows:

P̂(t+k) = R̂(t→t+k)P(t) + T̂ (t→t+k). (4)

To ensure that R̂(t→t+k) is a valid rotation matrix, we apply singular value decomposition (SVD)-
based projection to the raw network output R̃ ∈ R3×3, such that R̃ = UΣV ⊤ and R̂ = UV ⊤. We
then define the following cost for object dynamics to quantify the error between the transformed
keypoints:

Φ(∆ot→t+k,∆o∗t→t+k) = ∥P(t+k) − P̂(t+k)∥1. (5)

The overall loss function is defined as the expected value over time steps t and k sampled from
U(1,K) as follows:

L = Et, k∼U(1,K)

[
1

k
· Φ(∆ot→t+k,∆o∗t→t+k)

]
. (6)

This loss function guides the model to capture both the motion magnitude and the causal structure of
interactions, yielding more realistic and consistent object motion in HOI.
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3.2 Conditional Motion Diffusion

Having introduced the interaction dynamics, we now proceed to the motion generation stage. Here,
we propose a conditional diffusion model that provides internal forces to synthesize temporally
aligned motions for both the human and the object.

The joint human-object trajectory is denoted as τ = {H,O,X}, with the human motion H , object
motion O, and interaction context X (e.g., hand-object and foot-object contact annotations). The
context provides coarse guidance for synthesizing plausible interactions. We represent human motion
using the SMPL-X parametric model [27], and represent each frame of the object motion using 3D
translation and relative rotation. In the condition representation c, as shown in Fig. 1(a), we follow
the CHOIS framework [13] to integrate contextual cues such as text prompts and the Basis Point Set
(BPS) [28] of the object. More details can be found in Appendix B.

The complete conditional HOI Diffusion comprises both forward and reverse processes [29]. The
forward process is modeled as a Markov chain over N steps as follows:

q(τ1:N |τ0) =
N∏

n=1

q(τn|τn−1), q(τn|τn−1) = N (τn;
√
1− βn τn−1, βnI), (7)

where βn is a predefined noise schedule.

The reverse process is defined as
pθ(τn−1|τn, c) = N (τn−1;µθ(τn, n, c),Σn), (8)

where Σn is a fixed variance, and µθ =
√
αn(1−ᾱn−1)

1−ᾱn
· τn +

√
ᾱn−1βn

1−ᾱn
· τ̂0, with ᾱn =

∏n
i=1 αi and

αn = 1− βn.

The reverse process (8) is modeled by a neural network θG with the training loss:
Lhoi = Eτ0,n [∥τ̂0(τn, n, c; θG)− τ0∥1] , (9)

which minimizes the reconstruction error between the predicted and ground-truth trajectories.

Although the standard loss function (9) produces plausible motion sequences, physical inconsistencies
persist, particularly in object trajectories. To address this, we introduce an auxiliary Interaction
Dynamics Loss based on a shared dynamics model D. This loss penalizes discrepancies in object
motion between generated and ground-truth sequences, enforcing a causal alignment between human
actions and object responses, as follows:

Ldyn = Et [∥Φ(∆ô∗t ,∆ôt)− Φ(∆o∗t ,∆ot)∥1] , (10)

where {∆ô∗t }T−1
t=1 = D(∆τ̂0) and {∆o∗t }T−1

t=1 = D(∆τ0) are the object motions predicted by D
given the relative motion from the generated and ground-truth HOI τ̂0 and τ0, respectively. The
function Φ(·, ·) computes the motion errors as described in (5). The per-frame residuals in Ldyn are

δD,gen = Φ(∆ô∗t ,∆ôt), δD,gt = Φ(∆o∗t ,∆ot). (11)
Ideally, if D perfectly captures the interaction dynamics, then δD,gt = 0 and the loss reverts to
the direct supervision of δD,gen. However, in practice, prediction errors are unavoidable due to
imperfections in D and inaccuracies in the training data.

To mitigate the influence of these errors, we assume that D is locally smooth and time-
homogeneous—its bias depends on the state but not on time t. This assumption is reasonable
because D predicts object dynamics from current states without explicit time dependence, and local
smoothness reflects the continuity of physical motion (see Appendix E.2 for a detailed discussion of
these assumptions). Under this assumption, when the generative and ground-truth trajectories exhibit
similar state distributions, the error residuals tend to cancel out in expectation:

Et[δD,gen − δD,gt] ≈ 0. (12)
This residual formulation provides a robust supervisory signal: even if D is imperfect, its bias is
removed through subtraction, allowing the learning algorithm to focus on the true inconsistencies
in the generated motion. For a more detailed discussion, see Appendix C. With this loss in place,
each step of the generation process is guided to yield a more accurate control signal ut, resulting in
physically grounded and temporally coherent HOI sequences. We therefore extend the standard HOI
training objective Lhoi (9) by incorporating both Ldyn (10) and an object-level reconstruction loss
Lobj = Et[Φ(ot, ôt)]. All these losses are equally weighted to simplify the overall training process
and avoid the need for complex hyperparameter tuning.
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4 Experiments

Dataset. We train and evaluate HOI generation using two datasets: (i) FullBodyManipulation,
which provides 10 hours of high-quality paired object and human motion data involving 15 different
objects [1]. We apply the OMOMO partitioning to this dataset: 15 subjects for training and 2 for
testing; and (ii) 3D-FUTURE, which consists of 3D models of various furniture items [30]. To assess
the generalization capability, we select 17 objects and pair them with motion sequences from the
FullBodyManipulation testing set.

Metrics. We evaluate HOI from four aspects, as defined in CHOIS [13]: (i) Condition Matching,
which measures the alignment of the predicted object trajectory with input waypoints using Euclidean
distance at the start, end, and intermediate points (cm). (ii) Human Motion Quality, which is evaluated
with the foot sliding score (FS), foot height Hfeet, and Fréchet Inception Distance (FID) [31] that
captures distributional differences between the generated and real motions. (iii) Interaction Quality:
Based on the frame-wise contact labels, we compute the contact percentage C%, F1 score CF1

, and
hand-object penetration score Phand to assess physical plausibility. (iv) Ground Truth Difference,
which includes the mean per-joint position error (MPJPE), root translation error Troot, object position
error Tobj, and orientation error Robj.

Implementation Details. We train the interaction dynamics using FullBodyManipulation with
K = 2 as the maximum prediction horizon. The network has 0.5M parameters. We use the Adam
optimizer [32] with a learning rate of 1 × 10−3, adjusted via CosineAnnealingWarmRestarts [33]
for 150 epochs with a batch size of 32. The model is then transferred to the HOI motion diffusion
task, where fine-grained driver-responder relationships are encouraged during denoising, as in (10).
Training is done from scratch with a learning rate of 1× 10−4, batch size 32, and 100,000 steps. All
experiments are conducted on a single NVIDIA RTX A4500 GPU, with total training time around 10
hours.

Baselines. We compare our method HOI-Dyn with the state-of-the-art (SOTA) approach,
CHOIS [13], whose results are reproduced under identical training conditions, including the same
number of training steps. We also consider other baselines including the adapted versions of Inter-
Diff [34], MDM [35], and OMOMO [1], whose results are borrowed from [13] for comparison. More
specifically, InterDiff is modified to accept additional inputs, including text and sparse waypoints.
MDM is updated to incorporate our object geometry representation and sparse waypoints, extending
it to predict object motion. We introduce three variants of OMOMO: (i) Pred-OMOMO, which
combines our object motion module with OMOMO; (ii) GT-OMOMO, which uses the ground truth
object motion as input; and (iii) Lin-OMOMO, which incorporates a linear interpolation strategy to
generate object motion trajectories and ensure consistent object rotation throughout the sequence.

4.1 Qualitative Results

We compare HOI-Dyn with the SOTA HOI model CHOIS from two complementary perspectives in a
synchronized manner: (i) Action–Interaction–Response, which evaluates the physical and semantic
plausibility of object motion before and after human actions; and (ii) Sequence-level Alignment,
which assesses the consistency of the generated HOI sequence with the input conditions and its
overall causal coherence. Together, these perspectives capture both the micro-level physical causality
and macro-level semantic consistency.

As shown in Figs. 2 (a) and (b), CHOIS, which lacks interaction dynamics modeling, often causes
premature object motion. The objects tend to move toward expected contact points (e.g., the
hand) spontaneously before human actions begin, leading to implausible behaviors such as bouncing,
wobbling, or sliding. In contrast, HOI-Dyn reduces such artifacts, promoting more natural interactions.
Fig. 2 (c) further highlights the difference in object responses after contact: HOI-Dyn generates
subtle, physically plausible reactions (with slight sliding after a gentle kick), while CHOIS often
produces exaggerated effects like flying or floating. Fig. 2 (d) shows the keyframes for sequence-level
comparison. Both methods generally respect input constraints, demonstrating the effectiveness of
motion diffusion. However, CHOIS often exhibits disjoint human-object motion and weak causality,
while HOI-Dyn ensures consistent object motion and maintains contact, resulting in more coherent
and plausible HOI sequences. More visualization results can be found in AppendixD.
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Figure 2: Comparison of HOI-Dyn and CHOIS on physical plausibility and sequence-level coherence.
(a–b) CHOIS produces premature object motion lacking causal timing; (c) HOI-Dyn generates more
realistic post-contact responses; (d) HOI-Dyn maintains consistent human-object interaction across
the full sequence. Green markers indicate object initial state and sparse waypoints.

4.2 Quantitative Results

As shown in Table 1, HOI-Dyn consistently outperforms existing methods across all evaluation
metrics. It achieves the lowest Ts and Te in condition matching, indicating better alignment with
input constraints. For human motion, it yields the best foot sliding score (FS) and FID, demonstrating
a more realistic motion synthesis. In terms of interaction quality, HOI-Dyn attains the highest CF1

and C%, while maintaining a comparable hand penetration score Phand. It also achieves the lowest
MPJPE, root translation Troot, and object motion errors (Tobj, Robj), demonstrating improved accuracy
in modeling human-object dynamics.

Table 1: Comparison of methods across different metrics. Arrows indicate whether lower (↓) or
higher (↑) is better, and the same notation applies hereafter.

Method Condition Matching Human Motion Interaction GT Difference
Ts ↓ Te ↓ Txy ↓ Hfeet ↓ FS ↓ FID ↓ CF1 ↑ C% ↑ Phand ↓ MPJPE ↓ Troot ↓ Tobj ↓ Robj ↓

Interdiff 0.00 158.84 72.72 0.90 0.42 208.0 0.33 0.27 0.55 25.91 63.44 88.35 1.65
MDM 5.18 33.07 19.42 6.72 0.48 6.16 0.53 0.43 0.66 17.86 34.16 24.46 1.85
Lin-OMOMO 0.00 0.00 0.00 7.21 0.41 15.33 0.57 0.54 0.51 21.73 36.62 17.12 1.21
Pred-OMOMO 2.39 8.03 4.15 7.08 0.40 4.19 0.66 0.62 0.58 18.66 28.39 16.36 1.05
GT-OMOMO 0.00 0.00 0.00 7.10 0.41 5.69 0.67 0.59 0.55 15.82 24.75 0.00 0.00
CHOIS 2.10 6.16 3.03 3.39 0.41 0.87 0.66 0.54 0.61 16.01 24.33 14.29 0.99
HOI-Dyn (Ours) 1.75 5.58 3.26 3.07 0.37 0.48 0.71 0.60 0.64 15.60 23.90 12.47 0.90
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To assess the generalizability of our model to novel objects, we also perform experiments on the 3D-
FUTURE dataset. As shown in Table 2, although not trained on this dataset, our model significantly
improves the quality of human motion and, more importantly, enhances the fidelity of human-object
contact, with only a slight increase in penetration.

Table 2: Interaction synthesis results on the 3D-FUTURE dataset [30].
Method Condition Matching Human Motion Interaction

Ts ↓ Te ↓ Txy ↓ Hfeet ↓ FS ↓ FID ↓ C% ↑ Phand ↓

InterDiff 0.00 161.26 72.77 -0.26 0.42 207.3 0.24 0.11
MDM 12.58 40.55 28.72 7.02 0.49 8.50 0.34 0.26
Lin-OMOMO 0.00 0.00 0.00 6.32 0.42 23.17 0.44 0.11
Pred-OMOMO 4.15 9.03 3.89 6.08 0.40 3.74 0.50 0.18
CHOIS 3.23 6.21 2.99 2.95 0.42 1.67 0.47 0.19
HOI-Dyn (Ours) 4.60 6.17 2.95 2.56 0.37 1.62 0.54 0.26

4.3 Application in 3D Scene

We demonstrate the practical applicability of our method by synthesizing dynamic HOI within
realistic 3D environments, conditioned on text descriptions. Specifically, we use 3D scenes from
the Replica dataset [36] and manually define instructions such as “pull the floor lamp and move it
next to the sofa”. The pipeline involves three steps: (i) parsing the textual description to identify
the intended interaction and associated object(s), (ii) specifying the target object’s initial placement
within the scene, and (iii) planning a collision-free navigation trajectory using Habitat. The resulting
path is then provided to our HOI generation model, which produces coherent and physically plausible
motion sequences aligned with the instruction.

As illustrated in Fig. 3, our model successfully generates realistic agent behaviors in complex
environments. In (a), the agent interacts with a floor lamp and repositions it near a sofa, while in
(b), it moves a large box across the room. Both examples highlight the model’s ability to generate
environment-conscious and interaction-consistent motions, with potential applications in animation,
virtual reality, and robotics.

(a) Interaction with a floor lamp (b) Interaction with a large box

Figure 3: HOI generation in realistic 3D scenes. The virtual agent interacts with different objects
while maintaining physical plausibility and environmental consistency.

4.4 Further Discussion

Effect of Interaction Dynamics Variants. We analyze the effects of prediction horizon K, network
design, and model complexity on the interaction dynamics performance. As shown in Fig. 4, a small
K limits large motion capture, while a large K weakens subtle interaction modeling. Empirically,
K=2 or K=3 yield the best results. For network design, we compare the decoupled and coupled
motion strategies. Inspired by [37–39], the decoupled approach predicts object rotation and translation
separately. Our coupled design instead models the unified influence of human motion and contact,
yielding a better performance under similar parameter and FLOP constraints, highlighting the
inherent coupling in HOI, as shown in Table 3. We also evaluate the model efficiency by varying
the Transformer depth (D), feature dimension (F ), and head count (H). The results in Table 3 show
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that a lightweight model with 0.5M parameters and 0.2 GFLOPs suffices to capture high-quality
interaction dynamics. For a more detailed discussion, see Appendix E

Figure 4: Effect of Horizon K. Figure 5: Object Loss via Dynamics.

Table 3: Effect of Design Variants. Our lightweight coupled model captures high-quality interaction
dynamics, outperforming the decoupled variants under similar constraints.

Architecture Network Configuration Object Point Cloud Loss Params Flops
K=1 K=2 K=3 K=4 K=5 K = 10 (M) (G)

Coupled (K=1) 0.316±0.0004 0.514±0.0012 0.763±0.0009 1.080±0.0046 1.444±0.0051 3.422±0.0050

Coupled (K=2) 0.313±0.0003 0.462±0.0003 0.622±0.0007 0.791±0.0024 0.982±0.0036 2.279±0.0059

Coupled (K=3) D4-F64-H8 0.313±0.0006 0.458±0.0016 0.603±0.0010 0.756±0.0024 0.920±0.0027 1.900±0.0079 0.483 0.201
Coupled (K=5) 0.321±0.0005 0.459±0.0012 0.599±0.0013 0.736±0.0011 0.879±0.0008 1.633±0.0031

Coupled (K=10) 0.329±0.0003 0.467±0.0022 0.604±0.0022 0.737±0.0015 0.871±0.0020 1.501±0.0009

Coupled (K=2) D1-F64-H8 0.349±0.0019 0.516±0.0011 0.700±0.0004 0.909±0.0023 1.144±0.0043 2.652±0.0109 0.432 0.057
Coupled (K=2) D4-F64-H8 0.313±0.0003 0.462±0.0003 0.622±0.0007 0.791±0.0024 0.982±0.0036 2.279±0.0059 0.483 0.201
Coupled (K=2) D8-F64-H8 0.318±0.0001 0.471±0.0016 0.633±0.0014 0.815±0.0041 1.035±0.0027 2.807±0.0118 0.550 0.394
Coupled (K=2) D8-F128-H8 0.563±0.0006 0.845±0.0007 1.136±0.0051 1.450±0.0052 1.791±0.0048 3.630±0.0141 0.994 1.552

Decoupled (K=2) (D1-F64-H8)×2 0.358±0.0006 0.532±0.0009 0.714±0.0027 0.919±0.0037 1.144±0.0057 2.613±0.0059 0.463 0.108
Decoupled (K=2) (D2-F64-H8)×2 0.340±0.0011 0.503±0.0006 0.676±0.0007 0.870±0.0015 1.080±0.0071 2.537±0.0049 0.496 0.200
Decoupled (K=2) (D4-F64-H8)×2 0.337±0.0006 0.503±0.0004 0.676±0.0034 0.866±0.0022 1.062±0.0047 2.409±0.0049 0.564 0.385

Effect of Different Guidance. Classifier-based guidance is often employed during inference in
generative models. Following [13], we apply two types of guidance: feet-floor and hand-object. The
feet-floor term encourages physical plausibility during locomotion and standing still by penalizing
unnatural foot height above the ground, while the hand-object term enforces physically consistent
contact and temporal coherence for hand–object interactions. For a more detailed description, see
Appendix F. As shown in Table 4, even without guidance, our method surpasses CHOIS, especially
in the interaction quality. The feet-floor term enhances foot realism and reduces FID, while the
hand-object term boosts contact accuracy but slightly harms motion quality. Combining both yields
consistent gains across all metrics, achieving a new SOTA.

Table 4: Effect of Different Guidance. Our method outperforms CHOIS even without guidance. The
feet-floor term improves physical realism, while the hand-object term enhances contact accuracy.
Combining both achieves SOTA performance across all metrics.

Method Condition Matching Human Motion Interaction GT Difference
Ts ↓ Te ↓ Txy ↓ Hfeet ↓ FS ↓ F ID ↓ CF1 ↑ C% ↑ Phand ↓ MPJPE ↓ Troot ↓ Tobj ↓ Oobj ↓

CHOIS (w/o gui) 1.86 5.79 3.05 3.39 0.57 3.63 0.54 0.42 0.61 16.05 25.34 12.36 0.99
CHOIS (w/ gui) 2.10 6.16 3.03 3.39 0.41 0.87 0.66 0.54 0.61 16.01 24.33 14.29 0.99

HOI-Dyn (w/o gui) 1.56 5.72 3.03 5.56 0.37 3.49 0.60 0.47 0.61 15.56 24.61 11.67 0.91
HOI-Dyn (feet-floor gui) 1.57 5.56 3.03 3.23 0.37 0.66 0.60 0.46 0.62 15.48 23.87 11.28 0.89
HOI-Dyn (hand-obj gui) 1.77 5.74 3.27 5.21 0.37 2.55 0.71 0.60 0.64 15.73 24.56 13.03 0.91
HOI-Dyn (w/ gui) 1.75 5.58 3.26 3.07 0.37 0.48 0.71 0.60 0.64 15.60 23.90 12.47 0.90

Effect of Removing Object Waypoints. To evaluate the intrinsic capability of our interaction
dynamics model, we consider a without waypoint (w/o WP) setting, removing predefined object
waypoints for both the Baseline (CHOIS) and HOI-Dyn models. In this setting, the GT difference
metric is no longer meaningful, so we focus on metrics reflecting physical plausibility and interactive
realism: foot sliding, penetration (any unrealistic interpenetration involving human, object, or floor),
contact F1 and accuracy, FID, and diversity. Classifier-based guidance is not applied during inference,
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ensuring that results reflect the generator’s learned dynamics. As shown in Table 5, HOI-Dyn
demonstrates improved foot and contact quality, better FID and diversity, and comparable penetration,
highlighting the reasoning and generalizability of the model.

Table 5: Performance under the without waypoint setting. HOI-Dyn improves foot and contact
quality, FID, and diversity, while preserving penetration, showing its intrinsic interaction dynamics.

Method FS ↓ Penetration ↓ CF1 ↑ C% ↑ FID ↓ Diversity ↑

CHOIS w/o WP 0.401 0.581 0.573 0.648 5.36 7.90
HOI-Dyn w/o WP 0.376 0.582 0.592 0.670 4.81 8.09

Dynamics as Causality Metric. We evaluate the interaction dynamics modeling as a proxy for
causal consistency. Specifically, we compute the point cloud loss Et[Φ(∆ô∗t ,∆ôt)] in (5), where ∆ôt
is the object’s observed motion and ∆ô∗t is the predicted response from the dynamics model. As shown
in Fig. 5, despite some noise, HOI-Dyn closely aligns with the ground truth, while CHOIS shows
a notable deviation, indicating a better causal modeling by HOI-Dyn. Furthermore, we visualize
the frame-wise dynamics loss in Fig. 6, where the loss spikes when objects behave unrealistically.
The results show that the loss remains low for HOI-Dyn, indicating that our model more effectively
captures physically consistent interactions. These findings support the use of dynamics-based losses
as a metric for causal evaluation in HOI synthesis.

Figure 6: Frame-wise object point cloud loss. Our method HOI-Dyn (green line), consistently
achieves lower loss than the baseline without dynamics supervision (blue line). Notably, high
loss peaks correspond to physically implausible HOI cases, which are effectively identified by our
dynamics model.

5 Conclusion and Limitation

In this work, we emphasize the role of interaction dynamics in ensuring physical and causal consis-
tency in HOI generation. As an early exploration, we propose a novel driver-responder framework
that explicitly models these dynamics and integrates with existing HOI motion diffusion techniques
to achieve more realistic human-object interactions. While alternative approaches based on physics
simulators might seem capable of modeling object dynamics more directly [40], their black-box
nature, lack of differentiability, and strong reliance on precise physical properties make them difficult
to incorporate into generative frameworks. A detailed discussion is provided in Appendix C.4.

Our framework currently assumes rigid objects and relies on the SMPL-X human model, which
provides only coarse hand representations. Consequently, minor inaccuracies may appear in hand-
object interactions, particularly in rotations (see Appendix E.3). Looking ahead, we aim to incorporate
richer object attributes and enhance human modeling to better capture fine-grained interactions [41].
We also plan to explore tighter integration of HOI dependencies into generative models to further
improve interaction realism [42], and extend our framework to handle multi-human and multi-object
scenarios to assess scalability and practical applicability.
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A Linking HOI Dynamics to Classical Synchronization

A.1 Classical Synchronization in Control Theory

To motivate our approach, we revisit the classical driver-responder (master-slave) synchronization
framework from control theory, which serves as the theoretical foundation for modeling interaction
dynamics in HOI generation:

Driver :

{
ẋm = F (xm)

ym = Cxm
, (13)

Responder :

{
ẋs = F (xs) +Bus

ys = Cxs
, (14)

where xm, xs ∈ Rn are the state vectors of the Driver and Responder systems, respectively, yi ∈ Rp

(i = m, s) are the outputs, F (·) is a Lipschitz continuous nonlinear function, B ∈ Rn×r is the
constant input matrix, and C ∈ Rp×n is the output matrix. The control input us ∈ Rr is given by

us = Ks(ym − ys) = KsC(xm − xs), K ∈ Rr×n, (15)

where K is the coupling strength. The synchronization objective is defined as

lim
t→∞

∥xm(t)− xs(t)∥ = 0. (16)

This framework illustrates how a Responder can track the Driver through an error-correcting feedback
signal, providing a formal basis for causal coordination.

A.2 Interaction Dynamics Loss as Implicit Error Feedback

In HOI generation, human motion serves as the Driver, while object motion is the Responder. To
enforce causal and physically plausible object responses, we introduce an Interaction Dynamics Loss
Ldyn, which measures discrepancies between generated object motion and ground-truth trajectories
using a shared dynamics model D. Conceptually, this loss functions as an error-feedback signal
guiding the Responder’s state toward alignment with the Driver.

During training, the diffusion model iteratively updates object states at each denoising step to
minimize this error, implicitly internalizing an error-feedback control mechanism that captures
causal human-object dependencies. At inference, even without access to ground-truth object motion,
the model generates synchronized and physically consistent object responses by leveraging the
learned driver-responder coordination. This establishes a principled connection between classical
synchronization theory and modern generative HOI modeling.

B Details of HOI Motion and Condition Representation

Human Motion. To represent the human motion H , we employ the SMPL-X parametric model,
which reconstructs the 3D human mesh from pose and shape parameters. The pose is represented as
a 204-dimensional vector, consisting of the following components: (i) a 3-dimensional translation
vector that defines the joint position of the body, contributing a total of 24× 3 dimensions, and (ii)
the rotations of 22 body joints, contributing 22× 6 dimensions to the pose vector. In addition to the
pose parameters, the model includes a shape parameter vector β ∈ R16, which controls the individual
body shape.

Object Motion. Object motion O is characterized by two main components: the global 3D position
and the relative rotation. The global position is represented by the centroid of the object, while the
relative rotation, denoted as Rrel(t), describes the rotation at frame t relative to the object’s geometry
P . The object vertices at frame t are given by Pt = Rrel(t)P . Therefore, the object motion is
described by O ∈ RT×12, where each frame consists of a translation relative to the centroid and a
corresponding relative rotation.
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Condition. In our condition representation, we integrate contextual cues following the CHOIS
framework. The text embedding is extracted using a pretrained CLIP text encoder. The object
geometry is encoded via a MLP applied to its Basis Point Set (BPS), and the resulting features are
broadcast to all frames. These BPS features are then concatenated with the initial states and waypoints
(provided every 30 frames, where only the object’s x- and y-coordinates are available, with the z-axis
omitted) and further combined with the text embedding to form the condition c. In addition, due to
the fact that we include a 4-dimensional binary contact indicator that specifies hand and feet contact
states in HOI data representation, we therefore construct a masked motion representation to represent
the initial states and waypoint constraints m ∈ RT×(12+204+4), where the initial state includes both
the human pose and object pose at the first frame.

C Theoretical and Empirical Justification of Interaction Dynamics Loss

C.1 Theoretical Justification via Residual Dynamics

Definition. We define a learned dynamics model D that predicts the object’s relative motion based
on the current scene and human motion:

∆o∗t→t+k ≈ D(s(t), o(t),∆ht→t+k; θD), (17)

where s(t) is the scene context at time t, o(t) is the object state (e.g., pose), ∆ht→t+k is the future
human motion, and θD contains the model parameters.

To promote consistent physical behavior by the generated trajectories, we introduce an auxiliary loss
that compares the residual dynamics behavior of generated and ground-truth sequences, as follows:

Ldyn = ∥δD,gen − δD,gt∥2 (18)
with the residuals defined as

δD,gen = Φ
(
D(ŝ(t), ô(t),∆ĥt→t+k),∆ôt→t+k

)
,

δD,gt = Φ
(
D(s(t), o(t),∆ht→t+k),∆ot→t+k

)
,

(19)

where Φ(·, ·) denotes a point-wise distance metric (e.g., the ℓ1 distance between the point clouds
decoded from object poses).

Bias Cancellation. Although D may have approximation error, we show that comparing residuals
(rather than raw predictions) reduces the effect of model bias. For theoretical clarity, we analyze in
the prediction space without applying Φ, and only consider Φ as a Lipschitz continuous final metric
layer.

Let the true (unknown) dynamics function be F , and define the model bias as
b(x) := D(x)−F(x). (20)

Let xgen = (ŝ(t), ô(t),∆ĥt→t+k) and xgt = (s(t), o(t),∆ht→t+k). Then the prediction-space residu-
als can be expressed as

δD,gen = D(xgen)−∆ôt→t+k,

δD,gt = D(xgt)−∆ot→t+k.
(21)

Subsequently, the residual difference becomes
δD,gen − δD,gt = (D(xgen)−D(xgt)) + (∆ot→t+k −∆ôt→t+k)

= [b(xgen)− b(xgt)] + [F(xgen)−F(xgt)] + (∆o−∆ô).
(22)

Assuming that both F and b are Lipschitz continuous with the Lipscthiz constants LF and Lb, and
that ∥xgen − xgt∥ ≤ ϵ, ∥∆ô−∆o∥ ≤ δ, then we obtain

∥δD,gen − δD,gt∥ ≤ Lbϵ+ LFϵ+ δ. (23)
This implies that

∥δD,gen − δD,gt∥ → 0 as ϵ, δ → 0, (24)
meaning the residual discrepancy vanishes if the input conditions and object motion predictions are
sufficiently close. Thus, the residual-based loss is less sensitive to the absolute accuracy of D, and
instead emphasizes consistency in behavior under the same model.
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Connection to Training Loss. While our analysis is carried out in the model output space, the
actual training loss is applied using the decoded point cloud metric given by

Φ(x, y) = ∥fpc(x)− fpc(y)∥1 , (25)

where fpc(·) denotes a deterministic decoder from object pose to point cloud. Since both fpc(·) and
∥·∥1 are Lipschitz continuous, the residual error behavior remains consistent under this transformation.

C.2 Empirical Evidence from Motion Decomposition

Setup. To validate the approximation Et[δD,gen − δD,gt] ≈ 0, we compute the residual difference

∆(n)(t) = δ
(n)
D,gen(t)− δ

(n)
D,gt(t) (26)

for each sequence n ∈ {1, 2, . . . , N} and time step t ∈ {1, 2, . . . , T}. We then compute the aggregate
statistics over all NT samples, as follows:

∆̄ =
1

NT

N∑
n=1

T∑
t=1

∆(n)(t), var(∆) =
1

NT

N∑
n=1

T∑
t=1

(
∆(n)(t)− ∆̄

)2

(27)

These metrics reflect the average residual discrepancy and its variability across all sequences and
frames.

Table 6: Comparison of Statistical Measures.
Statistic Mean Variance

Ground Truth (gt) 0.3130 0.1190
Generated (gen) 0.3147 0.0950
Difference (gen - gt) 0.0016 0.1561

Figure 7: Statistical and distributional comparison of interaction dynamics errors for generated and
ground-truth object motion. The mean and variance of residuals are nearly identical for gen and
gt, while their difference is centered near zero with low variance. Probability density plots further
confirm the alignment of gen and gt distributions, and support the theoretical claim of modeling bias
cancellation.
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Results. As shown in Table 6, the mean of the residual difference is nearly zero (0.0016), confirming
that the residual signal has no significant bias across time steps or sequences, consistent with our
theoretical approximation Et[δD,gen − δD,gt] ≈ 0.

We further visualize the typical temporal patterns in Fig. 7, where the residual differences fluctuate
randomly around zero, with no observable drift or systematic deviation. These empirical observations
validate the core assumption that residual-based comparison cancels out the model bias when D is
applied consistently to both generated and ground-truth trajectories.

Together with our theoretical insights, these results support the following: (i) The residual-based
loss introduces natural bias cancellation, making the learning robust to approximation errors in
D. (ii) This enables the use of D as an auxiliary evaluator without requiring high-fidelity absolute
predictions. (iii) The formulation enforces consistency in human-object dynamics, thereby improving
the realism and coherence of generated motion. This bias-invariant design is a key strength of our
auxiliary loss and contributes to the stability, generalizability, and interpretability of the learned
policy.

C.3 Residual-based Loss and Generated HOI Quality

To further evaluate the impact of our residual-based interaction dynamics loss on generated HOI
quality, we conducted ablation studies comparing different formulations: (i) Without Interaction
Dynamics Loss, i.e., baseline CHOIS without any dynamics supervision. (ii) Residual Dynamics Loss,
i.e, our proposed formulation (10) that cancels noise and imperfections in the pretrained dynamics
model. (iii) Non-Residual Dynamics Loss, which directly penalizes the difference between the
predicted object motion ∆ôt and the dynamics model output ∆ô∗t without bias compensation:

Lnon-res
dyn = Et

[∥∥Φ(∆ô∗t ,∆ôt
)∥∥

1

]
. (28)

We report results without classifier-based guidance to isolate pure generation capability. As summa-
rized in Table 7, incorporating the interaction dynamics loss consistently improves generation quality
over the baseline. In particular, the residual-based formulation produces more stable, physically
realistic, and contact-accurate HOIs, whereas the non-residual variant allows errors in the dynamics
model to propagate, potentially degrading motion quality. These findings demonstrate that the residual
formulation is essential for robust HOI generation and support the design choice of our auxiliary
interaction dynamics loss.

Table 7: Ablation of interaction dynamics loss formulations. Residual dynamics consistently improves
physical realism and contact accuracy.

Method Txy ↓ FS ↓ CF1 ↑ Phand ↓ MPJPE ↓ Troot ↓ Tobj ↓ Oobj ↓
Without Interaction Dynamics 3.05 3.63 0.54 0.61 16.05 25.34 12.36 0.99
HOI-Dyn (Non-Residual Dynamics) 3.03 0.39 0.59 0.71 15.63 25.10 11.86 0.89
HOI-Dyn (Residual Dynamics) 3.03 0.37 0.60 0.61 15.56 24.61 11.67 0.91

C.4 Learned Object Motion Reactor as a Differentiable Surrogate for Physics Simulators

Physics-based approaches are widely adopted to ensure physically plausible HOI. Representative
methods such as InterMimic [43], PhysHOI [40], and SkillMimic [44] rely on black-box physics
simulators in combination with reinforcement learning, typically learning one policy per skill. These
methods primarily focus on controlling human motion and do not explicitly model the object’s
reactive behavior. Moreover, their non-differentiable nature and dependence on detailed physical
parameters (e.g., mass, friction, compliance) limit applicability in fully differentiable, end-to-end
generative frameworks, particularly for long-horizon or complex interactions.

To overcome these limitations, we introduce a learned object motion reactor, a differentiable, data-
driven surrogate for object dynamics. Conceptually, it functions as a conditional world model,
producing temporally coherent and physically plausible behavior without enforcing explicit physical
laws. Its advantages can be summarized in three key aspects:

(i) Seamless integration with generative pipelines: The reactor’s differentiable design allows
direct embedding into diffusion-based HOI generation frameworks, enabling end-to-end training and
gradient-based optimization.
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(ii) Generalization without requiring physical parameters: Unlike physics simulators that need
detailed mass, friction, and compliance values, the reactor learns directly from motion patterns in
data, making it robust to missing or uncertain physical parameters.

(iii) Learning to respect physical constraints: Although learned, the reactor captures essential
behaviors such as responding appropriately to human motion and remaining stationary when not
contacted, ensuring physically plausible and temporally consistent object dynamics.

By explicitly incorporating contact states, our approach further strengthens human-object coupling,
extending prior work such as CHOIS [13]. Hybrid paradigms combining learned dynamics with
physics-informed priors or simulators remain a promising direction; incorporating measurable physi-
cal properties, as explored in FORCE [45], could enhance realism while preserving differentiability.
Nevertheless, the learned object motion reactor provides a practical, scalable, and fully differentiable
solution for generative HOI modeling, effectively bridging the gap between physically grounded
simulation and data-driven generation.

D Additional Qualitative Results of HOI Generation

We provide additional qualitative comparisons to further evaluate the effects of modeling interaction
dynamics.

Figure 8: Qualitative comparison in Action–Interaction–Response.

In Fig. 8, we assess the Action–Interaction–Response loop. The results show that incorporating
interaction dynamics constraints enables the model to better understand how objects should respond
to both human actions and the contact context. This suggests that modeling such dynamics improves
physical plausibility and contextual coherence in human–object interactions.

In Fig. 9, we further investigate sequence-level alignment. We observe that explicitly enforcing
interaction dynamics not only enhances the consistency of human–object contact but also improves
the overall motion quality. These findings align with our claim:

“Contact is implicitly governed by the dynamics—no need to explicitly model it. If there is no contact,
there is no response; if contact occurs, the object’s response is naturally determined by the interaction
dynamics.”
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Figure 9: Qualitative comparison in Sequence-level alignment.

Moreover, by restricting the object from moving in physically implausible ways, our method encour-
ages the human to take more active and reasonable actions. This results in motion that is not only
more coordinated but also better aligned with the intended conditions or text prompts—addressing a
key limitation in prior works where human and object often move independently without dynamic
coherence.

E Network and Additional Results of Interaction Dynamics

E.1 Model Architecture

Our dynamics model D is a lightweight predictor designed to infer object motion induced by
human actions and interaction context. It takes as input the object-centric BPS point cloud, human
joint relative motions, and contact information, and outputs the relative object motion (rotation +
translation). The architecture consists of three main components:

(i) BPS Encoder. A two-layer multilayer perceptron (MLP) encodes the input object BPS (1024× 3)
into a compact feature vector. This captures the object’s shape and spatial context.

(ii) Human Motion Module. A Mini Transformer models the temporal interaction dynamics between
the human and the object. It first encodes the joint-level motion features (3D relative positions and
rotations) through a MLP, then injects condition information—concatenation of object motion, contact
state, and BPS feature—via conditional encoding. A shallow transformer with learnable positional
embeddings is applied, followed by attention pooling to obtain a global human motion feature.
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(iii) Motion Decoder. A MLP maps the fused interaction feature to the target object motion vector
(3 + 9 dimensions), representing translation and flattened rotation. The output can be optionally
projected to SO(3) to ensure a valid rotation.

E.2 Local Smoothness and Temporal Homogeneity

Building on the design of our dynamics network, we examine how its architecture and formulation
inherently enforces local smoothness and temporal homogeneity.

E.2.1 Temporal Homogeneity

Temporal homogeneity means that the mapping from human motion to object motion is invariant to
absolute time indices. Since our dynamics network is designed for step-wise interaction modeling, it
only concerns the immediate effect of human motion on object motion, analogous to how applying a
certain force induces a proportional response regardless of when it is applied. Intuitively, pushing
with the same strength should produce comparable object displacement whether it occurs early or
late in an episode. This property is directly regularized through our loss function:

L = Et, k∼U(1,K)

[
1

k
· Φ(∆ot→t+k,∆o∗t→t+k)

]
, (29)

where both the starting step t and horizon k are uniformly sampled. The normalization factor 1
k

decouples error from horizon length, ensuring that supervision is distributed evenly across different
positions and scales. As a result, the model learns event-agnostic dynamics, capturing only the causal
effect of human motion on object motion without bias toward specific temporal phases.

E.2.2 Local Smoothness

Theoretical Motivation. Object motions in human-object interactions evolve continuously under
smooth forces and contacts. Since the input human joint motion h(t) and object state o(t) are
temporally continuous, the predicted object motion

∆o(t) ≈ D(s(t), o(t),∆h(t); θD) (30)

is expected to vary smoothly, forming the theoretical basis for local continuity.

Network Design Guarantees. The architecture, which includes differentiable MLPs, Mini-
Transformer, and attention pooling, is inherently smooth. No discontinuous operations (e.g. quan-
tization, and hard thresholds) are introduced. Training on continuous trajectories further promotes
smooth transitions in the learned mapping.

Lipschitz Continuity and Empirical Test. We formalize local smoothness via Lipschitz continuity:
a function f is Lipschitz continuous with a constant L if ∥f(x1) − f(x2)∥ ≤ L∥x1 − x2∥ for all
x1, x2. To test this empirically, we perturb human motion inputs by adding random unit-vector noise
scaled by ϵ:

∆̃h
(t)

= ∆h(t) + ϵ · η

∥η∥2
, η ∼ N (0, I). (31)

We then measure the output deviation defined as

∆D = ∥D(s(t), o(t), ∆̃h
(t)
)−D(s(t), o(t),∆h(t))∥1. (32)

If ∆D grows approximately linearly with the perturbation scale ϵ, the model exhibits locally Lipschitz
behavior. Tables 8–9 summarize the results, confirming smooth and proportional responses across
perturbation magnitudes.

E.3 One-Step and Auto-Regressive Prediction Results

We evaluate the predictive ability of our interaction dynamics model from two complementary
perspectives: one-step prediction and auto-regressive prediction.

In the one-step setting, the model is given the current scene context and ground-truth human motion
to predict the object state at the next frame (T = 1). This setting directly evaluates the local dynamics
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Table 8: Effect of unit-vector perturbations scaled by ϵ on predicted object motion.
Perturbation ϵ Difference Norm ∆D

Combined (12D) Translation (3D) Rotation (9D)

1× 10−5 2.6e-5 5.7e-6 2.5e-5
1× 10−4 1.2e-4 2.4e-5 1.1e-4
1× 10−3 1.1e-3 1.97e-4 1.07e-3
1× 10−2 1.1e-2 1.99e-3 1.09e-2
1× 10−1 1.0e-1 1.96e-2 1.00e-1

Table 9: Relative magnitude of input perturbations (as percentage of the average input norm).
Perturbation scales correspond to ϵ = 10−5, 10−4, 10−3, 10−2, 10−1.

Component Average Norm Perturbation Levels (%)

Translation (3D) 4.42× 10−4 2.3, 23, 230, 2300, 23000
Rotation (9D) 2.83× 10−3 0.35, 3.5, 35, 348, 3480
Combined (12D) 2.87× 10−3 0.35, 3.5, 35, 348, 3480

response. As shown in Fig. 10, our model achieves high accuracy in object translation, with very small
deviations from ground truth. However, the rotation prediction still shows room for improvement. We
attribute this to the dataset lacking hand pose details, which limits the inference of fine-grained object
rotations from body joints alone. Nevertheless, the predicted rotations remain broadly consistent with
the ground truth.

In the auto-regressive setting, we recursively feed the predicted object state back into the model
to generate long-term future motion. This setting reveals how prediction errors accumulate. As
illustrated in Fig. 11, even though our model is only trained with one- and two-step supervision, it
demonstrates impressive generalization in the auto-regressive regime. The predicted object transla-
tions stay closely aligned with the ground truth over time. Although rotation errors do increase due to
compounding uncertainty, they remain stable and plausible.

Importantly, our method relies solely on the one-step supervision during training, which avoids
the inefficiency and instability of full auto-regressive rollout training. This design enables fast
training while already delivering strong performance. The model’s ability to generalize well in the
auto-regressive case is a bonus, not a requirement. Hence, the proposed design achieves an excellent
balance between efficiency and long-horizon performance — a highly cost-effective formulation.

E.4 Comparison on Interaction Dynamics

We further analyze the quality of interaction dynamics generated by CHOIS and our proposed
HOI-Dyn. As shown in Fig. 12 and Fig. 13, we employ the predicted human-object sequences and
compare their induced object motion against the reference dynamics. Here, the reference is not the
ground truth in the test set , but the object’s relative motion in the synthetic sequences used as initial
conditions for prediction. Since motion synthesis is inherently multimodal, we focus on whether the
predicted motion is physically and contextually plausible.

We observe that HOI-Dyn produces significantly more consistent and coherent object motion. In
contrast, CHOIS often yields noisy or unstable object transitions, with noticeable discontinuities or
implausible drifts over time.This comparison highlights the advantage of our synchronized control
formulation and the dynamics-guided residual loss.

E.5 Joint-Level Attention Visualization

In our proposed driver-responder synchronized control framework, we posit that once contact is
established, the object’s motion should predominantly follow the human motion. Based on the SMPL
representation, human motion is determined by the transitions and rotations of body joints. We thus
interpret object motion as a result of the aggregated influence of all human joints.
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Figure 10: One-step performance. Figure 11: Auto-regressive performance.

Figure 12: CHOIS. Figure 13: HOI-Dyn.

Our MiniTransformer module explicitly models joint-wise contributions to object dynamics by
applying attention over all J = 24 SMPL joints. Specifically, given joint features xj ∈ Rd for joint
j ∈ {1, . . . , J}, and a learned attention weight wj , we compute the global representation as:

Fglobal =

J∑
j=1

wj · xj , (33)

where the attention weights wj ∈ [0, 1] are computed via a softmax layer and satisfy
∑

j wj = 1.
This formulation allows the model to selectively focus on the most relevant joints under different
interaction conditions, enabling interpretable and context-aware reasoning of human-object dynamics.

We visualize the joint-level attention maps for typical cases in Fig. 14 and Fig. 15. For the first
example in Fig. 14, the person bends down to pick up a box. During this full-contact phase, the
object is entirely under human control. The attention map highlights not only the hands but also the
feet, elbows, and chest — suggesting a whole-body coordination that is both intuitive and desirable.
This supports the idea of a “global response” where object motion is governed by distributed joint
influence.

For another example in Fig. 15, where the person is walking while carrying the box, the attention
is more concentrated on the hands and feet. This makes intuitive sense: the hands are directly
manipulating the object (contributing to both translation and rotation), while the feet govern the
global transition through locomotion. Across multiple sequences, we also observe consistent attention
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on the hips and lower limbs, suggesting their role as stable references for interpreting whole-body
movement.

Figure 14: Pick up a box. Figure 15: Walk forward while holding the box.

F Details of Classifier-based Guidance

While the use of guidance modules (e.g., contact-based constraints) can lead to targeted improvements
in motion quality, all comparisons with state-of-the-art baselines are conducted under identical guid-
ance settings. This ensures a fair evaluation, as our proposed method HOI-Dyn focuses on internally
controlling and optimizing the interaction dynamics during the generation process. Therefore, the
guidance configuration is kept fully consistent across all methods and does not introduce any bias in
favor of HOI-Dyn.

F.1 Feet-Floor Contact Guidance

To encourage physical plausibility during locomotion and standing still, we introduce a contact
guidance loss that penalizes unnatural foot height above the ground, consistent with the CHOIS
setting. Specifically, we extract the 3D positions of the left and right toe joints, and compute the
support foot height as:

hsupport = min (hleft-toe, hright-toe) , (34)

where h ∈ RB×T×1 represents the height (Z-axis) across batch B and time T .

We enforce that the support foot remains near the ground α (set at 2 cm) via an MSE loss:

Lfeet-floor =
1

BT

B∑
b=1

T∑
t=1

(
h
(b,t)
support − α

)2

. (35)

This loss improves contact realism by promoting plausible foot-ground interaction.

F.2 Hand-Object Contact Guidance

To enhance the realism and stability of hand-object interactions, we use the multi-term auxiliary loss
that encourages physically plausible contact and temporal coherence.

Contact Loss: For each timestep, we extract the 3D positions of the left and right palm joints and
compute their closest distances to the object mesh as follows:

Lcontact =
1

BT

B∑
b=1

T∑
t=1

∑
h∈{L,R}

[
max(∥p(b,t)

h −M(b,t)∥ − δ, 0) · ϕ(b,t,h)
contact

]
, (36)
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where M(b,t) is the object mesh at frame t, p(b,t)
h is the palm position, δ = 0.02 is the contact

threshold, and ϕcontact is the predicted binary contact indicator.

Temporal Consistency Loss: For contact frames, we enforce that the palm positions (in the object
coordinate frame) remain temporally smooth and aligned by

Lconsistency = 2− 1

T 2

∑
i,j

[
cos(θL

i,j) ·ML
i,j + cos(θR

i,j) ·MR
i,j

]
, (37)

where θi,j is the angle between the relative palm directions at frames i and j, and ML/R
i,j are symmetric

masks marking the frames where contact is active.

Floor Penetration Penalty: We suppress object vertices penetrating below the ground plane (z < 0)
through

Lfloor =
1

N

N∑
n=1

max(−zn, 0). (38)

The final guidance loss is given by

Linteraction = Lcontact + Lconsistency + λ · Lfloor, with λ = 100. (39)

This auxiliary loss encourages accurate and stable contact modeling.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Claims we made accurately reflect the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The interaction dynamics model may not capture object rotations with high
precision, mainly due to limited data fidelity or missing fine-grained physical cues. How-
ever, our residual-based interaction dynamics loss is specifically designed to mitigate such
inaccuracies by focusing on differential consistency rather than absolute correctness.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide a comprehensive justification for the robustness of our residual-
based interaction dynamics loss to imperfect model learning, grounded in clear assumptions,
theoretical analysis, and empirical evidence.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experimental setups are described in detail.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our project website is available at https://wulin97.github.io/hoi-dyn/, and the
code is available at https://github.com/AIR-Lan/HOI-Dyn.

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have described all the details about of experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have conducted statistical tests in our experiments, error bars are plotted in
figures.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All computational resources used in our experiments are reported in detail
in the experimental setup. Notably, our method is highly efficient: all experiments were
conducted on a single NVIDIA RTX A4500 GPU with 20GB memory. We also provide
an analysis of model parameters and inference cost, demonstrating that our interaction
dynamics model is lightweight.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: Our algorithm has no potential negative social impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: Code will be released after acceptation, it would be open access, no safeguards
are required.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the existing assets we used in our paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [No]

Justification: We did not introduce any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not have any experiments or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not have any experiments or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: No large language models (LLMs) were involved in the design, development,
or evaluation of the core methods presented in this paper. LLMs were only used as a writing
assistant to improve the clarity and fluency of the text. As such, their usage does not impact
the scientific rigor, methodology, or originality of the work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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