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Abstract

Learning interpretable generalizable models of sequential decision-making agents is
essential for user-driven assessment as well as for continual agent-design processes
in several AI applications. Discovering an agent’s broad capabilities in terms of
concepts a user understands, and summarizing them for a user is a comparatively
new solution approach for agent assessment. Prior work on this topic focuses on
deterministic settings, or settings where the names of the agent’s capabilities are
already known, or situations where the learning system has access to only passively
collected data regarding the agent’s behavior. These settings result in a limited
scope and/or accuracy of the learned models. This paper presents an approach
for discovering a black-box sequential decision-making agent’s capabilities and
interactively learning an interpretable model of the agent in stochastic settings. Our
approach uses an initial set of observations to discover the agent’s capabilities and
a hierarchical querying process to learn a probability distribution of the discovered
stochastic capabilities. Our evaluation demonstrates that our method learns lifted
SDM models with complex capabilities.

1 Introduction

AI systems that can do sequential decision making like the household robots have seen increased
deployments in the last few years. This invariably leads to situations where people who are not
experts in AI end up interacting with these systems, and they are unsure of what these systems can (or
cannot) do. In fact, the limits and capabilities of many AI systems are not always immediately clear
even to the experts, as they may use black box policies, e.g., ATARI game-playing agents [Greydanus
et al., 2018], text summarization tools [Paulus et al., 2018], mobile manipulators [Popov et al., 2017],
etc. Additionally, it is common for non-experts to feel hesitant about asking questions related to
new AI tools [Mou and Xu, 2017]. This often leads to a lack of knowledge about assessing the safe
limits and capabilities of an AI system. The lack of understanding about the limits of an imperfect AI
system can lead to unproductive usage or, in the worst-case scenario, serious accidents [Randazzo,
2018]. Such incidents can significantly limit the adoption and productivity of AI systems.

The related problem of learning generalizable relational models that describe an agent’s interactions
with its environment has been well-established as a critical problem in sequential decision-making
(SDM). Learning such models can help in the continual design and improvement of SDM systems [Pa-
sula et al., 2007, Walsh et al., 2009, Bryce et al., 2016, Juba and Stern, 2022] as well as in creating
explanations of the behavior of SDM systems [Hayes and Shah, 2017, Sreedharan et al., 2018, Lage
et al., 2019] and in the user-driven assessment of AI systems [Verma et al., 2021, Nayyar et al., 2022,
Verma et al., 2022, 2023]. Several researchers have investigated methods for learning such models
based on the available observations of agent behavior. However, they do not address the problem
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of discovering high-level user-interpretable capabilities that an agent can perform using arbitrary,
internal behavior synthesis algorithms in a stochastic environment.

(a) (b)
Figure 1: The environments
used for the experiments: (a)
shows the ATARI game Mon-
tezuma’s Revenge; (b) shows
the GVGAI domains Escape
(top) and Zelda (bottom).

This work presents a novel approach for discovering capabilities
of black-box sequential decision-making agents (SDMAs) acting
in stochastic environments. The approach interactively learns a
probabilistic model for black-box SDM agents’ “capabilites”. Such
capabilities can represent high-level skills, such as driving an au-
tonomous vehicle to reach a target destination. We use a popular,
relational language PPDDL [Younes and Littman, 2004] to express
the learned models in terms of preconditions denoting the conditions
under which the agent can execute a particular capability and the re-
sulting sets of effects, with probabilities that can occur as a result of
such an execution. The resulting models can be used in model-based
planning and approaches for explaining agent behavior or analyzing
their limits and capabilities.

There has been a lot of progress in learning generalizable symbolic
models from passively collected observations of agent behavior [Pa-
sula et al., 2007, Martínez et al., 2016, Juba and Stern, 2022]; and
by exploring the state space using simulators [Ng and Petrick, 2019, Chitnis et al., 2021]. However,
in addition to needing the capabilities as inputs, passive learning approaches can also learn incorrect
models as they do not have the ability to generate interventional or counterfactual data; exploration
techniques can be sample inefficient because they currently don’t take into account uncertainty and
incompleteness in the model being learned to guide their exploration.

Our approach for learning such models is to autonomously generate queries in the form of instruction
sequences, policies, and/or reachability objectives for the agent; the agent responds by executing
these sequences in a simulator. Since the set of possible queries of this form is exponential in the
state space, naïve approaches for enumerating and selecting useful queries based on information gain
metrics are infeasible. We present novel algorithms for autonomously synthesizing queries that result
in informative agent behavior. To summarize, our contributions are following:

• We introduce a novel approach that discovers the high-level capabilities of an SDMA in
stochastic settings.

• We introduce a new approach to identify which transitions generated by the SDMA corre-
spond to the same high-level capability.

• We introduce a framework that enables the assessment of different kind of AI systems like
symbolic agents and game-playing agents.

We perform experiments on one ATARI-based simulator for the game Montezuma’s Revenge, two
General Video Game AI (GVGAI) [Perez-Liebana et al., 2016] domains shown in Fig. 1, and one
benchmark symbolic domain.

Running Example In the rest of the paper, we use an example of the Zelda game shown in Fig. 1 (b).
This SDMA setup uses a GVGAI game-playing agent featuring a protagonist player Link who must
defeat the antagonist monster Ganon, and escape through the door using a key. Its primitive actions
are keystrokes but they do not help convey the agent’s capabilities because (i) they are too fine-grained,
and (ii) they show the set of actions available to the AI system, although its true capabilities depend
on its AI planning and learning algorithms. This work aims to discover these capabilities and learn
their descriptions.

2 Related Work

The problem of learning probabilistic relational agent models from a given set of observations has
been well studied. Jiménez et al. [2012] and Arora et al. [2018] present a comprehensive review of
such approaches. We discuss the closest related research directions here.

Passive learning Several methods learn a probabilistic model of the agent and environment from a
given set of agent executions. Many approaches [Zettlemoyer et al., 2005, Pasula et al., 2007] learn
the models in the form of noisy deictic rules (NDRs) where an action can correspond to multiple
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NDRs and also model noise. Mourão et al. [2012] learn such operators using action classifiers
to predict the effects of an action. Martínez et al. [2015] leverage ILP to learn candidate models
and use optimization to filter the best operators from each model. Rodrigues et al. [2011] learn
non-deterministic models as a collection of rule sets and learn these rule sets incrementally. They
take a bound on the number of rules as input. Juba and Stern [2022] provide a theoretical framework
to learn safe probabilistic models with a range of probabilities for each probabilistic effect while
assuming that each effect is atomic and independent of others. A common issue with such approaches
is that they are susceptible to incorrect and sometimes inefficient model learning as they cannot
control the input data used for learning or perform interventions on it.

Sampling of transitions Approaches like Sarathy et al. [2021], Jin et al. [2022], etc. learn the
operator descriptions from exploring the state space but focus on deterministic models. A few
reinforcement learning approaches have been explored for learning the relational probabilistic action
model by exploring the state space using pre-determined criteria to generate better samples [Ng and
Petrick, 2019]. Konidaris et al. [2018] explore learning PPDDL models for planning, but they aim
to learn the high-level symbols needed to describe a set of input low-level options and use a huge
number of samples to learn those symbols. Thon et al. [2011] learn a probability distribution over
sequences of relational state descriptions using efficient sampling. Walsh et al. [2009] introduced a
class of sample efficient exploration approaches for relational RL. GLIB [Chitnis et al., 2021] also
learns probabilistic relational models using goal sampling as a heuristic for generating relevant data,
whereas we use planning for this.

Learning symbolic models using physics simulators Zhang et al. [2018] learn symbolic transition
models and use them effectively for planning using a set of input interpretable attributes. These
attributes are interpretable and the set of actions are learned in the form of transitions using random
walks in the environment. This needs extensive hand-coding as each of the states must manually be
assigned all attributes that are present or true in that state. Also, the set of attributes is given as input
which does not take into account user preferences. Kansky et al. [2017] learn symbolic models of
simulators based on ATARI games by learning action effects by using conjunctions of binary input
features. Some other approaches learn models using symbolic physics engine parameters and graph
neural networks [Battaglia et al., 2016, Cranmer et al., 2020]. Through their description language,
they can generalize over multiple tasks using the learned entities and operators. Agrawal et al. [2016]
and Fragkiadaki et al. [2016] use convolutional neural networks to learn intuitive physical models of
object interaction. Some methods create interpretable descriptions of reinforcement learning policies
using trees [Liu et al., 2018] or specialized programming languages [Verma et al., 2018]. These
approaches solve the orthogonal problem of learning the functionality of an agent that could help a
user understand how an agent would solve a problem, whereas we focus on learning capabilities of
the agent that could help a user understand and answer what type of problems it could solve.

Agent Assessment Verma et al. [2021] proposed the concept of assessing AI systems using hier-
archical querying. This work assumed the agent to be working in a stationary setting, and learned
a deterministic model of its low-level actions given the action names. Nayyar et al. [2022] use the
same setup but does not assume the agent model and environment to be stationary and deterministic.
Verma et al. [2023] learns a probabilistic model of the agent’s capabilities but assumes access to the
capability names. Verma et al. [2022] was the first method to discover the high-level capabilities
of an agent and learning a description for them, but only works when environment dynamics are
deterministic. We show that discovering capabilities for non-deterministic setting is not trivial and
our approach discovers capabilities and learns their description accurately.

Automata learning Inspired from Angluin [1988], there are several active learning ap-
proaches [Aarts et al., 2012, Vaandrager, 2017] that learn automata to represent the system’s model.
These approaches assume access to a teacher (or an oracle) that can determine whether the automata
are correct and provide a counterexample if it is incorrect.

Concept acquisition There is also a lot of ongoing and existing work on the orthogonal problem
of learning predicates or concepts from user-provided examples or feedback [Amershi et al., 2009,
Koh and Liang, 2017, Kim et al., 2018, Sreedharan et al., 2022] – this complements our research and
can be used with our methods. Additionally, resolving the problem of obtaining user-interpretable
predicates does not resolve the research problem that we focus on: deriving high-level descriptions of
agent capabilities using those predicates.
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3 Preliminaries

Abstraction Using an object-centric predicate representation induces an abstraction of environment
states X to high-level logical states S expressible in predicate vocabulary P . This abstraction can
be formalized using a surjective function f : X → S. E.g., in the case of the cafe server robot, the
concrete state x may refer to ⟨x, y, z, r, p, γ⟩ tuples for all objects representing their positions in
xyz coordinate with roll, pitch, and yaw values, respectively. On the other hand, the abstract state s
corresponding to x will consist of truth values of all the predicates.

Propositional Concepts We are taking as input the set of propositional concepts that a user may
associate with the task. We learn a classifier corresponding to each concept. One can use the concepts
that are generated by the domain experts, or we could let the user interact with or observe the SDMA
and then provide a possible set of concepts relevant for that task. E.g., the set of concepts used for
the Zelda game in Fig. 1(b) can be (at ?object ?location), (alive ?monster), (adjacent
?object1 ?object2), etc. Here, ? precedes an argument that can be replaced by an object in the
environment. E.g., (adjacent link ganon) means “link and ganon are adjacent to each other.”
As mentioned earlier, learning such concepts [Mao et al., 2022, Sreedharan et al., 2022, Das et al.,
2023] is an interesting but orthogonal research direction, and it is not the focus of this work.

Each concept corresponds to a binary classifier, which detects whether the proposition is present or
absent in a given internal state.

(:capability c4
:parameters (?player1 ?cell1

?monster1 ?cell2)
:precondition (and

(alive ?monster1)
(at ?player1 ?cell1)
(at ?monster1 ?cell2)
(next_to ?monster1))

:effect (probabilistic
0.7 (and (clear ?cell2)

(not (alive ?monster1))
(not (at ?monster1 ?cell2))
(not (next_to ?monster1)))

0.2 (and (game-over)
(not (at ?player1 ?cell1))
(not (alive ?player1)))

0.1 (and ))) #No-change

Figure 2: Sample PPDDL description
for a capability of the Zelda agent.

Probabilistic transition model Following the framework
proposed by Mao et al. [2022], we assume that there exists
an arbitrary latent space S expressible in P . This induces
an abstract transition model T ′ : S × C × S → [0, 1].
This is done by converting each transition ⟨x, c, x′⟩ ∈ T
to ⟨s, c, s′⟩ ∈ T ′ using predicate evaluators such that
f(x) = s and f(x′) = s′. Now, T ′ can be expressed as
model M that is a set of parameterized action (capability
in our case) schema, where each c ∈ C is described as
c = ⟨name(c), pre(c), eff(c)⟩, where name(c) ∈ CN refers
to name and arguments (parameters) of c; pre(c) refers
to the preconditions of the capability c represented as a
logical formula defined over P that must be true in a state
to execute c; and eff(c) refers to the set of logical formulas
over P , each of which becomes true on executing c with
an associated probability. The result of executing c for a
model M is a state c(s) = s′ such that PM (s′|s, c) > 0
and one (and only one) of the effects of c becomes true in
s′. We also use ⟨s, c, s′⟩ triplet to refer to c(s) = s′. This
representation is similar to the probabilistic planning domain definition language (PPDDL) [Younes
and Littman, 2004], which can compactly describe the SDMA’s capabilities.

4 Problem Setting

Sequential decision making agent (SDMA) This work focuses on sequential decision-making
agents that operate in stochastic and fully observable environments. An SDMA can be represented
as a 3-tuple ⟨X ,A, T ⟩, where X is the environment state space that the SDMA operates in, A is
the set of SDMA’s actions (action names, e.g., “place object x at location y” or “move table x”)
that the SDMA can execute, and T : X × A × X → [0, 1] is the stochastic black-box transition
model determining the effects of SDMA’s capabilities on the environment and the probabilities
associated with them. Note that the semantics of A are not known to the user(s) and X may not
be user-interpretable. The only input from the SDMA is the instruction set in the form of action
names, represented as AN . This isn’t a restricting assumption because the AI agents must reveal their
instruction sets for usability.

Problem Given an SDMA ⟨X ,A, T ⟩, a set of propositional concepts P , along with their associated
classifiers, discover the capabilities C of the SDMA, and learn a relational description of the abstract
transition mode T ′ of the SDMA expressible using P and C.
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Assumptions We assume that (i) the data used to train the concept classifiers is available to us. In
practice, this can be acquired using user studies like Kim et al. [2018], Sreedharan et al. [2022], etc.;
(ii) the SDMA has a simulator available to answer the queries; (iii) the concept classifiers used to
identify the state are noiseless.

5 Stochastic Capability Discovery and Assessment (SCaDA)

The stochastic capability discovery and assessment approach has three main components. The first
component is to discover the candidate capabilities, the second component is to learn the description
of the discovered capabilities, and the final component is to combine the candidate capabilities
by identifying which capabilities are different probabilistic effects of each other and hence can be
combined. We see each of these in detail.

5.1 Discovering Capabilities

Generating execution traces First, we collect a set of low-level execution traces E. An execution
trace e is a sequence of states of the form ⟨s0, s1, . . . , sn−1, sn⟩, such that ∀i ∈ [1, n] ∃ai ∈ A
ai(si−1) = si. Note that the corresponding action ai is not part of the input. These traces are
obtained by giving the SDMA a set of tasks of the form ⟨sI , sG⟩ , where sI , sG ∈ S, and asking
it to reach sG from sI using its internal policy. The actions it takes to complete the task and the
intermediate states form the set of execution traces E. Partial capability descriptions A in the user’s
vocabulary are generated from E.

Generating candidate capabilities Given an execution trace e = ⟨s0, s1, . . . , sn⟩ ∈ E, whenever
si ̸= si+1, we store the transition as a possible new capability asi−si+1

. For each new possible
capability asi−si+1

, the states before and after executing these capabilities are stored as possible sets
of preconditions and effects. We then combine sets of possible capabilities that cause similar state
transitions. Here, any two transitions are similar if there is a one-to-one mapping of the predicates
in both the transitions. In a manner similar to prior work by Stern and Juba [2017] and Verma et al.
[2022], for each of these sets, we create a possible set of preconditions and effects by taking the
intersection of the predicates that were true in the states before and after these capabilites were
executed, respectively. This gives us partial capability descriptions of these high-level capabilities.
The next step after this is to complete the partial descriptions.

5.2 Learning Capability Descriptions

Given the high level candidate capabilities, we use hierarchical querying mechanism to learn the
description of each capability. SCaDA first initializes a model M∗ with capabilities C learned in the
first phase, and predicates P . SCaDA generates an exhaustive set of hypotheses for each predicate
p ∈ P at every location (precondition or effect in a capability). Given a location, the hypothesis
space corresponding to a predicate will correspond to 3 transition models: one each corresponding
to the three ways we can add the predicate in that location. We call these three hypotheses hT , hF ,
hI , corresponding to adding p (true), not(p) (false), and not adding p (ignored), respectively at that
location. SCaDA iterates over all combinations of locations and P . For each pair, SCaDA creates 3
hypotheses hT , hF , and hI as mentioned earlier. It then randomly takes two of these and generates a
query q such that the response of the SDMA on that query can help prune out one of the hypotheses.
Once the inconsistent hypothesis is pruned, it takes the remaining two hypotheses and repeats the
same process.

Generating distinguishing queries SCaDA automates the generation of queries using search.
As part of the algorithm, a model M is used to generate the three hypotheses corresponding to a
specific predicate p and location l combination. So other than the predicate p at location l, the model
representing the three hypotheses is exactly the same. A forward search is used to generate the policy
simulation queries with two hypotheses hi, hj chosen randomly from hT , hF , and hI . The forward
search is initiated with an initial state ⟨si0, s

j
0⟩ as the root of the search tree, where si0 and sj0 are

copies of the same state s0 from which we are starting the search. The edges of the tree correspond to
the capabilities with arguments replaced with objects in the environment. The nodes correspond to the
two states resulting from applying the capability in the parent state according to the two hypotheses
models. Now there will be an edge in the forward search tree with label c such that parent node is
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⟨si0, s
j
0⟩ and child node is ⟨si1, s

j
1⟩. The search process terminates when a node ⟨si, sj⟩ is reached

such that either the states si and sj don’t match, or the preconditions of the same capability were
met in the state according to one of the hypotheses but not according to the other. Forward search
can be slow depending on the number of capabilities and objects in the environment. So we use
state-of-the-art planner PRP [Muise et al., 2012] used for search-based planning in non-deterministic
environments. The output of this search is a policy π to reach a state where the two hypotheses, hi

and hj differs. The query ⟨sI , π,G⟩ resulting from this search is such that sI is set to the initial state
s0, π is the output policy, G is the goal state where the hypotheses disagree. We next see how to use
these queries to prune out the incorrect hypothesis.

Pruning the inconsistent hypothesis At this point, SCaDA already has a query such that the
response to the query by the two hypotheses does not match. We next see how to prune out the
hypothesis inconsistent with the SDMA. SCaDA poses the query generated earlier to the SDMA and
gets its response. If the SDMA can successfully execute the policy, SCaDA matches the response of
the two hypotheses with that of the SDMA and prunes out the hypothesis whose response does not
match with that of the SDMA. If the SDMA cannot execute the policy, i.e., SDMA fails to execute
some capability in the policy, then the hypotheses cannot be pruned directly. In such a case, a new
initial state s0 must be chosen to generate a new query starting from that initial state. This process to
generate new queries for the same pair of hypotheses can take a long time, hence we preempt this
issue by creating a pool of states S that can execute the capabilities using a directed exploration of
the state space using partially learned models.

5.3 Combining Capabilities

Most of the existing approaches that identify which transitions correspond to the same capability use
only the precondition [Silver et al., 2021, 2022], i.e., if the precondition of two candidate capabilities
is same, then their effects are merged to create a new combined capability. This approach does not
work well for settings when more than one action has same precondition. E.g., to throw a cup and to
throw a cup on the wall and to keep a cup gently on table, the corresponding capabilities will have
the same precondition that the cup needs to be in the hand. But these are clearly different capabilities.
So to solve this problem, we ask the SDMA to repeat a capability execution multiple times, and only
if while executing one capability the effect of another capability is seen and vice versa, we combine
the capabilities. To ask the agent to execute the same capability, the agent must understand what
transition the capability corresponds to. Hence, we maintain a list of transitions corresponding to
each capability and ask the agent to repeat the transition instead of it to execute the capability.

Learning the capability parameters Once the preconditions and effects of a capability are known,
learning their parameters is a trivial process. The sets of predicates in the precondition and effect are
sorted in a particular order (we sorted them alphanumerically for this work), and then the parameters
are sorted according to the order in which they appear in the sorted predicates without repetition.

5.4 Learning the probabilities

After SCaDA learns the non-deterministic model, to learn the probabilities of the learned effects it
uses the transitions collected as part of responses to queries. This is done using Maximum Likelihood
Estimation (MLE). For each triplet ⟨s, c, s′⟩ seen in the collected data, let count_c be the number of
times a capability c is observed. Now, for each effect set, the probability of that effect set becoming
true on executing that capability c is given as the number of times that effect is observed on executing
c divided by count_c.

6 Empirical Evaluation

We implemented SCaDA in Python and performed an empirical evaluation on three benchmark
domains using 5.0 GHz Intel i9 CPUs with 64 GB of RAM. We found that our approach learns a
set of capabilities for the three game environments that we show in Fig. 1. We briefly describe the
environments below:

Escape The Escape domain, as shown in Fig.1(b)(top), consists of movable blocks, fixed holes,
and cheese. The blocks can be pushed into the holes to clear out a path. When moving in the blocks
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adjacent to the holes, the agent can end up in hole even when not-moving directly towards it. The
game is finished when the player reaches the location with cheese.

Zelda The Zelda-like domain, as shown in Fig.1(b)(bottom), consists of a key, a door that opens
using that key, the antagonist player Link, and the protagonist monster Ganon. To win the game, Link
must defeat Ganon, and then should use the key to open the door to escape. Link can move one cell
at a time in the direction it is facing. If Link moves into the cell adjacent to the key, Link picks up the
key by executing the keystroke E (special keystroke). The same keystroke is used to Defeat Ganon
(stochastic action) when Link is facing Ganon and is in a cell adjacent to Ganon, and to escape when
Link is in a cell adjacent to the door and facing it.

Montezuma’s revenge The Montezuma’s revenge game is shown in Fig.1(a). The low level state is
a RAM-based state, which is the internal game state represented by the game controller’s 256-byte
array. We used ten concepts similar to Sreedharan et al. [2022], which we believed would be relevant
to the game, for each screen and collected positive and negative examples using automated scripts.

Since, we do not have a ground truth model to compare the correctness of the learned model, we also
ran experiments on a symbolic SDMA called driver agent [Verma et al., 2023]. We explain it below:

Driver agent This SDM setup is implemented using SOTA stochastic planning system used in
planning literature. This is motivated from Tireworld setup introduced in the probabilistic track of
IPC 2004 [Younes et al., 2005]. It consists of a robot moving around multiple locations. The move
action can cause it to get a flat-tire with some probability. Not all locations have the option to change
tire, but if available, a change-tire action will fix the flat-tire with a 100% probability.

Environment Number of queries
Escape 592
Zelda 528

Montezuma 849
Driver Agent 34

Table 1: The number of queries used for
the 4 environments in the experiments.

Results We measure the number of queries required to
learn the capabilities for each set of environments.

As mentioned before, we used the driver agent to compare
the correctness of the learned descriptions, and we note
that the correct two capabilities were learned in all the
case where sufficient initial execution traces were captured
before starting SCaDA. This shows that SCaDA is able to
learn the correct model of transitions of an SDMA if they
are captured.

7 Conclusion

In this work, we presented an approach for discovering the capabilities of an agent and to learning a
probabilistic model of an agent in terms of discovered capabilities using interactive querying.

Limitations and Future Work The work even though learning an accurate model of the SDMA’s
capabilities cannot be directly tested for correctness for domains where a ground truth model is not
available. We can alleviate this similar to Silver et al. [2022] by using the learned model for planning.
Though still not fully accurate, this would point if the learned representation can be used for reasoning
about solving the tasks by a user or not. We will also try to make the code bases compatible so as a
direct comparison with Silver et al. [2022] can be made possible to evaluate the planning efficiency
of the learned model as compared to the state of the art.

We also plan to remove the assumption that the classifiers have to be non-noisy to accommodate for the
real world setups. The current assumption limits the implementation to scenarios where environment
properties are so distinct that they can easily be detected using a classifier, and needed expert
knowledge. In addition, the classifiers currently work for the RAM and image based representations.
We want to extend this setup to have classifiers (or some other form of concept evaluators) work for
embodied AI settings too.
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