
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARD TRUSTWORTHY: A METHOD FOR DETECT-
ING FINE-TUNING ORIGINS IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

As large language models (LLMs) continue to advance, their deployment often
involves fine-tuning to enhance performance on specific downstream tasks. How-
ever, this customization is sometimes accompanied by misleading claims about
the origins, raising significant concerns about transparency and trust within the
open-source community. Existing model verification techniques typically assess
functional, representational, and weight similarities. However, these approaches
often struggle against obfuscation techniques, such as permutations and scaling
transformations, that obscure a model’s lineage. To address this limitation, we
propose a novel detection method that rigorously determines whether a model has
been fine-tuned from a specified base model. This method includes the ability to
extract the LoRA rank utilized during the fine-tuning process, providing a more
robust verification framework. This framework is the first to provide a formal-
ized approach specifically aimed at pinpointing the sources of model fine-tuning.
We empirically validated our method on twenty-nine diverse open-source models
under conditions that simulate real-world obfuscation scenarios. We empirically
analyze the effectiveness of our framework and finally, discuss its limitations. The
results demonstrate the effectiveness of our approach and indicate its potential to
establish new benchmarks for model verification.

1 INTRODUCTION

Recently, as large language models (LLMs) continue to advance, increasingly powerful models are
rapidly emerging, demonstrating exceptional performance across a wide range of tasks. Users fre-
quently fine-tune these models to enhance their performance for specific applications. However,
certain model providers have engaged in deceptive practices, exaggerating their technological capa-
bilities for unjust gain. For example, the Reflection-70B, marketed by HyperWrite as the worlds
leading open-source model, was in fact fine-tuned on Llama3-70B-instruct, not on Llama3.1-70B
as originally claimed, as illustrated in Figure 1. Such false claims have raised significant concerns
regarding the potential misuse of models and the spread of misleading information (Pan et al., 2023).

Current detection methods mainly evaluate functional, representation and weight similarity, as well
as training data properties and program similarity (Klabunde et al., 2023b). However, the criteria
used in these methods lack the necessary rigor and formalization, leading to ambiguity and incon-
sistency in determining whether a model is a fine-tuned derivative of a specific base model. Among
these techniques, weight similarity is considered the most effective indicator to verify the relation-
ship between models. However, when the model undergoes obfuscation techniques such as permu-
tation or scaling transformations (Zhou et al., 2023; Lee et al., 2018), its reliability is compromised.
This shortcoming highlights the urgent need for more robust and systematic detection frameworks
that can reliably identify fine-tuned models even when intentional obfuscation is involved.

To address this challenge, our study introduces a novel detection method that can rigorously deter-
mine whether a model has been fine-tuned from a specified base model. Our approach is the first
formal framework designed to address the complexity of model fine-tuning for detection, marking a
significant advance over existing techniques. Crucially, the method remains valid regardless of the
permutations used, enabling accurate determination of the basis model for any derivative. Through
this research, we aim to establish new standards for model verification in the open-source community
and improve the transparency and trustworthiness of the sources of AI models.

1

https://huggingface.co/mattshumer/Reflection-Llama-3.1-70B


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) w/o Obfuscation

(c) with Obfuscation

(b) Reflection-70B vs. Llama3-70B-Instruct w/o Obfuscation

(d) Reflection-70B vs. Llama3-70B-Instruct with Obfuscation

Figure 1: The detection of Reflection-70B with (w/o) obfuscation. (a) and (c) show the distinct peak
in singular value differences near the rank, both without and with obfuscation. (b) and (d) depict
parameter similarities across various modules when compared to Llama3-70B-Instruct, without and
with obfuscation, respectively.

To empirically validate the efficacy of our detection method, we conducted tests on a diverse set
of twenty-nine open-source models. Recognizing the presence of rotational transformations, we
treated the model parameters as inherently unknowable, approaching each model as a gray box
where only the inputs and outputs of each layer are accessible. This perspective ensures that our
testing conditions reflect practical limitations typically encountered in real-world scenarios. Under
these constraints, our results demonstrate that our algorithm robustly identifies fine-tuning across all
tested models, confirming its broad applicability and effectiveness.

2 RELATED WORKS

Parameter-Efficient Fine-Tuning. PEFT has emerged as a crucial strategy for optimizing LLMs
for specific tasks while reducing resource consumption. Techniques such as Low-Rank Adaptation
(LoRA) (Hu et al., 2021; Dettmers et al., 2024), Adapter Layers (Karimi Mahabadi et al., 2021),
and Prompt Tuning (Jia et al., 2022) achieve performance improvements by modifying only a small
subset of parameters, thus capturing task-specific information while retaining the original model’s
foundational knowledge. However, the increasing reliance on these methods raises concerns about
transparency and traceability, highlighting the need for robust verification techniques to ensure the
integrity and reliability of fine-tuned models.

Obfuscation Techniques. To bolster model privacy and hinder unauthorized access, techniques
such as permutation, scaling, and noise addition are employed Elhage et al. (2021). These meth-
ods obscure direct parameter comparisons, complicating the identification of derived models. For
example, permutation rearranges parameters, scaling alters their magnitudes, and noise addition
introduces random variations, all of which mask the model’s characteristics. These obfuscation
strategies protect intellectual property and sensitive data from unauthorized access and reverse engi-
neering (Yousefi et al., 2023), while also preventing misuse.

Detection Methods. Recent researches for identifying model modifications focus on various similar-
ities, including functional, representational, weight, training data, and procedural aspects (Klabunde
et al., 2023a). Functional and representational similarities compare model outputs and internal ac-
tivations, respectively, but often struggle against fine-tuning variations and obfuscation techniques
like permutations and noise addition (Ethayarajh, 2019; Wu et al., 2020; Kornblith et al., 2019).
Weight similarity can effectively detect model lineage but is compromised by permutation-based
obfuscation (Wang et al., 2022; Elhage et al., 2021). Techniques examining training data and proce-
dural similarities, such as influence functions, can illuminate fine-tuning practices but often require
extensive datasets (Grosse et al., 2023; Shah et al., 2023). Additionally, procedural similarity offers

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

insights into training methods but is limited by the proprietary nature of training pipelines (Bider-
man et al., 2023; Zhao et al., 2023). Overall, recent approaches highlight the challenges in detecting
model modifications amid sophisticated obfuscation tactics.

3 PRELIMINARIES

3.1 DECODER-ONLY TRANSFORMER ARCHITECTURE

Decoder Layer 2

Imput Embedding

Normalize

Linear

Q K V
Self-Attention

⊕
Linear

Feed Forward
⊕

Decoder Layer N

Softmax

Linear

(a) Decoder-only Model Architecture (b) 

Figure 2: Decoder-
only Architecture.

A single decoder-layer is comprised of multi-head attention followed by a
feed-forward network, shown as Figure 2. It takes as input a sequence Xi and
the output is likewise a sequence of vectors Zi. The Self-Attention, referred
to as hi, and then transformed by the feed-forward network fi, resulting in
the final output as:

Zi = fi ◦ hi(Xi)

In Self-Attention, each attention head results in WQ, WK , WV and WO as
the query, key, value, and output matrices respectively, which apply a linear
transformation to each x ∈ X . Rθ represents RoPE, and the output equation
becomes Yi as follows:

Yi = softmax
(
hnorm(Xi)WQW

⊤
Kh⊤

norm(Xi)√
dK

)
hnorm(Xi)WV WO +Xi

Considering feed forward network and the residual connection, the following
set of equations characterizes the function of a single decoder-layer.σ denotes an activation function
(e.g., GeLU or SiLU).

Zi = [σ(hnorm(Yi)WG)⊙ (hnorm(Yi)Wup)]Wdown + Yi,

3.2 OBFUSCATION

Obfuscation in neural networks refers to the deliberate manipulation of parameters or structures to
obscure their original form while retaining functional output. In the context of models, obfuscation
techniques such as rearranging parameter matrices in attention and MLP modules are employed to
complicate unauthorized access, prevent direct comparisons, and protect model privacy. Despite
the internal changes, these techniques ensure that the models functional behavior remains intact,
preserving performance while safeguarding intellectual property.

Significant studies, such as those by Maron et al. (2020) and Zaheer et al. (2017), have explored
obfuscation’s effects in maintaining consistent outputs across different configurations. These works
highlight how obfuscation stabilizes model performance and hinders reverse engineering efforts.

Mathematically, given a set S = {s1, s2, . . . , sn}, obfuscation is defined through transformations
that render the underlying structure opaque. When applied to a weight matrix W ∈ Rm×n, trans-
formation matrices P ∈ {0, 1}n×n reorder elements, turning W into WP . These transformations
complicate direct analysis without affecting the models output.

In Transformer architectures, the MLP and attention layers, denoted by F and H , undergo obfusca-
tion through transformations Π1 and Π2, defined as follows:

Fobf ◦Hobf(X) = F ◦H(X),

where Fobf = Π1(F ) and Hobf = Π2(H). This approach ensures that internal obfuscation does not
affect the overall output, maintaining the model’s integrity and safeguarding its internal structure.

3.3 PROBLEM FORMULATION

This research aims to determine whether the candidate model Mc has undergone fine-tuning in its
self-attention modules, excluding MLP modules, from the base model Mb using Low-Rank Adap-
tation (LoRA), followed by layer-level obfuscation. We consider both models as white boxes, but
the obfuscations in Mc complicate comparisons with Mb due to potential parameter transformations
that may obscure the structural relationships between their parameter matrices.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Let M∗
c represent the ideally fine-tuned model derived from Mb using Low-Rank Adaptation (LoRA)

without any obfuscation. The candidate model Mc is then generated from M∗
c by implementing

obfuscations to its layers. The challenge posed by this scenario is encapsulated by the discrepancy
in ranks of the parameter differences, expressed as:

rank(W ∗
c −Wb) = s but rank(Wc −Wb)≫ s,

Here, W represents the matrices of fine-tuned module parameters, W ∗
c denotes the ideally fine-tuned

matrices without obfuscations, and Wb represents the parameter matrices of the base model.

The primary challenge this research addresses is the determination of the original, unpermuted pa-
rameter matrix W ∗

c given the observed permuted matrix Wc. Our primary objective is to develop
methodologies by which the structure of W ∗

c can be accurately inferred from Wc without prior
knowledge of the specific obfuscations applied.

4 METHODOLOGY

4.1 EXTRACTION OF LORA RANK INFORMATION

In this section, we examine the extraction of low-rank information from the intermediate states,
specifically the value and output projection matrices WV and WO in Transformer models. The
intermediate state between the self-attention mechanism and the MLP layer is expressed as follows:

Yi = softmax
(
hnorm(Xi)RθWQW

⊤
KR⊤

θ h
⊤
norm(Xi)√

dK

)
hnorm(Xi)WV WO +Xi

where hnorm(Xi) denotes the normalized input, WQ,WK ,WV and WO are the query, key, value,
and output projection matrices, respectively, and Rθis a Rotational Position Encoding Matrix that
incorporates positional information into the token embeddings. According to Therome 4, these
parameter matrices are uniquely determined by their corresponding inputs-output pairs.

To facilitate the analysis and simplify the interpretation of the intermediate state, we focus on cases
where the embedded tokens reduce to a one-dimensional tensor. Specifically, let the input tensor
be x ∈ R1×d. Under this condition, the intermediate state simplifies as:

y = hnorm(x)WV WO + x

Proof. Let x ∈ R1×d. Consequently, the normalized representationhnorm(x) remains within R1×d,
thus preserving its one-dimensional nature. This dimensionality reduction simplifies the expression
within the softmax argument. Specifically, the term:

hnorm(x)RθWQW
⊤
KR⊤

θ h
⊤
norm(x)√

dK

collapses to a scalara constantdue to the operations involving one-dimensional vectors and matrices.
When the softmax function is applied to this scalar, it simplifies to 1, given that the softmax of a
scalar input reduces to a normalized value of 1:

softmax
(
hnorm(x)RθWQW

⊤
KR⊤

θ h
⊤
norm(x)√

dK

)
= 1

Thus, the intermediate state can be represented without the softmax operation, yielding:

y = hnorm(x)WV WO + x

Let y and ỹ∗ denote the intermediate states of Mb and M∗
c for the same input tensor x. This relation-

ship can be expressed as:

y − ỹ∗ = hnorm(x)
(
WV WO − W̃ ∗

V W̃
∗
O

)
.

We can simplify this to:
y − ỹ∗ = hnorm(x)Wlow,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where Wlow = WV WO − W̃ ∗
V W̃

∗
O represents the difference reflecting the low-rank component.

Assuming the input space x spans a set of linearly independent vectors that form a full-rank matrix
X , and based on Lemma 1, we have rank(hnorm(X)) = rank(X). Thus,

Y = hnorm(X)Wlow.

We use Singular Value Decomposition (SVD) to extract and characterize the low-rank information
from the matrix Y , highlighting the differences between the base and fine-tuned models.

For empirical validation, we created a dataset using the Natural Language Toolkit (NLTK). A vocab-
ulary of words was processed through the model’s tokenizer and embedding layers, yielding 5,579
one-dimensional tensors. This dataset serves as the foundation for our subsequent analysis.

4.2 EQUIVALENT INTERMEDIATE RECONSTRUCTION

In this section, we explore the reconstruction of intermediate states from the output and the MLP
module of base model and address how to resolve obfuscations involved in these processes. The
relationship between single decoder-layer of Mc and M∗

c can be formalized as:

fc ◦ hc(x) = f∗
c ◦ h∗

c(x) and fc = Π2(f
∗
c ), hc = Π1(h

∗
c),

where Π1 and Π2 are obfuscation operations applied to the MLP and attention parameters, respec-
tively. Given that f∗

c = fb, the equation simplifies to:

zc = fc ◦ hc(x) = fb ◦ h∗
c(x),

which implies that:
h∗
c(x) = f−1

b (zc).

Consider the equation for z as follows:

z = [σ(hnorm(y)WG)⊙ (hnorm(y)Wup)]Wdown + y.

This equation describes a non-linear transformation involving both element-wise operations and
matrix multiplications, rendering the inverse mapping from the output back to the input analytically
intractable. Given the nonlinearity and complexity of this transformation, directly inferring the
intermediate state y from the observed output z poses significant challenges. To tackle this, we adopt
an iterative optimization strategy using gradient descent to approximate the original intermediate
state y that likely produced the observed output. The goal is to minimize the discrepancy between
the MLP output and the actual observed output by adjusting y. The iterative update formula is
expressed as:

ym+1 = ym − α∇∥f(ym)− zc∥2

where zc denotes the layer output of Mc, ym denotes the estimated intermediate state at iteration m,
α is the learning rate, and∇∥f(ym)− zc∥2 represents the gradient of the loss function with respect
to ym. This loss function quantifies the squared error between the MLP output f(ym) and the
target output zc. By iteratively updating ym, the gradient descent algorithm aims to converge on an
intermediate state y∗ that, when processed through the MLP, closely replicates the observed output
zc. This reconstruction approach facilitates the approximation of hidden intermediate states from the
MLP outputs, providing a mechanism to indirectly assess and compare the internal representations
across different models, such as the base model Mb and the candidate model Mc.

4.3 RANK EXTRACTION

While the reconstruction process can confirm the authenticity of a base model, additional analysis
is required to ascertain the peft-tuning rank during training. We approximate this rank using the
reconstructed intermediates, as outlined in Algorithm 1. Here, h represents the dataset size, and n is
chosen marginally larger than the typical maximum rank used in LoRA fine-tuning.

Rationale As detailed in Appendix A, the output function of a single decoder layer is bijective with
probability 1. However, certain outputs that are nearly identical may correspond to intermediates that
are not sufficiently similar. This poses a significant challenge in identifying which intermediates are
adequately close to the true intermediate. To address this, we implement a random sampling algo-
rithm based on the hypothesis that if outputs are nearly identical, their corresponding intermediates

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Random Rank Extraction
Require: Sufficiently close intermediate in the reconstructed intermediate Y

1: Initialize n to a value less than h
2: Set rankmin to the dimension of the hidden state
3: Initialize the cycle times t
4: for i = 1 to t do
5: List[num1, num2, · · · , numn]← RandChose(n, h) ▷ Choose n random indices from h
6: Yi ← Compose(Y, Yb, List) ▷ Compose the matrix from the index list
7: λ1 ≥ λ2 ≥ · · · ≥ λn ← SingularValues(Yi)
8: rank ← argmaxi(log ∥λi∥ − log ∥λi+1∥)
9: rankmin ← min(rankmin, rank) ▷ Update with the minimum rank

10: end for
11: return rankmin

are likely similar. Assuming sufficient iterations, this method is expected to reliably approximate
the true rank. The probability P of achieving the true rank can be expressed as follows:

P = lim
n→∞

1− (1− ps)
n = 1,

Here, n represents the number of cycles, and ps denotes the probability that all selected intermediates
are adequately close to the true intermediate. Details are provided in Appendix B.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Models and Datasets. We consider twenty-nine open-source, LoRA-fine-tuned models with vari-
ous architectures as target models. Specifically, we select the series of LLaMA2 (7B, 13B, 70B)
Touvron et al. (2023), LLaMA3 (8B, 70B), and Mistral (7B,13B) Jiang et al. (2023), as base mod-
els. We constructed a 5k dataset from the Natural Language Toolkit (NLTK) Loper & Bird (2002),
ensuring each input was encoded as a single token to maintain a consistent attention score during
the self-attention module.

Rank Extraction Method. We extract the LoRA rank by analyzing the differences in intermediate
representations between the target model and its base model. Then, we compute the dimensionality
of this subspace with SVD(Singular Value Decomposition). The rank is determined by a sharp drop
(Figure 3) in singular values, seen as a peak (Figure 4) in the differences between consecutive values.

Implementation Details. To reconstruct the inputs for the MLP, we utilized gradient descent with
the Adam optimizer Kingma & Ba (2014), initiating the process with a learning rate of 1.5e-3. We
incorporated a StepLR scheduler with a step size of 1 to periodically adjust the learning rate by a
factor of 0.9999, thus finely tuning the learning rate reduction to balance rapid convergence with
meticulous adjustment of the model parameters. Furthermore, to address potential inaccuracies in
reverse-engineered MLP inputs, we conducted 50 iterations of stochastic sampling, each consisting
of 520 output evaluations. The minimum rank determined from these iterations forms our final
estimation, enhancing the overall precision by reducing the influence of outlier data.

5.2 MAIN RESULTS

In this subsection, We apply the rank extraction algorithm to the previously considered models,
demonstrating its effectiveness in finding the rank of LoRA tuning.

Effectiveness on Models. We implemented rank extraction across all layers for each model. To
determine the most representative rank, we systematically selected the smallest value from the ex-
tracted ranks for each layer. This methodology ensures that our final results reflect the minimal
dimension necessary to capture the underlying transformations within the model. The comprehen-
sive results of this analysis are summarized in Table 1. To visually represent the critical points in
our analysis, we include two figures, figure 3 illustrates the sharp drop in singular values observed
across different models and Figure 4 displays the peaks in the ratios of consecutive singular values.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Extraction results across a range of LoRA-fine-tuned models, applying LoRA to different
types of attention weights in models. (Given Rank | Extracted Rank)

Base Size Target LoRA Config Given rank Extracted Rank

Llama3.1 8B

Souththzz Wq ,Wv 8 8
Fdelduchetto Wq ,Wv 16 19

Anthonysicilia Wq ,Wv 32 35
Faridlazuarda Wq ,Wv 64 67

Dror44 Wq ,Wv 128 128

70B RikiyaT Wq ,Wv 16 16

Llama3
8B

SwastikM Wq ,Wv 8 8
Islam23 Wq ,Wk,Wv ,Wo 16 32

Namespace-Pt Wq ,Wk,Wv ,Wo 32 67
Nutanix Wq ,Wk,Wv 64 67

Decision-oaif Wq ,Wv 128 133

70B ScaleGenAI Wq ,Wv 8 8
Reflection-Llama Wq ,Wv 512 517

Llama2

7B

FinGPT-7B Wq ,Wk,Wv 8 8
Junhaos-nv Wq ,Wv 16 18

Renyiyu Wq ,Wv 32 34
Dtthanh Wq ,Wv 64 66

RuterNorway-7B Wq ,Wv 128 128

13B

FinGPT-13B Wq ,Wk,Wv 8 8
Lajonbot Wq ,Wv 16 16

RuterNorway-13B Wq ,Wv 32 32
Blackroot Wq ,Wv 64 64
Zayjean Wq ,Wv 256 256

70B Yukang Wq ,Wk,Wv ,Wo 8 16

Mistral 7B

CleverShovel Wq ,Wv 8 8
BlazeLlama Wq ,Wv 16 16
paragdakle Wq ,Wk,Wv ,Wo 32 64
Farmnetz Wq ,Wk,Wv ,Wo 64 128

paragdakle Wq ,Wk,Wv ,Wo 128 256

Difference on Layers. Our findings indicate a pronounced variance in the efficacy of the intermedi-
ate state reconstruction algorithm across different layers of the model. Notably, the performance in
the middle layers significantly surpasses that observed in the initial and final layers, as illustrated in
Figure 5. This observation underscores the importance of layer-specific dynamics in the effective-
ness of model reconstruction techniques.

5.3 DISCUSSION

0 200 400 600 800 1000

Iterations

−80

−70

−60

−50

−40

−30

−20

−10
10n Loss of Different Models

Llama3.1-70B

Llama3.1-8B

Llama3-70B

Llama3-8B

Llama2-70B

Llama2-13B

Llama2-7B

Mistral-7B

Figure 6: Loss decline curve of each
base model.

Accelerate. To accelerate the progress so that the re-
construction process of the intermediate state to 700 it-
erations. This decision was based on utilizing the inter-
mediate state of the base model as the initial condition,
owing to its substantial similarity to the target model’s
intermediate. This similarity led to a small loss at the
outset of training, allowing for rapid convergence shown
in Figure 6. Following the initial phase of convergence
using a step-based learning rate adjustment (StepLR). To
adjust the learning rate more finely, after each iteration,
the learning rate becomes 0.9999 times the original. This

7

https://huggingface.co/souththzz/llama3.1-lora
https://huggingface.co/fdelduchetto/llama-3.1-8b-Instruct-math
https://huggingface.co/anthonysicilia/Llama-3.1-8B-FortUneDial-ImplicitForecaster
https://huggingface.co/faridlazuarda/valadapt-llama-3.1-8B-it-arabic
https://huggingface.co/safesign/dror44/llama3.18B-APL_r_128_Instruct
https://huggingface.co/RikiyaT/Meta-Llama-3.1-70B-tac08
https://huggingface.co/SwastikM/Meta-Llama3-8B-Chat-Instruct-LoRA
https://huggingface.co/islam23/llama3-8b-RAG_News_Finance
https://huggingface.co/namespace-Pt/Llama-3-8B-Instruct-80K-QLoRA
https://huggingface.co/Nutanix/Meta-Llama-3-8B-Instruct_KTO_lora_SupportGPT-alignment-1
https://huggingface.co/safesign/llama3-8b-instruct-final-less-lora-everything
https://huggingface.co/ScaleGenAI/Llama3-lora
https://huggingface.co/mattshumer/Reflection-Llama-3.1-70B
https://huggingface.co/FinGPT/fingpt-mt_llama2-7b_lora
https://huggingface.co/junhaos-nv/llama2-7b-ogbn-products-lora
https://huggingface.co/renyiyu/llama-2-7b-sft-lora
https://cn.bing.com/search?q=dtthanh%2Fllam a-2-7b-und-lora-2.7&qs=n&form=QBRE&sp=-1&lq=0&pq=&sc=0-0&sk=&cvid=57259B28A09B49C6B7EF5CB831EC41C1&ghsh=0&ghacc=0&ghpl=
https://huggingface.co/RuterNorway/Llama-2-7b-chat-norwegian
https://huggingface.co/FinGPT/fingpt-sentiment_llama2-13b_lora
https://huggingface.co/Lajonbot/Llama-2-13b-hf-instruct-pl-lora_adapter_model
https://huggingface.co/RuterNorway/Llama-2-13b-chat-norwegian-LoRa
https://huggingface.co/Blackroot/Llama-2-13B-Storywriter-LORA
https://huggingface.co/zayjean/llama-2-13b_verify-bo-lora-r256-a512-d0_3K-E20
https://huggingface.co/Yukang/Llama-2-70b-longlora-32k
https://huggingface.co/CleverShovel/Mistral-7B-v0.1-paper-reviews-lora
https://huggingface.co/BlazeLlama/GeoGecko-Mistral2-7B-QLORA
https://huggingface.co/paragdakle/mistral-stem-lw-lora
https://huggingface.co/farmnetz/chef-z-mistral-7b-instruct-peft
https://huggingface.co/paragdakle/mistral-7b-cnndaily-lora


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 8 16 32 64 128

Sorted Singular Values

10−12

10−10

10−8

10−6

10−4

10−2

100

M
a
g
n

it
u

d
e

(a) Llama3.1-8B Models

Anthonysicilia
Fdelduchetto
Souththzz
Dror44
Faridlazuarda

0 8 16 32 64 128

Sorted Singular Values

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

(b) Llama3-8B Models

RuterNorway-13B
Blackroot
FinGPT-13B
Zayjean
Lajonbot

0 816 32 64 256

Sorted Singular Values

10−12

10−10

10−8

10−6

10−4

10−2

100

102

(c) Llama2-13B Models

Decision-oaif
Namespace-Pt
Islam23
Nutanix
SwastikM

0 8 16 32 64 128

Sorted Singular Values

10−12

10−10

10−8

10−6

10−4

10−2

100

102

M
a
g
n

it
u

d
e

(d) Llama2-7B Models

FinGPT-7B
Junhaos-nv
RuterNorway
Renyiyu
Dtthanh

0 816 32 64 128 256

Sorted Singular Values

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

(e) Mistral-7B-v0.1 Models

Farmnetz
GeoGecko
Cnndaily
CleverShovel
Stem-LW

0 8 16 32

Sorted Singular Values

10−8

10−6

10−4

10−2

100

102

104

106

(f) 70B Models

Llama3.1-70B-RikiyaT
Llama3-70B-ScaleGenAI
Llama2-70B-Yukang

Figure 3: SVD can capture the LoRA rank of the model when the quantity of output vectors exceeds
the LoRA rank. In this paper, we extract the LoRA rank of the models by accurately determining
the rank through the analysis of 520 output vectors.

0 8 16 32 64 128

Sorted Singular Values

100

101

102

103

D
iff

e
re

n
ce

b
e
tw

e
e
n

co
n

se
cu

ti
v
e

si
n

g
u

la
r

v
a
lu

e
s (a) Llama3.1-8B Models

Anthonysicilia
Fdelduchetto
Souththzz
Dror44
Faridlazuarda

0 8 16 32 64 128

Sorted Singular Values

100

101

102

103

104

(b) Llama3-8B Models

RuterNorway-13B
Blackroot
FinGPT-13B
Zayjean
Lajonbot

0 8 16 32 64 256

Sorted Singular Values

100

102

104

106

107

(c) Llama2-13B Models

Decision-oaif
Namespace-Pt
Islam23
Nutanix
SwastikM

0 8 16 32 64 128

Sorted Singular Values

100

101

102

103

104

D
iff

e
re

n
ce

b
e
tw

e
e
n

co
n

se
cu

ti
v
e

si
n

g
u

la
r

v
a
lu

e
s (d) Llama2-7B Models

FinGPT-7B
Junhaos-nv
RuterNorway
Renyiyu
Dtthanh

0 8 16 32 64 128 256

Sorted Singular Values

100

102

104

106

108

(e) Mistral-7B-v0.1

Farmnetz
GeoGecko
Cnndaily
CleverShovel
Stem-LW

0 8 16 32

Sorted Singular Values

100

101

102

103

104

(f) Models70B Models

Llama3.1-70B-RikiyaT
Llama3-70B-ScaleGenAI
Llama2-70B-Yukang

Figure 4: Our detection method determines the LoRA rank by pinpointing a sharp decline in singular
values, which manifests as a peak in the disparity between consecutive singular values. In the model,
this peak occurs at a position adjacent to the rank.

micro-adjustment aimed to refine the alignment between our reconstructed intermediate and the
target models true intermediate, enhancing the precision of our results.

Layer Selection. In the previous section, we found that the effectiveness of our algorithm for
computing the LoRA (Low-Rank Adaptation) rank is significantly greater in the intermediate layers
than in the front and rear layers. Experimental results indicate that rank estimates from intermediate
layers are closer to the true low-rank structure, highlighting their critical role in the model.

Choosing outputs from intermediate layers for approximation provides an effective means to evalu-
ate rank calculation performance in a label-free context. By quantifying the 2-norm of the interme-
diate layer outputs, we can assess the effectiveness of different layers without relying on explicitly
labeled data, thus identifying optimal layers for reconstruction.

Results as shown in Figure 7, demonstrate that the 2-norm of intermediate layer outputs is signif-
icantly higher than that of the front and rear layers, with rank estimates closely aligning with true
values. This may be due to the inherent characteristics of intermediate layers, which better convey
information when processing complex data.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 8 16 24 31

Layer Index

0

16

32

48

64

E
x
tr

a
ct

e
d

R
a
n

k

(a) 7B Models

FinGPT-7B
Junhaos-nv
RuterNorway
Renyiyu
Dtthanh

Farmnetz
GeoGecko
Cnndaily
CleverShovel
Stem-LW

0 8 16 24 31

Layer Index

0

16

32

48

64

(b) 8B Models

Anthonysicilia
Fdelduchetto
Souththzz
Dror44
Faridlazuarda

RuterNorway-13B
Blackroot
FinGPT-13B
Zayjean
Lajonbot

0 8 16 24 32 39

Layer Index

0

16

32

48

64

(c) 13B Models

Decision-oaif
Namespace-Pt
Islam23

Nutanix
SwastikM

0 16 32 48 64 79

Layer Index

0

4

8

12

16

(d) 70B models

Llama3.1-70B-RikiyaT
Llama3-70B-ScaleGenAI
Llama2-70B-Yukang

Figure 5: Rank Extraction Across Layers in Various Models. The extracted ranks for each layer
within different target models are categorized by their size, 7B Models(a), 8B Models(b), 13B Mod-
els(c), and 70B Models(d), illustrate the distribution of extracted ranks across the layers of respective
model architectures. Each point represents the extracted rank for a specific layer.

0 8 16 24 31

Layer Index

0

200

400

600

2
-N

o
rm

o
f

L
a
y
e
r

O
u

tp
u

ts

(a) 7B and 8B Models

LLaMA3.1-8B-Instruct

LLaMA3-8B-Instruct

LLaMA2-7B

Mistral-7B-v0.1

0 8 16 24 32 39

Layer Index

0

500

1000

1500

(b) 13B Models

LLaMA2-13B

LLaMA2-13B-chat

0 8 16 24 32 40 48 56 64 72 79

Layer Index

0

100

200

(c) 70B models

LLaMA3.1-70B-Instruct

LLaMA3-70B-Instruct

LLaMA2-70B

Figure 7: Norm of Layer Outputs Across Model Architectures. This figure presents the L2 norms
of outputs across layers in models of varying sizes, 7B and 8B models(a), 13B models(b), and 70B
models(c).

6 CONCLUSION

This study addresses growing concerns within the open-source community about the misrepresen-
tation and misuse of fine-tuned models. Existing detection methods, while valuable, often struggle
against sophisticated obfuscation techniques like permutations and scaling transformations, compli-
cating the verification of modified models’ lineage and authenticity. We introduce a novel detection
methodology aimed at overcoming these challenges through a rigorous and systematic approach to
ascertain the provenance of fine-tuned models.

Our methodology establishes a new benchmark for transparency and reliability in managing open-
source models. By implementing this formalized framework, we enhance the trustworthiness of
the ecosystem, ensuring that the origins and modifications of models are accurately documented,
thereby promoting greater accountability in AI technology deployment.

Limitations. Despite its effectiveness, our method has limitations that restrict its broader applicabil-
ity. It is currently designed for scenarios where MLP layers remain unmodified during fine-tuning;
modifications to these layers, whether through parameter adjustments or architectural changes, re-
duce the effectiveness of our detection capabilities in complex model configurations. Future research
will aim to extend this technique to accommodate various fine-tuning strategies, particularly those
impacting MLP layers. Additionally, our method struggles with models exhibiting small output
norms, which hampers the efficiency of reverse engineering intermediate states due to weakened
gradient signals during reconstruction. This highlights the need for further refinement of the algo-
rithm to ensure robust performance across varying output magnitudes.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Stella Biderman et al. Pythia: A suite for analyzing large language models across training and
scaling. International Conference on Machine Learning, 2023.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, et al. A mathematical framework
for transformer circuits. Transformer Circuits Thread, 2021.

Kawin Ethayarajh. How contextual are contextualized word representations? comparing the geom-
etry of bert, elmo, and gpt-2 embeddings. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing, 2019.

Roger Grosse, Joon Bae, Chiyuan Anil, Nelson Elhage, et al. Studying large language model gener-
alization with influence functions. arXiv preprint arXiv:2308.03296, 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In European Conference on Computer Vision, pp. 709–727.
Springer, 2022.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
hypercomplex adapter layers. Advances in Neural Information Processing Systems, 34:1022–
1035, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Max Klabunde, Tim Schumacher, Markus Strohmaier, and Florian Lemmerich. Similarity of neu-
ral network models: A survey of functional and representational measures. arXiv preprint
arXiv:2305.06329, 2023a.

Max Klabunde, Johannes Schäffer, Gerhard Henning, Stefan Wermter, and Stefan Lüdtke. Towards
measuring representational similarity of large language models. In NeurIPS 2023 Workshop on
UniReps: Unifying Understanding of Representations, 2023b. URL https://mklabunde.
github.io/publication/2023-llms.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural net-
work representations revisited. In Proceedings of the 36th International Conference on Machine
Learning, 2019.

Taesung Lee, Benjamin Edwards, Ian Molloy, and Dong Su. Defending against model stealing
attacks using obfuscations. arXiv preprint arXiv:1806.00054, 2018.

Edward Loper and Steven Bird. Natural language toolkit (nltk), 2002. URL https://www.nltk.
org/.

Haggai Maron, Heli Ben-Hamu, Heli Serviansky, and Yaron Lipman. On the universality of invariant
networks. In International Conference on Machine Learning (ICML), pp. 4363–4371. PMLR,
2020.

Ziyang Pan, Ying Hua, Yuhao Zhang, et al. On the risk of misinformation pollution with large
language models. arXiv preprint arXiv:2302.05678, 2023.

Harini Shah, Suhani M Park, Andrew Ilyas, and Aleksander Madry. Modeldiff: A framework for
comparing learning algorithms. Proceedings of the 40th International Conference on Machine
Learning, 2023.

10

https://mklabunde.github.io/publication/2023-llms
https://mklabunde.github.io/publication/2023-llms
https://www.nltk.org/
https://www.nltk.org/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Hugo Touvron, Louis Martin, Kevin Stone, et al. Llama 2: Open foundation and fine-tuned chat
models. arXiv preprint arXiv:2307.09288, 2023.

Guangxing Wang, Guanyu Wang, Wenjie Liang, and Jiehua Lai. Understanding weight similarity
of neural networks via chain normalization rule and hypothesis-training-testing. arXiv preprint
arXiv:2208.04369, 2022.

Jianlin Wu, Yonatan Belinkov, Hassan Sajjad, Nadir Durrani, Fahim Dalvi, and James Glass. Sim-
ilarity analysis of contextual word representation models. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, 2020.

Shayan Yousefi, Luca Betthauser, et al. In-context learning in large language models: A
neuroscience-inspired analysis of representations. arXiv preprint arXiv:2304.13712, 2023.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, and
Alex Smola. Deep sets. In Advances in Neural Information Processing Systems (NeurIPS), pp.
3391–3401, 2017.

Weixin Zhao, Kang Zhou, Jian Li, Tao Tang, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Tian Zhou et al. Permutation equivariant neural functionals. arXiv preprint arXiv:2307.10865, 2023.

A FORMULATION DETAIL

Lemma 1. For a given X ∈ Rn×d, consider the function hnorm : Rn×d → Rn×d defined as

hnorm(X) =



x1√
1
d

∑d
j=1 x2

1j+ϵ
x2√

1
d

∑d
j=1 x2

2j+ϵ

...
xn√

1
d

∑d
j=1 x2

nj+ϵ

⊙ γ

where ϵ is a small positive scalar and γ ∈ R1×d with γ ̸= 0⊤
d . hnorm is bijective for non-parallel

vectors.

Proof. We prove it by contradiction, we need to demonstrate that if X and Y are two matrices in
Rn×d such that xi ̸∥ yi, then hnorm(X) and hnorm(Y ) cannot be equal.

Injectivity: Assume by contradiction that hnorm(X) = hnorm(Y ) for some X,Y ∈ Rn×d such that
xi ̸∥ yi, by the definition of hnorm, we have:

x1√
1
d

∑d
j=1 x2

1j+ϵ
x2√

1
d

∑d
j=1 x2

2j+ϵ

...
xn√

1
d

∑d
j=1 x2

nj+ϵ

⊙ γ =



y1√
1
d

∑d
j=1 y2

1j+ϵ
y2√

1
d

∑d
j=1 y2

2j+ϵ

...
yn√

1
d

∑d
j=1 y2

nj+ϵ

⊙ γ,

which implies that xik√
1
d

∑d
j=1 x

2
ij + ϵ

− yik√
1
d

∑d
j=1 y

2
ij + ϵ

 γk = 0 for all i, k.

Further  xik√
1
d

∑d
j=1 x

2
ij + ϵ

− yik√
1
d

∑d
j=1 y

2
ij + ϵ

 = 0 for all i, k.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

This implies that xi and yi must be parallel, which is a contradiction. Thus, hnorm is injective for
non-parallel vectors.

Surjectivity: To prove surjectivity, we must show that for any non-zero line matrix Z ∈ Rn×d,
there exists an X ∈ Rn×d such that hnorm(X) = Z.

Consider the equation:

Z =



x1√
1
d

∑d
j=1 x2

1j+ϵ
x2√

1
d

∑d
j=1 x2

2j+ϵ

...
xn√

1
d

∑d
j=1 x2

nj+ϵ

⊙ γ.

We can solve for X as:

X =

Z ⊙ γ−1√
1
d

∑d
i=1 X

2
i + ϵ

 .

Given any Z, we can choose X such that the above equation holds. Since γ is non-zero and ϵ is a
small positive scalar, it is always sure to find such an X , proving that hnorm is surjective.

So hnorm is bijective for non-parallel vectors.

Lemma 2. For a given x ∈ Rn×d, function f : Rn×d → Rn×d defined as

f(x) = [σ(hnorm(x)WG)⊙ (hnorm(x)Wup)]Wdown + x,

where WG,Wup ∈ Rd×p and Wdown ∈ Rp×d are all full rank matrices and p > d. Additionally,
hnorm(X) is defined that

hnorm(X) =
X√

1
d

∑d
i=1 X

2
i + ϵ

⊙ γ.

The function f is injective for non-parallel vectors.

Proof. To prove that f(X) is injective for non-parallel vectors, we need to show that if f(X) =
f(Y ), then X = Y for any X,Y ∈ Rn×d such that Xi ̸∥ Yi.

Assume that f(X) = f(Y ). This implies:

[σ (hnorm(X)WG)⊙ (hnorm(X)Wup)]Wdown+X = [σ (hnorm(Y )WG)⊙ (hnorm(Y )Wup)]Wdown+Y.

By the Lemma 1, we can simplify the equation and rearranging it, we have:

[σ (XWG)⊙ (XWup)]Wdown − [σ (YWG)⊙ (YWup)]Wdown = Y −X.

Suppose that the token space C is countable, which means that f :Cn → Cn. Let

Mij = {(WG,Wup,Wdown)|[σ(CiWG)⊙ (CiWup)]Wdown = [σ(CjWG)⊙ (CjWup)]Wdown},
where

Ci ∈ C and Cj ∈ C,
then we can get that

dim(Mij) = 3dp− nd < 3dp,

which means that the Lebesgue measure ofMij

µL(Mij) = 0.

Suppose that
M =

∪
i,j

Mij ,

this indicates that
µL(M) = 0.

So we can show that
(WG,Wup,Wdown) ̸∈ M with probability 1.

Hence, we can say function f is injective for non-parallel vectors.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Lemma 3. Let A and B be distinct matrices of the same dimension, i.e., A,B ∈ Rm×n. Then, we
have that

softmax(A) = softmax(B)

indicates that

(A−B) =


α1

α2

...
αm

1⊤
n ,

where 1n is the column vector of ones of length n and α1, . . . , αm are scalars.

Proof. Let matrices A and B be defined as follows:

A =


a1
a2
...

am

 =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
...

am1 am2 · · · amn

 , B =


b1

b2

...
bm

 =


b11 b12 · · · b1n
b21 b22 · · · b2n

...
...

...
...

bm1 bm2 · · · bmn

 .

The softmax function applied to each row vector ai of matrix A is computed as follows:

softmax(ai) =

(
eai1∑n
j=1 e

aij
,

eai2∑n
j=1 e

aij
, . . . ,

eain∑n
j=1 e

aij

)
.

For matrices A and B, the condition

softmax(A) = softmax


a1
a2
...

am

 = softmax(B) = softmax


b1

b2

...
bm

 ,

which means that(
eai1∑n
j=1 e

aij
,

eai2∑n
j=1 e

aij
, . . . ,

eain∑n
j=1 e

aij

)
=

(
ebi1∑n
j=1 e

bij
,

ebi2∑n
j=1 e

bij
, . . . ,

ebin∑n
j=1 e

bij

)
.

This indicates that
aij − aik = bij − bik,

further
aij − bij = aik − bik

Hence, we have concluded that:

(A−B) =


α1

α2

...
αm

1⊤
n .

Theorem 4. Given identical inputs and outputs, the parameter matrix of a single decoder-layer is
uniquely determined.

Proof. Recall that the output of a single decoder-layer is the concatenation of a residual MLP f and
a residual self-attention hA, where

f(X) = [σ(hnorm(X)WG)⊙ (hnorm(X)Wup)]Wdown +X, (1)

σ(X) =


x1,1

1+e−x1,1

x1,2

1+e−x1,2
· · · x1,d

1+e−x1,d
x2,1

1+e−x2,1

x2,2

1+e−x2,2
· · · x2,d

1+e−x2,d

...
...

...
...

xn,1

1+e−xn,1

xn,2

1+e−xn,2
· · · xn,d

1+e−xn,d

 (2)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

hnorm(X) =



x1√
1
d

∑d
j=1 x2

1j+ϵ
x2√

1
d

∑d
j=1 x2

2j+ϵ

...
xn√

1
d

∑d
j=1 x2

nj+ϵ

⊙ γ (3)

and

hA(X) = softmax

(
hnorm(X)RθW̃QW̃

⊤
KR⊤

θ h
⊤
norm(X)√

dK

)
hnorm(X)W̃V W̃O +X, (4)

where X ∈ Rn×d;WG and Wup ∈ Rd×g;Wdown ∈ Rg×d; γ ∈ R1×d;WQ,WK ,WV and WO ∈
Rd×d,

Rθ =



cos(mθ1) − sin(mθ1) 0 · · · 0 0
sin(mθ1) cos(mθ1) 0 · · · 0 0

0 0 cos(mθ2) − sin(mθ2) · · · 0 0
0 0 sin(mθ2) cos(mθ2) · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · cos
(
mθd/2

)
− sin

(
mθd/2

)
0 0 0 0 · · · sin

(
mθd/2

)
cos

(
mθd/2

)


.

By Lemma 2, we have shown that the function f is bijective for non-parallel vectors. Assume
that the input vectors cannot be paralleled. This indicates that for any matrix Y ∈ Rn×d, there
exists a unique Z ∈ Rn×d such that f(Z) = Y . Next, we are going to show that for a given
Z ∈ Rn×d and a given X ∈ Rn×d, there exists a unique set of matrix (W̃Q, W̃K , W̃V ) satisfying
rank(W̃Q −WQ) = s≪ d, rank(W̃K −WK) = s≪ d and rank(W̃V −WV ) = s≪ d such that

hA(X; W̃Q, W̃K , W̃V ) = Z.

We prove it by contradiction. We now assume that there exists a set of matrix

(ŴQ, ŴK , ŴV ) ̸= (W̃Q, W̃K , W̃V ).

satisfying rank(ŴQ −WQ) = s≪ d, rank(ŴK −WK) = s≪ d and rank(ŴV −WV ) = s≪ d
such that

hA(X; ŴQ, ŴK , ŴV )) = Z.

This indicates that

softmax

(
hnorm(X)RθW̃QW̃

⊤
KR⊤

θ h
⊤
norm(X)√

dK

)
hnorm(X)W̃V WO

− softmax

(
hnorm(X)RθŴQŴ

⊤
KR⊤

θ h
⊤
norm(X)√

dK

)
hnorm(X)ŴV WO = 0n×d.

Since we assume that the matrix WO is full-rank, we must have

softmax

(
hnorm(X)RθW̃QW̃

⊤
KR⊤

θ h
⊤
norm(X)√

dK

)
hnorm(X)W̃V

− softmax

(
hnorm(X)RθŴQŴ

⊤
KR⊤

θ h
⊤
norm(X)√

dK

)
hnorm(X)ŴV = 0n×d. (5)

For simplicity of notation, we define

Ã(X) = softmax

(
hnorm(X)RθW̃QW̃

⊤
KR⊤

θ h
⊤
norm(X)√

dK

)
hnorm(X)

and

Â(X) = softmax

(
hnorm(X)RθŴQŴ

⊤
KR⊤

θ h
⊤
norm(X)√

dK

)
hnorm(X).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

We note here that Ã(X) and Â(X) are both n × n matrices, where n denotes the number of input
tokens. This further indicates that

Ã(X)W̃V − Â(X)ŴV = 0n×d.

Consider the case where the input vector x ∈R1×d corresponds to a single token, and assume that

rank (x1, · · · , xd) = d.

This implies that

hnorm(x1), · · · , hnorm(xd) = ω(x1)x1 ⊙ γ, · · · , ω(xd)xd ⊙ γ,

which ω(xi) =
1√

1
d

∑d
j=1 x2

ij+ϵ
. By the Lemma 1, this further indicates that

rank(hnorm(x1), · · · , hnorm(xd)) = rank (x1, · · · , xd) = d,

softmax

(
hnorm(x)RθŴQŴ

⊤
KR⊤

θ h
⊤
norm(x)√

dK

)
= 1.

Then we have
Ã(x) = Â(x) = hnorm(x)

and
(hnorm(x1), · · · , hnorm(xd)) (W̃V − ŴV ) = 0d.

This shows that
W̃V = ŴV

Now, redefine our assumption that there exists a set of the matrix such that

(ŴQ, ŴK) ̸= (W̃Q, W̃K).

satisfying rank(ŴQ −WQ) = s≪ d and rank(ŴK −WK) = s≪ d such that

hA(X; ŴQ, ŴK , W̃V ) = Z.

We prove it by contradiction. Assume that X is a full rank matrix and xi cannot lie on the same
hyperspace.By using Equation 5,the equation can be transformed into

softmax

(
hnorm(X)RθW̃QW̃

⊤
KR⊤

θ h
⊤
norm(X)√

dK

)

− softmax

(
hnorm(X)RθŴQŴ

⊤
KR⊤

θ h
⊤
norm(X)√

dK

)
= 0n×d.

By Lemma 3, this indicates that

hnorm(X)Rθ

(
W̃QW̃

⊤
K − ŴQŴ

⊤
K

)
R⊤

θ h
⊤
norm(X) =


α1

α2

...
αn

 (1, · · · , 1)n,

For simplicity, define H(X) = hnorm(X)Rθ. The equation can be equivalently transformed into

H(X)µν⊤H⊤(X) = α1⊤
n .

where

α =


α1

α2

...
αn

 and 1n =


1
1
...
1

 .

Additionally,for Rθ is full rank matrix and Lemma 1,

rank(H(X)) = rank(X) = d.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

This further implies two cases:
Case 1: α = 0n

H(X)µν⊤H⊤(X) = 0n×n.

Since H(X) is a full-rank matrix, we must have that

W̃QW̃
⊤
K − ŴQŴ

⊤
K = 0d×d,

which means that
W̃QW̃

⊤
K = ŴQŴ

⊤
K

Case 2:α ̸= 0n

Suppose that X is full rank, we must have rank(W̃QW̃
⊤
K − ŴQŴ

⊤
K ) = 1. This indicates that

W̃QW̃
⊤
K − ŴQŴ

⊤
K = µν⊤,

which

µ =


µ1

µ2

...
µn

 and ν =


ν1
ν2
...
νn

 .

We can get
H(X)µν⊤(H(x1)

⊤, · · · ,H(xn)
⊤) = α1⊤

n

and
H(X)µ =

1

β
α and ν⊤(H(x1)

⊤, · · · ,H(xn)
⊤) = β1⊤

n ,

which indicates that

hnorm(x1)Rθν = hnorm(x2)Rθν = · · · = hnorm(xn)Rθν = β.

This indicates that 

x1 =
β
√

1
d

∑d
j=1 x2

1j+ϵ

γ (Rθν)
−1

x2 =
β
√

1
d

∑d
j=1 x2

2j+ϵ

γ (Rθν)
−1

...

xn =
β
√

1
d

∑d
j=1 x2

nj+ϵ

γ (Rθν)
−1

Suppose that (x1, · · · , xd)spans an independent linear space,we must have that

xd+i = c(d+i)1x1 + · · ·+ c(d+i)dxd i ∈ (1, · · · , n− d),

which is contradictory. Thus, we conclude that

α = 0n,

which indicates that
W̃QW̃

⊤
K = ŴQŴ

⊤
K

B EXPERIMENTS

B.1 MODEL DETAILS

We selected several base models from the LLaMA and Mistral families. The models included differ-
ent sizes: 7B, 13B, and 70B for LLaMA 2, 8B and 70B for LLaMA 3, and Mistral 7B. Each of these
models was used as a base for LoRA fine-tuning. The rank of LoRA fine-tuning ranged from 8 to
256, with common ranks being 8, 16, 128, and 256. The fine-tuning domains encompassed finance,
legal, and medical fields.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B.2 DATASETS

The dataset utilized in this experiment consists of 5,579 words, all selected from the vocabularies
of various models. Each word can be recognized as a complete token by the model’s tokenizer
and is subsequently transformed into a vector representation with dimensionality d_model through
the model’s embedding layer. The selection of these words ensures their frequent appearance in
the respective vocabularies, and each word’s embedding can be used for further model training and
evaluation.

The table below outlines the average, minimum, and maximum word lengths for each model:

Model Average Minimum Maximum
LLaMA2 5.8 1 15
LLaMA3 5.5 1 36
Mistral 6.1 1 14

Table 2: Word lengths for different models

B.3 EXPERIMENT DETAILS

We reconstruct MLP inputs using gradient descent with the Adam optimizer (initial learning rate of
1.5e-3), following a process of 700 iterations in StepLR scheduler with a step size of 1 with a gamma
of 0.9999 for gradual learning rate decay, balancing rapid convergence and fine-tuning; furthermore,
to address incorrect values in reverse-engineered MLP inputs that may inflate rank estimates during
SVD of LoRA fine-tuned outputs, we conduct 50 iterations of stochastic sampling (each generating
520 outputs) and use the minimum rank from these iterations to improve the robustness of the final
rank estimation by minimizing the effect of outliers.

17


	Introduction
	Related Works
	Preliminaries
	Decoder-only Transformer Architecture
	Obfuscation
	Problem Formulation

	Methodology
	Extraction of LoRA Rank Information
	Equivalent Intermediate Reconstruction
	Rank Extraction

	Experiments
	Experimental Setup
	Main Results
	Discussion

	Conclusion
	Formulation Detail
	Experiments
	Model Details
	Datasets
	Experiment Details


