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ABSTRACT

As large language models (LLMs) continue to advance, their deployment often
involves fine-tuning to enhance performance on specific downstream tasks. How-
ever, this customization is sometimes accompanied by misleading claims about
the origins, raising significant concerns about transparency and trust within the
open-source community. Existing model verification techniques typically assess
functional, representational, and weight similarities. However, these approaches
often struggle against obfuscation techniques, such as permutations and scaling
transformations, that obscure a model’s lineage. To address this limitation, we
propose a novel detection method that rigorously determines whether a model has
been fine-tuned from a specified base model. This method includes the ability to
extract the LoRA rank utilized during the fine-tuning process, providing a more
robust verification framework. This framework is the first to provide a formal-
ized approach specifically aimed at pinpointing the sources of model fine-tuning.
We empirically validated our method on twenty-nine diverse open-source models
under conditions that simulate real-world obfuscation scenarios. We empirically
analyze the effectiveness of our framework and finally, discuss its limitations. The
results demonstrate the effectiveness of our approach and indicate its potential to
establish new benchmarks for model verification.

1 INTRODUCTION

Recently, as large language models (LLMs) continue to advance, increasingly powerful models are
rapidly emerging, demonstrating exceptional performance across a wide range of tasks. Users fre-
quently fine-tune these models to enhance their performance for specific applications. However,
certain model providers have engaged in deceptive practices, exaggerating their technological capa-
bilities for unjust gain. For example, the Reflection-70B, marketed by HyperWrite as the worlds
leading open-source model, was in fact fine-tuned on Llama3-70B-instruct, not on Llama3.1-70B
as originally claimed, as illustrated in Figure 1. Such false claims have raised significant concerns
regarding the potential misuse of models and the spread of misleading information (Pan et al., 2023).

Current detection methods mainly evaluate functional, representation and weight similarity, as well
as training data properties and program similarity (Klabunde et al., 2023b). However, the criteria
used in these methods lack the necessary rigor and formalization, leading to ambiguity and incon-
sistency in determining whether a model is a fine-tuned derivative of a specific base model. Among
these techniques, weight similarity is considered the most effective indicator to verify the relation-
ship between models. However, when the model undergoes obfuscation techniques such as permu-
tation or scaling transformations (Zhou et al., 2023; Lee et al., 2018), its reliability is compromised.
This shortcoming highlights the urgent need for more robust and systematic detection frameworks
that can reliably identify fine-tuned models even when intentional obfuscation is involved.

To address this challenge, our study introduces a novel detection method that can rigorously deter-
mine whether a model has been fine-tuned from a specified base model. Our approach is the first
formal framework designed to address the complexity of model fine-tuning for detection, marking a
significant advance over existing techniques. Crucially, the method remains valid regardless of the
permutations used, enabling accurate determination of the basis model for any derivative. Through
this research, we aim to establish new standards for model verification in the open-source community
and improve the transparency and trustworthiness of the sources of AI models.
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(a) w/o Obfuscation

(c) with Obfuscation

(b) Reflection-70B vs. Llama3-70B-Instruct w/o Obfuscation

(d) Reflection-70B vs. Llama3-70B-Instruct with Obfuscation

Figure 1: The detection of Reflection-70B with (w/o) obfuscation. (a) and (c) show the distinct peak
in singular value differences near the rank, both without and with obfuscation. (b) and (d) depict
parameter similarities across various modules when compared to Llama3-70B-Instruct, without and
with obfuscation, respectively.

To empirically validate the efficacy of our detection method, we conducted tests on a diverse set
of twenty-nine open-source models. Recognizing the presence of rotational transformations, we
treated the model parameters as inherently unknowable, approaching each model as a gray box
where only the inputs and outputs of each layer are accessible. This perspective ensures that our
testing conditions reflect practical limitations typically encountered in real-world scenarios. Under
these constraints, our results demonstrate that our algorithm robustly identifies fine-tuning across all
tested models, confirming its broad applicability and effectiveness.

2 RELATED WORKS

Parameter-Efficient Fine-Tuning. PEFT has emerged as a crucial strategy for optimizing LLMs
for specific tasks while reducing resource consumption. Techniques such as Low-Rank Adaptation
(LoRA) (Hu et al., 2021; Dettmers et al., 2024), Adapter Layers (Karimi Mahabadi et al., 2021),
and Prompt Tuning (Jia et al., 2022) achieve performance improvements by modifying only a small
subset of parameters, thus capturing task-specific information while retaining the original model’s
foundational knowledge. However, the increasing reliance on these methods raises concerns about
transparency and traceability, highlighting the need for robust verification techniques to ensure the
integrity and reliability of fine-tuned models.

Obfuscation Techniques. To bolster model privacy and hinder unauthorized access, techniques
such as permutation, scaling, and noise addition are employed Elhage et al. (2021). These meth-
ods obscure direct parameter comparisons, complicating the identification of derived models. For
example, permutation rearranges parameters, scaling alters their magnitudes, and noise addition
introduces random variations, all of which mask the model’s characteristics. These obfuscation
strategies protect intellectual property and sensitive data from unauthorized access and reverse engi-
neering (Yousefi et al., 2023), while also preventing misuse.

Detection Methods. Recent researches for identifying model modifications focus on various similar-
ities, including functional, representational, weight, training data, and procedural aspects (Klabunde
et al., 2023a). Functional and representational similarities compare model outputs and internal ac-
tivations, respectively, but often struggle against fine-tuning variations and obfuscation techniques
like permutations and noise addition (Ethayarajh, 2019; Wu et al., 2020; Kornblith et al., 2019).
Weight similarity can effectively detect model lineage but is compromised by permutation-based
obfuscation (Wang et al., 2022; Elhage et al., 2021). Techniques examining training data and proce-
dural similarities, such as influence functions, can illuminate fine-tuning practices but often require
extensive datasets (Grosse et al., 2023; Shah et al., 2023). Additionally, procedural similarity offers
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insights into training methods but is limited by the proprietary nature of training pipelines (Bider-
man et al., 2023; Zhao et al., 2023). Overall, recent approaches highlight the challenges in detecting
model modifications amid sophisticated obfuscation tactics.

3 PRELIMINARIES

3.1 DECODER-ONLY TRANSFORMER ARCHITECTURE

Decoder Layer 2

Imput Embedding

Normalize

Linear

Q K V
Self-Attention

⊕
Linear

Feed Forward
⊕

Decoder Layer N

Softmax

Linear

(a) Decoder-only Model Architecture (b) 

Figure 2: Decoder-
only Architecture.

A single decoder-layer is comprised of multi-head attention followed by a
feed-forward network, shown as Figure 2. It takes as input a sequence Xi and
the output is likewise a sequence of vectors Zi. The Self-Attention, referred
to as hi, and then transformed by the feed-forward network fi, resulting in
the final output as:

Zi = fi ◦ hi(Xi)

In Self-Attention, each attention head results in WQ, WK , WV and WO as
the query, key, value, and output matrices respectively, which apply a linear
transformation to each x ∈ X . Rθ represents RoPE, and the output equation
becomes Yi as follows:

Yi = softmax
(
hnorm(Xi)WQW

⊤
Kh⊤

norm(Xi)√
dK

)
hnorm(Xi)WV WO +Xi

Considering feed forward network and the residual connection, the following
set of equations characterizes the function of a single decoder-layer.σ denotes an activation function
(e.g., GeLU or SiLU).

Zi = [σ(hnorm(Yi)WG)⊙ (hnorm(Yi)Wup)]Wdown + Yi,

3.2 OBFUSCATION

Obfuscation in neural networks refers to the deliberate manipulation of parameters or structures to
obscure their original form while retaining functional output. In the context of models, obfuscation
techniques such as rearranging parameter matrices in attention and MLP modules are employed to
complicate unauthorized access, prevent direct comparisons, and protect model privacy. Despite
the internal changes, these techniques ensure that the models functional behavior remains intact,
preserving performance while safeguarding intellectual property.

Significant studies, such as those by Maron et al. (2020) and Zaheer et al. (2017), have explored
obfuscation’s effects in maintaining consistent outputs across different configurations. These works
highlight how obfuscation stabilizes model performance and hinders reverse engineering efforts.

Mathematically, given a set S = {s1, s2, . . . , sn}, obfuscation is defined through transformations
that render the underlying structure opaque. When applied to a weight matrix W ∈ Rm×n, trans-
formation matrices P ∈ {0, 1}n×n reorder elements, turning W into WP . These transformations
complicate direct analysis without affecting the models output.

In Transformer architectures, the MLP and attention layers, denoted by F and H , undergo obfusca-
tion through transformations Π1 and Π2, defined as follows:

Fobf ◦Hobf(X) = F ◦H(X),

where Fobf = Π1(F ) and Hobf = Π2(H). This approach ensures that internal obfuscation does not
affect the overall output, maintaining the model’s integrity and safeguarding its internal structure.

3.3 PROBLEM FORMULATION

This research aims to determine whether the candidate model Mc has undergone fine-tuning in its
self-attention modules, excluding MLP modules, from the base model Mb using Low-Rank Adap-
tation (LoRA), followed by layer-level obfuscation. We consider both models as white boxes, but
the obfuscations in Mc complicate comparisons with Mb due to potential parameter transformations
that may obscure the structural relationships between their parameter matrices.
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Let M∗
c represent the ideally fine-tuned model derived from Mb using Low-Rank Adaptation (LoRA)

without any obfuscation. The candidate model Mc is then generated from M∗
c by implementing

obfuscations to its layers. The challenge posed by this scenario is encapsulated by the discrepancy
in ranks of the parameter differences, expressed as:

rank(W ∗
c −Wb) = s but rank(Wc −Wb)≫ s,

Here, W represents the matrices of fine-tuned module parameters, W ∗
c denotes the ideally fine-tuned

matrices without obfuscations, and Wb represents the parameter matrices of the base model.

The primary challenge this research addresses is the determination of the original, unpermuted pa-
rameter matrix W ∗

c given the observed permuted matrix Wc. Our primary objective is to develop
methodologies by which the structure of W ∗

c can be accurately inferred from Wc without prior
knowledge of the specific obfuscations applied.

4 METHODOLOGY

4.1 EXTRACTION OF LORA RANK INFORMATION

In this section, we examine the extraction of low-rank information from the intermediate states,
specifically the value and output projection matrices WV and WO in Transformer models. The
intermediate state between the self-attention mechanism and the MLP layer is expressed as follows:

Yi = softmax
(
hnorm(Xi)RθWQW

⊤
KR⊤

θ h
⊤
norm(Xi)√

dK

)
hnorm(Xi)WV WO +Xi

where hnorm(Xi) denotes the normalized input, WQ,WK ,WV and WO are the query, key, value,
and output projection matrices, respectively, and Rθis a Rotational Position Encoding Matrix that
incorporates positional information into the token embeddings. According to Therome 4, these
parameter matrices are uniquely determined by their corresponding inputs-output pairs.

To facilitate the analysis and simplify the interpretation of the intermediate state, we focus on cases
where the embedded tokens reduce to a one-dimensional tensor. Specifically, let the input tensor
be x ∈ R1×d. Under this condition, the intermediate state simplifies as:

y = hnorm(x)WV WO + x

Proof. Let x ∈ R1×d. Consequently, the normalized representationhnorm(x) remains within R1×d,
thus preserving its one-dimensional nature. This dimensionality reduction simplifies the expression
within the softmax argument. Specifically, the term:

hnorm(x)RθWQW
⊤
KR⊤

θ h
⊤
norm(x)√

dK

collapses to a scalara constantdue to the operations involving one-dimensional vectors and matrices.
When the softmax function is applied to this scalar, it simplifies to 1, given that the softmax of a
scalar input reduces to a normalized value of 1:

softmax
(
hnorm(x)RθWQW

⊤
KR⊤

θ h
⊤
norm(x)√

dK

)
= 1

Thus, the intermediate state can be represented without the softmax operation, yielding:

y = hnorm(x)WV WO + x

Let y and ỹ∗ denote the intermediate states of Mb and M∗
c for the same input tensor x. This relation-

ship can be expressed as:

y − ỹ∗ = hnorm(x)
(
WV WO − W̃ ∗

V W̃
∗
O

)
.

We can simplify this to:
y − ỹ∗ = hnorm(x)Wlow,

4
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where Wlow = WV WO − W̃ ∗
V W̃

∗
O represents the difference reflecting the low-rank component.

Assuming the input space x spans a set of linearly independent vectors that form a full-rank matrix
X , and based on Lemma 1, we have rank(hnorm(X)) = rank(X). Thus,

Y = hnorm(X)Wlow.

We use Singular Value Decomposition (SVD) to extract and characterize the low-rank information
from the matrix Y , highlighting the differences between the base and fine-tuned models.

For empirical validation, we created a dataset using the Natural Language Toolkit (NLTK). A vocab-
ulary of words was processed through the model’s tokenizer and embedding layers, yielding 5,579
one-dimensional tensors. This dataset serves as the foundation for our subsequent analysis.

4.2 EQUIVALENT INTERMEDIATE RECONSTRUCTION

In this section, we explore the reconstruction of intermediate states from the output and the MLP
module of base model and address how to resolve obfuscations involved in these processes. The
relationship between single decoder-layer of Mc and M∗

c can be formalized as:

fc ◦ hc(x) = f∗
c ◦ h∗

c(x) and fc = Π2(f
∗
c ), hc = Π1(h

∗
c),

where Π1 and Π2 are obfuscation operations applied to the MLP and attention parameters, respec-
tively. Given that f∗

c = fb, the equation simplifies to:

zc = fc ◦ hc(x) = fb ◦ h∗
c(x),

which implies that:
h∗
c(x) = f−1

b (zc).

Consider the equation for z as follows:

z = [σ(hnorm(y)WG)⊙ (hnorm(y)Wup)]Wdown + y.

This equation describes a non-linear transformation involving both element-wise operations and
matrix multiplications, rendering the inverse mapping from the output back to the input analytically
intractable. Given the nonlinearity and complexity of this transformation, directly inferring the
intermediate state y from the observed output z poses significant challenges. To tackle this, we adopt
an iterative optimization strategy using gradient descent to approximate the original intermediate
state y that likely produced the observed output. The goal is to minimize the discrepancy between
the MLP output and the actual observed output by adjusting y. The iterative update formula is
expressed as:

ym+1 = ym − α∇∥f(ym)− zc∥2

where zc denotes the layer output of Mc, ym denotes the estimated intermediate state at iteration m,
α is the learning rate, and∇∥f(ym)− zc∥2 represents the gradient of the loss function with respect
to ym. This loss function quantifies the squared error between the MLP output f(ym) and the
target output zc. By iteratively updating ym, the gradient descent algorithm aims to converge on an
intermediate state y∗ that, when processed through the MLP, closely replicates the observed output
zc. This reconstruction approach facilitates the approximation of hidden intermediate states from the
MLP outputs, providing a mechanism to indirectly assess and compare the internal representations
across different models, such as the base model Mb and the candidate model Mc.

4.3 RANK EXTRACTION

While the reconstruction process can confirm the authenticity of a base model, additional analysis
is required to ascertain the peft-tuning rank during training. We approximate this rank using the
reconstructed intermediates, as outlined in Algorithm 1. Here, h represents the dataset size, and n is
chosen marginally larger than the typical maximum rank used in LoRA fine-tuning.

Rationale As detailed in Appendix A, the output function of a single decoder layer is bijective with
probability 1. However, certain outputs that are nearly identical may correspond to intermediates that
are not sufficiently similar. This poses a significant challenge in identifying which intermediates are
adequately close to the true intermediate. To address this, we implement a random sampling algo-
rithm based on the hypothesis that if outputs are nearly identical, their corresponding intermediates

5
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Algorithm 1 Random Rank Extraction
Require: Sufficiently close intermediate in the reconstructed intermediate Y

1: Initialize n to a value less than h
2: Set rankmin to the dimension of the hidden state
3: Initialize the cycle times t
4: for i = 1 to t do
5: List[num1, num2, · · · , numn]← RandChose(n, h) ▷ Choose n random indices from h
6: Yi ← Compose(Y, Yb, List) ▷ Compose the matrix from the index list
7: λ1 ≥ λ2 ≥ · · · ≥ λn ← SingularValues(Yi)
8: rank ← argmaxi(log ∥λi∥ − log ∥λi+1∥)
9: rankmin ← min(rankmin, rank) ▷ Update with the minimum rank

10: end for
11: return rankmin

are likely similar. Assuming sufficient iterations, this method is expected to reliably approximate
the true rank. The probability P of achieving the true rank can be expressed as follows:

P = lim
n→∞

1− (1− ps)
n = 1,

Here, n represents the number of cycles, and ps denotes the probability that all selected intermediates
are adequately close to the true intermediate. Details are provided in Appendix B.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Models and Datasets. We consider twenty-nine open-source, LoRA-fine-tuned models with vari-
ous architectures as target models. Specifically, we select the series of LLaMA2 (7B, 13B, 70B)
Touvron et al. (2023), LLaMA3 (8B, 70B), and Mistral (7B,13B) Jiang et al. (2023), as base mod-
els. We constructed a 5k dataset from the Natural Language Toolkit (NLTK) Loper & Bird (2002),
ensuring each input was encoded as a single token to maintain a consistent attention score during
the self-attention module.

Rank Extraction Method. We extract the LoRA rank by analyzing the differences in intermediate
representations between the target model and its base model. Then, we compute the dimensionality
of this subspace with SVD(Singular Value Decomposition). The rank is determined by a sharp drop
(Figure 3) in singular values, seen as a peak (Figure 4) in the differences between consecutive values.

Implementation Details. To reconstruct the inputs for the MLP, we utilized gradient descent with
the Adam optimizer Kingma & Ba (2014), initiating the process with a learning rate of 1.5e-3. We
incorporated a StepLR scheduler with a step size of 1 to periodically adjust the learning rate by a
factor of 0.9999, thus finely tuning the learning rate reduction to balance rapid convergence with
meticulous adjustment of the model parameters. Furthermore, to address potential inaccuracies in
reverse-engineered MLP inputs, we conducted 50 iterations of stochastic sampling, each consisting
of 520 output evaluations. The minimum rank determined from these iterations forms our final
estimation, enhancing the overall precision by reducing the influence of outlier data.

5.2 MAIN RESULTS

In this subsection, We apply the rank extraction algorithm to the previously considered models,
demonstrating its effectiveness in finding the rank of LoRA tuning.

Effectiveness on Models. We implemented rank extraction across all layers for each model. To
determine the most representative rank, we systematically selected the smallest value from the ex-
tracted ranks for each layer. This methodology ensures that our final results reflect the minimal
dimension necessary to capture the underlying transformations within the model. The comprehen-
sive results of this analysis are summarized in Table 1. To visually represent the critical points in
our analysis, we include two figures, figure 3 illustrates the sharp drop in singular values observed
across different models and Figure 4 displays the peaks in the ratios of consecutive singular values.
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Table 1: Extraction results across a range of LoRA-fine-tuned models, applying LoRA to different
types of attention weights in models. (Given Rank | Extracted Rank)

Base Size Target LoRA Config Given rank Extracted Rank

Llama3.1 8B

Souththzz Wq ,Wv 8 8
Fdelduchetto Wq ,Wv 16 19

Anthonysicilia Wq ,Wv 32 35
Faridlazuarda Wq ,Wv 64 67

Dror44 Wq ,Wv 128 128

70B RikiyaT Wq ,Wv 16 16

Llama3
8B

SwastikM Wq ,Wv 8 8
Islam23 Wq ,Wk,Wv ,Wo 16 32

Namespace-Pt Wq ,Wk,Wv ,Wo 32 67
Nutanix Wq ,Wk,Wv 64 67

Decision-oaif Wq ,Wv 128 133

70B ScaleGenAI Wq ,Wv 8 8
Reflection-Llama Wq ,Wv 512 517

Llama2

7B

FinGPT-7B Wq ,Wk,Wv 8 8
Junhaos-nv Wq ,Wv 16 18

Renyiyu Wq ,Wv 32 34
Dtthanh Wq ,Wv 64 66

RuterNorway-7B Wq ,Wv 128 128

13B

FinGPT-13B Wq ,Wk,Wv 8 8
Lajonbot Wq ,Wv 16 16

RuterNorway-13B Wq ,Wv 32 32
Blackroot Wq ,Wv 64 64
Zayjean Wq ,Wv 256 256

70B Yukang Wq ,Wk,Wv ,Wo 8 16

Mistral 7B

CleverShovel Wq ,Wv 8 8
BlazeLlama Wq ,Wv 16 16
paragdakle Wq ,Wk,Wv ,Wo 32 64
Farmnetz Wq ,Wk,Wv ,Wo 64 128

paragdakle Wq ,Wk,Wv ,Wo 128 256

Difference on Layers. Our findings indicate a pronounced variance in the efficacy of the intermedi-
ate state reconstruction algorithm across different layers of the model. Notably, the performance in
the middle layers significantly surpasses that observed in the initial and final layers, as illustrated in
Figure 5. This observation underscores the importance of layer-specific dynamics in the effective-
ness of model reconstruction techniques.

5.3 DISCUSSION

0 200 400 600 800 1000
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Llama3-70B

Llama3-8B

Llama2-70B

Llama2-13B

Llama2-7B

Mistral-7B

Figure 6: Loss decline curve of each
base model.

Accelerate. To accelerate the progress so that the re-
construction process of the intermediate state to 700 it-
erations. This decision was based on utilizing the inter-
mediate state of the base model as the initial condition,
owing to its substantial similarity to the target model’s
intermediate. This similarity led to a small loss at the
outset of training, allowing for rapid convergence shown
in Figure 6. Following the initial phase of convergence
using a step-based learning rate adjustment (StepLR). To
adjust the learning rate more finely, after each iteration,
the learning rate becomes 0.9999 times the original. This
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Figure 3: SVD can capture the LoRA rank of the model when the quantity of output vectors exceeds
the LoRA rank. In this paper, we extract the LoRA rank of the models by accurately determining
the rank through the analysis of 520 output vectors.
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Figure 4: Our detection method determines the LoRA rank by pinpointing a sharp decline in singular
values, which manifests as a peak in the disparity between consecutive singular values. In the model,
this peak occurs at a position adjacent to the rank.

micro-adjustment aimed to refine the alignment between our reconstructed intermediate and the
target models true intermediate, enhancing the precision of our results.

Layer Selection. In the previous section, we found that the effectiveness of our algorithm for
computing the LoRA (Low-Rank Adaptation) rank is significantly greater in the intermediate layers
than in the front and rear layers. Experimental results indicate that rank estimates from intermediate
layers are closer to the true low-rank structure, highlighting their critical role in the model.

Choosing outputs from intermediate layers for approximation provides an effective means to evalu-
ate rank calculation performance in a label-free context. By quantifying the 2-norm of the interme-
diate layer outputs, we can assess the effectiveness of different layers without relying on explicitly
labeled data, thus identifying optimal layers for reconstruction.

Results as shown in Figure 7, demonstrate that the 2-norm of intermediate layer outputs is signif-
icantly higher than that of the front and rear layers, with rank estimates closely aligning with true
values. This may be due to the inherent characteristics of intermediate layers, which better convey
information when processing complex data.
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Figure 5: Rank Extraction Across Layers in Various Models. The extracted ranks for each layer
within different target models are categorized by their size, 7B Models(a), 8B Models(b), 13B Mod-
els(c), and 70B Models(d), illustrate the distribution of extracted ranks across the layers of respective
model architectures. Each point represents the extracted rank for a specific layer.
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Figure 7: Norm of Layer Outputs Across Model Architectures. This figure presents the L2 norms
of outputs across layers in models of varying sizes, 7B and 8B models(a), 13B models(b), and 70B
models(c).

6 CONCLUSION

This study addresses growing concerns within the open-source community about the misrepresen-
tation and misuse of fine-tuned models. Existing detection methods, while valuable, often struggle
against sophisticated obfuscation techniques like permutations and scaling transformations, compli-
cating the verification of modified models’ lineage and authenticity. We introduce a novel detection
methodology aimed at overcoming these challenges through a rigorous and systematic approach to
ascertain the provenance of fine-tuned models.

Our methodology establishes a new benchmark for transparency and reliability in managing open-
source models. By implementing this formalized framework, we enhance the trustworthiness of
the ecosystem, ensuring that the origins and modifications of models are accurately documented,
thereby promoting greater accountability in AI technology deployment.

Limitations. Despite its effectiveness, our method has limitations that restrict its broader applicabil-
ity. It is currently designed for scenarios where MLP layers remain unmodified during fine-tuning;
modifications to these layers, whether through parameter adjustments or architectural changes, re-
duce the effectiveness of our detection capabilities in complex model configurations. Future research
will aim to extend this technique to accommodate various fine-tuning strategies, particularly those
impacting MLP layers. Additionally, our method struggles with models exhibiting small output
norms, which hampers the efficiency of reverse engineering intermediate states due to weakened
gradient signals during reconstruction. This highlights the need for further refinement of the algo-
rithm to ensure robust performance across varying output magnitudes.
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A FORMULATION DETAIL

Lemma 1. For a given X ∈ Rn×d, consider the function hnorm : Rn×d → Rn×d defined as

hnorm(X) =



x1√
1
d

∑d
j=1 x2

1j+ϵ
x2√

1
d

∑d
j=1 x2

2j+ϵ

...
xn√

1
d

∑d
j=1 x2

nj+ϵ

⊙ γ

where ϵ is a small positive scalar and γ ∈ R1×d with γ ̸= 0⊤
d . hnorm is bijective for non-parallel

vectors.

Proof. We prove it by contradiction, we need to demonstrate that if X and Y are two matrices in
Rn×d such that xi ̸∥ yi, then hnorm(X) and hnorm(Y ) cannot be equal.

Injectivity: Assume by contradiction that hnorm(X) = hnorm(Y ) for some X,Y ∈ Rn×d such that
xi ̸∥ yi, by the definition of hnorm, we have:

x1√
1
d

∑d
j=1 x2

1j+ϵ
x2√

1
d

∑d
j=1 x2

2j+ϵ

...
xn√

1
d

∑d
j=1 x2

nj+ϵ

⊙ γ =



y1√
1
d

∑d
j=1 y2

1j+ϵ
y2√

1
d

∑d
j=1 y2

2j+ϵ

...
yn√

1
d

∑d
j=1 y2

nj+ϵ

⊙ γ,

which implies that xik√
1
d

∑d
j=1 x

2
ij + ϵ

− yik√
1
d

∑d
j=1 y

2
ij + ϵ

 γk = 0 for all i, k.

Further  xik√
1
d

∑d
j=1 x

2
ij + ϵ

− yik√
1
d

∑d
j=1 y

2
ij + ϵ

 = 0 for all i, k.
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This implies that xi and yi must be parallel, which is a contradiction. Thus, hnorm is injective for
non-parallel vectors.

Surjectivity: To prove surjectivity, we must show that for any non-zero line matrix Z ∈ Rn×d,
there exists an X ∈ Rn×d such that hnorm(X) = Z.

Consider the equation:

Z =



x1√
1
d

∑d
j=1 x2

1j+ϵ
x2√

1
d

∑d
j=1 x2

2j+ϵ

...
xn√

1
d

∑d
j=1 x2

nj+ϵ

⊙ γ.

We can solve for X as:

X =

Z ⊙ γ−1√
1
d

∑d
i=1 X

2
i + ϵ

 .

Given any Z, we can choose X such that the above equation holds. Since γ is non-zero and ϵ is a
small positive scalar, it is always sure to find such an X , proving that hnorm is surjective.

So hnorm is bijective for non-parallel vectors.

Lemma 2. For a given x ∈ Rn×d, function f : Rn×d → Rn×d defined as

f(x) = [σ(hnorm(x)WG)⊙ (hnorm(x)Wup)]Wdown + x,

where WG,Wup ∈ Rd×p and Wdown ∈ Rp×d are all full rank matrices and p > d. Additionally,
hnorm(X) is defined that

hnorm(X) =
X√

1
d

∑d
i=1 X

2
i + ϵ

⊙ γ.

The function f is injective for non-parallel vectors.

Proof. To prove that f(X) is injective for non-parallel vectors, we need to show that if f(X) =
f(Y ), then X = Y for any X,Y ∈ Rn×d such that Xi ̸∥ Yi.

Assume that f(X) = f(Y ). This implies:

[σ (hnorm(X)WG)⊙ (hnorm(X)Wup)]Wdown+X = [σ (hnorm(Y )WG)⊙ (hnorm(Y )Wup)]Wdown+Y.

By the Lemma 1, we can simplify the equation and rearranging it, we have:

[σ (XWG)⊙ (XWup)]Wdown − [σ (YWG)⊙ (YWup)]Wdown = Y −X.

Suppose that the token space C is countable, which means that f :Cn → Cn. Let

Mij = {(WG,Wup,Wdown)|[σ(CiWG)⊙ (CiWup)]Wdown = [σ(CjWG)⊙ (CjWup)]Wdown},
where

Ci ∈ C and Cj ∈ C,
then we can get that

dim(Mij) = 3dp− nd < 3dp,

which means that the Lebesgue measure ofMij

µL(Mij) = 0.

Suppose that
M =

∪
i,j

Mij ,

this indicates that
µL(M) = 0.

So we can show that
(WG,Wup,Wdown) ̸∈ M with probability 1.

Hence, we can say function f is injective for non-parallel vectors.
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Lemma 3. Let A and B be distinct matrices of the same dimension, i.e., A,B ∈ Rm×n. Then, we
have that

softmax(A) = softmax(B)

indicates that

(A−B) =


α1

α2

...
αm

1⊤
n ,

where 1n is the column vector of ones of length n and α1, . . . , αm are scalars.

Proof. Let matrices A and B be defined as follows:

A =


a1
a2
...

am

 =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
...

am1 am2 · · · amn

 , B =


b1

b2

...
bm

 =


b11 b12 · · · b1n
b21 b22 · · · b2n

...
...

...
...

bm1 bm2 · · · bmn

 .

The softmax function applied to each row vector ai of matrix A is computed as follows:

softmax(ai) =

(
eai1∑n
j=1 e

aij
,

eai2∑n
j=1 e

aij
, . . . ,

eain∑n
j=1 e

aij

)
.

For matrices A and B, the condition

softmax(A) = softmax


a1
a2
...

am

 = softmax(B) = softmax


b1

b2

...
bm

 ,

which means that(
eai1∑n
j=1 e

aij
,

eai2∑n
j=1 e

aij
, . . . ,

eain∑n
j=1 e

aij

)
=

(
ebi1∑n
j=1 e

bij
,

ebi2∑n
j=1 e

bij
, . . . ,

ebin∑n
j=1 e

bij

)
.

This indicates that
aij − aik = bij − bik,

further
aij − bij = aik − bik

Hence, we have concluded that:

(A−B) =


α1

α2

...
αm

1⊤
n .

Theorem 4. Given identical inputs and outputs, the parameter matrix of a single decoder-layer is
uniquely determined.

Proof. Recall that the output of a single decoder-layer is the concatenation of a residual MLP f and
a residual self-attention hA, where

f(X) = [σ(hnorm(X)WG)⊙ (hnorm(X)Wup)]Wdown +X, (1)

σ(X) =


x1,1

1+e−x1,1

x1,2

1+e−x1,2
· · · x1,d

1+e−x1,d
x2,1

1+e−x2,1

x2,2

1+e−x2,2
· · · x2,d

1+e−x2,d

...
...

...
...

xn,1

1+e−xn,1

xn,2

1+e−xn,2
· · · xn,d

1+e−xn,d

 (2)
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hnorm(X) =



x1√
1
d

∑d
j=1 x2

1j+ϵ
x2√

1
d

∑d
j=1 x2

2j+ϵ

...
xn√

1
d

∑d
j=1 x2

nj+ϵ

⊙ γ (3)

and

hA(X) = softmax

(
hnorm(X)RθW̃QW̃

⊤
KR⊤

θ h
⊤
norm(X)√

dK

)
hnorm(X)W̃V W̃O +X, (4)

where X ∈ Rn×d;WG and Wup ∈ Rd×g;Wdown ∈ Rg×d; γ ∈ R1×d;WQ,WK ,WV and WO ∈
Rd×d,

Rθ =



cos(mθ1) − sin(mθ1) 0 · · · 0 0
sin(mθ1) cos(mθ1) 0 · · · 0 0

0 0 cos(mθ2) − sin(mθ2) · · · 0 0
0 0 sin(mθ2) cos(mθ2) · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · cos
(
mθd/2

)
− sin

(
mθd/2

)
0 0 0 0 · · · sin

(
mθd/2

)
cos

(
mθd/2

)


.

By Lemma 2, we have shown that the function f is bijective for non-parallel vectors. Assume
that the input vectors cannot be paralleled. This indicates that for any matrix Y ∈ Rn×d, there
exists a unique Z ∈ Rn×d such that f(Z) = Y . Next, we are going to show that for a given
Z ∈ Rn×d and a given X ∈ Rn×d, there exists a unique set of matrix (W̃Q, W̃K , W̃V ) satisfying
rank(W̃Q −WQ) = s≪ d, rank(W̃K −WK) = s≪ d and rank(W̃V −WV ) = s≪ d such that

hA(X; W̃Q, W̃K , W̃V ) = Z.

We prove it by contradiction. We now assume that there exists a set of matrix

(ŴQ, ŴK , ŴV ) ̸= (W̃Q, W̃K , W̃V ).

satisfying rank(ŴQ −WQ) = s≪ d, rank(ŴK −WK) = s≪ d and rank(ŴV −WV ) = s≪ d
such that

hA(X; ŴQ, ŴK , ŴV )) = Z.

This indicates that

softmax

(
hnorm(X)RθW̃QW̃

⊤
KR⊤

θ h
⊤
norm(X)√

dK

)
hnorm(X)W̃V WO

− softmax

(
hnorm(X)RθŴQŴ

⊤
KR⊤

θ h
⊤
norm(X)√

dK

)
hnorm(X)ŴV WO = 0n×d.

Since we assume that the matrix WO is full-rank, we must have

softmax

(
hnorm(X)RθW̃QW̃

⊤
KR⊤

θ h
⊤
norm(X)√

dK

)
hnorm(X)W̃V

− softmax

(
hnorm(X)RθŴQŴ

⊤
KR⊤

θ h
⊤
norm(X)√

dK

)
hnorm(X)ŴV = 0n×d. (5)

For simplicity of notation, we define

Ã(X) = softmax

(
hnorm(X)RθW̃QW̃

⊤
KR⊤

θ h
⊤
norm(X)√

dK

)
hnorm(X)

and

Â(X) = softmax

(
hnorm(X)RθŴQŴ

⊤
KR⊤

θ h
⊤
norm(X)√

dK

)
hnorm(X).
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We note here that Ã(X) and Â(X) are both n × n matrices, where n denotes the number of input
tokens. This further indicates that

Ã(X)W̃V − Â(X)ŴV = 0n×d.

Consider the case where the input vector x ∈R1×d corresponds to a single token, and assume that

rank (x1, · · · , xd) = d.

This implies that

hnorm(x1), · · · , hnorm(xd) = ω(x1)x1 ⊙ γ, · · · , ω(xd)xd ⊙ γ,

which ω(xi) =
1√

1
d

∑d
j=1 x2

ij+ϵ
. By the Lemma 1, this further indicates that

rank(hnorm(x1), · · · , hnorm(xd)) = rank (x1, · · · , xd) = d,

softmax

(
hnorm(x)RθŴQŴ

⊤
KR⊤

θ h
⊤
norm(x)√

dK

)
= 1.

Then we have
Ã(x) = Â(x) = hnorm(x)

and
(hnorm(x1), · · · , hnorm(xd)) (W̃V − ŴV ) = 0d.

This shows that
W̃V = ŴV

Now, redefine our assumption that there exists a set of the matrix such that

(ŴQ, ŴK) ̸= (W̃Q, W̃K).

satisfying rank(ŴQ −WQ) = s≪ d and rank(ŴK −WK) = s≪ d such that

hA(X; ŴQ, ŴK , W̃V ) = Z.

We prove it by contradiction. Assume that X is a full rank matrix and xi cannot lie on the same
hyperspace.By using Equation 5,the equation can be transformed into

softmax

(
hnorm(X)RθW̃QW̃

⊤
KR⊤

θ h
⊤
norm(X)√

dK

)

− softmax

(
hnorm(X)RθŴQŴ

⊤
KR⊤

θ h
⊤
norm(X)√

dK

)
= 0n×d.

By Lemma 3, this indicates that

hnorm(X)Rθ

(
W̃QW̃

⊤
K − ŴQŴ

⊤
K

)
R⊤

θ h
⊤
norm(X) =


α1

α2

...
αn

 (1, · · · , 1)n,

For simplicity, define H(X) = hnorm(X)Rθ. The equation can be equivalently transformed into

H(X)µν⊤H⊤(X) = α1⊤
n .

where

α =


α1

α2

...
αn

 and 1n =


1
1
...
1

 .

Additionally,for Rθ is full rank matrix and Lemma 1,

rank(H(X)) = rank(X) = d.

15
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This further implies two cases:
Case 1: α = 0n

H(X)µν⊤H⊤(X) = 0n×n.

Since H(X) is a full-rank matrix, we must have that

W̃QW̃
⊤
K − ŴQŴ

⊤
K = 0d×d,

which means that
W̃QW̃

⊤
K = ŴQŴ

⊤
K

Case 2:α ̸= 0n

Suppose that X is full rank, we must have rank(W̃QW̃
⊤
K − ŴQŴ

⊤
K ) = 1. This indicates that

W̃QW̃
⊤
K − ŴQŴ

⊤
K = µν⊤,

which

µ =


µ1

µ2

...
µn

 and ν =


ν1
ν2
...
νn

 .

We can get
H(X)µν⊤(H(x1)

⊤, · · · ,H(xn)
⊤) = α1⊤

n

and
H(X)µ =

1

β
α and ν⊤(H(x1)

⊤, · · · ,H(xn)
⊤) = β1⊤

n ,

which indicates that

hnorm(x1)Rθν = hnorm(x2)Rθν = · · · = hnorm(xn)Rθν = β.

This indicates that 

x1 =
β
√

1
d

∑d
j=1 x2

1j+ϵ

γ (Rθν)
−1

x2 =
β
√

1
d

∑d
j=1 x2

2j+ϵ

γ (Rθν)
−1

...

xn =
β
√

1
d

∑d
j=1 x2

nj+ϵ

γ (Rθν)
−1

Suppose that (x1, · · · , xd)spans an independent linear space,we must have that

xd+i = c(d+i)1x1 + · · ·+ c(d+i)dxd i ∈ (1, · · · , n− d),

which is contradictory. Thus, we conclude that

α = 0n,

which indicates that
W̃QW̃

⊤
K = ŴQŴ

⊤
K

B EXPERIMENTS

B.1 MODEL DETAILS

We selected several base models from the LLaMA and Mistral families. The models included differ-
ent sizes: 7B, 13B, and 70B for LLaMA 2, 8B and 70B for LLaMA 3, and Mistral 7B. Each of these
models was used as a base for LoRA fine-tuning. The rank of LoRA fine-tuning ranged from 8 to
256, with common ranks being 8, 16, 128, and 256. The fine-tuning domains encompassed finance,
legal, and medical fields.
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B.2 DATASETS

The dataset utilized in this experiment consists of 5,579 words, all selected from the vocabularies
of various models. Each word can be recognized as a complete token by the model’s tokenizer
and is subsequently transformed into a vector representation with dimensionality d_model through
the model’s embedding layer. The selection of these words ensures their frequent appearance in
the respective vocabularies, and each word’s embedding can be used for further model training and
evaluation.

The table below outlines the average, minimum, and maximum word lengths for each model:

Model Average Minimum Maximum
LLaMA2 5.8 1 15
LLaMA3 5.5 1 36
Mistral 6.1 1 14

Table 2: Word lengths for different models

B.3 EXPERIMENT DETAILS

We reconstruct MLP inputs using gradient descent with the Adam optimizer (initial learning rate of
1.5e-3), following a process of 700 iterations in StepLR scheduler with a step size of 1 with a gamma
of 0.9999 for gradual learning rate decay, balancing rapid convergence and fine-tuning; furthermore,
to address incorrect values in reverse-engineered MLP inputs that may inflate rank estimates during
SVD of LoRA fine-tuned outputs, we conduct 50 iterations of stochastic sampling (each generating
520 outputs) and use the minimum rank from these iterations to improve the robustness of the final
rank estimation by minimizing the effect of outliers.
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