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ABSTRACT

Object detectors do not work well when domains largely differ between training
and testing data. To overcome this domain gap in object detection without requir-
ing expensive annotations, we consider two problem settings: semi-supervised do-
main generalizable object detection (SS-DGOD) and weakly-supervised DGOD
(WS-DGOD). In contrast to the conventional domain generalization for object
detection that requires labeled data from multiple domains, SS-DGOD and WS-
DGOD require labeled data only from one domain and unlabeled or weakly-
labeled data from multiple domains for training. In this paper, we show that ob-
ject detectors can be effectively trained on the two settings with the same Mean
Teacher learning framework, where a student network is trained with pseudo-
labels output from a teacher on the unlabeled or weakly-labeled data. We provide
novel interpretations of why the Mean Teacher learning framework works well on
the two settings in terms of the relationships between the generalization gap and
flat minima in parameter space. On the basis of the interpretations, we also show
that incorporating a simple regularization method into the Mean Teacher learning
framework leads to flatter minima. The experimental results demonstrate that the
regularization leads to flatter minima and boosts the performance of the detectors
trained with the Mean Teacher learning framework on the two settings.

1 INTRODUCTION

Object detection has been attracting much attention because it has practically useful applications
such as in autonomous driving. Object detectors have performed tremendously well on commonly
used benchmark datasets for object detection, such as MSCOCO (Lin et al., 2014) and PASCAL
VOC (Everingham et al., 2010). However, such performance significantly drops when they are
deployed on unseen domains, i.e., when the training and testing domains are different. For example,
Inoue et al. (Inoue et al., 2018) reported a performance drop caused by the difference in image styles,
and Li et al. (Li et al., 2022) showed one caused by the weather and time difference in the images
captured with car-mounted cameras.

To solve this problem, many researchers have been exploring unsupervised domain adaptive object
detection (UDA-OD) (Deng et al., 2021; Li et al., 2022; Chen et al., 2022). On UDA-OD, we train
object detectors using source domain data with ground-truth labels (bounding boxes and class labels)
and unlabeled target domain data to adapt the detectors to the target domain. However, in the real
world, target domain data cannot always be accessed in the training phase.

Domain generalizable object detection (DGOD) is another common problem setting for solving
the problem of the performance drop caused by the domain gaps (Lin et al., 2021; Zhang et al.,
2022a). On DGOD, we train object detectors using labeled data from multiple domains so that
the detectors work well on unseen domains. However, it is labor-intensive to collect these data for
object detection because both bounding boxes and class labels for all objects in the images must be
annotated. Although single-DGOD (Wu & Deng, 2022; Fan et al., 2023; Vidit et al., 2023; Wang
et al., 2021b; 2023a; Lee et al., 2024), on which we train object detectors to generalize unseen
domains using labeled data from one single domain, has been investigated, the performance gain is
still limited.
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In this paper, we tackle two tasks as more realistic settings: i) semi-supervised DGOD (SS-
DGOD) (Malakouti & Kovashka, 2023) and ii) weakly-supervised DGOD (WS-DGOD). The goal
of SS-DGOD is to generalize object detectors to unseen domains using labeled data only from one
single domain and unlabeled data from multiple domains. Note that the target domain data are not
included in the training data. On WS-DGOD, we use weakly labeled data from multiple domains
instead of the unlabeled data in SS-DGOD. “Weakly labeled” means that we have only image-level
labels that show the existence of each class in each training image and do not have bounding box
annotations. To the best of our knowledge, this is the first attempt to tackle WS-DGOD. We show
that object detectors can be effectively trained on the two settings with the same Mean Teacher
learning framework, where a student network is trained with pseudo-labels output from a teacher on
the unlabeled or weakly labeled data, and the teacher network is updated as the exponential moving
average (EMA) of the student.

Not only do we experimentally demonstrate the good performance of the Mean Teacher learning
framework, but also provide novel interpretations of why the Mean Teacher learning framework
works well on these two settings in terms of the relationship between generalization ability and
flat minima in parameter space. These interpretations are based on our findings that the two key
components of the Mean Teacher learning framework, i) EMA update and ii) learning from pseudo-
labels, lead to flat minima during the training. In the research area of domain generalization, it has
been shown both theoretically and empirically that neural networks with flatter minima in parameter
space have better generalization ability to unseen domains (Foret et al., 2021; Chaudhari et al., 2017;
Cha et al., 2021; Izmailov et al., 2018; Caldarola et al., 2022; Wang et al., 2023b; Kaddour et al.,
2022; Zhang et al., 2023).

On the basis of the interpretations, we also show that incorporating a simple regularization method
into the Mean Teacher learning framework leads to flatter minima. Specifically, because the teacher
and the student have similar loss values around the flat minima, we introduce an additional loss
term so that the output from the student network becomes similar to that from the teacher network.
The experimental results demonstrate that the detectors trained with the Mean Teacher learning
framework perform well for unseen test domains on the two settings. We show that the simple yet
effective regularization leads to flatter minima and boosts the performance of those detectors.

It is noteworthy that our aim is not to propose an entirely new method or surpass the state-of-the-art
methods. Instead, our contributions are summarized as follows:

• We show that object detectors can be effectively trained on the SS-DGOD and WS-DGOD
settings with the same Mean Teacher learning framework.

• We provide interpretations of why the detectors trained with the Mean teacher learning
framework achieve robustness to unseen test domains in terms of the flatness of minima in
parameter space, based on our novel finding that the Mean Teacher leads to flat minima.

• On the basis of the interpretations, we introduce a simple regularization method into the
Mean Teacher learning framework to achieve flatter minima.

• We are the first to tackle the WS-DGOD setting.

2 PROBLEM SETTINGS

We formally describe the two problem settings of SS-DGOD and WS-DGOD. Their goal is to obtain
object detectors that perform well on unseen target domain data Dt = {Xt}, where Xt is a set of
images from the target domain.

On SS-DGOD, we have labeled data from a source domainDs1 = {(Xs1 , Bs1 , Cs1)} and unlabeled
data from multiple source domains Dsi = {Xsi}

ND
i=2 in the training phase. Here, Xs1 = {xj

s1}
Ns1
j=1

is a set of Ns1 images from domain s1. Bs1 = {bjs1}
Ns1
j=1 and Cs1 = {cjs1}

Ns1
j=1 are the corresponding

bounding boxes and object-class labels, respectively. si is the i-th source domain, and ND is the
number of the source domains. We assume that the data distributions differ between the domains,
i.e., P (Xs1) ̸= P (Xs2) ̸= · · ·P (XsND

) ̸= P (Xt).

On WS-DGOD, we use labeled data from a source domain Ds1 = {(Xs1 , Bs1 , Cs1)} and weakly
labeled data from multiple domains Dsi = {(Xsi , Csi)}

ND
i=2 for training.
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Table 1: Formal comparisons of SS-DGOD, WS-
DGOD, and related problem settings. DGOD stands
for domain generalizable object detection, and SS-
DGOD and WS-DGOD are semi-supervised DGOD
and weakly-supervised DGOD, respectively. UDA-
OD is unsupervised domain adaptive object detec-
tion.

task train data test data

Single-DGOD Ds1
= {(Xs1

, Bs1
, Cs1

)} Dt = {Xt}

SS-DGOD Ds1 = {(Xs1 , Bs1 , Cs1 )}, Dt = {Xt}
Dsi

= {Xsi
}ND
i=2

WS-DGOD Ds1 = {(Xs1 , Bs1 , Cs1 )}, Dt = {Xt}
Dsi

= {(Xsi
, Csi

)}ND
i=2

DGOD Dsi
= {(Xsi

, Bsi
, Csi

)}ND
i=1 Dt = {Xt}

UDA-OD Ds1
= {(Xs1

, Bs1
, Cs1

)}, Dt = {Xt}Dt = {Xt}

WSDA-OD Ds1
= {(Xs1

, Bs1
, Cs1

)}, Dt = {Xt}Dt = {(Xt, Ct)}

Table 1 compares SS-DGOD and WS-
DGOD with related problem settings
(Single-DGOD, DGOD, and UDA-OD).
As discussed in Sec. 1, DGOD requires
labeled data from multiple domains
Dsi = {(Xsi , Bsi , Csi)}

ND
i=1, but those data

are sometimes hard to prepare due to the
high annotation cost. In contrast, SS-DGOD
(or WS-DGOD) requires labeled data from
one domain Ds1 = {(Xs1 , Bs1 , Cs1)} and
unlabeled data Dsi = {Xsi}

ND
i=2 (or weakly

labeled dataDsi = {(Xsi , Csi)}
ND
i=2), which

are easier to obtain. Therefore, SS-DGOD
and WS-DGOD are more practical settings
than DGOD. By using those data, we aim
to better generalize object detectors to the
unseen target domain data Dt = {Xt} than
on Single-DGOD. Although another type of
SS-DGOD, where a portion of the samples
are labeled in each source domain, can also
be defined, we will leave it as part of our
future work (see Appendix D.1).

Another related setting is weakly-supervised domain adaptive object detection (WSDA-OD), a.k.a.,
cross-domain weakly-supervised object detection (Inoue et al., 2018; Hou et al., 2021; Xu et al.,
2022; Tang et al., 2023), which requires weakly-labeled target data Dt = {(Xt, Ct)} for training.
Unlike on UDA-OD and WSDA-OD, we can train the detectors even when the unlabeled or weakly-
labeled target domain data (Dt = {Xt} or Dt = {(Xt, Ct)}) are not accessible.

3 RELATED WORK

3.1 DOMAIN GENERALIZATION FOR IMAGE CLASSIFICATION

Many methods have been proposed for domain generalization on image classification tasks as sum-
marized in recent survey papers (Zhou et al., 2022; Wang et al., 2022a). Among a variety of domain
generalization methods, finding flat minima is one of the most common approaches (Foret et al.,
2021; Chaudhari et al., 2017; Cha et al., 2021; Izmailov et al., 2018; Caldarola et al., 2022; Wang
et al., 2023b; Kaddour et al., 2022; Zhang et al., 2023). Those studies empirically and theoreti-
cally showed that finding flat minima in parameter space results in a better generalization ability.
Izmailov et al. (2018) and Cha et al. (2021) demonstrated that empirical risk minimization (ERM)
with stochastic gradient descent (SGD) converges to the vicinity of a flat minimum, and averaging
the parameter weights over a certain number of training steps/epochs results in reaching the flat
minimum. Inspired by these findings, we reveal that the Mean Teacher learning framework leads to
flat minima, and thus can obtain good generalization ability.

3.2 DOMAIN GENERALIZATION FOR OBJECT DETECTION

Domain generalization for object detection has not been widely explored, compared with image
classification. Lin et al. (2021) proposed a method for disentangling domain-specific and domain-
invariant features by adversarial learning on both image-level and instance-level features for DGOD.
Liu et al. (2020) investigated DGOD in underwater object detection and proposed DG-YOLO. For
Single-DGOD, Wang et al. (2021b) proposed a self-training method that uses the temporal consis-
tency of objects in videos. Wu & Deng (2022) proposed a method for disentangling domain-invariant
features by contrastive learning and self-distillation. Fan et al. (2023) proposed perturbing the chan-
nel statistics of feature maps, which can be interpreted as data augmentation of image styles to a
variety of domains. Wang et al. (2023a) proposed a disentangle method on frequency space for ob-
ject detection from unmanned aerial vehicles. Vidit et al. (2023) proposed an augmentation method
using a pre-trained vision-language model (CLIP) with textual prompts.

3
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Unlike the above methods, as discussed in Sects. 1 and 2, we tackle SS-DGOD (Semi-Supervised
Domain Generalization for Object Detection) and a new problem setting called WS-DGOD
(Weakly-Supervised Domain Generalization for Object Detection). The most closely related to our
work is Malakouti & Kovashka (2023)’s work. They tackled SS-DGOD and proposed a language-
guided alignment method. However, the limitation of their method is that it requires a backbone
network that was pre-trained on vision-and-language tasks. Our experiments show that the object
detectors trained with the Mean Teacher learning framework and our regularization outperform their
method when the same backbone is used.

3.3 SEMI-SUPERVISED DOMAIN GENERALIZATION

There are a few methods that use both labeled and unlabeled data for domain generalization (SSDG)
on image classification (Zhang et al., 2022b; Zhou et al., 2023b; Lin et al., 2024). Zhang et al.
(2022b) proposed an unsupervised pre-training method called DARLING, which performs con-
trastive learning on unlabeled images to obtain domain-irrelevant feature representation. Zhou et al.
(2023b) extended a semi-supervised learning method called FixMatch (Sohn et al., 2020) to SSDG.

In contrast to those studies, we tackle SSDG for object detection. We also tackle the “weakly-
labeled” setting (i.e., WS-DGOD), which has not been explored even for image classification.

3.4 MEAN TEACHER LEARNING FRAMEWORK

Mean Teacher learning framework was originally proposed for semi-supervised image classifica-
tion (Tarvainen & Valpola, 2017). Several studies have investigated the use of the Mean Teacher
learning framework for a variety of tasks such as domain generalization on image classifica-
tion (Yang et al., 2021), (in-domain) weakly-supervised object detection (Wang et al., 2022b), (in-
domain) semi-supervised object detection (Mi et al., 2022), UDA-OD (Deng et al., 2021; Li et al.,
2022; He et al., 2022; Deng et al., 2023; Kennerley et al., 2024), and UDA for semantic segmen-
taion (Araslanov & Roth, 2021; Wang et al., 2021a; Hoyer et al., 2022; Zhang et al., 2021). Lee et al.
(2023) provided a theoretical analysis of the Mean Teacher learning framework on masked image
modeling pretext tasks for semi-supervised image classification. We show that the Mean Teacher
learning framework also works well on different settings (SS-DGOD and WS-DGOD), provide their
interpretations, and introduce a simple regularization method to lead to flatter minima.

4 TRAINING METHOD

4.1 OVERVIEW AND KEY IDEA

dog

ℒ𝑠𝑢𝑝Detector

labeled data

unlabeled data

dog

dogTeacher

Student ℒ𝑢𝑛𝑠𝑢𝑝

weak aug.

strong aug.

EMA 

update

1st stage

2nd stage

post-process

Figure 1: Training framework.

On both SS-DGOD and WS-DGOD, our goal is to obtain ob-
ject detectors that work well on the unseen target domain data
Dt = {Xt}. Gulrajani & Lopez-Paz (2021) reported that if
carefully implemented, empirical risk minimization (i.e., the
image classifier simply trained with supervised learning on
multiple domains) outperformed state-of-the-art domain gen-
eralization methods on several benchmark datasets for image
classification. Following this important finding, we expect
similar behavior on object detection and aim to train an object
detector on multiple domains Dsi(i = 1, · · · , ND). However,
we have no ground-truth labels (or have only weak labels) for
Dsi(i = 2, · · · , ND) although ground-truth labels are avail-
able for Ds1 . Therefore, the question is how to train a detector
on those domains. Our solution is to use the Mean Teacher
learning framework for object detection (Li et al., 2022; Chen
et al., 2022) shown in Fig. 1, where we have two networks (teacher and student) with the same struc-
ture and train the student network using the pseudo-labels generated by the teacher network. Note
that this Mean Teacher learning framework can be applied to any object detector, but we hereafter
describe the loss functions of FasterRCNN (Ren et al., 2015) as an example for ease of explanation.
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4.2 PRE-TRAINING

If we start the Mean Teacher learning from randomly initialized parameters, the teacher network
cannot output reliable pseudo labels. Therefore, we first perform supervised learning with the la-
beled data of one source domain Ds1 = {(Xs1 , Bs1 , Cs1)}.

Lsup
s1 (θ) = Lcls

RPN(θ,Xs1 , Bs1 , Cs1) + L
reg
RPN(θ,Xs1 , Bs1 , Cs1)

+ Lcls
RoI(θ,Xs1 , Bs1 , Cs1) + L

reg
RoI(θ,Xs1 , Bs1 , Cs1),

(1)

where Lcls
RPN and Lreg

RPN are the classification and regression losses for region proposal networks
(RPN), respectively. Lcls

RoI and Lreg
RoI are those for RoIhead. We initialize both the teacher and

student networks with the parameters θ∗ = argminθ Lsup
s1 (θ) obtained from this pre-training.

4.3 MEAN TEACHER LEARNING

4.3.1 GENERATE PSEUDO-LABELS

Because we have no ground-truth labels (or have only weak labels) for the other source domains
Dsi(i = 2, · · · , ND), we generate pseudo labels using the teacher network. Specifically, we perform
weak data augmentation to the unlabeled (or weakly-labeled) image xj

si and input it into the teacher
network. We denote the output from the teacher as {(b̂jrsi , p̂

jr
si )}

NR
r=1, where b̂jrsi and p̂jrsi are the

predicted bounding box and class probabilities for the r-th region of interests (RoI) in the j-th
image, respectively, and NR is the number of output RoIs.

In the case of SS-DGOD, we simply perform post-processing fpost to (b̂jrsi , p̂
jr
si ) and obtain the

pseudo label (b̄jrsi , c̄
jr
si ) = fpost(b̂

jr
si , p̂

jr
si ). Post-processing fpost indicates a simple thresholding

function if we use “hard” pseudo labels like (Li et al., 2022) and indicates a sharpening function if
we use “soft” pseudo labels like (Chen et al., 2022).

In the case of WS-DGOD, we perform the refinement process of applying the weak labels to the
predicted class probabilities p̂jrsi immediately before post-processing fpost to obtain more accurate
pseudo labels as follows:

(b̄jrsi , c̄
jr
si ) = fpost(b̂

jr
si , p̂

jr
si ), p̂jrsi (k) =

{
p̂jrsi (k) if k ∈ cjsi
0 otherwise

(2)

where p̂jrsi (k) is the predicted class probability for the k-th class. Using the weak label cjsi , Eq. (2)
makes the predicted probability zero at each RoI if the k-th class does not exist in the j-th image.

4.3.2 UPDATE STUDENT

Now we have the pseudo labels B̄si = {b̄jsi}
Nsi
j=1 and C̄si = {c̄jsi}

Nsi
j=1 and train the student network

with them.

We perform strong data augmentations to the image xj
si and input it into the student network. In

domain s1, because the ground-truth labels are available, we update the student by backpropagating
loss Lsup

s1 in Eq. (1). In the other domains si(i = 2, · · · , ND), we calculate loss Lunsup
si using the

pseudo labels and backpropagate it to update the student. In summary, we update the parameters of
student θstudent with loss Lstudent as follows:

θstudent ← θstudent −∇θLstudent(θ), Lstudent(θ) = Lsup
s1 (θ) +

ND∑
i=2

Lunsup
si (θ) (3)

Lunsup
si (θ) = Lcls

RPN(θ,Xsi , B̄si , C̄si) + L
reg
RPN(θ,Xsi , B̄si , C̄si)

+ Lcls
RoI(θ,Xsi , B̄si , C̄si) + L

reg
RoI(θ,Xsi , B̄si , C̄si).

(4)

4.3.3 UPDATE TEACHER

Similar to previous studies (Chen et al., 2022; Li et al., 2022), we do not update the parame-
ters of the teacher θteacher by backpropagation to obtain stable pseudo labels. Instead, we up-
date them by the exponential moving average (EMA) of the parameters of the student network
θteacher ← αθteacher + (1− α)θstudent. Here, α is a hyperparameter to control the update speed.
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5 WHY DOES MEAN TEACHER BECOME ROBUST TO UNSEEN DOMAINS?

empirical risk

parameter θ

robust risk

𝛾

Figure 2: Empirical and robust
risks.

We provide novel interpretations of why the Mean Teacher
learning framework works well on SS-DGOD and WS-DGOD
settings in terms of the relationship between generalization
ability and flat minima in parameter space. We show that the
two key components of the Mean Teacher learning framework,
i) EMA update and ii) learning from pseudo labels, lead to flat
minima during the training.

5.1 DEFINITION

We define an empirical risk as EER(θ) :=
∑ND

i=1 Lsup
si (θ) when

we assume that ground-truth labels are available on all the
training domains. A risk at the target domain is defined as
Et(θ) := Lsup

t (θ). The goal is to minimize the test risk Et(θ) by only solving the empirical risk
minimization (ERM), i.e., minθ EER(θ). Hereafter, we use the terms risk and loss interchangeably.

5.2 PRELIMINARY KNOWLEDGE

Previous studies for domain generalization demonstrated both theoretically and empirically that
neural networks with flatter minima in parameter space exhibit superior generalization ability to
unseen domains (Foret et al., 2021; Chaudhari et al., 2017; Cha et al., 2021; Izmailov et al., 2018;
Caldarola et al., 2022; Wang et al., 2023b; Kaddour et al., 2022; Zhang et al., 2023). Cha et al.
(2021) theoretically revealed the relationship between the flat minima and generalization gap (i.e.,
performance drop by domain shift). We briefly describe the theorem for the subsequent explanation.
We consider the worst-case loss within neighbor regions in parameter space, which is defined as a
robust risk EγRR(θ) := max∥∆∥≤γ EER(θ + ∆). Here, γ is the radius of the neighbor region. As
shown in Fig. 2, when γ is sufficiently large, sharp minima of the empirical risk are not minima of
the robust risk. In contrast, the minima of the robust risk (i.e., argminθ E

γ
RR(θ)) are also minima

in the flat regions of the empirical risk. The following theorem shows the relationship between the
optimal solution of robust risk minimization (RRM):

Theorem (from (Cha et al., 2021)). Consider a set of N covers {Θk}Nk=1 such that the parameter
space Θ ⊂ ∪Nk Θk where diam(Θ) := supθ,θ′∈Θ∥θ − θ′∥2, N := ⌈(diam(Θ)/γ)d⌉ and d is
dimension of Θ. Let θγ denote the optimal solution of the RRM, i.e., θγ := argminθ E

γ
RR(θ), and

let vk and v be VC dimensions of each Θk and Θ, respectively. Then, the gap between the optimal
test loss, minθ′ Et(θ′), and the test loss of θγ , Et(θγ), has the following bound with probability of at
least 1− δ.

Et(θγ)−min
θ′
Et(θ′) ≤ EγRR(θ

γ)−min
θ′′
EER(θ

′′) +
1

ND

ND∑
i=1

Div(si, t)

+ max
k∈[1,N ]

√
vk ln(m/vk) + ln(2N/δ)

m
+

√
v ln(m/v) + ln(2/δ)

m
,

(5)

where m is the number of training samples and Div(si, t) := 2supA|Psi(A)−Pt(A)| is a divergence
between two distributions.

For its proof, see (Cha et al., 2021). From the theorem, we can interpret that the gap between the
RRM and ERM (i.e., EγRR(θ

γ) − minθ′′ EER(θ
′′)) upper bounds the generalization gap in the test

domain (i.e., Et(θγ) −minθ′ Et(θ′)). Intuitively, as shown in Fig 2, the gap between the RRM and
ERM narrows at flat regions of ERM. Therefore, we can interpret that lowering the gap leads to flat
minima of ERM and results in better generalization performance on the target domain.

5.3 EMA UPDATE

We explain why the EMA update in the Mean Teacher learning framework leads to flat minima.
Stephan et al. (2017) showed that optimizing with constant SGD (i.e., SGD with a fixed learning rate)

6
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converges to a Gaussian distribution centered on the optimum. On the basis of this finding, Izmailov
et al. (2018) and Cha et al. (2021) showed that the ERM with SGD converges to the marginal of a
flat minimum, and averaging the weights of the parameters over some training steps/epochs leads
to the flat minima. To avoid overfitting, Izmailov et al. (2018) and Cha et al. (2021) proposed
sophisticated algorithms called SWA and SWAD for averaging the weights, and Arpit et al. (2022)
introduced a carefully designed averaging strategy called SMA. In contrast to them, we found that a
simple EMA also leads to flat minima, even without using those averaging algorithms. This finding
has not been provided in previous works, although the theoretical explanations for the benefit of
averaging weights have already been provided. The experiments presented in Sec. 7 show that the
teacher network with only the EMA update of the student (i.e., without pseudo labeling) as shown
in Eqs. (6-7) can reach flatter minima and perform better than the student.

θstudent ← θstudent −∇θLstudent(θ), Lstudent(θ) = Lsup
s1 (θ) (6)

θteacher ← αθteacher + (1− α)θstudent, (7)

5.4 LEARNING FROM PSEUDO LABELS

parameter θ

mean

mean

train 

loss

Figure 3: Intuitive interpretation
of difference between loss values
of trajectory of student and their
mean (teacher).

We explain why learning from pseudo-labels in the Mean
Teacher learning framework leads to flat minima. Assuming
that the pseudo-labels from the teacher are accurate enough
(i.e., similar enough to ground truth), Lunsup

si in Eq. (3) can
be approximated by Lsup

si , and we can regard the student net-
work as the ERM in Sec. 5.1. On the other hand, as explained
in Sec. 5.3 and shown in the experiments, because the teacher
network updated with EMA has a better ability to reach flat
minima than the student, the teacher can obtain less robust risk
than the student, and we can regard the teacher as the robust
risk minimizer. Therefore, from Eq. (5), the smaller the differ-
ence between the losses of the teacher and student, the smaller
the generalization gap in the target domain is. Fig. 3 shows its
intuitive interpretations. At the flat region, the trajectory of the student over the training steps and
their mean (teacher) have similar loss values. In contrast, there is a large difference between the loss
values of the trajectory of the student and their mean at the sharp valley.

Next, we show that learning from pseudo-labels in the Mean Teacher learning framework makes the
losses of the student and teacher similar. Because the student is trained with the output from the
teacher as pseudo-ground truth, the training promotes the outputs from the student similar to those
from the teacher. When we use monotonically increasing/decreasing functions with respect to the
outputs as loss functions E (e.g., cross-entropy loss E(p) = pgt log(p)), the more similar the outputs
are, the more similar the loss values are, as shown below:
Proposition. Assume p1 < p2 < p3 ∈ R, and E(p) : R → R is a monotonically increas-
ing/decreasing function of p. Then, |E(p3)− E(p2)| < |E(p3)− E(p1)| holds.

Let us consider p3 as the teacher’s output, and p2 and p1 as the outputs of the student. Since p2 is
closer to p3 than p1, the loss of p2 becomes more similar to the loss of p3 than that of p1. Therefore,
we can interpret that learning from pseudo-labels align the outputs from the student to be similar to
those from the teacher, thereby aligning the loss values, consequently leading to flat minima.

6 REGULARIZATION FOR FLATTER MINIMA

6.1 METHOD

As discussed in Sec. 5, when the output from the student and teacher are similar, the networks tend
to reach flat minima. To this end, we introduce a simple regularization method to make the two
networks’ outputs more similar by training the student using raw outputs from the teacher.

Fig. 4 shows an overview of the method. The concept is to apply regularization so that the outputs
from the two networks are similar for the same input image. Specifically, we perform weak data
augmentations to the unlabeled (or weakly labeled) image xj

si and input the image into the teacher

7
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network. We then use the output from the teacher {(b̂jrsi , p̂
jr
si )}

NR
r=1 directly as pseudo-ground truth

without post-processing fpost. To update the student, we input the same weakly augmented image
xj
si into the student and calculate the regularization loss Lregul. as follows:

Lstudent(θ) = Lsup
s1 (θ) +

ND∑
i=2

[Lunsup
si (θ) + βLregul.

si (θ)] (8)

Lregul.
si (θ) = Lcls

RPN(θ,Xsi , B̂si , Ĉsi) + L
reg
RPN(θ,Xsi , B̂si , Ĉsi)

+ Lcls
RoI(θ,Xsi , B̂si , Ĉsi) + L

reg
RoI(θ,Xsi , B̂si , Ĉsi),

(9)

where B̂si = {b̂jsi}
Nsi
j=1 and Ĉsi = {ĉjsi}

Nsi
j=1 are the raw pseudo-labels from the teacher, and β is a

hyperparameter to tune the strength of the regularization.

unlabeled 

data

dog

dogTeacher

Student ℒ𝑟𝑒𝑔𝑢𝑙.

weak aug.

weak aug.

EMA 

update post-process

Figure 4: Overview of regualiza-
tion method.

The differences between the regularization and the traditional
Mean Teacher loss in Sec. 4.3 are 1) the use of weak augmen-
tation instead of strong augmentation, and 2) the omission of
post-processing (i.e., the sharpening function of (Chen et al.,
2022) in our experiments). These approaches ensure that 1) the
same input is given to both the student and teacher, and 2) the
raw output from the teacher is used as pseudo-labels, which
encourages closer alignment between the student and teacher.

6.2 CONNECTION TO PRIOR ARTS

We can regard the regularization method as a type of knowl-
edge distillation as the student is trained to mimic the raw out-
put from the teacher. Although the technical details are dif-
ferent, it has been empirically shown that knowledge distillation methods are effective on related
tasks such as Single-DGOD (Wu & Deng, 2022), domain adaptive semantic segmentation (Zhang
et al., 2021), UDA-OD (Cao et al., 2023; Deng et al., 2023), and semi-supervised domain adaptive
object detection (where a small part of labeled target data Dt = {(Xt, Ct)} is accessible during
the training (Zhou et al., 2023a)). We believe that our interpretation revealed one of the reasons
knowledge-distillation methods lead to better generalization ability.

7 EXPERIMENTS

7.1 DATASET DETAILS

We used the artistic style image dataset (Inoue et al., 2018), which has four domains: natural im-
age, clipart, comic, and watercolor. The natural image domain has 16,551 images from PASCAL
VOC07&12, and the other domains have 1,000, 2,000, and 2,000 images, respectively. There are six
object classes (bike, bird, car, cat, dog, and person), and we removed the images that do not contain
these classes.

We conducted the experiments on three patterns of domains. In the first pattern, we set the nat-
ural image domain as the labeled domain s1 and set clipart and comic as the unlabeled domains
s2, s3. We set watercolor as the target domain t. Concretely, we used the labeled trainval set of
PASCAL VOC 2007&2012, the unlabeled train set of clipart, and the unlabeled train set of comic
for training. We then used the test sets of clipart and comic for validation. For evaluation (test-
ing), we used the test set of watercolor. In the second and third patterns, we set (s1, s2, s3, t) =
(natural,watercolor, comic, clipart) and (s1, s2, s3, t) = (natural,watercolor, clipart, comic),
respectively. The results on another dataset are shown in the supplementary material B.

7.2 IMPLEMENTATION DETAILS

We used soft pseudo labeling proposed in (Chen et al., 2022) for the Mean Teacher learning. We
used Gaussian FasterRCNN (Chen et al., 2022) as the object detector, in which the regression output
is modified to use the soft labels. We used cross-entropy loss for both classification and regres-
sion losses, similar to (Chen et al., 2022). We applied the same hyperparameters as in a previous

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Comparisons of mAP50 on the artistic style image dataset (Inoue et al., 2018) when the
target domain is watercolor. Values with * are from previous study (Li et al., 2022).

setting method backbone mAP50

watercolor clipart comic

Single-DGOD CLIP-based augmentation (Vidit et al., 2023) Res101 46.6 27.2 31.4
Single-DGOD Gaussian FasterRCNN Res101 50.5 34.5 26.6
Single-DGOD Gaussian FasterRCNN + EMA Res101 55.5 38.0 29.0
SS-DGOD CDDMSL (Malakouti & Kovashka, 2023) Res50 (RegionCLIP) 46.1 39.1 38.3
SS-DGOD CDDMSL (Malakouti & Kovashka, 2023) Res101 41.3 26.0 28.8
SS-DGOD Gaussian FasterRCNN + EMA + PL Res101 56.6 39.8 30.1
SS-DGOD Gaussian FasterRCNN + EMA + PL + Regul. Res101 58.2 43.3 32.2
WS-DGOD Gaussian FasterRCNN + EMA + PL Res101 59.7 44.2 39.9
WS-DGOD Gaussian FasterRCNN + EMA + PL + Regul. Res101 62.9 46.2 40.2
DGOD Gaussian FasterRCNN Res101 62.6 47.1 45.2
Oracle Gaussian FasterRCNN Res101 62.2 48.2 48.6
UDA-OD Gaussian FasterRCNN + EMA + PL (Chen et al., 2022) Res101 54.9 43.4 27.0
UDA-OD Gaussian FasterRCNN + EMA + PL + Regul. Res101 58.8 45.4 32.7
UDA-OD SCL* (Shen et al., 2019) Res101 55.2 - -
UDA-OD SWDA* (Saito et al., 2019) Res101 53.3 - -
UDA-OD UMT* (Deng et al., 2021) Res101 58.1 - -
UDA-OD AT* (Li et al., 2022) Res101 59.9 - -

study (Chen et al., 2022) except for the number of iterations. All training (including baseline mod-
els) was done with four A100 GPUs. The parameters of the backbone network were initialized with
the ResNet101 pre-trained on ImageNet. The hyperparameters α in Eq. (7) and β in Eq. (8) were
set to 0.9996 and 0.5 throughout the experiments, respectively. During the inference (testing) phase,
we used the teacher network. Other details are given in the supplementary material.

7.3 BASELINE METHODS

As the baseline, we trained the detector Gaussian FasterRCNN on Single-DGOD setting (i.e., super-
vised learning on s1 in Eq. (1)). To show the effectiveness of the EMA update, we trained Gaussian
FasterRCNN + EMA with Eqs. (6-7). Gaussian FasterRCNN + EMA + PL is a detector trained with
the Mean Teacher learning framework in Sec. 4. Gaussian FasterRCNN + EMA + PL + Regul. is a
detector with the Mean Teacher learning framework and the regualization in Eqs. (8-9).

To confirm the upper-bound performance, we also trained Gaussian FasterRCNN on DGOD and
Oracle settings. On DGOD, the detector was trained with supervised learning using the ground-
truth labels on the domains s1, s2, and s3. On Oracle, the detector was trained with supervised
learning on s1, s2, s3, and the target domain t.

Because there is only one existing method on SS-DGOD (i.e., CDDMSL (Malakouti & Kovashka,
2023)), we also compared the above detectors with state-of-the-art methods on related task settings
such as Single-DGOD and UDA-OD. It is noteworthy that existing DGOD methods such as (Lin
et al., 2021; Liu et al., 2020) cannot be applied to SS-DGOD and WS-DGOD because they require
labeled data from multiple source domains for training. It is important to reiterate that our goal is
not to propose a new method that outperforms state-of-the-art methods. Instead, our goal is to offer
novel interpretations of the Mean Teacher and demonstrate that introducing simple regularization
can lead to flatter minima, resulting in better robustness to unseen domains.

7.4 COMPARISONS WITH OTHER METHODS

Table 2 shows the results on the artistic image style dataset. We evaluated with the mean average
precision (mAP50) when the IoU threshold was 0.5. EMA increased the mAP of Gaussian Faster-
RCNN from (50.5, 34.5, 26.6) to (55.5, 38.0, 29.0), and this was further boosted to (56.6, 39.8.
30.1) with pseudo labeling (PL). We observed additional improvement to (58.2, 43.3, 32.2) with
the regularization. The regularization improved the performance not only on SS-DGOD but also
on WS-DGOD. The detectors trained on WS-DGOD performed better than those on SS-DGOD be-
cause WS-DGOD can generate more accurate pseudo labels by the refinement in Eq. (2). Those
results are comparable to those of the detectors trained on DGOD and Oracle.
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Figure 5: Left and right plots compare average training and test flatness, respectively.

For fair comparisons, we trained CDDMSL with Res101 backbone pre-trained on ImageNet. How-
ever, its performance significantly degraded, as reported in a previous study (Malakouti & Kovashka,
2023), because it requires language-guided training, and initializing the model with RegionCLIP is
crucial to achieve good performance.

The detectors trained on SS-DGOD and WS-DGOD also performed comparably to or better than
those on UDA-OD, although we did not use the target domain data during the training. Furthermore,
the regularization can be directly applied to UDA-OD as well as SS-DGOD and WS-DGOD, and
we also observed significant performance improvement by the regularization on UDA-OD.

7.5 ANALYSIS OF FLATNESS

To evaluate the flatness of the detectors in parameter space, following previous studies (Izmailov
et al., 2018) and (Cha et al., 2021), we computed the change in loss values when we perturb the
parameters. Specifically, we sampled a random direction vector d on a unit sphere, perturbed the
parameters (θ′ = θ + dγ) with a radius γ, and computed the average change over ten samples, i.e.,
Fγ(θ) = Eθ′ |E(θ′)− E(θ)|. The lower the change is, the flatter the parameters.

Fig. 5 shows the Fγ(θ) of the training loss E(θ) =
∑

i Lsup
si (θ) and the test loss E(θ) = Lsup

t (θ).
The training domains were (s1, s2, s3)=(natural, watercolor, comic), and the test domain was clipart.
We can see that EMA, PL, and the regularization lowered the changes in the losses on both the
training domains and test domain. In other words, each contributed to falling into flatter minima.

8 CONCLUSION AND LIMITATION

We tackled two problem settings called semi-supervised domain generalizable object detection (SS-
DGOD) and weakly-supervised DGOD (WS-DGOD) to train object detectors that can generalize to
unseen domains. We showed that the object detectors can be effectively trained on the two settings
with the same Mean Teacher learning framework. We also provided the interpretations of why the
detectors trained with the Mean Teacher framework become robust to the unseen domains in terms
of the flatness in the parameter space. Based on the interpretations, we introduced a regularization
method to lead to flatter minima, which makes the loss value of the student similar to that of the
teacher. The experiments showed that the detectors trained with the Mean Teacher learning frame-
work and the regularization performed significantly better than the baseline methods. Because Mean
Teacher has been used across various tasks, our novel interpretation of why Mean Teacher becomes
robust to unknown domains is likely to have a broad impact across a wide range of tasks.

The limitation is that the assumption in Sec. 5.4 does not always hold. Specifically, it is not always
guaranteed that the pseudo labels from the teacher are accurate enough to approximate Lunsup

si with
Lsup
si . Nevertheless, we empirically showed that the Mean Teacher and the regularization lead to

flatter minima in practice. There are two primary reasons for this observation. First, when consid-
ering each domain independently, the assumption always holds in the labeled domain s1, as labeled
data is available, ensuring that Lunsup

s1 = Lsup
s1 . Second, the assumption is only necessary to explain

how the Mean Teacher achieves flat minima in the empirical risk (i.e., the sum of the supervised
losses EER(θ) =

∑ND

i=1 Lsup
si (θ)). Even if this assumption does not hold, we can similarly explain

that the Mean Teacher reaches flat minima in the sum of supervised and unsupervised losses in Eq.
(3). We believe that achieving flat minima in Eq. (3) still positively affects robustness against unseen
domains. Further analysis of failure cases is left for future work.
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APPENDIX / SUPPLEMENTAL MATERIAL

A MORE ANALYSIS

A.1 HOW SENSITIVE TO HYPERPARAMETER β?

Table 3 shows the performance when the hyperparameter β in Eq. (8) (i.e. strength of the regu-
larization) was changed from 0 to 1. By adding the regularization, the performance was constantly
improved from the detector without regularization (i.e., β = 0).

Table 3: mAP50 with various β on the artistic style image dataset (Inoue et al., 2018).

setting method β
mAP50

clipart

SS-DGOD Gaussian FasterRCNN + EMA + PL 0.0 39.8
SS-DGOD Gaussian FasterRCNN + EMA + PL + Regul. 0.25 40.7
SS-DGOD Gaussian FasterRCNN + EMA + PL + Regul. 0.5 43.3
SS-DGOD Gaussian FasterRCNN + EMA + PL + Regul. 0.75 42.1
SS-DGOD Gaussian FasterRCNN + EMA + PL + Regul. 1.0 42.5

A.2 IMPORTANCE OF ENCOURAGING CONSISTENCY

A.2.1 COMPARISON OF REGULARIZATION WITH AND WITHOUT POST-PROCESSING

In the regularization described in Sec. 6.1, we use the raw outputs from the teacher without post-
processing to train the student so that the outputs from the two networks are similar. To validate
the claim, we compare the performance with and without post-processing (i.e., sharpening func-
tion (Chen et al., 2022)) in the regularization in Eq. (9). Table 4 shows that the performance drops
when we perform the post-processing. We observe that using raw outputs is important to obtain
better performance.

Table 4: mAP50 with and without post-processing on the artistic style image dataset (Inoue et al.,
2018).

setting method post process mAP50

clipart

SS-DGOD Gaussian FasterRCNN + EMA + PL + Regul. 43.3
SS-DGOD Gaussian FasterRCNN + EMA + PL + Regul. ✓ 39.4

A.2.2 IMPORTANCE OF CONSISTENT AUGMENTATION BETWEEN TEACHER AND STUDENT

In the regularization described in Sec. 6.1, we input weakly-augmented images to the student (i.e.,
same input as the teacher) in order to encourage the consistency between the outputs from the teacher
and student. In this section, as shown in Fig. 6, we compare the weak and strong augmentation for
the student in the regularization whereas weakly-augmented images were always input to the teacher.
Table 5 shows that the weak augmentation obtains better performance than the strong augmentation,
which implies the consistency between the outputs from the teacher and student using the same
inputs leads to better performance.

Table 5: Comparison of mAP50 between strong and weak augmentation in the regularization on the
artistic style image dataset (Inoue et al., 2018).

setting method augmentation mAP50

clipart

SS-DGOD Gaussian FasterRCNN + EMA + PL + Regul. weak 43.3
SS-DGOD Gaussian FasterRCNN + EMA + PL + Regul. strong 42.5
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Figure 6: Comparisons between weak and strong augmentation for the student in the regularization.

A.3 WHY IS ONLY WEAK AUGMENTATION USED IN THE REGULARIZATION?

One may think why only weak augmentation is used in the regualization in Fig. 4, and what is
the performance of randomly using strong and weak augmentation? To answer this question, we
evaluated the performance when randomly using strong and weak augmentation as shown in the
right side of Fig. 7. In this setting, the strong and weak augmentation was randomly chosen with a
probability of 0.5 at each iteration. When the strong augmentation was chosen, the same strongly
augmented image was input into both the student and teacher networks. Then, the raw output from
the teacher without post-processing was used to calculate the regularization loss for the students in
Eqs. (8) and (9) to encourage consistency between the outputs from the student and teacher. As
shown in Table 6, only weak augmentation obtained better performance. We think it is because
inputting strongly augmented images into the teacher can make noisy pseudo-labels.
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Figure 7: Comparisons between weak and random (weak/strong) augmentation in the regularization.

Table 6: Comparison of mAP50 between weak and weak/strong (random) augmentation in the reg-
ularization on the artistic style image dataset.

setting method augmentation mAP50

clipart

SS-DGOD Gaussian FasterRCNN + EMA + PL N/A 39.8
SS-DGOD Gaussian FasterRCNN + EMA + PL + Regul. weak 43.3
SS-DGOD Gaussian FasterRCNN + EMA + PL + Regul. weak/strong (random) 41.1

A.4 DOES THE REGULARIZATION MAKE IT DIFFICULT OR SLOW TO TRAIN THE MODEL?

One may be concerned whether the regularization makes the training difficult or slow because the
regularization in Fig. 4 encourages the teacher and student to produce similar predictions. To address
the concern, in Fig. 8, we show the mAP on the validation set during training with and without
regularization. The regularization does not make the training process more difficult or slower. On
the contrary, the regularization helps alleviate overfitting (i.e., less decrease in the validation mAP),
stabilizing the training.
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A.5 CLASS-WISE AVERAGE PRECISION

Table 7, 8, and 9 show average precision (AP50) at each class when the target domain is watercolor,
clipart, and comic, respectively. We can see that the regularization improved the performance on
many classes.

In Table 7, Gaussian FasterRCNN + EMA + PL + Regul. trained on the WS-DGOD setting slightly
outperforms Gaussian FasterRCNN trained on the DGOD and Oracle settings. The potential reason
is that DGOD and Oracle were trapped in sharp local minima due to simple supervised learning (i.e.,
ERM), while Gaussian FasterRCNN + EMA + PL + Regul. reached flat minima. It has been shown
that even when both the train and test sets are from the same domain, there is a slight shift between
the train loss and test loss, and falling into a sharp valley can decrease performance (Izmailov et al.,
2018). Fig. 9 shows the comparison of the flatness similar to that in Sec. 7.5. We observe that
Gaussian FasterRCNN + EMA + PL + Regul. trained on the WS-DGOD achieved a flatter solution
than Gaussian FasterRCNN trained on the DGOD and Oracle settings.
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Figure 9: Comparison of flatness of train loss.

A.6 QUALITATIVE RESULTS

Figs. 10, 11, and 12 show the qualitative comparison on watercolor, clipart, and comic, respectively.
We observe that false negative detection of the baseline model was drastically improved.

A.7 WHEN THE NUMBER OF UNLABELED DOMAIN IS ONE

In Sec. 7, we conducted the experiments under the setting of one labeled domain and multiple
unlabeled domains (e.g., (s1, s2, s3, t)= (natural, clipart, comic, watercolor)). In this section, we
conducted the experiments with one labeled domain and one unlabeled domain, which are the same

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 7: Comparisons of AP50 at each class on watercolor of the artistic style image dataset (Inoue
et al., 2018). The values of * are from (Li et al., 2022).

setting method bicycle bird cat car dog person mAP

Single-DGOD CLIP-based augmentation (Vidit et al., 2023) 74.8 37.3 36.8 40.7 29.2 59.9 46.4
Single-DGOD Gaussian FasterRCNN 90.4 47.9 30.3 46.7 28.7 59.2 50.5
Single-DGOD Gaussian FasterRCNN + EMA 86.2 54.3 35.3 53.5 34.5 69.0 55.5
SS-DGOD CDDMSL (Malakouti & Kovashka, 2023) (RegionCLIP) 66.3 50.6 34.5 49.2 20.1 56.0 46.1
SS-DGOD CDDMSL (Malakouti & Kovashka, 2023) (Res101) 75.5 36.1 23.9 40.7 19.7 52.0 41.3
SS-DGOD Gaussian FasterRCNN + EMA + PL 87.4 54.6 40.0 51.9 32.4 73.1 56.6
SS-DGOD Gaussian FasterRCNN + EMA + PL + Regul. 87.2 52.3 44.7 53.2 36.8 75.3 58.2
WS-DGOD Gaussian FasterRCNN + EMA + PL 90.3 55.8 49.3 49.9 37.5 75.4 59.7
WS-DGOD Gaussian FasterRCNN + EMA + PL + Regul. 95.8 59.9 51.5 53.3 40.2 76.7 62.9
DGOD Gaussian FasterRCNN 84.8 57.8 51.0 50.8 51.8 79.3 62.6

Oracle Gaussian FasterRCNN 90.9 59.9 44.2 53.1 46.7 78.3 62.2

UDA-OD Gaussian FasterRCNN + EMA + PL (Chen et al., 2022) 77.7 46.5 40.4 50.1 39.7 75.0 54.9
UDA-OD Gaussian FasterRCNN + EMA + PL + Regul. 82.8 51.4 43.2 59.3 39.0 77.0 58.8
UDA-OD SCL* (Shen et al., 2019) 82.2 55.1 51.8 39.6 38.4 64.0 55.2
UDA-OD SWDA* (Saito et al., 2019) 82.3 55.9 46.5 32.7 35.5 66.7 53.3
UDA-OD UMT* (Deng et al., 2021) 88.2 55.3 51.7 39.8 43.6 69.9 58.1
UDA-OD AT* (Li et al., 2022) 93.6 56.1 58.9 37.3 39.6 73.8 59.9

Table 8: Comparisons of AP50 at each class on clipart of the artistic style image dataset (Inoue et al.,
2018).

setting method bicycle bird cat car dog person mAP

Single-DGOD CLIP-based augmentation (Vidit et al., 2023) 36.5 22.5 20.1 25.0 8.8 50.4 27.2
Single-DGOD Gaussian FasterRCNN 69.5 25.1 5.7 39.4 17.3 49.9 34.5
Single-DGOD Gaussian FasterRCNN + EMA 87.6 29.3 5.5 30.1 18.3 57.2 38.0
SS-DGOD CDDMSL (Malakouti & Kovashka, 2023) (RegionCLIP) 51.0 33.3 26.5 45.2 14.6 63.8 39.1
SS-DGOD CDDMSL (Malakouti & Kovashka, 2023) (Res101) 41.6 19.2 5.5 26.7 12.3 50.9 26.0
SS-DGOD Gaussian FasterRCNN + EMA + PL 75.8 31.2 9.4 33.1 20.4 69.1 39.8
SS-DGOD Gaussian FasterRCNN + EMA + PL + Regul. 79.3 32.5 11.6 40.9 26.3 69.0 43.3
WS-DGOD Gaussian FasterRCNN + EMA + PL 80.3 33.3 11.1 44.5 23.2 72.6 44.2
WS-DGOD Gaussian FasterRCNN + EMA + PL + Regul. 84.8 33.2 23.8 43.0 22.1 70.1 46.2
DGOD Gaussian FasterRCNN 76.0 34.8 18.8 38.3 36.9 77.6 47.1

Oracle Gaussian FasterRCNN 70.4 38.8 26.1 52.9 27.5 73.4 48.2

UDA-OD Gaussian FasterRCNN + EMA + PL (Chen et al., 2022) 79.9 33.5 6.5 53.1 23.7 65.2 43.6
UDA-OD Gaussian FasterRCNN + EMA + PL + Regul. 72.4 35.4 16.0 57.2 19.7 71.5 45.4

settings as the CDDSL paper (Malakouti & Kovashka, 2023): (s1, s2, t) = (natural, comic, water-
color) and (natural, comic, clipart). Table 10 shows the superior performance to CDDMSL even on
these settings.

A.8 DIFFERENT BACKBONE

To validate the generalization ability of the regularization, we conducted the experiments with an-
other detector that has a significantly different network design. Specifically, we used a Transformer-
based backbone (Swin-T) with the feature pyramid network (Lin et al., 2017), although the detection
head was not changed. Table 11 shows the results. We can see that the regularization improves the
performance, which validates its generalization ability.

A.9 COMPARISON AND COMBINATION WITH ANOTHER EXISTING TRICK TO IMPROVE FLAT
MINIMA

Table12 shows the comparison with another existing method to find flat minima called Sharpness-
Aware Minimization (SAM) (Foret et al., 2021). By comparing Gaussian FasterRCNN + EMA +
PL + SAM and Gaussian FasterRCNN + EMA + PL + Regul., our regularization outperforms the
SAM. In addition, since the SAM is an optimizer and can be used instead of SGD, it is compatible
with our regularization. We can see that Gaussian FasterRCNN + EMA + PL + Regul. + SAM
achieved the best performance.
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Table 9: Comparisons of AP50 at each class on comic of the artistic style image dataset (Inoue et al.,
2018).

setting method bicycle bird cat car dog person mAP

Single-DGOD CLIP-based augmentation (Vidit et al., 2023) 29.0 18.6 27.6 32.7 28.4 52.2 31.4
Single-DGOD Gaussian FasterRCNN 45.0 10.8 9.5 33.8 17.5 43.0 26.6
Single-DGOD Gaussian FasterRCNN + EMA 50.0 15.0 11.2 26.8 22.4 48.3 29.0

SS-DGOD CDDMSL (Malakouti & Kovashka, 2023) (RegionCLIP) 41.8 27.8 23.5 44.2 34.8 57.8 38.3
SS-DGOD CDDMSL (Malakouti & Kovashka, 2023) (Res101) 44.3 12.2 13.7 30.5 19.7 52.1 28.8
SS-DGOD Gaussian FasterRCNN + EMA + PL 41.5 14.5 11.4 24.5 27.3 61.1 30.1
SS-DGOD Gaussian FasterRCNN + EMA + PL + Regul. 42.3 15.6 15.9 31.5 30.2 57.8 32.2

WS-DGOD Gaussian FasterRCNN + EMA + PL 53.7 23.1 19.9 44.3 33.7 64.5 39.9
WS-DGOD Gaussian FasterRCNN + EMA + PL + Regul. 54.2 23.2 23.8 44.1 31.5 64.2 40.2
DGOD Gaussian FasterRCNN 54.6 29.5 33.5 38.9 43.2 71.4 45.2

Oracle Gaussian FasterRCNN 55.7 29.0 44.5 46.3 45.1 71.3 48.6

UDA-OD Gaussian FasterRCNN + EMA + PL (Chen et al., 2022) 42.2 13.6 10.8 16.6 19.3 59.5 27.0
UDA-OD Gaussian FasterRCNN + EMA + PL + Regul. 46.3 14.4 20.3 28.8 23.5 62.6 32.7

(a) Gaussian FasterRCNN trained on Single-DGOD setting (i.e., trained with labeled data on PASCAL
VOC07&12).

(b) Gaussian FasterRCNN + EMA + PL + Regul. trained on SS-DGOD setting (i.e., trained with labeled data
on PASCAL VOC07&12 and unlabeled data on clipart and comic).

Figure 10: Qualitative comparisons on watertcolor.

Table 10: Comparisons of mAP50 on the artistic style image dataset when (s1, s2, t)= (natural,
comic, watercolor) and (natural, comic, clipart). Values with * are from previous study (Malakouti
& Kovashka, 2023).

setting method backbone mAP50

watercolor clipart

SS-DGOD CDDMSL* (Malakouti & Kovashka, 2023) Res50 (RegionCLIP) 49.4 39.8
SS-DGOD Gaussian FasterRCNN + EMA + PL Res101 55.2 38.4
SS-DGOD Gaussian FasterRCNN + EMA + PL + Regul. Res101 56.5 40.1
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(a) Gaussian FasterRCNN trained on Single-DGOD setting (i.e., trained with labeled data on PASCAL
VOC07&12).

(b) Gaussian FasterRCNN + EMA + PL + Regul. trained on SS-DGOD setting (i.e., trained with labeled data
on PASCAL VOC07&12 and unlabeled data on watercolor and comic).

Figure 11: Qualitative comparisons on clipart.

(a) Gaussian FasterRCNN trained on Single-DGOD setting (i.e., trained with labeled data on PASCAL
VOC07&12).

(b) Gaussian FasterRCNN + EMA + PL + Regul. trained on SS-DGOD setting (i.e., trained with labeled data
on PASCAL VOC07&12 and unlabeled data on clipart and comic).

Figure 12: Qualitative comparisons on comic.
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Table 11: Comparison of mAP50 with and without regularization using Swin-T + FPN backbone on
the artistic style image dataset (Inoue et al., 2018).

setting method backbone mAP50

watercolor

SS-DGOD Gaussian FasterRCNN + EMA + PL Swin-T + FPN 53.0
SS-DGOD Gaussian FasterRCNN + EMA + PL + Regul. Swin-T + FPN 53.4

Table 12: Comparison and combination with SAM on the artistic style image dataset (Inoue et al.,
2018).

setting method backbone mAP50

watercolor

Single-DGOD Gaussian FasterRCNN Res101 50.5
Single-DGOD Gaussian FasterRCNN + SAM Res101 54.1
Single-DGOD Gaussian FasterRCNN + EMA Res101 55.5

SS-DGOD Gaussian FasterRCNN + EMA + PL Res101 56.6
SS-DGOD Gaussian FasterRCNN + EMA + PL + SAM Res101 57.5
SS-DGOD Gaussian FasterRCNN + EMA + PL + Regul. Res101 58.2
SS-DGOD Gaussian FasterRCNN + EMA + PL + Regul. + SAM Res101 59.5
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B RESULTS ON CAR-MOUNTED CAMERA DATASET (WU & DENG, 2022)

B.1 DATASET DETAILS

The car-mounted camera dataset is a recently developed dataset in (Wu & Deng, 2022) for
Single-DGOD or DGOD, where the images were selected from the standard datasets such as
Cityscapes (Cordts et al., 2016), FoggyCityscapes (Sakaridis et al., 2018), BDD-100k (Yu et al.,
2020), and AdverseWeather (Hassaballah et al., 2020). The domains were clearly redefined based
on the weather and time differences: daytime-sunny, night-sunny, daytime-foggy, dusk-rainy, and
night-rainy. The number of images for each domain is 27,708, 18,310, 2,642, 3,501, and 2,494,
respectively. We used daytime-sunny as the labeled domain s1 and used night-sunny and daytime-
foggy as the unlabeled (or weakly-labeled) domains s2, s3. We used each of the remaining domains
(dusk-rainy and night-rainy) as the target domain. Because the train/val/test split is not publicly
available for daytime-sunny, dusk-rainy, and night-rainy, we used all images of daytime-sunny, the
trainval set of night-sunny, and the trainval set of daytime-foggy for training. We then used the test
set of night-sunny and the test set of daytime-foggy for validation. We used all images of dusk-rainy
and night-rainy for evaluation (testing). There are seven object classes: bus, bike, car, motor, person,
rider, and truck.

There are two reasons for using this dataset for evaluation. One is that the images in this dataset were
selected from the standard datasets, and the other is that the domains were clearly redefined based on
the weather and time differences as described above. In the setting of the previous work (Malakouti
& Kovashka, 2023), i.e., (s1, s2, t) = (Cityscapes, FoggyCityscapes, BDD100k), the differences be-
tween domains are ambiguous. This is because Cityscape primarily assumes clear/medium daytime
weather, Foggycityscape assumes foggy weather, while BDD100K includes various times of day
and weather conditions. Therefore, instead, we used the car-mounted camera dataset.

B.2 COMPARISONS WITH OTHER METHODS

Table 13: Comparisons of mAP50 on the car-mounted camera dataset (Wu & Deng, 2022). The
values of * and ** were from (Wu & Deng, 2022) and (Vidit et al., 2023), respectively.

setting method backbone mAP50

dusk-rainy night-rainy

Single-DGOD FasterRCNN* Res101 26.6 14.5
Single-DGOD CDSD* (Wu & Deng, 2022) Res101 28.2 16.6
Single-DGOD CLIP-based augmentation**(Vidit et al., 2023) Res101 32.3 18.7
Single-DGOD Gaussian FasterRCNN Res101 25.3 13.3
Single-DGOD Gaussian FasterRCNN + EMA Res101 36.0 19.0
SS-DGOD Gaussian FasterRCNN + EMA + PL Res101 30.3 21.3
SS-DGOD Gaussian FasterRCNN + EMA + PL + Regul. Res101 31.2 21.9
WS-DGOD Gaussian FasterRCNN + EMA + PL Res101 30.5 22.5
WS-DGOD Gaussian FasterRCNN + EMA + PL + Regul. Res101 32.5 23.1
DGOD Gaussian FasterRCNN Res101 28.4 21.2

Table 13 shows the results on the car-mounted camera dataset. Each of EMA, PL, and the regular-
ization improved the performance on both target domains except that PL degraded the performance
on dusk-rainy. We will investigate the cause of the performance drop in our future work.

The mAP50 of the detector with the regularization is boosted to (32.5, 23.1) on WS-DGOD. This
result exceeds (32.3, 18.7), which is the result of CLIP-based augmentation (Vidit et al., 2023) pro-
posed for Single-DGOD. Also, this result is better than those of the models trained with supervised
learning on the three domains (DGOD).

B.3 ANALYSIS OF FLATNESS

Fig. 13 shows the average change of the training loss at each domain when perturbing the parameters
(Fγ(θ) = Eθ′ |E(θ′)−E(θ)| described in Sec. 7.5), and Fig. 14 shows those of the test loss. Each of
EMA, PL, and the regularization lowered the changes in the losses at every domain when the radius
is 125 or smaller although EMA lowered the changes the most when the radius is extremely large
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(> 125). In other words, each contributed to falling into flatter minima with a sufficiently large
radius.
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(a) Daytime-clear
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(b) Daytime-foggy

-2000

0

2000

4000

6000

8000

10000

12000

0 25 50 75 100 125 150

tr
ai

n
 l

o
ss

radius

FRCNN

+EMA

+PL

+Regul.

(c) Night-sunny

Figure 13: Average training flatness at each training domain.

0

500

1000

1500

2000

2500

0 25 50 75 100 125 150

tr
ai

n
 l

o
ss

radius

FRCNN

+EMA

+PL

+Regul.

(a) Dusk-rainy
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(b) Night-rainy

Figure 14: Average test flatness at each target domain.

B.4 CLASS-WISE AVERAGE PRECISION

Tables 14 and 15 show class-wise average precision on dusk-rainy and night-rainy domains, respec-
tively. We can see that each of EMA, PL, and regularization contributes to improving the perfor-
mance on many classes except the performance drop by PL on dusk-rainy.

Table 14: Comparisons of AP50 at each class on dusk-rainy of the car-mounted camera dataset (Wu
& Deng, 2022). The values of * and ** are from (Wu & Deng, 2022) and (Vidit et al., 2023),
respectively.

setting method bus bike car motor person rider truck mAP

Single-DGOD FasterRCNN* 36.8 15.8 50.1 12.8 18.9 12.4 39.5 26.6
Single-DGOD CDSD* (Wu & Deng, 2022) 37.1 19.6 50.9 13.4 19.7 16.3 40.7 28.2
Single-DGOD CLIP-based augmentation** (Vidit et al., 2023) 37.8 22.8 60.7 16.8 26.8 18.7 42.4 32.3
Single-DGOD Gaussian FasterRCNN 33.9 14.9 53.6 4.2 17.4 13.6 39.2 25.3
Single-DGOD Gaussian FasterRCNN + EMA 46.3 24.9 65.9 11.9 29.1 23.7 50.0 36.0
SS-DGOD Gaussian FasterRCNN + EMA + PL 40.0 17.3 61.0 8.0 23.6 17.1 45.1 30.3
SS-DGOD Gaussian FasterRCNN + EMA + PL + Regul. 40.8 20.1 61.8 7.8 23.6 18.3 46.2 31.2
WS-DGOD Gaussian FasterRCNN + EMA + PL 39.0 19.4 60.4 9.4 23.8 17.3 44.0 30.5
WS-DGOD Gaussian FasterRCNN + EMA + PL + Regul. 41.7 22.3 62.1 11.2 25.3 18.9 45.9 32.5
DGOD Gaussian FasterRCNN 36.2 18.2 61.3 7.3 18.4 15.9 41.9 28.4

B.5 QUALITATIVE RESULTS

Figs. 15 and 16 show the qualitative comparison on dusk-rainy and night-rainy, respectively. Similar
to the artistic image dataset, the baseline model had false negative detections, which were improved
by EMA, PL, and regularization.

C TRAINING DETAILS

On the artistic style image dataset, the detectors were trained with 10,000 and 20,000 iterations for
the pretraining and the student-teacher learning of SS-DGOD (or WS-DGOD), respectively. During
the training, we saved the models and evaluated the performance on the validation at every 2,000
iterations, and the best model was used for the evaluation. The whole training took about one day.
For fair comparisons, the compared models on Single-DGOD and DGOD were trained with 30,000
iterations, and the best models at the validation of every 2,000 iterations were used for evaluation.
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Table 15: Comparisons of AP50 at each class on night-rainy of the car-mounted camera dataset (Wu
& Deng, 2022). The values of * and ** are from (Wu & Deng, 2022) and (Vidit et al., 2023),
respectively.

setting method bus bike car motor person rider truck mAP

Single-DGOD FasterRCNN* 22.6 11.5 27.7 0.4 10.0 10.5 19.0 14.5
Single-DGOD CDSD* (Wu & Deng, 2022) 24.4 11.6 29.5 9.8 10.5 11.4 19.2 16.6
Single-DGOD CLIP-based augmentation** (Vidit et al., 2023) 28.6 12.1 36.1 9.2 12.3 9.6 22.9 18.7
Single-DGOD Gaussian FasterRCNN 20.4 7.7 31.0 0.5 6.8 5.6 21.3 13.3
Single-DGOD Gaussian FasterRCNN + EMA 33.9 11.1 38.5 0.8 10.5 8.8 29.2 19.0
SS-DGOD Gaussian FasterRCNN + EMA + PL 35.7 9.8 46.7 1.4 12.6 10.8 32.0 21.3
SS-DGOD Gaussian FasterRCNN + EMA + PL + Regul. 37.0 10.3 46.3 2.8 12.9 12.0 31.8 21.9
WS-DGOD Gaussian FasterRCNN + EMA + PL 38.6 11.3 47.9 2.9 13.4 11.2 32.1 22.5
WS-DGOD Gaussian FasterRCNN + EMA + PL + Regul. 38.3 13.4 46.2 2.7 15.1 14.0 32.0 23.1
DGOD Gaussian FasterRCNN 38.9 7.6 46.7 1.8 9.8 11.3 32.1 21.2

(a) Gaussian FasterRCNN trained on Single-DGOD setting (i.e., labeled data on daytime-sunny).

(b) Gaussian FasterRCNN + EMA + PL + Regul. trained on SS-DGOD setting (i.e., labeled data on daytime-
sunny and unlabeled data on night-sunny and daytime-foggy).

Figure 15: Qualitative comparisons on dusk-rainy.

On the car-mounted camera dataset, we performed the same procedure for training, validation, and
evaluation, but the numbers of iterations for the pretraining and the student-teacher learning were set
to 20,000 and 40,000 respectively, and the validation was conducted at every 4,000 iterations. The
whole training took about two days. For fair comparisons, the compared models on Single-DGOD
and DGOD were trained with 60,000 iterations, and the best models at the validation of every 4,000
iterations were used for evaluation.

D MORE DISCUSSIONS

D.1 THE OTHER SEMI-SUPERVISED DOMAIN GENERALIZATION SETTING

There are two types of settings on semi-supervised domain generalization. The first setting assumes
that only a part of the samples in each domain are labeled, similar to the previous works listed in
Sec. 3.3. The other one assumes that only a part of the source domains are labeled (Lin et al., 2024).
In this paper, we followed the previous SS-DGOD work (i.e., CDDMSL (Malakouti & Kovashka,
2023)) and tackled the second setting. To confirm the effectiveness of the Mean Teacher framework
and the regularization on the other setting is one of our future works.

D.2 BROADER IMPACTS

In this work, we tackled the task of semi-supervised and weakly-supervised domain generalization
for object detection (SS-DGOD and WS-DGOD), which are more practical settings than previous
works. Also, we showed the good performance of the Mean Teacher learning framework, its inter-
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(a) Gaussian FasterRCNN trained on Single-DGOD setting (i.e., labeled data on daytime-sunny).

(b) Gaussian FasterRCNN + EMA + PL + Regul. trained on SS-DGOD setting (i.e., labeled data on daytime-
sunny and unlabeled data on night-sunny and daytime-foggy).

Figure 16: Qualitative comparisons on night-rainy.

pretations, and a simple regularization method to boost the performance. Therefore, we believe that
this paper has a potential positive social impact to enable practitioners or researchers to train robust
object detectors to unseen domains in a simpler way than previous approaches. In addition, because
Mean Teacher has been used across various tasks, our novel interpretation of why Mean Teacher
becomes robust to unknown domains is likely to have a broad impact across a wide range of tasks.
We are unable to identify any pertinent information concerning potential negative impacts.

E REPRODUCIBILITY STATEMENT

We submit the source code that can reproduce the results in this paper as a supplemental zip file.
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