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Abstract

Large language models (LLMs) achieve strong001
performance but suffer from slow and costly002
inference. Existing acceleration methods of-003
ten lead to noticeable performance degrada-004
tion, while Mixture-of-Experts (MoE) models005
require extensive computational resources. In006
this paper, we propose L0-MoE, a lightweight007
MoE approach using L0-regularization to accel-008
erate dense LLMs nearly without performance009
loss. Our method introduces a cluster confu-010
sion matrix for domain-aware dataset curation011
and applies dynamic batching for efficient train-012
ing. Experiments show that L0-MoE achieves013
up to 2.5x speedup over dense models while014
maintaining competitive performance, outper-015
forming existing LLM acceleration baselines.016

1 Introduction017

Large language models (LLMs) have demonstrated018

remarkable intelligence across various tasks (Ope-019

nAI et al., 2024; Gemini-Team et al., 2024; Dubey020

et al., 2024; Jiang et al., 2023; DeepSeek-AI et al.,021

2025; Yang et al., 2024), including question answer-022

ing, mathematics, coding, and content generation.023

A key insight into their success is the parameter024

scaling law (Kaplan et al., 2020), which suggests025

that increasing model size enhances performance026

across diverse tasks, potentially advancing artificial027

general intelligence (AGI) (Bubeck et al., 2023).028

However, larger LLMs incur high inference costs,029

leading to slower generation speeds and increased030

computational expenses. Thus, optimizing LLM031

inference efficiency has become a critical challenge032

for both academia and industry.033

Various approaches have been proposed to ac-034

celerate LLM inference, which can be categorized035

into three main techniques: (1) Quantization, in-036

cluding GPTQ (Frantar et al., 2023), SmoothQuant037

(Xiao et al., 2023), and AWQ (Lin et al., 2024),038

reduces precision by converting weights and ac-039

tivations from floating-point to lower-bit integer040

formats, significantly improving efficiency. (2) 041

Model pruning, such as LLM-Pruner (Ma et al., 042

2023) and LLM-Shearing (Xia et al., 2024), re- 043

moves redundant parameters based on predefined 044

criteria to compress models and accelerate infer- 045

ence. (3) Knowledge distillation (Gu et al., 2024; 046

Feng et al., 2024), like reverse-KD (Gu et al., 2024) 047

and Chain-of-Thought (CoT) Distillation (Feng 048

et al., 2024), transfers knowledge from large LLMs 049

to smaller ones using distillation techniques (Hin- 050

ton et al., 2015), reducing computational demands. 051

While these methods achieve substantial speedup, 052

they often come at the cost of performance degrada- 053

tion, posing challenges for real-world deployment. 054

Recently, sparsely gated Mixture-of-Experts 055

(MoE) models (Cai et al., 2024), particularly in 056

transformer-based large language models, have sig- 057

nificantly improved inference speed optimization. 058

MoE operates on a simple yet effective principle: 059

different model components, known as experts, spe- 060

cialize in distinct tasks or data aspects. For a given 061

input, only relevant experts are activated, reduc- 062

ing computational costs while leveraging a vast 063

pool of specialized knowledge. This scalable and 064

flexible approach aligns with the scaling law, en- 065

abling larger model capacities without proportional 066

computational overhead. However, current MoE 067

training focuses on training from scratch or up- 068

cycling dense LLMs, both requiring vast compu- 069

tational resources and high-quality corpora. For 070

instance, DeepSeek-V3 (DeepSeek-AI et al., 2024) 071

and Qwen2.5-Max (Yang et al., 2025) were pre- 072

trained on 14.8T and 20T tokens, respectively, with 073

additional fine-tuning, making them costly and less 074

accessible. In contrast, little research has explored 075

leveraging MoE to accelerate inference using a 076

small-scale training corpus (e.g., tens of billions of 077

tokens) while maintaining performance compara- 078

ble to dense LLMs. This direction is particularly ap- 079

pealing for large-scale industrial applications with 080

cost-sensitive deployment constraints. 081
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To address this issue, we propose L0-MoE,082

a mixture-of-experts (MoE) model built via L0-083

regularization (Louizos et al., 2018) using a small,084

curated 30B-token corpus. Our approach has two085

key components: (1) L0-regularization selects crit-086

ical hidden dimensions in transformer MLPs to087

form experts. (2) A cluster confusion matrix088

(CCM)-based sampling method curates the train-089

ing corpus and schedules dynamic batching. Us-090

ing the BGE-M3 encoder (Chen et al., 2024) and091

K-means clustering (Jin and Han, 2010), we ex-092

tract diverse semantic domains from RedPajama093

(Weber et al., 2024) to construct expert-relevant094

sub-datasets. A gating mechanism and dynamic095

batching optimize training. L0-MoE achieves 2.5×096

inference speedup with no obvious performance097

loss across four benchmarks. Our contributions are098

as follows: 1) We introduce a novel MoE build-099

ing method leveraging L0-regularization, enabling100

efficient LLM inference acceleration with mini-101

mal training cost. 2) We propose a CCM-based102

corpus curation and dynamic batching strategy for103

effective MoE training. 3) Extensive experiments104

validate the efficiency of our method in achieving105

inference speedup while maintaining performance.106

2 Preliminary107

2.1 L0-regularization108

L0-regularization (Louizos et al., 2018) is a pow-109

erful technique for feature selection and parameter110

pruning in neural networks. It imposes a penalty111

on parameters that deviate from zero, without addi-112

tional constraints. This approach enhances model113

efficiency by eliminating unnecessary computa-114

tions and resources, as irrelevant parameters are115

pruned and thus not computed. For a given weight116

matrix W ∈ Rm×n, a mask matrix Z ∈ 0, 1n is117

employed to derive a reduced weight g(W,Z) ∈118

Rm×n0, where g selects n0 < n columns from W119

using Z. Due to the non-differentiable nature of120

Z, optimizing it is challenging. To address this,121

the binary hard concrete function is introduced for122

L0-regularization, as shown in Equation 1.123

u ∼ U
s = Sigmoid((log(u)− log(1− u) + loga)/b)

s̄ = s(ζ − γ) + γ
z = min(1,max(0, s̄))

(1)124

The uniform distribution U is defined over the125

interval [0,1]. We set the hyper-parameters as126

b = 0.83, ζ = 1.1, and γ = −0.1 by follow-127

ing (Louizos et al., 2018). Using the learned z,128

we estimate the proportion of retained weights as 129

r̂ = sum(z)
m∗n . To effectively control the desired 130

retention ratio r for a given weight matrix W , we 131

employ a Lagrangian multiplier (Wang et al., 2019), 132

as described in Equation 2. 133

Ll0 = λ1(r̂ − r) + λ2(r̂ − r)2 (2) 134

We initialize the learnable parameters λ1 and 135

λ2 to 0 in our experiments. In our approach, r 136

represents the retention ratio of the feed-forward 137

network (FFN) up-projection dimension. 138

2.2 Mixture of Expert 139

Mixture of Experts (MoE) (Cai et al., 2024) em- 140

ploys a modular architecture comprising a gating 141

network and multiple expert networks to enhance 142

efficiency and performance through parameter scal- 143

ing. This architecture partitions the model into sev- 144

eral experts, each specializing in specific subsets of 145

input data. MoE utilizes a gating mechanism with a 146

router to dynamically select the appropriate experts 147

for processing incoming inputs, allowing the model 148

to concentrate on relevant features while minimiz- 149

ing unnecessary computations. In our approach, 150

the router is implemented as a linear projection 151

layer Wrouter ∈ Rd×N . MoE incorporates two 152

auxiliary losses (Equation 3), such as the load bal- 153

ancing loss Lbalance (Fedus et al., 2022) and the 154

router Z-Loss Lz (Zoph et al., 2022), to promote 155

a balanced distribution of inputs among experts. 156

These losses penalize high values in the logits pro- 157

duced by the gating network, encouraging a more 158

even allocation of tokens to experts. 159

Laux = Lbalance + λLz

Lbalance =
∑i=N

i=1 ( ciB − 1
N )2

Lz =
1
B

∑B
1 (log(

∑N
i ex

(j)
i ))

(3) 160

Here ci represents the tokens of the ith expert, 161

and N denotes the number of experts. The batch 162

contains B tokens. The logit for the jth token from 163

the ith expert, as determined by the router module, 164

is denoted as x(j)i . 165

3 Approach 166

3.1 Cluster Confusion Matrix based Sampling 167

Given a pretraining corpus, we construct training 168

datasets via the following steps: 1) Randomly sam- 169

ple a small subset without replacement and use the 170

BGE-M3 encoder (Chen et al., 2024) to extract 171

dsv-dimensional semantic vectors for each sample. 172

2) Apply the K-means clustering algorithm (Jin 173

and Han, 2010) to the semantic vectors to identify 174
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K centers C ∈ RK×dsv . Divide the small subset175

into K folds and sample m instances from each176

fold to form a dataset Dsl = {Ds1 , . . . , DsK} for177

domain semantic learning, where |Dsk | = m for178

1 ≤ k ≤ K. 3) Repeat steps 1 and 2 for Q it-179

erations to obtain Q ×K centers and Q datasets.180

For the lth iteration (l = {1, 2, . . . , Q}), the clus-181

ter centers are C(l) ∈ RK×dsv and the constructed182

dataset is D(l)
sl .183

CCM [i, l] = (f1 + f2) ∗ f3
f1(i, l) =

1
K

∑k=K
k=1 e1−sim(Ci,C

(l)
k )

f2(i, l) =
1
K

∑k=K
k=1 e1−sim(Ck,C

(l)
i )

f3(i, l) = δ
∑k=K

k=1 e
sim(C

(l)
k

,C
(l)
i

)∑k=K
k=1 esim(Ck,Ci)

(4)184

We define the clustering confusion matrix185

(CCM) as per Equation 4, where δ = 0.1 is a186

hyperparameter, Ci represents the ith center vector,187

and CCM [i, l] denotes the clustering confusion188

value for the ith center at iteration l. The hypoth-189

esis posits that the semantic domain distance for190

the ith center between Ci and C
(l)
i can be assessed191

using bidirectional inter-clustering (f1 and f2) and192

intra-clustering (f3) cosine similarity. A larger se-193

mantic domain distance indicates that D(l)
sl from194

the lth iteration divides domains more distinctly.195

We compute the domain semantic distance using196

Equation 5 and reorder the Q datasets based on197

d
(l)
ds . In addition to the initial D(0)

sl , our datasets198

now include Q− 1 ordered datasets Dord(l)
sl , where199

ord(l) is the order index.200

d
(l)
ds = max(CCM [:, l])+

β

K

i=K∑
i=1

CCM [i, l] (5)201

3.2 Expert Construction via L0-regularization202

We construct the experts using pretrained check-203

points of dense LLMs. The intermediate size of the204

feed forward network (FFN) layer is dint, and we205

apply a mask Z ∈ Rdint . For each domain subset206

Dsk (k ∈ {1, 2, . . . ,K}) derived from the initial207

D
(0)
sl , we employ the LLM pretraining loss Lllm208

along with the L0-regularization loss, as specified209

in Equation 1, to select r ∈ (0, 1)*100% of the210

dimensions from dint, following Equation 6.211

Lexp = Lllm + Ll0 (6)212

To ensure stable training, we gradually adjust r213

from 100% to the target ratio rtarget. We freeze214

all non-MLP parameters of dense LLMs, and the215

L0-regularization-based training yields K experts,216

each specialized for distinct semantic domains.217

3.3 Dynamic Batching for MoE Training 218

To train the MoE to effectively select appropriate 219

experts based on inputs, we follow Equation 7, 220

where Laux is defined in Equation 3. The MoE is 221

initialized with K pre-trained experts and a router 222

for each MoE layer. 223

L = Lllm + αLaux (7) 224

We employ a two-loop batch construction strat- 225

egy during training: 1) domain semantic distance 226

scheduling, where we begin with D
ord(l)
sl having a 227

lower dds; 2) multi-domain gathering scheduling, 228

where samples in D
ord(l)
sl are arranged in a cyclic 229

sequence order x1i , x
2
i , . . . , x

K
i , and we select p∗K 230

(p = {1, 2, 3, . . .}) samples to form a batch. This 231

scheduling offers two advantages: 1) In the initial 232

iterations, the MoE rapidly learns to select appro- 233

priate experts since the domain samples in Dsl have 234

been previously encountered by the experts. Con- 235

sequently, the sequence-level selection capabilities 236

of routers are effectively initialized. 2) As train- 237

ing progresses, the domains in D
ord(l)
sl gradually 238

transition to different semantic spaces, encourag- 239

ing routers to select multiple experts for each input 240

sample. This enhances the token-level selection 241

capabilities of the routers. 242

4 Experiments 243

4.1 Experimental Setup 244

We train on the RedPajama dataset (Weber et al., 245

2024), a replicated pre-training corpus for LLaMA 246

models, following prior work (Xia et al., 2024). 247

Evaluation is conducted on four public benchmarks: 248

MMLU (Hendrycks et al., 2021), GSM8K (Cobbe 249

et al., 2021), HumanEval (Chen et al., 2021), and 250

BigBench Hard (BBH) (Suzgun et al., 2023). Each 251

benchmark evaluates distinct aspects of model per- 252

formance, offering insights into the strengths and 253

limitations of LLMs. To assess effectiveness and 254

versatility, we evaluate our method on three open- 255

source LLMs: Llama-3-8B (Dubey et al., 2024), 256

Mistral-7B (Jiang et al., 2023), and Qwen2-7B 257

(Yang et al., 2024). Comparisons include L0- 258

regularized MoEs, original LLMs, and inference 259

optimization techniques such as GPTQ quantiza- 260

tion (Frantar et al., 2023), LLM Shearing pruning 261

(Xia et al., 2024), and RKD+CoT knowledge dis- 262

tillation (Gu et al., 2024; Feng et al., 2024). For 263

CCM, we run 21 iterations, collecting 30B tokens. 264

Experiments use a cluster/expert size of K = 64 265

with linear warmup, annealing, and a peak learning 266

rate of 1e-4. Further details are in Appendix A.2. 267
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Model MMLU GSM8K HumanEval BBH Average Speedup
Llama-3-8B 66.6 56.0 33.5 57.7 53.5

Llama-3-8B w/ L0-MoE 66.3 55.9 33.7 57.2 53.3 2.0x
Mistral-7B 64.1 52.2 29.3 56.1 50.4

Mistral-7B w/ L0-MoE 64.8 53.6 31.1 55.9 51.4 2.1x
Qwen2-7B 70.3 79.9 51.2 62.6 66.0

Qwen2-7B w/ L0-MoE 70.4 80.5 52.0 61.5 66.1 2.5x

Table 1: Evaluation of different LLMs on MMLU, GSM8K, HumanEval and BBH benchmarks.

4.2 Main Results268

Table 1 presents the model with the highest per-269

formance under our settings. The L0-MOE consis-270

tently achieves a 2-2.5x inference speedup across271

all base LLMs. Additionally, L0-MOE maintains272

performance comparable to the base LLMs across273

four benchmarks, with the L0-MOE variant of Mis-274

tral even demonstrating a 1% average performance275

improvement. Table 2 compares these results with276

other inference acceleration baselines, which, de-277

spite achieving some speedup, exhibit noticeable278

performance degradation.279

Model MMLU GSM8K Speedup
Qwen2-7B 70.3 79.9 -
L0-MoE 70.4 80.5 2.5x

GPTQ 67.8 73.8 1.8x
LLM Shearing 68.2 75.5 2.6x
RKD + CoT 61.2 60.2 5.1x

Table 2: Comparison with other inference acceleration
baselines. We employ Qwen2-7B as the base LLM.

Model MMLU GSM8K
L0-MoE 70.4 80.5

CCM w/o K-means 68.2 78.1
w/ random order batching 68.2 75.5
w/ random batch batching 66.6 77.1

Random MoE 48.1 69.6
Magnitude 52.6 69.1

OBS 68.4 74.1
SVD 55.2 73.8

Table 3: Ablation study of CCM and L0-regularization.
We conduct experiments on MMLU and GSM8K
datasets with Qwen2-7B.

4.3 Ablation Study280

Table 3 presents the ablation study on the CCM281

module, dynamic batching, and L0-regularization.282

Removing the K-means clustering from the CCM283

module results in a performance decline, underscor-284

ing the importance of effective sub-dataset curation.285

For dynamic batching, substituting it with random286

order or random batch scheduling also leads to de-287

graded performance. In the context of MoE expert288

construction, we replace L0-regularization with289

four alternative methods: 1) Random MoE, which290

selects MLP dimensions randomly, 2) Magnitude291

(Sun et al., 2023), which selects the largest values292

in the weights matrix, 3) OBS (Frantar et al., 2021; 293

Frantar and Alistarh, 2022), which identifies the 294

most important dimensions using the OBS Hessian 295

matrix, and 4) SVD (Wang et al., 2024), which de- 296

composes the weights matrix using singular values 297

to select the most significant columns. The results 298

demonstrate the superiority of L0-MoE over them. 299

Model MMLU #Para.(B) Speedup
L0-MoE 70.4 23.3 2.5x

CCM Iter. (Q = 2) 68.2 23.3 2.5x
CCM Iter. (Q = 5) 68.8 23.3 2.5x

CCM Iter. (Q = 10) 69.7 23.3 2.5x
Expert size (K = 8) 50.9 4.8 4.6x

Expert size (K = 32) 69.2 12.7 3.2x

Table 4: Hyper-parameter tuning of sampling iterations
(Q) and cluster size (K), keeping 2.8B activated parame-
ters for L0-MoE. Qwen2-7B is the base LLM. #Para.(B)
is the number of model parameters.

4.4 Discussion 300

Our approach involves two critical hyperparame- 301

ters: the sampling iterations Q in CCM curated 302

datasets and the expert size K in MoE. Table 4 pro- 303

vides a detailed overview of hyperparameter tun- 304

ing. Increasing the number of iterations for CCM 305

enhances performance but also demands greater 306

computational resources. We find that an initial 307

iteration plus 20 additional iterations suffice to op- 308

timize model performance. While increasing the 309

number of experts improves performance, it also 310

reduces inference speed. Therefore, we select an 311

appropriate expert size to balance performance en- 312

hancement and LLM acceleration. 313

5 Conclusion and Future Work 314

In this paper, we propose a novel Mixture-of- 315

Experts based approach to accelerate LLM infer- 316

ence, leveraging clustering confusion matrix for 317

dataset curation, L0-regularization for expert selec- 318

tion, and dynamic batching for efficient training 319

with only 30B tokens. Our method achieves a 2.5× 320

speedup over dense LLMs, outperforming strong 321

baselines nearly without performance loss. Future 322

work will explore scaling our approach to larger 323

LLMs and expanding the corpus size to further en- 324

hance L0-MoE performance beyond dense LLMs. 325
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Limitations326

We did not compare our method with MoEs such327

as DeepSeek-MoE (Dai et al., 2024), Qwen-MoE328

(Team, 2024), and Mixtral (Jiang et al., 2024),329

which scale up model parameters in dense models330

with immense computational costs, processing tril-331

lions of tokens. In contrast, our approach utilizes332

only 30B tokens, making it more comparable to333

baseline post-training inference speedup methods.334

Despite the promising results, several limitations335

remain: (1) The dataset for training each expert is336

selected via sequence-level semantic clustering, in-337

troducing exposure bias since MoE expert selection338

is performed at the token level. (2) The method339

does not explicitly measure inter-expert differences,340

potentially leading to redundant parameters that341

hinder L0-MoE’s inference acceleration. Future342

work should explore token-level dataset partition-343

ing to mitigate exposure bias. Additionally, novel344

learning paradigms are needed to reduce parameter345

redundancy and enhance expert routing efficiency.346
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A Appendix547

This section provides further details on the model548

architecture, experimental setup (including evalua-549

tion tasks, baselines, and hyperparameter settings),550

and implementation details.551

A.1 Model Architecture552

Table 5 presents the detailed architecture of the553

baseline models and L0-MoE. All models incorpo-554

rate group query attention (GQA) (Ainslie et al.,555

2023) within the self-attention layer. For the L0-556

MoE models, the bottom 4 layers (for Qwen2) and557

8 layers (for Mistral and Llama3) are configured558

as dense layers, while the remaining layers are559

transformed into MoE layers. We select the top-2560

experts for each input token.561

A.2 Experimental Setups562

Evaluation Tasks. We assess performance on563

four public benchmarks: MMLU (Hendrycks et al.,564

2021), GSM8K (Cobbe et al., 2021), HumanEval565

(Chen et al., 2021), and BigBench Hard (BBH)566

(Suzgun et al., 2023).567

• MMLU (Massive Multitask Language Under-568

standing) (Hendrycks et al., 2021) comprises569

57 tasks spanning diverse subjects, includ-570

ing STEM (Science, Technology, Engineer-571

ing, and Mathematics), humanities, social sci-572

ences, and specialized domains such as law573

and ethics.574

• GSM8K (Grade School Math 8K) (Cobbe575

et al., 2021) is a benchmark designed to as-576

sess the mathematical reasoning capabilities577

of LLMs, containing 8,500 high-quality ele-578

mentary math word problems.579

• HumanEval (Chen et al., 2021) evaluates the580

code generation capabilities of LLMs through581

164 programming tasks, each requiring the582

model to generate a function that satisfies a583

given set of test cases.584

• BBH (BIG-Bench Hard) (Suzgun et al., 2023)585

is a subset of the larger BIG-Bench dataset,586

consisting of 23 highly challenging tasks de-587

signed to exceed the capabilities of current588

LLMs. These tasks demand creative problem-589

solving and deep domain expertise.590

Baselines. We compare the L0-regularized MoEs591

with the original LLMs and other LLM inference592

optimization methods, including the quantization 593

baseline GPTQ (Frantar et al., 2023), the model 594

pruning baseline LLM Shearing (Xia et al., 2024), 595

and the knowledge distillation baseline RKD + CoT 596

(Gu et al., 2024; Feng et al., 2024). 597

• GPTQ (Frantar et al., 2023) is a block-wise 598

quantization method that extends traditional 599

power-of-two quantization by allowing non- 600

uniform bin widths, enabling a better approx- 601

imation of the original floating-point value 602

distribution. 603

• LLM-Shearing (Xia et al., 2024) employs 604

structured pruning to construct lightweight, 605

structured LLMs from pretrained checkpoints. 606

It jointly removes attention heads, layers, feed- 607

forward networks (FFNs), and hidden dimen- 608

sions in an end-to-end manner to optimize 609

efficiency. 610

• RKD + CoT: We apply RKD (Gu et al., 2024) 611

to distill the CoT (Feng et al., 2024) capabil- 612

ities of Qwen2-7B into Qwen2-1.5B. RKD 613

(Gu et al., 2024) aligns the student model 614

with the teacher’s distribution using reverse 615

Kullback-Leibler divergence (KLD), encour- 616

aging the student to focus on the most proba- 617

ble outcomes. This helps preserve the quality 618

of the student model’s predictions by distilling 619

Chain-of-Thought (CoT) reasoning from the 620

teacher model. 621

Alternatives to L0-regularization. We pro- 622

vide a detailed description of the variants of L0- 623

regularization in Table 3. Each of these variants 624

leverages specific model compression principles to 625

identify and retain the most important dimensions 626

in expert construction. 627

• Random MoE: Selects MLP dimensions ran- 628

domly, serving as a baseline to assess the ne- 629

cessity and effectiveness of dimension selec- 630

tion in expert construction. 631

• Magnitude (Sun et al., 2023)): Selects the 632

most influential elements in the weight matrix, 633

improving upon traditional magnitude prun- 634

ing by considering both the weights and their 635

corresponding input activations using the L2 636

norm. 637

• OBS (Frantar et al., 2021; Frantar and Alis- 638

tarh, 2022)): Identifies the most critical dimen- 639

sions using the OBS Hessian matrix, which 640
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Model Parameters(B) Layer Hidden Q/KV FFN MoE FFN Experts
Llama-3-8B 7.5 32 4096 32/8 14336

Llama-3-8B w/ L0-MoE 25.1/3.2 32/24 4096 32/8 14336 1024 64:2
Mistral-7B 7.1 32 4096 32/8 14336

Mistral-7B w/ L0-MoE 24.7/2.9 32/24 4096 32/8 14336 1024 64:2
Qwen2-7B 7 28 3584 28/4 18944

Qwen2-7B w/ L0-MoE 23.3/2.8 28/24 3584 28/4 18944 1280 64:2

Table 5: Detailed model architecture parameters. We denote the total and activated parameters of the MoEs, as
well as the total layers and MoE layers, using the format “32/24”, etc. All models utilize GQA, and we present the
query/key-value heads. “FFN” refers to the dense decoder MLP size, while “MoE FFN” indicates the intermediate
size of the expert for the MoE layer. The total and activated experts are represented as “64:2”, etc.

encapsulates second-order derivative informa-641

tion of the loss function with respect to model642

parameters. This approach is crucial for both643

pruning and quantization, as it helps retain the644

weights that most significantly impact model645

performance.646

• SVD (Wang et al., 2024)): Decomposes the647

weight matrix using singular value decompo-648

sition (SVD) and selects the most significant649

columns. By retaining only the largest singu-650

lar values, it reduces parameter count while651

preserving essential information. This trunca-652

tion minimizes compression loss, and layer-653

wise updates further fine-tune the model to654

maintain accuracy.655

Hyper-parameter Setting. The detailed hyper-656

parameter settings are presented in Table 6. This657

includes the hyper-parameters for the clustering658

confusion matrix (CCM) as well as those for MoE659

training.

CCM Hyper-parameters
Q 21
K 64
dsv 1024

D
(0)
sl

12B tokens;
|D(0)

si | ≈ 0.15B

D
(l)
sl , l ≥ 1

0.9B tokens;
|D(0)

si | ≈ 0.007B
MoE Training Hyper-parameters

Sequence length 4096
Learning rate 1e-4
Warmup ratio (expert) 0.2
Warmup ratio (MoE) 0.06
Warmup type Linear
Annealing ratio 0.1
Annealing type Cosine
Batch tokens 512K
α in Eq. 7 0.01
β in Equation 5 0.5
λ in Eq. 3 0.3
Training epoch 1

Table 6: Hyper-parameters for CCM and MoE training.
660

A.3 Implementation Details 661

We train our model using the FSDP framework1, 662

employing a layer-wise wrapping policy with the 663

Zero-3 parameter sharding strategy, without CPU 664

offloading. For inference during evaluation, we 665

utilize the SGlang framework2, which is highly 666

optimized for the efficient execution of both dense 667

LLMs and MoEs. To ensure a fair comparison, we 668

strictly adhere to the original evaluation settings for 669

each benchmark. To support future research, we 670

will release our curated dataset and code to enhance 671

the reproducibility of our work. 672

1https://pytorch.org/docs/stable/fsdp.
html

2https://github.com/sgl-project/sglang

8

https://pytorch.org/docs/stable/fsdp.html
https://pytorch.org/docs/stable/fsdp.html
https://github.com/sgl-project/sglang

	Introduction
	Preliminary
	L0-regularization
	Mixture of Expert

	Approach
	Cluster Confusion Matrix based Sampling
	Expert Construction via L0-regularization
	Dynamic Batching for MoE Training

	Experiments
	Experimental Setup
	Main Results
	Ablation Study
	Discussion

	Conclusion and Future Work
	Appendix
	Model Architecture
	Experimental Setups
	Implementation Details


