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Abstract

In the domain of computer vision, Parameter-
Efficient Training (PET) is increasingly replacing
the traditional paradigm of pre-training followed
by full fine-tuning. PET is particularly favored
for its effectiveness in large scale models, as it
streamlines transfer learning costs and optimizes
hardware utilization. However, the prevailing PET
methods are primarily designed for single-modal
optimization without fine-grained feature extrac-
tion design. When applied to multi-modal dense
prediction tasks, these methods typically do not
match the performance of full fine-tuning meth-
ods that utilize more resources. In this paper, we
do an investigation of efficient training problems
on referring image segmentation. We introduce
DenseCrossAdapter, a parameter-efficient mod-
ule designed to enhance low-rank visual feature
propagation by establishing dense interconnec-
tions between each layer and all preceding layers.
This facilitates robust cross-modal feature inter-
action. We also suggest using text adapters to
improve textual features. Our approach greatly
surpasses state-of-the-art methods with only 0.9%
to 1.8% backbone parameter updates, evaluated
on challenging benchmarks.

1. Introduction
In the realm of computer vision, Parameter-Efficient Train-
ing (PET) is rapidly emerging as a superior alternative to
the traditional approach of pre-training followed by full fine-
tuning. PET is particularly advantageous for large-scale
models because it significantly reduces the costs associ-
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ated with transfer learning and optimizes the utilization of
computational resources.

Despite their benefits, current PET methods are often lim-
ited to single-modal optimization and lack a fine-grained
feature extraction design. This limitation becomes apparent
when these methods are applied to multi-modal dense pre-
diction tasks. They typically fail to match the performance
of full fine-tuning methods that leverage more extensive
resources (Liu et al., 2024c). One such challenging task is
Referring Image Segmentation (RIS), which involves pre-
dicting the mask of a target object within an image based
on a natural language description. Unlike semantic seg-
mentation, which assigns predefined labels to each pixel,
RIS requires a more sophisticated understanding of both lan-
guage and visual content to accurately identify the described
object. The significance of RIS lies in its ability to bridge the
gap between natural language descriptions and fine-grained
visual perception (Liu et al., 2024b; Ji et al., 2024). This
capability is pivotal for the advancement of artificial intel-
ligence, especially in autonomous systems, image-based
retrieval, and human-computer interaction. The complexity
of RIS stems from the need to interpret variable context
lengths and to understand an open-world vocabulary en-
compassing a diverse range of object names, attributes, and
positional references (Li et al., 2024b; Wu* et al., 2024).
The requirement for precise segmentation of referring ob-
jects elevates this dense prediction task to one of the most
formidable challenges of vision-language understanding.

For these challenging vision-language tasks, a prevalent
trend is to scale up foundational models (Radford et al.,
2021; Li et al., 2022b; Oquab et al., 2023; Fang et al., 2023).
These models leverage large datasets to learn a comprehen-
sive set of visual features. In return, the scale-up process
not only enhances their ability to discern subtleties in vi-
sual data but also significantly boosts their generalization
capabilities, demonstrating a robustness that is essential for
real-world applications. However, there often exists a gap
between the pre-trained tasks of these models and the spe-
cific requirements of downstream applications. Bridging
this gap through efficient adaptation presents a formidable
challenge. Recent studies (Wang et al., 2022; Ding et al.,
2022; Yang et al., 2022; Liu et al., 2023a) have demonstrated
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the effectiveness of fine-tuning powerful pre-trained mod-
els for referring image segmentation. However, a common
challenge is that they typically require full fine-tuning to
adapt to dense prediction tasks. This process can lead to
the loss of valuable pre-training knowledge, as it involves
adjusting a large number of parameters that were previously
optimized during the pre-training phase (Kim et al., 2022;
Liu et al., 2023a;b). Moreover, these approaches maintain a
distinct set of fine-tuned parameters of pre-trained models
for each dataset, which can lead to substantial deployment
costs. The problem becomes particularly serious when con-
sidering the ever-growing size of pre-trained models, which
now include parameters ranging from hundreds of millions
to trillions (Li et al., 2022a; Zhou et al., 2022; Chen et al.,
2022b; Sun et al., 2023).

Considering the above problems, we extend the discussion
of ETRIS (Xu et al., 2023): Is it possible for a model, with
its pre-trained backbone parameters fixed, to surpass the
performance of existing full fine-tuned methods? Various
parameter-efficient training methods have been developed
to achieve an optimal equilibrium between operational ef-
ficiency and model performance (Gao et al., 2021; Chen
et al., 2022a; Zhou et al., 2022; Wang et al., 2023; Li et al.,
2023; Liu et al., 2024b). However, despite these contri-
butions, most existing methods are limited in their scope,
predominantly applied to single-modality tasks (Guo et al.,
2020; Houlsby et al., 2019; Chen et al., 2022c) or sim-
ple classification problems (Gao et al., 2021; Chen et al.,
2022a; Zhou et al., 2022). There remains a notable gap
concerning dense prediction tasks and the nuanced interac-
tions between multiple modalities. Pioneering works like
ETRIS and BarleRIa (Wang et al., 2023) aimed to parameter-
efficient fine-tuning CLIP (Radford et al., 2021) on referring
image segmentation, but they faced several limitations: (i)
These methods primarily relied on the early-stage fusion
of multimodal features from the backbone, missing out on
the benefits of more comprehensive global features, leading
to suboptimal results. (ii) Furthermore, existing parameter-
efficient modules, such as Bridger (Xu et al., 2023) and
GST (Wang et al., 2023), are constrained by their limited
application of multi-scale modeling. Their approach, which
focuses on adjusting channel dimensions and using multi-
head attention mechanisms, is insufficient for capturing the
full complexity of visual data across different scales.

Our method addresses this question by introducing a novel
approach that enhances the effectiveness of adapting pre-
trained vision-language models. In detail, we propose an
adapter named DenseCrossAdapter, which can be seam-
lessly integrated into the pre-trained model for dense pre-
diction tasks. There are two tailored modules for Dense-
CrossAdapter: (i) a densely connected prior module for
capturing the local multi-scale semantics feature maps of
the intermediate layer and (ii) a cross-modal attention mod-

ule that enables information exchange between visual and
textual features. Secondly, we propose incorporating text
adapters to enhance the text encoder. We further leverage
these enhanced features to improve alignment between vi-
sual and linguistic features.

Our framework is constructed around a dual-encoder ar-
chitecture. Unlike previous methods, we have selected
DINO (Oquab et al., 2023) to act as our visual encoder.
The reason we chose DINO as our vision backbone is based
on several insights: (i) DINO’s self-supervised learning
approach provides robust generalization and is more advan-
tageous for dense prediction tasks compared to CLIP (Rad-
ford et al., 2021). (ii) The lack of multimodal pre-training
in DINO, notably in visual-text alignment, poses challenges
for its direct application on referring image segmentation.
This gap highlights the essential role of our proposed mod-
ule in enhancing the model’s capabilities, particularly in
improving fine-grained vision language alignment. Our
main contributions are as follows:

• We introduce the pre-trained model DINO in RIS tasks
and provide an effective training strategy for fine-grained
alignment that avoids the need for intricate design.

• We propose a novel DenseCrossAdapter that can be seam-
lessly integrated into the pre-trained backbone to enhance
and interact with its intermediate features. This integra-
tion enhances DINO’s alignment with language and im-
proves its performance on dense prediction tasks.

• Experiments demonstrate that our method greatly sur-
passes state-of-the-art full fine-tuned methods in referring
image segmentation, with only 0.9% to 1.8% backbone
parameter updates.

2. Related Work
Parameter Efficient Training (PET) aims to streamline
the process of adapting pre-trained models to new tasks
with minimal parameter adjustments, making it a practical
solution for deploying large models to individual users, par-
ticularly in the face of expanding model sizes. Previous PET
methods can be mainly divided into three types: (i) updating
newly added parameters to the model or input (Houlsby
et al., 2019; Li & Liang, 2021; Zhou et al., 2022; Li et al.,
2024a; Liu et al., 2024a); (ii) sparsely updating a small num-
ber of parameters of the model (Guo et al., 2020; Zaken
et al., 2021); (iii) low-rank factorization for the weights to
be updated (Hu et al., 2021; Karimi Mahabadi et al., 2021;
Hao et al., 2023). However, previous works applying PET
in computer vision mainly focus on classification and gen-
eration tasks. How to efficiently update and transfer the
pre-trained knowledge space to dense prediction tasks re-
mains a great challenge. Pioneering works like ETRIS (Xu
et al., 2023) and BarleRIa (Wang et al., 2023) sought to
utilize adapters to fine-tune CLIP (Radford et al., 2021)

2



Submission for the WANT@ICML 2024

Block 

Block

Task
Decoder

… Block Block 

BlockBlock …

TA

DA

Visual Features �v

Textual Global Prior

Textual Features ��
 

Tunable

Frozen

Sheep looking 
left in front

DA DA

…

TA TA

M
LP

M
H

A

 Adaptation

Layer 
N

orm

TA/DA

Layer
 N

orm

D
ow

n

R
eLu

U
p

��

DenseCross Adapter (DA)

D
ow

n

R
eLu

1×
1

3×
3

5×
5

M
H

C
A

U
pCCC

Text Adapter (TA)

C Concat

Add

Figure 1. Overall framework of our DCRIS. In the text branch, we obtain the text feature ft using text blocks with Text Adapters (TA). In
the image branch, we utilize DenseCross Adapters (DA) to facilitate cross-modal and multi-scale modeling of low-rank visual features.
This approach incorporates textual global prior information to enhance the visual features fv .

for referring image segmentation. However, their proposed
modules like Bridger (Xu et al., 2023) and GST (Wang
et al., 2023) are insufficient for capturing the complexity of
multi-scale visual features.

Referring Image Segmentation (RIS) aims to segment the
target objects referred to by natural language descriptions.
It necessitates the models to comprehensively associate di-
verse visual content and linguistic signals. The genesis
of this field can be traced to CNN-LSTM-based methods,
such as the Referring Relation Network (RRN) (Li et al.,
2018) and the Recurrent Multimodal Interaction (RMI) (Liu
et al., 2017). These early methods used CNN and LSTM
networks to separately extract visual and linguistic features,
which were then combined to form cross-modal representa-
tions for segmentation by an FCN. The advent of the Trans-
former model has catalyzed a paradigm transformation of
integrating features across diverse modalities by attention
mechanism (Yang et al., 2022; Liu et al., 2023a; Yan et al.,
2023; Liu et al., 2023b). Among them, MDETR (Kamath
et al., 2021) and VLT (Ding et al., 2022) have demonstrated
remarkable performance across various Vision-Language
(VL) tasks by integrating multi-modal attention interac-
tion and query representation. Capitalizing on the robust
image-text alignment capabilities of CLIP, CRIS (Wang
et al., 2022), ETRIS (Xu et al., 2023) and UniLSeg (Liu
et al., 2023c) zeroes in on sentence-pixel alignment to har-
ness the wealth of multi-modal correspondences. How-
ever, existing methods primarily concentrate on the design
of visual-linguistic interactions during the decoding phase,
while overlooking the potential to fully excavate the pre-
trained backbone networks. To this end, we propose DCRIS,
a framework that aligns features from different modalities

with the assistance of parameter-efficient modules boosting
multi-scale comprehensive updating of backbone networks.
Compared to existing fully fine-tuning methods, the pro-
posed approach achieves competitive performance while
greatly reducing the training overhead.

3. Methodology
3.1. Framework Overview

The overall framework of the proposed model is illustrated
in Figure 1. Our approach freezes the parameters of the pre-
trained backbone, ensuring parameter efficiency. The core
of the model’s design philosophy is the DenseCrossAdapter,
which is intended to facilitate interaction between cross-
modal features and inject dense prediction priors into the
pre-trained backbone. This is coupled with the incorporation
of text adapters in the text encoder to enhance fine-grained
image text alignments.

3.2. Image & Text Feature Extraction

Visual encoder. Our work adapts the distilled DINOv2
with registers (Oquab et al., 2023) as the backbone. This
model has been well-pretrained on self-supervised training
tasks and is based on ViT-B/14. Specifically, for an input
image I ∈ RH×W×3, we utilize DINOv2 enhanced with
densecross adapters to extract image features. We select
the outputs of several middle layers and the last layer as
hierarchical vision features f i

υ, i ∈ [1, 2, 3], which are used
for subsequent dense prediction modules.

Text encoder. For the input refer expression T , we utilize
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the pre-trained text transformer of CLIP (Radford et al.,
2021) for extracting text features. Text features ft and
sentence-level feature fs are extracted using a CLIP text
encoder, augmented with text adapters to guide referring
image segmentation. Considering the substantial number
of parameters the encoder occupies, and to avoid the loss
of valuable pre-training knowledge, we freeze all the en-
coder parameters during our fine-tuning method to apply it
efficiently in downstream tasks.

3.3. Local & Global Feature Interaction

As mentioned in Section 1, although DINOv2 has strong
generalization capabilities and is more advantageous than
CLIP in tasks that rely more on visual abilities, DINOv2
lacks visual-text alignment in the RIS downstream task due
to the absence of multimodal pre-training. Meanwhile, the
self-supervising tasks of DINOv2 are limited to patch-level,
lacking pixel-level information in dense prediction tasks. To
address this and enhance the model’s multi-scale modeling
capability, we designed and utilized densecross adapters to
augment the model’s vision backbone. The visual backbone
network remains fixed, with training solely focused on the
DenseCross adapter parameters.

DenseCrossAdapter. As shown in Figure 1, the proposed
DenseCross Adapter mainly differs from previous adapter
designs by integrating a densely connected prior module. A
cross-modal attention module is included between the acti-
vation and up-projection layers. This integration enhances
the model’s capability to extract dense image features and
enriches its multimodal perception abilities. In the densely
connected module, a multi-branch convolutional structure
is proposed to achieve multi-scale modeling of low-rank
visual features and acquire multi-scale prior information.
After applying linear projection and non-linear activation,
1×1, 3×3, and 5×5 convolutional kernels are used to pro-
gressively integrate outputs from the previous layer. To
ensure the module’s lightweight and efficiency, 1×1 convo-
lutions are also used before the 3×3 and 5×5 convolutions
to reduce channel dimensions. The output of the 1×1 con-
volution serves as the input for the 3×3 convolution, and
the combined outputs of the 1×1 and 3×3 convolutions
are used as the input for the 5×5 convolution. Unlike the
typical approach of directly merging multi-scale features,
this stepwise integration method intricately combines fine
details with broader contextual information. To maintain
the integrity of the original features, the initial features are
added to the final concatenated features.

Denote σ as a non-linear activation function (ReLU),
Lineardown as a downsampling operation of linear projection.
Specifically, for given input image features f l

v at layer l, this

process can be formulated as below:

F l
v = σ(Lineardown(f

l
v)),

F l
v1 = conv1×1(F

l
v),

F l
v2 = conv3×3(F

l
v, F

l
v1),

F l
v3 = conv5×5(F

l
v, F

l
v1, F

l
v2),

F l
dense = (F l

v1, F
l
v2, F

l
v3) + F l

v,

(1)

where F l
v1, F l

v2, and F l
v3 are the output features after ap-

plying respective convolutional operations, and F l
dense is the

final dense feature representation obtained by concatenating
the features from all branches and adding the initial feature
F l
v. Here, (, ) represents concatenating the features along

the dimensional direction.

Considering that textual information contains valuable refer-
ences, we utilize it as a global reference prior by integrating
it into the vision backbone network via a multi-head cross-
attention mechanism. This not only regularizes the visual
features but also aligns them better with the extracted text
features (denoted as ft). This process can be formalized as:

F l
cross = FMHCA(F

l
dense, ft) + F l

v,

f l
dc = Linearup(F

l
cross),

(2)

where FMHCA denotes multi-head cross attention, F l
cross de-

notes the fused visual feature, and Linearup represents an
operation to project the visual features back to get f l

dc. We
add the DenseCrossAdapter in parallel to the MLP layer in
the transformer block as illustrated in Figure1.

Text adapter. Acknowledging the disparities between the
text features extracted by the CLIP text encoder and the
DINO features, we incorporate a text adapter to improve
the text encoder for fine-grained alignment of linguistic and
visual features. In contrast to the DenseCross adapter, the
text adapter adopts a more straightforward design, focusing
on effectively processing and integrating text features with-
out complex structures. This minimalist approach ensures
efficient handling of textual information while maintaining
compatibility with the overall model architecture. By uti-
lizing these enhanced features, we can further improve the
alignment between visual and language features. Specif-
ically, for given input text features f l

t at layer l, the text
adapter employs a standard “Down-ReLU-Up” structure to
refine and project linguistic features. This process can be
formalized as:

F l
t = Lineardown(f

l
t),

F l
relu = ReLU(F l

t ),

f l
w = Linearup(F

l
relu),

(3)

where Lineardown represents a downsampling linear projec-
tion and Linearup denotes an upsampling operation to adapt
text features back to the original dimension.
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3.4. The Referring Image Segmentation Head

Following CRIS(Wang et al., 2022) and ETRIS(Xu et al.,
2023), we incorporate a learnable referring image segmenta-
tion head, which consists of three main components: a cross-
modal neck, a vision-language decoder, and an up-sample
projector. These components work together to extract the
cross-modal feature Fc and the textual feature Fl.

The cross-modal neck takes multiple adapted visual features
(f̂ i

υ, i ∈ [1, 2, 3]) from three layers of the visual encoder
(e.g., the 1/3, 2/3, and the last layer of the backbone) and
the adapted textual embeddings f̂t. Specifically, we employ
a multi-head cross-attention mechanism (FMHCA) with con-
volution to fuse these features, obtaining the fusion features
Ff . Subsequently, we concatenate a 2D spatial coordinate
feature Fcoord with Ff and further fuse them using a 3×3
convolution, which can be formalized as:

fc = Conv([Ff , Fcoord]), (4)

where Ff = FMHCA(f̂
i
v, f̂t) and fc denotes the combined

cross-modal feature.

The vision-language decoder further merges the compos-
ite feature fc with the textual embeddings f̂t. This fusion
process culminates in the generation of multimodal features
Fmm, encapsulating both visual and linguistic information.
Specifically, the decoder consists of three layers, each com-
posed of a multi-head self-attention layer (MHSA), a multi-
head cross-attention layer (MHCA), and a feed-forward net-
work. Within each decoder layer, the combined features fc
are fed into the MHSA layer to capture global contextual in-
formation. The MHCA layer further facilitates multi-modal
interaction by mapping visual features to queries and textual
features to keys and values. Following the MHCA layer,
an MLP block, along with layer normalization and residual
connections, further processes the output features.

An up-sampling projector further transforms the multi-
modal features Fmm and the sentence-level feature fs to
extract the cross-modal feature Fc and the transformed tex-
tual feature Fl. fs is first transformed into Fl through a
linear transformation, then split and reshaped into weights
and bias, enabling it to function as a Conv2D layer. This
Conv2D layer is used to transform the cross-modal repre-
sentation into the final mask prediction. The overall trans-
formation is achieved using a 4× upsampling followed by
convolution and linear projection:

Fc = Conv(UpSample(Fmm)),

Fl = Linear(fs).
(5)

3.5. Training Objective

For the training objective of our model, we utilize a text-
to-visual contrastive loss, denoted as Lcon, to optimize the

alignment between the text-derived features and their corre-
sponding visual pixels. This contrastive loss is designed to
both enhance the connection between text features and corre-
sponding visual pixels, and separate these text features from
any unrelated visual elements. The text-to-pixel contrastive
loss is calculated as below:

Li
con

(
F i
c , Fl

)
=

{
− log

(
σ
(
F i
c · Fl

))
, i ∈ P

− log
(
1− σ

(
F i
c · Fl

))
, i ∈ N

Lcon (Fc, Fl) =
1

|P ∪ N |
∑

i∈P∪N
Li
con

(
F i
c , Fl

)
,

(6)

where P and N denote the class of 1 and 0 in the ground
truth, and σ denotes the sigmoid function. The loss thus
penalizes incorrect alignments between features and encour-
ages the model to correctly match textual descriptions to
their associated visual representations.

4. Experiments
4.1. Datasets

We employ three challenging referring image segmentation
benchmarks in our experiments:

• RefCOCO (Kazemzadeh et al., 2014) is widely used as a
benchmark for referring image segmentation. It comprises
19,994 images annotated with 142,210 referring expres-
sions for 50,000 objects, which have been sourced from
the MSCOCO dataset through a two-player game. The
dataset is divided into four subsets, consisting of 120,624
training samples, 10,834 validation samples, 5,657 sam-
ples for testA, and 5,095 samples for testB, respectively.
The average length of the expressions is 3.6 words, and
each image contains a minimum of two objects.

• RefCOCO+ (Kazemzadeh et al., 2014) dataset consists
of 141,564 expressions with 49,856 objects in 19,992 im-
ages, which is divided into four subsets: 120,624 train,
10,758 validation, 5,726 testA, and 4,889 testB. Notably,
the RefCOCO+ dataset has been constructed to be more
challenging than the RefCOCO dataset by excluding cer-
tain types of absolute location words.

• G-Ref (Yu et al., 2016) comprises 104,560 referring ex-
pressions associated with 54,822 objects in 26,711 images.
The expressions in G-Ref were collected from Amazon
Mechanical Turk and had an average length of 8.4 words,
which included more words related to locations and ap-
pearances. We present results for both the Google and
UMD partitioning methods for G-Ref.

4.2. Implementation Details

In our experiments, we use the DINOv2-B/14 as the vision
backbone for DCRIS-B, and DINOv2-L/14 as the vision
backbone for DCRIS-L. Both models employ the text en-
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Table 1. State-of-the-art comparison of RIS methods and the PET RIS method on RefCOCO/RefCOCO+/G-Ref datasets without using
extra data and Mixed RefCOCO dataset, evaluated using the IoU metric. For Mixed RefCOCO datasets, models marked with * are tuned
using the mixed RefCOCO/RefCOCO+/G-Ref datasets. The best results are in bold.

Method RefCOCO RefCOCO+ G-Ref Avgval testA testB val testA testB val(u) test(u) val(g)

Traditional Full Fine-tuning

RRN[CVPR 18] (Li et al., 2018) 55.3 57.3 54.0 39.8 42.2 36.1 - - 36.5 43.8
MAttNet[CVPR 18] (Yu et al., 2018) 56.5 62.4 51.7 46.7 52.4 40.1 47.6 48.6 - 50.5
CMSA[CVPR 19] (Ye et al., 2019) 58.3 60.6 55.1 43.8 47.6 37.9 - - 40.0 47.0
CAC[BMVC 19] (Chen et al., 2019) 58.9 61.8 53.8 - - - 46.4 47.0 44.3 -
BRINet[CVPR 20] (Hu et al., 2020) 61.4 63.4 59.6 48.6 52.9 42.1 - - 48.0 52.5
CMPC+[TPAMI 21] (Liu et al., 2021) 61.4 64.5 59.6 49.6 53.4 43.2 - - - -
CGAN[ACMMM 20] (Luo et al., 2020) 64.9 68.0 62.1 51.0 55.5 44.1 51.0 51.7 - 55.5
LTS[CVPR 21] (Jing et al., 2021) 65.4 67.8 63.1 54.2 58.3 48.0 - - - -
VLT[ICCV 21] (Ding et al., 2022) 65.7 68.3 62.7 55.5 59.2 49.4 - - 49.8 56.7
ReSTR[CVPR 22] (Kim et al., 2022) 67.2 69.3 64.5 55.8 60.4 48.3 54.5 - 54.5 58.8
CRIS[CVPR 22] (Wang et al., 2022) 70.5 73.2 66.1 62.3 68.1 53.7 59.9 60.4 - 63.8
LAVT[CVPR 22] (Yang et al., 2022) 72.7 75.8 68.8 62.1 68.4 55.1 - - 60.5 64.9
SEEM[NeurlPS 23] (Zou et al., 2023) - - - - - - 65.6 - - -
VPD[ICCV 23] (Zhao et al., 2023) 73.5 - - 63.9 - - 63.1 - - 66.8
ReLA[CVPR 23] (Liu et al., 2023a) 73.8 76.5 70.18 66.0 71.0 57.7 65.0 66.0 62.7 67.5
CGFormer[CVPR 23] (Tang et al., 2023) 74.8 77.3 70.6 64.5 71.0 57.1 64.7 65.1 62.5 67.7
LISA-7B[CVPR 24] (Lai et al., 2023) 74.1 76.5 71.1 62.4 67.4 56.5 66.4 68.5 - 67.9
MagNet[CVPR 24] (Chng et al., 2023) 75.2 78.2 71.1 66.2 71.3 58.1 65.4 66.2 63.1 68.3

Parameter Efficient-Training

ETRIS[ICCV 23] (Xu et al., 2023) 70.5 73.5 66.6 60.1 66.9 50.2 59.8 59.9 57.9 62.8
BarLeRIa[ICLR 24] (Wang et al., 2023) 72.4 75.9 68.3 65.0 70.8 56.9 63.4 63.8 61.6 66.5
DCRIS-B (Ours) 76.4 77.9 73.7 69.8 74.4 62.6 68.4 68.5 65.9 70.8
DCRIS-L (Ours) 77.9 79.0 75.0 71.9 75.9 65.7 70.1 70.9 68.5 72.8

With Mixed Training Data

PolyFormer-L*
[CVPR 23] (Liu et al., 2023b) 76.0 78.3 73.3 69.3 74.6 61.9 69.2 70.2 - 71.6

UNINEXT-L*
[CVPR 23] (Yan et al., 2023) 80.3 82.6 77.8 70.0 74.9 62.6 73.4 73.7 - 74.4

DCRIS-L* (Ours) 80.7 82.9 77.9 73.3 78.3 65.8 74.1 75.5 - 76.1

coder from CLIP (Radford et al., 2021) as the textual en-
coder, with input images resized to 448x448 pixels. The
DenseCross Adapter with a dimension of 128 is applied at
layers [1, 3, 5, 7, 9, 11] in DCRIS-B and at layers [2, 6, 10,
14, 18, 22] in DCRIS-L. The text adapter with a dimension
of 64 is applied at layers [1, 3, 5, 7, 9, 11] in both models.
We train the entire framework for 50 epochs using the Adam
optimizer with an initial learning rate of 0.0001. The learn-
ing rate decays by a factor of 0.1 at epochs 35. Specifically,
DCRIS-B is trained on 2 A100 GPUs with a batch size of
32, while DCRIS-L is trained on 4 A100 GPUs with a batch
size of 64 and an initial learning rate of 0.0002. Following
previous methods (Yang et al., 2022; Tang et al., 2023), we
adopt IoU as the metric to evaluate performance, which
calculates the intersection regions over the union regions of
the predicted segmentation mask and the ground truth.

4.3. Main Results

We conducted a comprehensive comparison between our
proposed DCRIS models and a series of previous referring
image segmentation (RIS) methods. As demonstrated in Ta-
ble 1, our approach significantly outperforms state-of-the-art
RIS methods on three commonly challenging benchmarks.
DCRIS-B achieves an average IoU score of 70.8, while
DCRIS-L achieves an average IoU score of 72.8, represent-
ing improvements of 3.7% and 6.6% compared to the previ-
ous state-of-the-art method. Notably, our DCRIS-L model
achieves the highest scores across all evaluation tasks, with
strong performance on the RefCOCO+ and G-Ref datasets,
which present greater challenges compared to RefCOCO.

In addition to comparing against full fine-tuning methods,
we also evaluated our models in the context of parameter-
efficient training methods. Table 1 shows that DCRIS-B
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Table 2. Comparison of Parameter-Efficient Tuning Methods Using DINO-B as Backbone on RefCOCO. To ensure fairness, we kept the
original parameter settings from prior methods and also adjusted the size of rank to achieve comparable parameter counts.

Method RefCOCO Avg Parameters (M)val testA testB

Full-Tuning 65.1 68.1 61.4 64.9 149.97M
Fix Backbone 74.9 77.1 72.0 74.7 0.00 M
Adapter (Houlsby et al., 2019) 71.2 73.3 68.3 70.9 1.98M
Compacter (Karimi Mahabadi et al., 2021) 73.9 75.8 70.8 73.5 1.62M
LoRA (Hu et al., 2021) 73.4 75.7 70.2 73.1 1.57M
ETRIS (Xu et al., 2023) 74.5 76.5 72.9 74.6 1.38M

DCRIS-B (Ours) 75.8 77.7 72.9 75.5 1.34M
DCRIS-B (Ours) (Default Setting) 76.4 77.9 73.7 76.0 2.69M

and DCRIS-L both outperform existing parameter-efficient
training methods such as ETRIS and BarLeRIa. Specifi-
cally, DCRIS-B achieves a substantial improvement, and
DCRIS-L further enhances performance, demonstrating the
effectiveness of our method. As shown in Table 2, our
model maintains high efficiency with a relatively small num-
ber of training parameters, providing a compelling balance
between performance and computational efficiency.

Table 3. Ablation study on the components of DCRIS. DA stands
for DenseCross Adapter, and TA denotes Text Adapter.

DA TA RefCOCO
val testA testB

× × 74.9 77.1 72.0
✓ × 75.4 77.4 72.2
× ✓ 75.9 77.5 72.7
✓ ✓ 76.4 77.9 73.7

Table 4. Ablation study of different dimensions (Dim) of cross-
dense adapters and text adapter.

Visual Dim Text Dim Params RefCOCO
Val TestA TestB

64 64 1.91M 76.21 78.04 73.78
128 64 2.69M 76.42 77.91 73.65
128 128 3.09M 76.01 78.28 73.52
256 128 4.83M 76.40 78.04 73.42

We also conducted comparisons on mixed RefCOCO
datasets to verify the generalization ability of our models.
As shown in Table 1, our DCRIS-L model achieves the
highest average IoU score of 76.1, surpassing other state-
of-the-art methods such as PolyFormer-L and UNINEXT-L.
This demonstrates the robustness and effectiveness of our
method as the data volume increases. Our proposed DCRIS
models achieve significant improvements over existing RIS
methods, both in terms of IoU and parameter efficiency.

4.4. Ablation Study

Comparison with Other Parameter-Efficient Training
Methods. We conduct experiments comparing our Dense-
Cross Adapter and Text Adapter (DCRIS-B) approach with
other parameter-efficient training methods using DINO-B as
the backbone. To ensure fairness, we retain the original pa-
rameter settings from previous methods and adjust the rank
size to achieve comparable parameter counts. As shown in
Table 2, our DCRIS-B method shows superior performance
while maintaining efficiency. Adapter achieves an average
accuracy of 70.9% with 1.98 million parameters. Compacter
achieves 73.5% with 1.62 million parameters. LoRA achiev-
ing 73.1% with 1.57 million parameters. ETRIS reaches
74.6% with 1.38 million parameters. By adjusting the num-
ber of DenseCross Adapters from the default setting of 6 to
3, our DCRIS-B model surpasses these methods by achiev-
ing 75.5% with 1.34 million parameters, which is 0.9% of
backbone parameters, even with a smaller parameter count
than ETRIS. When the parameter count is further increased
to 2.69 million (default setting), DCRIS-B achieves the
highest average score of 76.0%, which is only 1.8% of
backbone parameters. These results suggest that previous
parameter-efficient training methods may heavily rely on
the vision-text alignment capability of pre-trained models,
which may not be as effective for the RIS downstream task.
In contrast, our method does not have this limitation and can
effectively enhance model performance. This demonstrates
the robustness and efficiency of our approach in enhancing
performance with a modest increase in parameters.

Effect of Adapter’s layers and dimensions.To determine
the optimal configuration of the DenseCross Adapter and
Text Adapter, we conducted an ablation study varying both
the number of layers and the dimensions of the adapters.
Firstly, we evaluated the impact of different numbers of
adapter layers. In this experiment, the visual DenseCross
Adapter and the textual Text Adapter were inserted at the
same layers. The results, shown in Table 5, indicated that

7



Submission for the WANT@ICML 2024

Table 5. Ablation study of different configurations of crossdense adapters and text adapters. For the “Position”, we list the i-th layers that
insert adapters in the backbone. For the “Percentage”, we calculate the percentage of updatable parameters to the fixed backbone.

Layers Position Params Percentage RefCOCO
Val TestA TestB

1 [8] 0.45M 0.30% 75.40 77.19 72.04
2 [6,11] 0.90M 0.60% 75.47 77.41 72.54
3 [4,8,11] 1.35M 0.90% 75.78 77.65 72.86
4 [3,6,9,11] 1.80M 1.20% 75.98 77.85 73.34
5 [3,5,7,9,11] 2.25M 1.50% 76.22 77.88 73.48
6 (default setting) [1,3,5,7,9,11] 2.69M 1.79% 76.42 77.91 73.65
7 [1,3,5,7,9,10,11] 3.14M 2.09% 76.19 78.07 73.41
8 [1,3,4,5,7,9,10,11] 3.59M 2.39% 75.71 77.87 73.34
12 [0,1,2,3,4,5,6,7,8,9,10,11] 5.39M 3.59% 76.11 78.07 73.49

performance generally improved as the number of layers
increased from 1 to 6, with the best results achieved at 6
layers. Beyond 6 layers, performance gains plateaued and
even slightly decreased, suggesting that additional layers
did not contribute significantly to further improvement and,
in some cases, led to overfitting.

Figure 2. Ablation study of the Adapter’s rank and comparison
with other Parameter-efficient training Methods.

Effect of DenseCross Adapter and Text Adapter. We as-
sessed the impact of the DenseCross Adapter (DA) and Text
Adapter (TA) by performing an ablation study and reporting
the results on validation and test datasets. From Table 3,
it is evident that the baseline model without either adapter
achieves the lowest average performance, with an average
score of 74.7%. Introducing only the DenseCross Adapter
yields a slight improvement, increasing the average perfor-
mance to 75.0%. This indicates that the DenseCross Adapter
enhances visual feature extraction. Applying only the Text
Adapter results in a more significant improvement, with the
average performance rising to 75.6%, demonstrating the
Text Adapter’s critical role in processing and integrating
textual information. The combined use of both adapters
produces the highest performance across all datasets, with
an average score of 76.0%. This synergistic effect under-

scores the importance of integrating both visual and textual
adaptations to enhance the model’s capability in cross-modal
feature learning and segmentation performance. The notable
improvement, particularly on the testB dataset, highlights
the robustness and generalization ability provided by the
combined approach.

Effect of varying the dimensions of the adapters. We
investigated the effect of varying the dimensions of the
adapters. The results of this study are illustrated in Figure 2.
In this experiment, the adapters were fixed at the optimal
layers identified in the previous experiment [1,3,5,7,9,11]
while varying their dimensions. Configurations tested in-
cluded combinations such as 64,64; 128,64; 128,128; and
256,128. The results, presented in Table 4, showed that the
combination of 128,64, which corresponds to the chosen
parameter setup for DCRIS-B, proved to be the most ef-
fective. Although increasing the dimensions to 128,128 or
256,128 introduced more parameters, the performance im-
provements were marginal and did not justify the additional
computational cost.

5. Conclusion
In this work, we propose a novel parameter-efficient train-
ing (PET) method for multi-modal dense prediction tasks,
especially in referring image segmentation. Specifically,
we adapt the pre-trained DINO model for referring im-
age segmentation (RIS) by introducing a simple yet effec-
tive fine-tuning strategy. Our key innovation is the Dense-
CrossAdapter, which can be seamlessly integrated into the
visual backbone to improve fine-grained visual-text align-
ment. We also propose using text adapters to enhance the
language encoder’s capabilities. Our streamlined approach
not only surpasses the performance of fully fine-tuned mod-
els but also does so more efficiently in terms of scalability
and parameter management.
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A. Appendix
A.1. Qualitative Analysis

As depicted in Figure 3, our visualization results compared to ETRIS highlight the superior accuracy of our DCRIS-B model
in segmenting target objects. This enhancement in dense prediction and alignment between images and text is credited to the
incorporation of the DenseCross Adapter and Text Adapter.

IoU:0.00

Language: ”row of chairs closest third from the left”

IoU:76.6
7

IoU:91.24IoU:21.25

Language: ”middle chair in back row”

(d) DCRIS

IoU:15.04

(c) ETRIS(a) Image (b) GT

IoU:0.00
Language: ”left piece upper”

Language: ”right piece slice”
IoU:92.44

IoU:93.24

Figure 3. Comparison between DCRIS and state-of-the-art PET RIS method ETRIS.

As shown in Figure 4, we present qualitative results with different settings across various scenarios. In the figure, (c)
represents the baseline ETRIS method; (d) shows our proposed DCRIS-B that only utilizes the Text Adapters; (e) illustrates
our proposed DCRIS-B that only utilizes the DenseCross Adapter; (f) demonstrates our proposed DCRIS-B using both
adapters; and (g) displays DCRIS-L trained on mixed datasets. In the first two rows of Figure 4, representing the easy
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scenario, all methods can segment objects correctly. However, the details and finesse of the contours vary. Our proposed
DCRIS-B and DCRIS-L achieve the best segmentation IoU, while ETRIS performs the worst among the compared settings.
For the challenging scenario, depicted in the third and fourth rows of Figure 4, ETRIS is unable to correctly localize the
object. In contrast, our proposed DCRIS-B and DCRIS-L accurately segment the target objects, demonstrating better dense
prediction and improved image-text alignment capabilities due to the DenseCross Adapter and Text Adapter.

Language: “open book”

Language: “farthest left elephant”

Language: “man with glass in his hand”

Language: “pinkered donut”

Language: “the computer screen”

(a) Image (b) GT (c) ETRIS (d) w/o DA (e) w/o TA (f) Ours-B (g) Ours-L*

Figure 4. Qualitative results: (a) the input image; (b) the ground truth; (c) ETRIS; (d) DCRIS-B using Text Adapter without DenseCross
Adapter; (e) DCRIS-B using DenseCross Adapter without Text Adapter; (f) our proposed DCRIS-B; (g) DCRIS-L using mixed datasets.
Best viewed in color.

A.2. Limitations

While our proposed DCRIS has outperformed fully fine-tuned models in terms of efficiency, scalability, and parameter
management, our experiments have been limited to the RIS task. Future work should extend the validation to other multi-
modal segmentation tasks to further confirm the versatility of our approach. Moreover, as multi-modal large-scale models
advance, exploring open-vocabulary zero-shot referring image segmentation presents a promising avenue for research.
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