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Abstract
Due to its invariance to rigid transformations
such as rotations and reflections, Procrustes-
Wasserstein (PW) was introduced in the literature
as an optimal transport (OT) distance, alternative
to Wasserstein and more suited to tasks such as the
alignment and comparison of point clouds. Hav-
ing that application in mind, we carefully build a
space of discrete probability measures and show
that over that space PW actually is a distance. Al-
gorithms to solve the PW problems already exist,
however we extend the PW framework by dis-
cussing and testing several initialization strategies.
We then introduce the notion of PW barycenter
and detail an algorithm to estimate it from the
data. The result is a new method to compute
representative shapes from a collection of point
clouds. We benchmark our method against exist-
ing OT approaches, demonstrating superior per-
formance in scenarios requiring precise alignment
and shape preservation. We finally show the use-
fulness of the PW barycenters in an archaeologi-
cal context. Our results highlight the potential of
PW in boosting 2D and 3D point cloud analysis
for machine learning and computational geometry
applications.

1. Introduction
In force of its capability to find correspondences between
sets of objects, in the last decade computational optimal
transport (OT, Peyré et al., 2019) has become more and
more ubiquitous in machine learning. Notable examples
relate to learning tasks from (almost) any data type in-
cluding images (Solomon et al., 2015; Feydy et al., 2017),
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Figure 1. (Top) Two point clouds representing a bird shape in dif-
ferent position. OT barycenters using (a) Exact Free Wasserstein
(Cuturi & Doucet, 2014) (b) Gromov-Wasserstein (Peyré et al.,
2016) with MDS (Borg & Groenen, 2007) (c) Gromov-Wasserstein
with TSNE (Van der Maaten & Hinton, 2008) (d) Procrustes-
Wasserstein (our).

graphs (Vayer et al., 2019a; Vincent-Cuaz et al., 2021),
shapes (Eisenberger et al., 2020) or text (Zhang et al., 2017;
Grave et al., 2019). More generally and possibly more
importantly OT allows one to assess the distance between

1



An in depth look at the Procrustes-Wasserstein distance

probability distributions thus leading to applications in ma-
chine learning that go far beyond the comparison of sets
of objects, such as domain adaptation (Courty et al., 2016)
or adversarial training (Arjovsky et al., 2017), just to cite
some. However, here we keep the focus on the first frame-
work we cited (i.e. data alignment and matching) since the
applications we discuss in this work are of that kind.

Based on the modern formulation of Kantorovich (1942),
the standard optimal transport tool to compare two sets of
objects is the Wasserstein distance. If we assume that each
set is a point cloud, in order to fix the ideas, adopting the
Wasserstein distance to quantify the similarity between the
clouds specifically requires to compute the Euclidean dis-
tance (or other) between the points of the first cloud and
those of the second. Since, moreover, each point is equipped
with a probability mass defining its importance within its
cloud, we can say that the Wasserstein distance takes into
account both the geometry and the distributional properties
of data. However, the Wasserstein distance suffers from
some limitations that makes it unfit to some applications
such as point cloud matching. Indeed, it is sensitive to the
way the two clouds are embedded in the space and in par-
ticular to isometries. To address some of the limitations
of the Wasserstein distance, Mémoli (2011) introduced the
Gromov-Wasserstein (GW) distance. Unlike standard OT
frameworks, which assume that the compared probability
measures are supported on a shared metric space, GW com-
pares distributions defined on distinct spaces. In the point
cloud matching examples, GW requires computing two pair-
wise distance (or similarity) matrices between the points
within each cloud. Points not being in the same cloud are
never compared explicitly. GW is invariant to isometries
and particularly suitable for the comparison of data sets with
unknown correspondences or in different coodinate systems.
However, GW has (at least) two main drawbacks: i) its
rather prohibitive computational cost, although some solu-
tions exist (Vayer et al., 2019b; Chowdhury et al., 2021) and
ii) the GW barycenters are still pairwise distance/similarity
matrices. If one wishes to represent them in the original
features domain, dimensionality reduction techniques are
needed. This last drawback can be severe when computing
mean shapes where a high fidelity to the original is required
(see Figure 1).

Mixing Procrustes and Wasserstein costs was recently
done (Zhang et al., 2017; Grave et al., 2019) in order to intro-
duce into the Wasserstein optimization problem invariances
to global transformations such as rotations and reflections
in the space. In this sense Procrustes-Wasserstein (PW) can
be seen as a compromise between GW (with whom it shares
some invariances) and Wasserstein (since the two measures
are directly compared with each other).

Related works. Among the earliest PW formulations,
Zhang et al. (2017); Grave et al. (2019) aimed at jointly
estimating an orthogonal and a permutation matrix to align
word embeddings across different languages. Differently
from Zhang et al. (2017), which initialized the orthogo-
nal matrix using an adversarial training phase, Grave et al.
(2019) proposed a convex relaxation of the initialization by
reformulating the problem over the convex hull. Alvarez-
Melis et al. (2019) extended the previous works by incor-
porating global invariances directly into the optimization
process. Their approach is not limited to invariances with
respect to isometries but generalizes to broader invariance
classes (characterized by Schatten p-norm ball) up to the
recovery of Gromov-Wasserstein. This extension is particu-
larly useful in scenarios where data are not simply related by
rigid transformations. Additionally, employing a convexity-
annealing strategy and considering a relaxed PW version,
they eliminate the need for an ad-hoc initialization, avoiding
strong dependence on an initial guess. In contrast with pre-
vious works, two-sided PW (TWP, Jin et al., 2021) adopts
a two-fold transformation on both the source and target
measures. Such an extension enables to handle data that
lie in distinct spaces, transporting them into a common la-
tent space. The optimal solution is obtained by solving a
component-wise convex optimization problem, combining
two-sided Procrustes Analysis with a relaxed Wasserstein
formulation. Aboagye et al. (2022) tackle the computational
limit of PW by proposing a quantized version of the problem
(qWP). The quantization step that discretizes the distribu-
tions enables for the joint estimate of the alignment and
transformation. qWP leverages a quantization procedure
inspired by Grave et al. (2019), such as k-means++, and
reduces the problem to linear programming (LP). This tech-
nique not only simplifies the computation but also enhances
the approximation quality of OT solvers, thus leading to a
more efficient solutions with a fixed computational cost. Fi-
nally, Even et al. (2024) approach the problem of matching
pairs of distributions using PW distances from a theoretical
perspective, providing convergence guarantees for the ML
estimators of both the transport plan and the isometry. In
more detail, they restrict their focus on discrete distributions
with the same number of points in the support, further as-
suming that one distribution can be obtained from the other
through a permutation and isometry of the support and the
addition of Gaussian noise. The corresponding OT problem
falls under the Monge formulation and instead of looking for
doubly stochastic plans, they look for permutation matrices.

Contribution of our work. Despite the heterogeneous
use of the PW cost in the above mentioned works, to the
best of our knowledge i) it was never showed that Procrustes-
Wasserstein distance actually is a distance; ii) PW barycen-
ters were never defined/learned from the data. With a focus
on scenarios where the objects to compare are geometric
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shapes represented as point clouds (and hence working with
discrete measures) the main contribution of this paper is
twofold: we define a quotient space of discrete measures
over which PW is a distance and we provide an estimation
algorithm for the PW barycenter. We then show that one of
the main advantages of PW is its capability to produce very
faithful barycenters in particular conditions. In the illustra-
tive example in Figure 1, two birds differ in both number of
vertices and pose (rotation and/or reflection). As it can be
seen, among the three tested OT methods, the PW barycen-
ter result in more consistent geometric characteristics. We
finally present a concrete application of the PW barycenters
to detect morphological changes on archaeozoological data.

The paper is organized as follows: we provide a background
on the PW problem and the formal definitions and proof
where PW is a distance in section 2. We then introduce the
PW barycenters and the algorithm to compute it in section 3.
We investigate different intializations for specific match in
point clouds and a clustering application on our barycenter
in section 4. We conclude presenting a concrete real-world
application in section 5.

2. Procrustes-Wasserstein: an OT distance
Notation. We denote by Σn the n− 1 probability simplex.
So when saying that p := (p1, . . . , pn) ∈ Σn, we mean
pi ≥ 0 for all i and

∑n
i=1 pi = 1. We denote by ⟨·, ·⟩F the

Frobenious dot product, hence ⟨A,B⟩F := trace(BTA),
with A,B two compatible matrices. The set of the orthogo-
nal matrices of order d is denoted by O(d).

Consider two matrices X ∈ Rn×d and Y ∈ Rm×d, where
xi (respectively xj) is the i-th row (j-th column) of X . Sim-
ilarly for Y . We attach two discrete probability measures
µX and µY to X and Y , respectively:

µX =

n∑
i=1

piδxi
, p ∈ Σn (1)

and

µY =

m∑
j=1

qjδyj , q ∈ Σm.

Given an orthogonal matrix P ∈ O(d), we denote by
µY P the measure defined on the transformed support of
Y , namely µY P :=

∑m
j=1 qjδyjP .

Given W2(µX , µY ), the 2-Wasserstein distance between
µX and µY , we attack the following minimization problem

min
P∈O(d)

W 2
2 (µX , µY P ) = min

P∈O(d)
Γ∈Π(p,q)

⟨CP (X,Y ),Γ⟩F (2)

where Π(p,q) is the set of the admissible transport plans,
i.e.

Π(p,q) = {Γ ∈ Rn×m
+ |Γ1m = p,ΓT1n = q}

and CP (X,Y ) ∈ Rn×m
+ with

(CP (X,Y ))ij = ∥xi − yjP∥22.

The above minimization problem is a generalization of the
one described in Grave et al. (2019) and can be seen as a
particular case of the one discussed in Alvarez-Melis et al.
(2019).

By definition of CP (X,Y ) it is easy to show that

CP (X,Y ) = RX +RY − 2XPTY T ,

where the i-th row of RX ∈ Rn×m is (∥xi∥22, . . . , ∥xi∥22)
and the j-th column of RY ∈ Rn×m is
(∥yj∥22, . . . , ∥yj∥22)T . By plugging this into Eq. (2)
and thanks to the bilinearity of ⟨·, ·⟩F we get

⟨CP (X,Y ),Γ⟩F = ⟨RX +RY ,Γ⟩F − 2⟨XPTY T ,Γ⟩F
= ⟨u,p⟩+ ⟨v,q⟩ − 2⟨XPTY T ,Γ⟩F ,

(3)

where u ∈ Rn is such that ui = ∥xi∥22 and v ∈ Rm such
that vj = ∥yj∥22. As such, the minimisation problem in
Eq. (2) is equivalent to

max
P∈O(d)
Γ∈Π(p,q)

⟨XPTY T ,Γ⟩F . (4)

We now consider the setMd of all discrete measures of the
same form as in Eq. (1). Namely, the generic µX ∈Md is
a measure supported on some X ∈ Rn×d, for some finite
n and a fixed d and for some probability vector p. With a
slight abuse of notation, given a permutation σ in S(n), the
set of all possible permutations of n elements, we denote
by σ(X) = (xT

σ(1), . . . ,x
T
σ(n))

T the matrix X after the
permutation of its rows according to σ. Similarly, we denote
by σ(p) = (pσ(1), . . . , pσ(n)) the permuted histogram. We
introduce the following equivalence relation onMd

µX1
∼ µX2

if ∃P ∈ O(d), ∃σ ∈ S(n)

such that X1 = σ(X2)P and p1 = σ(p2).

Thus, µX1
∼ µX2

if and only if they share the same proba-
bility vector, up to a permutation, and the same support up
to the same permutation of the points and a rigid transfor-
mation (rotation, reflection or a combination of both).

If we denote

PW2(µX , µY ) :=

 min
P∈O(d)
Γ∈Π(p,q)

⟨CP (X,Y ),Γ⟩F


1/2

, (5)

then
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Algorithm 1 PW problem

1: Input: Locations and histograms (X,p), (Y,q); initial
correspondences Γ0.

2: %% Initialization
3: UΣV T ← SVD(Y TΓT

0 X)
4: P0 ← UV T , P ← P0

5: while not converged do
6: CP ← cost(X,Y P )
7: %% Update matching
8: Γ← EMD(C,p,q) %% Earth Mover Distance
9: %% Update P

10: UΣV T ← SVD(Y TΓTX)
11: P ← UV T

12: end while
13: Return: Γ∗, P ∗

Theorem 2.1. PW2(·, ·) is a distance onMd/ ∼.

The proof of the above theorem is in Supplementary Mate-
rial A. Moreover we have the following

Corollary 2.2. For all µX , µY in Md it holds that
PW2(µX , µY ) ≤W2(µX , µY ).

Proof. It suffices to note that

PW2(µX , µY ) : = min
P∈O(d)

W2(µX , µY P )

≤W2(µX , µY Id) = W2(µX , µY ).

3. Procrustes-Wasserstein barycenter(s)
Now that we established that PW2 is a distance onMd/ ∼,
consider r empirical measures measures µX1

, . . . , µXr
,

in Md, with supports {Xj}rj=1 and probability vectors
{pj}rj=1. We look for a barycenter µX with unknown sup-
port X ∈ Rn×d and weights p given by the solution to the
following problem

f(p, X) :=
1

r

r∑
j=1

PW 2
2 (µX , µXj

). (6)

In a general setting, we might consider positive weights
λj associated with each measure µXj , with λ :=
(λ1, . . . , λr) ∈ Σr. For simplicity, we present the case
λj =

1
r .

3.1. Differentiability of f(p, X) with respect to X

In this section we assume that p is known. Let X ∈ Rn×d

and Y ∈ Rm×d. Consider the transport cost as a function

of X as outlined in Equation (3). The minimization of
PW 2

2 (µX , µY ) with respect to X can be developed as

min
X

PW 2
2 (µX , µY ) = min

X
min
P, Γ
⟨CP (X,Y ),Γ⟩F

= min
X

(
⟨u,p⟩+ 2min

P, Γ
⟨−X,ΓY P ⟩F

)
,

(7)
where constant terms in Y and q are discarded. While
the first term is a convex quadratic function of X (since
ui = ∥xi∥22), the second term renders the optimisation of
PW 2

2 (µX , µY ) with respect to X non-convex. Thus, the
best we can do is to look for local minima via Newton-
Raphson. Denote by (P ∗,Γ∗) the optimal alignment and
transport plan for PW 2

2 (µX , µY ). Calling g(X) the objec-
tive function in Eq. (7)

g(X) := ⟨u,p⟩ − 2⟨X,Γ∗Y P ∗⟩F ,

the gradient and the Hessian of g(·) with respect to X are

∇Xg = 2diag(p)X − 2Γ∗Y P ∗,

and

HXg = 2diag(p).

Thus, the update of X reads

X(k+1) = X(k) − (HXg(X(k)))−1 · ∇Xg(X(k))︸ ︷︷ ︸
Newton step

= X(k) − (X(k) − diag(p−1)Γ∗Y P ∗)

= diag(p−1)Γ∗Y P ∗.

(8)

The update formula provides a meaningful geometric inter-
pretation. The matrix diag(p−1)Γ∗, whose n rows belong
to the simplex Σm, computes weighted barycenters of points
in Y , with weights defined by the optimal transport plan.
This is analogous to the Wasserstein barycenter update (Cu-
turi & Doucet, 2014), where each point in Y contributes to
the updated locations in X proportionally to Γ∗. However,
in the PW framework, the additional right multiplication
by P ∗ allows for a simultaneous optimal alignment of the
barycenter.

The steps to optimize f(p, X) with respect to the locations
X are outlined in Algorithm 2. Solving Problem (6) in-
volves computing r independent PW distances between the
barycenter (µX ) and the measures µXj . Thus, the first step
(lines 4-5) consists into solving all PW 2

2 (µX , µXj
) and

finding r solutions (Γ∗
j , P

∗
j ) following the iterative scheme

introduced in (Grave et al., 2019) that we report here in
Algorithm 1 for completeness. The second step (line 7)
updates the locations of the barycenter using the update
formula in Eq. (8).
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Algorithm 2 Procrustes-Wasserstein barycenter (PWB)

1: Input: Locations Xj ∈ Rnj×d and histograms pj ∈
Rnj for j = 1, . . . , r; initial barycenter locations X0;
barycenter histogram p

2: X = X0

3: while not converged do
4: for j ∈ (1, . . . , r) do
5: (Γ∗

j , P
∗
j )← PW2

(
X,p; Xi,aj

)
6: end for
7: X = X + 1

r

(∑r
i=1 Γ

∗
iXiP

∗
i

)
· diag(p−1)

8: end while
9: Return: X∗

3.2. Differentiability of f(p, X) with respect to p

Despite the obvious difference between the minimisation
problem in Eq. (6) and its Wasserstein counterpart illustrated
in Cuturi & Doucet (2014), it can be observed that

f(p, X) =
1

r

r∑
j=1

PW 2
2 (µX , µXj

)

=
1

r

r∑
j=1

W 2
2 (µX , µXjP∗

j
).

where, P ∗
j is the optimal isometry aligning µXj

with the
barycenter. Denoting X̂j := XjP

∗
j , the analogy with the

Wasserstein dual LP formulation is straightforward

max
αj ,βj

⟨αj ,p⟩+ ⟨βj ,pj⟩, (9)

where in the PW framework the couplings (αj , βj) must
satisfy

αj,i + βj,k ≤ (CP∗
j
)ik = ∥xi − x̂j,k∥2,

where (CP∗
j
) is the cost matrix incorporating the orthogonal

alignment and x̂j,k denotes here the k-th row of X̂j . Eq. (9)
is a linear programming (LP) problem for each j, with con-
straints defined by (CP∗

j
). The optimization of f(p, X)

with respect to p can be approached analogously to Cuturi
& Doucet (2014), leveraging the solutions of the dual prob-
lems, e.g. α := 1

r

∑r
j=1 α

∗
j . For completeness, we provide

Algorithm 3 in the supplementary material, detailing the
procedure for the optimization with respect to p.

When pursuing the joint optimization of Eq. (6) with respect
to (p, X), the outlined strategy remains the one presented
in Algorithm 2, except for an additional equation after line
7 updating the weights p according to Algorithm 3.

4. Experiments
All the point clouds considered in this section are assumed
to be centered at they Euclidean barycenter and scaled in
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Figure 2. Convergence comparison between different initialization
approaches across randomly generated shapes. Each row cor-
responds to a different initialization method while each column
corresponds to a run of the Algorithm 1 with a different shape. Red
cells indicates successful convergence of the matching (in terms of
rotation/reflection and couplings), while blue cells denotes failure.

such a way to be enclosed the 1D or 2D unit ball. We
leave for future works extensions of the PW framework
accounting for translations and scaling. The OT solvers
used in the implementations are based on the POT toolbox
(Flamary et al., 2021). The code is available at https:
//github.com/DavideAdamo98/PW-bary.

4.1. Initialization for point cloud matching

It is well known that a primary challenge in the compu-
tation of PW lies in its initialization (Grave et al., 2019;
Alvarez-Melis et al., 2019). In this section, we inspect sev-
eral initialization strategies of Γ0 (Algorithm 1) for PW in
the context of 2D/3D point cloud matching.

Let us consider a pivot measure µX1
, either representing a 2

or 3-dimensional point cloud. Since it is assumed that each
point is equipped with the same (uniform) probability mass,
with a sligth abuse of notation we identify µX1

with X1.
We generate 50 clouds by randomly adding extra vertices,
Gaussian noise and vertex permutation to X1. We also

5
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include a random rotation and reflection. We thus generate
Xi

2 for i = 1, . . . , 50 that underline the same geomertric
structure of X1 (e.g. they represent a perturbed versions of
the pivot). We look for a pairwise clouds registration, in
terms of global alignment and couplings. We test different
approaches, with the objective to compute Γ0.

1. Euc-GW. Gromov-Wasserstein based on Euclidean
pairwise distances is computed for each pair of point
clouds and Γ0 is set equal to the optimal GW plan.

2. Geo-GW. Same as before but with geodesic pairwise
distance in place of the Euclidean.

3. Fiedler-W. Fiedler vector (Fiedler, 1973) is the eigen-
vector associated with the algebraic connectivity (i.e.
the second-smallest eigenvalue) of the Laplacian ma-
trix of a connected graph. Since point clouds can be
easily transformed into graphs (Cover & Hart, 1967;
Preparata & Shamos, 2012) G. We propose to resort
to a Wasserstein matching between Fiedler vectors
to initialise Γ0. More specifically, for a fixed i, we
compute the Fiedler vectors of X1 and Xi

2, denoted
as f1 and f i

2, respectively, and we standardize them.
Furthermore, we compute both the Wasserstein dis-
tance between (f1, f

i
2) and (f1,−f i

2) (to account for
the vectors orientation). The transport plan yielding
the smaller distance determines Γ0.

4. UPCA-W.Given two point clouds, X and Y , the first
step involves computing the eigenvector matrices QX

and QY , of their covariance matrices. The multiplica-
tion XQX (resp. Y QY ) leads to a matrix X ′ (respec-
tively Y ′) that is uncorrelated, e.g. the principal axes of
X ′ and Y ′ correspond, up to the directions, to the stan-
dard coordinate axes of the d-dimensional Euclidean
space. Moreover, fixing X , the matrix Y QT

XQY brings
Y into the same (principal component) basis as X ,
once more up to the direction of the axes. At this stage,
a Wasserstein matching can be performed between X
and Y QT

XQY . In the case of d = 2, there are 22 possi-
ble combinations of directions to check, requiring the
resolution of four independent Wasserstein problems.
Similarly, for d = 3, we must solve 23 Wasserstein
problems. As with Fiedler-W, the transport plan asso-
ciated to the smallest distance defines the initialization
Γ0.

Convergence results of the Algorithm 1 for the four pre-
sented initialization techniques are summarized in Figure 2.
Red colour for the cells denotes convergence to the global
minimum (matching succeeded) while blue colour denotes
failure (convergence to local minima). We observe that
GW initializations generally lead to a good success rate.

However, despite their invariance to isometries, there are
instances where the GW transport plan fails to establish the
correct couplings. In cases where the data underline specific
geometric structure GW could reveal optimal, however its
computational cost makes it use clearly prohibitive when
working with larger point clouds. In contrast, the Fiedler-W
initialization consistently ensures robust convergence. In
the tested scenarios, the Fiedler vectors prove to be optimal
for capturing the geometry of the data. Finally, in the two
cases, UPCA-W does not demonstrate effectiveness, par-
ticularly in the 3D case. We leave a further investigation
of this approach for future works. Additional results and
visualisations are available in Supplementary Material D.

4.2. Clustering

In this section, we propose an unsupervised application of
PW for performing clustering directly in the space of point
clouds. Our approach draws inspiration from the k-means
reformulation presented in Peyré et al. (2016) with Gromov-
Wasserstein barycenters. We consider the MNIST dataset
of handwritten digits with specific focus on the first five
digits, from 0 to 4 (Figure 3, left). For each digit class, we
consider 10 images and convert them into 2-dimensional
point clouds (Figure 3, center). This results in a dataset of
50 point clouds, which we aim to cluster with respect to
the digit class (thus k = 5). Differently from Peyré et al.
(2016), we avoid applying random rotations to the dataset to
highlight some benefits of PW even in scenarios where the
input data are already aligned (at least in terms of reflection
and rotation).

To initialize the centroids, we adopt a strategy inspired by
k-means++ as follows. We randomly select one point cloud
from the 50 and label it as the first “candidate.” The first
centroid is determined by applying Euclidean k-means clus-
tering to the candidate cloud, where the number of clusters
equals the number of points specified for the OT centroids
(PW barycenters). This ensures that the points sampled
from the candidate form a uniform representation. Next,
we identify the point cloud among the remaining 49 that
is the farthest from the first candidate, based on the PW
distance. This farthest point cloud becomes the second “can-
didate”, and its centroid is computed using the same idea
as for the first. By iterating this process: select the point
cloud that is farthest from all previously selected candidates
and compute its centroid, we obtain an initial configuration
of five centroids. This approach ensures a well-distributed
initialization with respect to the PW distance.
Using the same initialization technique, we compare k-
means clustering across different OT metrics. Specifically,
we present comparisons between discrete Wasserstein (Earth
Mover’s Distance, EMD), Gromov-Wasserstein with Eu-
clidean distances (Euc-GW), with geodesic distances (Geo-
GW) and PW with a Wasserstein initialization to establish
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Figure 3. Clustering k-means of MNIST dataset. (Leftmost) Subset of considered images. (Center-left) Corresponding 2D point clouds
representation. (Center-right) Clustering centroids computed with different OT barycenters. (Rightmost) Confusion matrices. Rows
correspond to the digits, while columns correspond to the clusters. The colour is proportional to the number of digits to each cluster.

Table 1. Clustering results for MNIST dataset.

ALGOROTHM TIME (S) ARI NMI

EMD 9.18 0.4069 0.5652
EUC-GW 675.19 0.5500 0.6815
GEO-GW 378.82 0.3797 0.5724
PW 130.11 0.7669 0.8361

initial correspondences.

The clustering results are reported in Table 1, where we
provide the computational time (in seconds), the adjusted
rand index (ARI) and the normalized mutual info score
(NMI) for each of the presented approaches. We also pro-
vide in Figure 3 (Center-right) and Figure 3 (Rightmost)
the estimated centroids (OT barycenters) and the confusion
matrices, respectively. From the results, we observe that
the PW-based clustering provides the best performances, in
terms of ARI and NMI. Moreover, clustering results optimal
for the digits 0, 1, and 3. Consistent with findings from
Peyré et al. (2016), the digits where clustering is less effec-
tive are 2 and 4, reflecting greater variability in handwritten
style. Differently form the GW-based clustering, PW-based
successfully returns more representative centroids for all
the five considered digits. EMD-based clustering proves to
perform well for certain digits. However, it consistently fails
to identify digit 3. The superior performance of PW over
EMD underscores the significance of incorporating optimal
rotations, even in scenarios where the input data are already
aligned, at least in the sense that poses is consistent.

5. Application: tracking the morphological
evolution of domestic animals

The breeding of domestic ungulates began over 9500 years
ago, leading to considerable phenotypic and genetic changes,

adapted to the socio-economic and cultural requirements of
human societies. In south-west Asia, from the end of the
Bronze Age onwards, archaeozoological (Vila & Helmer,
2014; Vila et al., 2021; Abrahami & Michel, 2023) and
palaeogenetic data (Her et al., 2022) indicate that zootechni-
cal practices were used for the management and selection
of sheep morphotypes. This led to a significant increase
in phenotypic diversity and a decrease in genetic diversity.
While the morphological changes observed are relatively
well documented by palaeogenetic data, identifying the pro-
cesses linked to morphological transformations in the bones
of this species remains complex: which parts of the bone are
modified (anatomical characteristics)? How do they change
(bone plasticity)? Why do they change (morpho-functional
adaptations linked to anthropic and environmental factors)?
To track these morphological changes, traditionally archaeo-
zoologists rely on visual comparisons and manual measure-
ments. These methods can be time-consuming and subject
to interpretational bias, especially when dealing with intra-
specific variations. With the advent of 3D scanning technolo-
gies, bones can now be digitized and represented as point
clouds or meshes, opening new avenues for quantitative
analysis and machine learning. In this context, OT offers
a mathematically robust framework to tackle the problem
of comparing and interpreting bone shapes. The objective
of this study is to highlight the morphological evolution
over time, i.e. the transition from archaeological to modern,
by directly comparing three-dimensional representations of
the astragalus (ankle bone) for one archaeological sheep
dated to the Chalcolithic period and one modern sheep from
the same region, the Alborz mountain in Iran. With this
objective, let us consider two measures µX and µY , with
associated locations X and Y of nearly 10k vertices, repre-
senting an archaeological and a modern bone structure of
the sheep species, respectively. By assigning weights λX

and λY respectively, we seek for a 10k PW barycenter via
Algorithm 2, that defines an interpolation between the two

7
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Figure 4. PW barycenter evolution of two 3D point clouds describing an archaeological (Leftmost) and a modern (Rightmost) astragalus
of sheep’s species. The four middle columns of the grid correspond to representative interpolations each assigned with a value of η. (row1)
Progressive interpolation in the euclidean space, note that the two input point clouds are not aligned and no priori knowledge on pairwise
correspondence is considered. The P ∗ solution of PW permits us to optimally display the frontal view (row2) and top view (row3), in
order to match reference manuals of morphological criteria in archaeology.

bone’s structures. Set η ∈ [0, 1] and re-write λX = 1–η
and λY = η. By varying η we can iterate the minimiza-
tion problem (6) and thus model the intermediate stages of
morphological changes between the two bones, enabling
the study of evolutionary trajectories and species transfor-
mations over “time”. In order to create a pipeline that is
as robust and accurate as possible, a priori step in this
methodology is the normalization of the data. To ensure a
meaningful comparison and avoid any bias, we resort to a
volume-based normalization which consists in two key steps.
First, we set to the origin the volumetric center of mass. Sec-
ond, we constrain the shape to have a unit volume. This
technique allows the model to compute interpolations that
best capture morphological changes and are less influenced
by overall distortions. We remark that the purpose of this
section is not in comparing different types of normalization,
however, different pre-processing techniques can be tested.
Figure 4 shows the evolution of the bone structure from
archaeological to modern, by means of PW barycenters. In
row1 is reported the progressive interpolations in the 3D
space. We can see that the four barycenters, correspond-
ing to four distinct values of η, are well representative of
the input point clouds. The colouring of the bones reflect
the point-wise similarity between each barycenter and the
modern sheep (the rightmost bone) form the archaeological
sheep (the leftmost bone). In yellow are outlined the parts
of the bone that are more similar, while in blue the parts that
different the most. The colour of the archaeological bone,
on the other hand, reflects the distance between itself and
the modern bone.
As expected, we see that the first barycenter is the closest

to the archaeological bone. As we get closer to the modern
sheep, the PW distance increases and the blue areas become
more pronounced. By exploiting the solution of the PW
barycenter problem, we benefit of a complete registration of
the barycenters, we can thus visualize different views: the
dorsal view (row2) and the proximal view (row3). These ori-
entations facilitate the observation of changes in the overall
proportions of the bone and more targeted changes, particu-
larly to the proximal trochlea, i.e. the upper pulley-shaped
articular surface. A notable observation is the widening of
the lateral lip in the proximal trochlea of the modern spec-
imen in comparison to the archaeological specimen. The
proximal view also demonstrates a narrowing of the tubercu-
lus tali and a development of the projecting medial ridge in
the modern specimen compared to the archaeological spec-
imen. For a better understanding of the bone anatomical
features is provided in Figure 8 in supplementary material.

Discussion. The proposed approach allows us to trace the
evolutionary trajectories of species by interpolating between
bone shapes. This method provides archaeozoologists with
a powerful quantitative tool to infer how species adapted,
evolved, or were selectively bred by humans. Furthermore,
the same technique could be used to compute a “mean”
representative bone shape for species for which morpho-
logical criteria are not well-defined. This would reinforce
and supplement studies combining machine learning and
archaeozoology to identify morphologically related taxa
(Miele et al., 2020; Moclán et al., 2023; Vuillien et al.,
2025). In conclusion, by directly working on 3D models,
this approach offers a robust solution that aim to avoid the
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subjectivity inherent in traditional morphological analysis.
The use of the PW distance and PW barycenters introduce a
rigorous and quantitative framework for analyzing shapes
while offering to archaeologists a detailed and objective
tool for interpreting species evolution, domestication pat-
terns, and morphological diversity, ultimately enhancing our
understanding of the past.

6. Conclusions
In this paper, we carefully defined a space of discrete proba-
bility measures over which Procrustes-Wasserstein is a dis-
tance and provided a formal proof of such claim. This opens
the door to a wider application of PW in various machine
learning tasks, particularly when dealing with complex data
structures. We also introduced PW barycenters extending
the literature of OT barycenters. Our formulation enables
the construction of representative measures that exhibit an
improved visual loyalty to the geometry of the observed
data. We propose applications that demonstrated the prop-
erties and advantages of our approach, with comparisons
with state-of-the-art methods. Future works could explore
denser formulations of the barycenter problem (via entropic
regularisation) leading to smoother solutions and broader
applicability to large-scale datasets.
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A. Proof of Theorem 2.1.
Proof. First we check that PW2(µX , µY ) = 0 iff µX ∼ µY . The left implication is clear : if µX ∼ µY , it means that
there is (σ∗, P ∗) such that Y = σ∗(X)P ∗ and q = σ∗(p). Then (σ∗, P ∗) is the solution of the problem in Eq. (5), with the
Kantorovich formulation being equivalent to the Monge’s one. Vice-versa, if

PW2(µX , µY ) = min
P∈O(d)

W2(µX , µY P ) = 0,

it means that there exists à P ∗ such that the 2-Wasserstein distance between µX and µY P∗ is null, or equivalently that µX

and µY P are the same measure up to a permutation of the points in the support together with their masses.

Second we prove that PW2(µX , µY ) = PW2(µY , µX) for all µX , µY inMd. Let us assume that (P ∗,Γ∗) is solution of
Problem (4), with P ∗ ∈ O(d) and Γ∗ ∈ Π(p,q). Then d(µY , µX) is defined by the maximization over Q ∈ O(d) and
Θ ∈ Π(q,p) of

⟨Y QTXT ,Θ⟩F = tr(ΘTY QTXT ) = tr(XQY TΘ)

= tr(ΘXQY T ) = ⟨XQY T ,ΘT ⟩F
≤ ⟨X(P ∗)TY T ,Γ∗⟩F ,

by optimality of (P ∗,Γ∗) and where we used that the trace of a matrix equals the trace of its transposed and the trace is
invariant under cyclic permutations of its arguments. The above equation shows that if (P ∗,Γ∗) is the stationary point
leading to PW2(µX , µY ) then,

(
(P ∗)T (Γ∗)T

)
is the solution leading to PW2(µY , µX) and vice-versa. Thanks to Eq. (3),

it is now immediate to verify that PW2(µX , µY ) = PW2(µY , µX).

Third, we show that the triangular inequality is satisfied : PW2(µX , µY ) ≤ PW2(µX , µZ) + PW2(µZ , µY ), for all
µX , µY , µZ inM(d). For all µZ ∈MD it holds that

W2(µX , µY P ) ≤W2(µX , µZP ) +W2(µY P , µZP ) = W2(µX , µZP ) +W2(µY , µZ),

where the first inequality holds since the Wasserstein distance is symmetric and satisfies the triangular inequality (as any
distance) and the second equality comes from the fact that if we equally rotate or reflect the supports of two measures the
Euclidean distances between any pair of points in the supports will be unchanged. From the above equation, paired with
Eq. (2) we deduce that, for any µZ ∈Md

PW2(µX , µY ) ≤ PW2(µX , µZ) +W2(µY , µZ).

Now, if we replace Z with Z∗ = ZP ∗ where P ∗ is solution of

min
P∈O(d)

W2(µY , µZP ),

we obtain
PW2(µX , µY ) ≤ PW2(µX , µZ∗) +W2(µY , µZ∗) = PW2(µX , µZ∗) + PW2(µY , µZ),

where the last equality holds by the definition of PW. Finally, since Z and Z∗ only differ by right-multiplication with an
orthogonal matrix, PW2(µX , µZ∗) = PW2(µX , µZ).
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B. Optimization of PW2 with respect to p

In this section we provide for clarity the algorithm for the optimization of the weights p, already proposed by Cuturi &
Doucet (2014) within the context of Wasserstein barycenters. In our framework we assume p ∈ Σn and denote ◦ the Schur’s
product.

Algorithm 3 Optimization of p

1: Input: Cost matrices with orthogonal alignments CPj
∈ Rn×nj and histograms pj ∈ Rnj for j = 1, . . . , r

2: Set p̂ = p̃ = 1n/n
3: while not converged do
4: β = (t+ 1)/2
5: p← (1− β−1)p̂+ β−1p̃
6: α← 1

r

∑r
j=1 α

∗
j using all dual optima α∗

j of Eq. (9)
7: p̃← p̃ ◦ e−t0βα

8: p̃← p̃/p̃T1n

9: p̂← (1− β−1)p̂+ β−1p̃
10: t← t+ 1
11: end while
12: Return: p

C. Regularized PW barycenter(s)
As common in the OT community, we extend in this section the PW barycenter problem by adding an entropic regularization.
Consider the following relaxed version of the PW problem

PW 2
ϵ,2(µX , µY P ) = min

P∈O(d)
Γ∈Π(p,q)

⟨CP (X,Y ),Γ⟩F + ϵH(Γ), (10)

where ϵ is a non-negative parameter controlling the strength of the regularization and H(Γ) :=
∑

i,j Γij log(Γij) is the
entropy.

Looking for a measure µX with unknown support X ∈ Rn×d and weights p, given r measures µX1
, . . . , µXr

, translates
into the following minimization problem

fϵ(p, X) :=

r∑
j=1

λjPW 2
ϵ,2(µX , µXj

). (11)

The resolution of this problem can be done similarly as for the classical case. Given the probability vector p and assuming
(Γ∗

j , P
∗
j ) are the solutions of the regularized PW problem PW 2

ϵ,2(µX , µXj
), the Newton update is still given by Eq. (8).

Notably, at the optimum, both the gradient and the Hessian of Eq. (11) are independent of the regularization term H(·). The
optimization scheme for the computation of the barycenter is equivalent to Algorithm 2, where in this case we solve each
PW sub-problem independently using the Sinkhorn algorithm Cuturi (2013). Under this framework, the optimization of
Eq. (11) can be seen as a particular case of the one discussed in Alvarez-Melis et al. (2019).

To illustrate the effectiveness of the proposed barycenter, we present a 2D toy example where we consider two measures
µX and µY , with associated locations X and Y , representing different instances of the “same” object. Specifically, X
represents a point cloud depicting a bird in a particular pose. We define Y as a modified version of X with the following
transformations: addition of Gaussian perturbations and random vertex permutation; addition of extra vertices; application
of a random rotation. Within this setting, our goal is to generate interpolated shapes that progressively move from X to Y .
Set thus η ∈ [0, 1] and re-write λX = 1− η and λY = η. By varying η we can iterate the minimization problem and model
the intermediate stages. We compute PW barycenters using both the classical problem formulation (Problem 6) and the
regularized version (Problem 11).

In Figure 5 we can follow the progressive interpolations between the two point clouds. The four central columns correspond
to PW barycenters at different interpolation steps, while the two rows compare the classical PW barycenter (top) with the
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PW
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PW

X = 1
5 = 2

5 = 3
5 = 4

5 Y

Figure 5. Progressive interpolations of two point clouds describing a bird in different positions. The four central columns of the grid
correspond to PW barycenters, each reflecting a specific interpolation step (defined by η). The two rows represent barycenters calculated
using the classical formulation (PW) and considering an entropic relaxation of the problem (Reg-PW).

relaxed version (bottom). The colors of the barycenters are given by transporting the colors of X via the optimal plan Γ∗
X .

This highlights how the cloud evolves while maintaining the structural consistency of the original shape.
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D. Additional results

(a) 2-dimensional target (X1) (b) 2-dimensonal perturbed sources
(
Xi

2

)
.

(c) Matching results with Euc-GW. (d) Matching results with Geo-GW.

(e) Matching results with Fiedler-W. (f) Matching results with UPCA-W.

Figure 6. Comparisons of PW matching results with different initialization approaches (2D dog). Matchings reflect the convergence
results reported in Figure 2
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(a) 3-dimensional target (X1) (b) 3-dimensonal perturbed sources
(
X

(i)
2

)
.

(c) Matching results with Euc-GW. (d) Matching results with Geo-GW.

(e) Matching results with Fiedler-W. (f) Matching results with UPCA-W.

Figure 7. Comparisons of PW matching results with different initialization approaches (3D dragon). Matchings reflect the convergence
results reported in Figure 2
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Figure 8. Proximal view of the modern astragalus and its main anatomical features presented in the Section 5
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