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ABSTRACT

Image segmentation is an important and widely performed task in computer vi-
sion. Accomplishing effective image segmentation in diverse settings, often re-
quires custom model architectures and loss functions. A set of models that spe-
cialize in segmenting thin tubular structures are topology preservation based loss
functions. These models often utilize a pixel skeletonization process claimed to
generate more precise segmentation masks of thin tubes and better capture the
structures other models often missed.

One such model, Skeleton Recall Loss (SRL) proposed by Kirchhoff et al (Kirch-
hoff et al., 2024), was stated to produce state-of-the-art results on benchmark
tubular datasets. In this work, we tested the validity of the SRL loss by using
two approaches: empirically and theoretically. Upon comparing the performance
of the proposed method on some of the tubular datasets (used in the original work,
along with some additional datasets), we found that the performance of SRL based
segmentation models did not exceed traditional baseline models. We then go on to
examine and provide a theoretical explanation as to why losses based on topology
based enhancements (including the SRL) fail to fulfill their objective.

1 PROBLEM STATEMENT AND THE PROPOSED SOLUTION

Image segmentation models help identify and accentuate structures of interest within an image.
These models need to be versatile since they have to accurately delineate objects of diverse shapes,
sizes and texture. Thin, tubular and curvilinear structures are particularly challenging for these seg-
mentation models due to a scarce number of pixels corresponding to the region of interest. Common
examples of such tasks include (but are not limited to): roads in satellite imagery, blood vessels,
capillaries & canals in medical images and histology images. Multiple modifications (Shit et al.,
2021; Cheng et al., 2021; Menten et al., 2023) have been proposed to perform segmentation of thin
tubular structures efficiently.

One category of such methods are the specialized topology preservation based loss functions that
utilize a skeletonization process whereby they reduce a shape in a binary image to its one-pixel-
wide connected center-line that preserves its overall topology. These processes are meant to reduce
the foreground to a thin network of pixels which is representative of the topology of original fore-
ground. Different segmentation methodologies utilize different types of skeletonization processes
(Jin & Kim, 2017; Abu-Ain et al., 2013; Latecki et al., 2007), often followed by the employment of
skeletons thus formed in a specialized loss function. One such proposed method was the Skeleton
Recall Loss (Kirchhoff et al., 2024), specialized for the segmentation of thin tubular and curvilinear
structures.

In this work, we investigate the idea of using skeletonization for topology preservation by focusing
on one such method presented as SRL (Kirchhoff et al., 2024) which claimed to have achieved state-
of-the-art results for improving the segmentation of thin tubular structures by utilizing skeletons.
nnU-Net(Isensee et al., 2018) based models were trained to perform segmentation of thin tubular
structures, with and without the SRL loss, to analyze the impact of the SRL loss. Along with the
empirical observations, we perform a theoretical analysis of the gradients of such loss functions and
explain the shortcomings of the proposed methodology.
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2 FORMULATION AND RESULTS FROM THE SKELETON RECALL LOSS

In the paper (Kirchhoff et al., 2024), a new binary image transformation technique is introduced
as Tubed Skeletonization. The procedure first involves forming a skeleton of the ground truth mask
using any of the standard skeletonization techniques (Abu-Ain et al., 2013; Jin & Kim, 2017; Latecki
et al., 2007). Then, a tubed skeleton of the ground truth mask is formed by dilating the single pixel
thin skeleton.

Figure 1: Visual comparison of (b) normal skeleton formed using standard skeletonization algorithm
and (c) the proposed tubed skeleton(formed by dilating (b) normal skeleton) used for Skeleton Recall
Loss for (a) ground truth segmentation, originating from the DRIVE dataset (Hassan et al., 2015).

The difference between the original mask, a regular skeleton and tubed skeleton is shown in Figure
1. This tubed skeleton is employed as the transformed ground truth to calculate the SRL with the
following function:

LSRL = − 1

|K|
∑
k∈K

∑
i∈Ω sikθ .yik∑

i∈Ω yik
(1)

where Ω is the set of pixels in segmentation mask, K is the set of all classes present in the ground
truth mask, sikθ denotes the ith pixel of predicted mask for the kth class, and θ are the parameters
that affect sik, and yik denotes the ith pixel of Tubed Skelton formed using the ground truth mask
for the kth class.

This loss function is used along with the standard loss functions while training the model. The net
loss is then defined as

Lnet = Lgeneric + α. · LSRL

Here, α is a hyper parameter that can be tuned to alter the contribution of the specialized loss
function towards the net loss.

To validate the effectiveness of SRL in predicting thin tubular structure, a wide of variety of datasets
were utilized by the authors of the SRL paper (Kirchhoff et al., 2024). These include natural seg-
mentation tasks like Roads(Mnih, 2013) and Cracks (Tomaszkiewicz & Owerko, 2023), along with
medical datasets which include 2D datasets like DRIVE(Hassan et al., 2015) and 3D datasets like
TopCow (Yang et al., 2024). Though the test metrics on models trained using SRL did not show
significant difference from the vanilla models, the paper claimed to have achieved better tubular
segmentation. The visual results presented the claim that SRL trained model is capable to predict
the tubes which are missed by other models. The paper concluded that the presented algorithm is
able to enhance the tubular segmentation at a very marginal computational cost. The skeleton used
for this procedure does not necessarily have to be continuous, and hence their algorithm is able to
adapt to all kinds of skeletonization techniques (Abu-Ain et al., 2013; Jin & Kim, 2017; Latecki
et al., 2007).
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3 EXPERIMENTAL SETUP

3.1 DATASET DESCRIPTION

We tried to reproduce the results of SRL on two of the datasets mentioned in the SRL paper (Kirch-
hoff et al., 2024), namely DRIVE (Hassan et al., 2015) and Cracks (Tomaszkiewicz & Owerko,
2023). DRIVE is a medical dataset focused on segmenting blood vessels from retinal fundus im-
ages. Cracks, on the other hand, is a dataset for the segmentation of thin cracks in concrete. Both
datasets are 2D and involve binary classification. Appropriate train-test splits were made for each
dataset. The data pre-processing was handled by no new U-Net (nnUNet) (Isensee et al., 2018) it-
self. Some additional tests were performed on non-tubular datasets, like BoMBR(Raina et al., 2024)
and ACDC(Bernard et al., 2018), to study the effect of topology preservation based loss function on
such datasets, as mentioned in appendix.

3.2 MODEL ARCHITECTURE AND TEST METRICS

To replicate the experiments, we employed the nnUNet architecture. Two separate models were
trained for each dataset. Each model was trained on 5 folds. The first model was trained us-
ing standard Dice loss (Dice) and Categorical Cross Entropy loss (CCE). The other model uti-
lized SRL with the standard loss functions. The models were trained on NVIDIA T1000 GPU
with 8GB of VRAM. The code for this implementation was directly taken from github.com/MIC-
DKFZ/Skeleton-Recall.

We included multiple metrics covering aspects of overlap and topology preservation to compre-
hensively evaluate the performance of the different segmentation models. Among these, center-
lineDice (clDice) (Shit et al., 2021), that evaluates the center line of the structures while simulta-
neously considering overlap, has proven to be a particularly valuable metric for assessing topology
preservation. For overlap-based evaluation, we utilized the widely used Dice Similarity Coeffi-
cient (DSC) and Jaccard Similarity Index (JSI) metrics. We used False Negative Rate (FNR) to
gauge the portions of ground truth which are missed by the model, and hence it gives information
about maintenance of connectivity. The False Positive Rate (FPR) was used to ensure the model
wasn’t over predicting positives merely to achieve a low FNR.

4 RESULTS AND DISCUSSION

The metrics in Table 1 present competing results between vanilla model and SRL loss based model
on Cracks(Tomaszkiewicz & Owerko, 2023) and DRIVE(Hassan et al., 2015) datasets. The re-
sults in the table conclusively indicate that SRL fails to enhance performance on the given tubular
datasets. Incase of non-tubular datasets, presented in appendix, SRL even seems to worsen the
model performance significantly in case of BoMBR (Raina et al., 2024), while it shows negligible
effects for ACDC (Bernard et al., 2018) dataset.

From the visual results for the given test instance, we can infer that both vanilla and SRL models
were able to perform equally well in segmenting thick tubular structures. However, several thin
tubular structures were overlooked by the SRL models, even though vanilla models could detect
them, as shown in Figure 2.

Higher value of FPR in case of both datasets show that the model starts over predicting when SRL
is utilized. Also it could not connect meaningful regions when needed as shown by the higher FNR
value in DRIVE dataset. Thus, the SRL based models do not seem to outperform models based on
traditional loss functions.

5 WHY IS SRL NOT WORKING AS EXPECTED?

To understand the effect of SRL on the model training, we propose to investigate the flow of gradients
through the neural network due to SRL during back propagation. Understanding the gradients would
be beneficial for interpreting their effects in modification of parameters. The net loss used to train
nnUNet using SRL given by:

L = LDCE + LCE + LSRL
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Figure 2: Results of proposed method over 2 of the datasets. nnUNet with conventional segmen-
tation losses performs adequately in mapping the basic structure of the object of interest, oftenly
outperforming the SRL method, as demonstrated in examples from DRIVE (a), Cracks (b) datasets.

Table 1: Test set metrics of nnUNet models trained on tubular datasets using different loss functions.

Method DSC ↑ clDice ↑ JSI ↑ FNR ↓ FPR ↓

Cracks Dataset (Tomaszkiewicz & Owerko, 2023)

Dice + CCE 76.67 85.74 65.63 20.38 0.24
Dice + CCE + SRL 75.57 85.43 64.66 18.28 0.32

DRIVE Dataset (Hassan et al., 2015)

Dice + CCE 84.02 87.85 72.48 19.22 1.55
Dice + CCE + SRL 83.79 87.64 72.14 19.34 1.60

To investigate the gradient flowing through the network during back propagation, let us consider
the gradient of each loss term with respect to the pixels in the predicted mask. The gradient of loss
with respect to the ith pixel of predicted mask for the kth class, sjkθ , which is in turn dependent on
parameter θ is given by:

∂L

∂sjkθ
=

∂LDCE

∂sjkθ
+

∂LCE

∂sjkθ
+

∂LSRL

∂sjkθ

Given equation 1, further analyzing the gradient for the LSRL term w.r.t. to any predicted pixel sjkθ
for SRL is given by:

∂LSRL

∂sjkθ
= − 1

|K|
yjk∑
i∈Ω yik

(2)

From 2, it may be noted that the gradient for SRL with respect to the predicted mask is indeed
independent of the predicted mask and depends only on the ground truth mask, which does not
change while training the model. This gradient, therefore, remains constant throughout the training
process, and hence keeps pushing the overall loss gradient in the same (constant) direction. LDCE

and LCE , on the other hand, keep altering the gradient direction based on model predictions. A
deeper insight into the effect of SRL on the overall loss gradient is discussed in the appendix.

Therefore, we can conclude that the gradient of SRL just pushes the net gradient in an unnecessary
constant direction over the epochs, in effect reducing the training efficiency.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a workshop paper at ICLR 2025

REFERENCES

Waleed Abu-Ain, Siti Norul Huda Sheikh Abdullah, Bilal Bataineh, Tarik Abu-Ain, and Khairuddin
Omar. Skeletonization algorithm for binary images. Procedia Technology, 11:704–709, 2013.

Olivier Bernard, Alain Lalande, Clement Zotti, Frederick Cervenansky, Xin Yang, Pheng-Ann Heng,
Irem Cetin, Karim Lekadir, Oscar Camara, Miguel Angel Gonzalez Ballester, et al. Deep learning
techniques for automatic mri cardiac multi-structures segmentation and diagnosis: is the problem
solved? IEEE transactions on medical imaging, 37(11):2514–2525, 2018.

Mingfei Cheng, Kaili Zhao, Xuhong Guo, Yajing Xu, and Jun Guo. Joint topology-preserving
and feature-refinement network for curvilinear structure segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 7147–7156, 2021.

Gehad Hassan, Aboul Ella Hassanien, Nashwa El-Bendary, and Ali Fahmy. Blood vessel segmen-
tation approach for extracting the vasculature on retinal fundus images using particle swarm opti-
mization. In 2015 11th international computer engineering conference (ICENCO), pp. 290–296.
IEEE, 2015.

Fabian Isensee, Jens Petersen, Andre Klein, David Zimmerer, Paul F Jaeger, Simon Kohl, Jakob
Wasserthal, Gregor Koehler, Tobias Norajitra, Sebastian Wirkert, et al. nnu-net: Self-adapting
framework for u-net-based medical image segmentation. arXiv preprint arXiv:1809.10486, 2018.

Xun Jin and Jongweon Kim. A 3d skeletonization algorithm for 3d mesh models using a partial
parallel 3d thinning algorithm and 3d skeleton correcting algorithm. Applied Sciences, 7(2):139,
2017.

Yannick Kirchhoff, Maximilian R Rokuss, Saikat Roy, Balint Kovacs, Constantin Ulrich, Tassilo
Wald, Maximilian Zenk, Philipp Vollmuth, Jens Kleesiek, Fabian Isensee, et al. Skeleton recall
loss for connectivity conserving and resource efficient segmentation of thin tubular structures.
arXiv preprint arXiv:2404.03010, 2024.

Longin Jan Latecki, Quan-nan Li, Xiang Bai, and Wen-yu Liu. Skeletonization using ssm of the
distance transform. In 2007 IEEE International Conference on Image Processing, volume 5, pp.
V–349. IEEE, 2007.

Martin J Menten, Johannes C Paetzold, Veronika A Zimmer, Suprosanna Shit, Ivan Ezhov, Robbie
Holland, Monika Probst, Julia A Schnabel, and Daniel Rueckert. A skeletonization algorithm for
gradient-based optimization, 2023.

Volodymyr Mnih. Machine learning for aerial image labeling. University of Toronto (Canada),
2013.

Panav Raina, Satyender Dharamdasani, Dheeraj Chinnam, Praveen Sharma, and Sukrit Gupta.
Bombr: An annotated bone marrow biopsy dataset for segmentation of reticulin fibers. bioRxiv,
pp. 2024–10, 2024.

Suprosanna Shit, Johannes C Paetzold, Anjany Sekuboyina, Ivan Ezhov, Alexander Unger, Andrey
Zhylka, Josien PW Pluim, Ulrich Bauer, and Bjoern H Menze. cldice-a novel topology-preserving
loss function for tubular structure segmentation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 16560–16569, 2021.

Karolina Tomaszkiewicz and Tomasz Owerko. A pre-failure narrow concrete cracks dataset for
engineering structures damage classification and segmentation. Scientific Data, 10(1):925, 2023.

Kaiyuan Yang, Fabio Musio, Yihui Ma, Norman Juchler, Johannes C Paetzold, Rami Al-Maskari,
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