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Abstract

Fine-tuning multi-turn dialogue systems re-001
quires high-quality supervision but often suf-002
fers from degraded performance when exposed003
to low-quality data. Supervision errors in004
early turns can propagate across subsequent005
turns, undermining coherence and response006
quality. Existing methods typically address007
data quality via static prefiltering, which de-008
couples quality control from training and fails009
to mitigate turn-level error propagation. In this010
context, we propose ReSURE (REgularizing011
Supervision UnREliability), an adaptive learn-012
ing method that dynamically down-weights un-013
reliable supervision without explicit filtering.014
ReSURE estimates per-turn loss distributions015
using Welford’s online statistics and reweights016
sample losses on the fly accordingly. Experi-017
ments on both single-source and mixed-quality018
datasets show improved stability and response019
quality. Notably, ReSURE enjoys positive020
Spearman correlations (0.21 ∼ 1.0 across mul-021
tiple benchmarks) between response scores and022
number of samples regardless of data quality,023
which potentially paves the way for utilizing024
large-scale data effectively.025

1 Introduction026

Multi-turn dialogue systems are fundamental to027

both task-oriented (Xu et al., 2024) and open-028

domain conversational agents (Lu et al., 2023a; Sun029

et al., 2024), enabling coherent and natural inter-030

actions. However, fine-tuning remains challenging031

due to reliance on large-scale multi-turn datasets032

(Bian et al., 2023; Zhao et al., 2024b; Contributors,033

2023) that mix human and synthetic data of varying034

quality (OpenAI, 2023). In such settings, supervi-035

sion errors in early turns often propagate across036

later ones, compounding inconsistencies and de-037

grading coherence (Hu et al., 2025; Yi et al., 2024).038

This issue is further exacerbated by mismatches be-039

tween training supervision and evaluation criteria,040

making it difficult for models to recover from early- 041

turn noise or learn turn-consistent behavior (Zheng 042

et al., 2023; Kwan et al., 2024a; Wu et al., 2023a; 043

Chen et al., 2023; Li et al., 2024a; Zhou et al., 044

2024). As datasets scale, conventional fine-tuning 045

approaches assume uniformly reliable supervision 046

and struggle to distinguish between clean and noisy 047

signals, often overfitting to noise or discarding use- 048

ful samples (Hase et al., 2024). 049

A common strategy to mitigate noisy supervision 050

is static pre-filtering before fine-tuning (Wang et al., 051

2024a), aiming to remove low-quality or incom- 052

plete samples. However, such heuristic methods 053

(Cao et al., 2023) overlook the hierarchical nature 054

of multi-turn dialogues, leading to over-filtering 055

and loss of informative turns. Other approaches en- 056

hance robustness by injecting synthetic noise (Wu 057

et al., 2022), but often lack principled mechanisms 058

to regulate supervision quality during training. 059

To address these limitations, we propose 060

ReSURE (Regularizing Supervision UnREliabil- 061

ity), an adaptive fine-tuning framework that dynam- 062

ically adjusts loss contributions from unreliable 063

supervision signals. We define such supervision 064

as samples that consistently yield high or unstable 065

losses during training (Wang et al., 2024b). Ob- 066

serving that later turns are more susceptible to su- 067

pervision noise due to increased contextual com- 068

plexity (Zheng et al., 2023; Kwan et al., 2024a), 069

ReSURE groups samples by turn depth and tracks 070

per-group loss statistics via Welford’s algorithm 071

(Welford, 1962; Efanov et al., 2021). Samples with 072

abnormally high losses are softly reweighted to re- 073

duce instability while preserving gradient signal. 074

This turn-aware design ensures that difficult turns 075

are not over-penalized and early-turn errors do not 076

dominate optimization, thereby stabilizing training 077

and enhancing contextual coherence in multi-turn 078

dialogue. 079

Experimental results show that ReSURE enables 080

consistent optimization across multi-turn bench- 081
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Figure 1: Overview of Training Paradigms: Traditional Fine-tuning, Pre-filtering, and ReSURE.

marks, including MT-Bench, MT-Bench-Ext, and082

In-Domain-Test. Under mixed datasets with pro-083

gressively added noisy or off-distribution samples,084

ReSURE consistently maintains or improves perfor-085

mance, achieving positive Spearman correlations086

(0.21, 1.00, 0.80), while Vicuna-Tuning (Chiang087

et al., 2023) shows degradation and other baselines088

fluctuate. To simulate task-level noise, we incor-089

porate GSM8K (Cobbe et al., 2021) and find that090

ReSURE preserves generalization. These findings091

highlight ReSURE’s robustness to both supervi-092

sion noise and task drift. Unlike static filtering093

methods such as DeBERTa-based data selection094

(He et al., 2020, 2021), ReSURE achieves these095

gains without manual intervention. Moreover, com-096

bining ReSURE with pre-filtering yields further097

improvements, indicating their complementarity.098

Our key contributions are as follows:099

• We propose ReSURE, a turn-aware fine-100

tuning framework that preserves positive opti-101

mization in multi-turn instruction tuning un-102

der unreliable supervision.103

• ReSURE avoids manual data filtering and104

seamlessly integrates with instruction-tuning105

pipelines, supporting robustness under both106

supervision and task-level noise.107

• Extensive experiments across in-domain, MT-108

Bench, and MT-Bench-Ext show consistent109

gains and positive optimization trends (Spear-110

man: 0.21, 1.00, 0.80), with further improve- 111

ment when combined with static filtering. 112

2 Related Work 113

2.1 Multi-turn Dialogue Fine-tuning 114

Recent advances in LLM fine-tuning (Hu et al., 115

2023, 2021; Dettmers et al., 2024) have enabled 116

strong performance on single-turn tasks (Liu et al., 117

2024a; Zhao et al., 2024a; Meng et al., 2024), but 118

multi-turn dialogue remains challenging. Prior 119

work addresses this via optimization techniques 120

like reinforcement learning and preference model- 121

ing (Sun et al., 2024; Shani et al., 2024), or through 122

data augmentation and inductive construction (Ma- 123

heshwary et al., 2024; Ou et al., 2024). However, 124

these lines remain disconnected, and challenges 125

like data curation cost, weak generalization, and 126

inconsistent supervision persist. Our work bridges 127

this gap by jointly addressing turn-level supervi- 128

sion and data noise in a unified framework. 129

2.2 Data Selection in LLM Finetuning 130

Although the scale of data is crucial in LLM fine- 131

tuning, selecting fewer high-quality data points can 132

lead to better performance than using the entire 133

dataset (Wu et al., 2023a; Chen et al., 2023), high- 134

lighting the significance of data selection. In terms 135

of data quality assessment (Wang et al., 2024a), 136

data selection methods can be grouped into three 137

categories: (1) GPT-based scoring, which relies on 138

prompting ChatGPT with predefined rubrics (Chen 139
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et al., 2023; Lu et al., 2023b; Xu et al., 2023; Liu140

et al., 2024b; Du et al., 2023); (2) model-based141

scoring, where an LLM is trained to evaluate in-142

stances under a learned policy (Li et al., 2023a,143

2024b; Wu et al., 2023b); and (3) indicator-based144

methods, which estimate data quality via inference145

loss (Cao et al., 2023) or handcrafted conversation146

metrics (Wei et al., 2023).147

Although these works emphasize the impor-148

tance of data selection, they often produce unin-149

terpretable results, suffer from limited applicability150

and randomness, and demand prohibitively high151

training costs. These limitations lead to low feasi-152

bility in both training and generalization as models153

evolve. In addition, prior approaches perform data154

selection independently of the training process, fail-155

ing to capture and leverage end-to-end feedback156

during training, which is a key focus of our work.157

3 Methodology158

By monitoring loss statistics in a turn-aware man-159

ner using Welford’s online algorithm, ReSURE160

identifies unstable supervision signals and adjusts161

their training influence without explicit filtering.162

This design stabilizes optimization and preserves163

coherence in multi-turn dialogue settings.164

Specifically, in multi-turn fine-tuning, each train-165

ing sample consists of a dialogue with multiple166

user–assistant turns. The model is trained to min-167

imize the cross-entropy loss over the supervised168

tokens. ReSURE modifies this objective by intro-169

ducing a dynamic weight ws for each sample:170

LReSURE =
1

S

S∑
s=1

ws · ℓs, (1)171

where ℓs denotes the loss for sample s, S denotes172

the number of samples in the mini-batch, and ws is173

computed based on turn-aware loss statistics (see174

Sec. 3.3).175

3.1 Turn Group Loss Estimation176

Supervised fine-tuning in multi-turn dialogue is177

complicated by uneven supervision quality across178

dialogue depths. Early turns are typically short,179

contextually grounded, and easier to align with180

reference responses. In contrast, later turns often181

involve complex phenomena such as context ac-182

cumulation, topic shifts, and implicit reasoning,183

which increase supervision noise and model uncer-184

tainty (Zheng et al., 2023; Kwan et al., 2024a).185

To address this, ReSURE groups training sam- 186

ples by their maximum supervised turn group index 187

b ∈ {1, . . . , N}, where N denotes the maximum 188

number of turns per dialogue. For each b, we main- 189

tain turn-specific online loss statistics—namely, a 190

running mean µ
(b)
s and standard deviation σ

(b)
s of 191

the per-sample loss—computed using Welford’s 192

algorithm: 193

µ(b)
s = µ

(b)
t−1 +

ls − µ
(b)
s−1

t(b)
, (2) 194

195

SSD(b)
s = SSD

(b)
t−1+(ls−µ

(b)
t−1)(ls−µ(b)

s ), (3) 196

197

σ(b)
s =

√
M2

(b)
s

t(b) − 1
. (4) 198

Here, SSD(b)
s denotes the Sum of Squared Devi- 199

ations from the current mean µ
(b)
s , used to compute 200

the variance, and s(b) is the number of samples 201

assigned to group b up to sample s. Only sam- 202

ples within each group b contribute to its own loss 203

statistics, enabling turn-aware normalization. All 204

statistics are initialized to zero and updated only 205

upon observing the first reliable sample in each 206

turn group. This design avoids over-penalizing 207

high-turn samples that are harder, while ensuring 208

stable optimization on easier low-turn cases. By 209

aligning loss treatment with dialogue structure, it 210

provides an inductive bias that helps the model 211

calibrate supervision trust by turn depth. 212

3.2 Unreliability Detection 213

After warm-up, ReSURE detects unreliable super- 214

vision by identifying loss outliers with respect to 215

turn-specific distributions. For each dialogue turn, 216

we maintain the running mean µ(b) and standard 217

deviation σ(b) of per-sample loss using Welford’s 218

algorithm. A sample is flagged as unreliable if its 219

loss ls exceeds the threshold: 220

τ (b)s = µ(b)
s + α · σ(b)

s , (5) 221

where α is a fixed anomaly factor. While classical 222

outlier detection often adopts α under Gaussian 223

assumptions, we use α = 1.0 to increase sensitiv- 224

ity to moderate deviations, following practices in 225

robust training and loss-based re-weighting (Zhang 226

and Sabuncu, 2020). 227

If a sample is identified as unreliable (ls > τ
(b)
s ), 228

its loss is downweighted using soft reweighting 229
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(see Sec. 3.3) but excluded from the update of run-230

ning statistics, and the statistics µ(b) and σ(b) re-231

main unchanged.232

In contrast, if ls ≤ τ
(b)
s , the sample is treated as233

reliable and its loss is incorporated into the Welford234

updates as defined in Eqs. (2), (3), and (4).235

This conditional update mechanism ensures that236

the estimated statistics remain stable in the pres-237

ence of supervision noise while still adapting to238

distributional shifts in reliable examples.239

3.3 Soft Reweighting240

Rather than discarding high-loss samples, ReSURE241

applies a soft reweighting strategy to reduce their242

influence while retaining informative gradients. For243

samples with ls > τ
(b)
s , the adjusted loss is com-244

puted using a decayed weight:245

ws = max

(
ϵs, exp

(
− ls − τ

(b)
s

τ
(b)
s

))
, (6)246

247
l̃s = ws · ls, (7)248

where τ
(b)
s is the turn-specific loss threshold and249

ϵs denotes a dynamic floor, computed as the 5th250

percentile of the current batch’s weight distribu-251

tion. This adaptive lower bound ensures that even252

high-loss samples retain a minimal contribution,253

preventing vanishing gradients while adapting to254

overall batch variability.255

Unlike fixed heuristics, this percentile-based for-256

mulation provides a data-driven way to preserve257

training signal from difficult or ambiguous cases. It258

aligns with findings in robust optimization that em-259

phasize the importance of soft suppression rather260

than hard filtering for handling uncertain supervi-261

sion (Ren et al., 2018; Zhang and Sabuncu, 2020).262

4 Experiments263

4.1 Evaluation on Datasets264

There are multiple open-source and high-quality265

multi-turn dialogue datasets, which are generated266

by both humans and LLMs. Table 7 in section B of267

Appendix presents the datasets used in this work268

and their features, including ShareGPT (RyokoAI,269

2023), WildChat (Zhao et al., 2024b), OpenAssis-270

tant (Köpf et al., 2024), ChatAlpaca (Bian et al.,271

2023), MTLingual (Maheshwary et al., 2024), and272

UltraChat (Ding et al., 2023). Motivated by bench-273

marks on LLM evaluation (Zheng et al., 2023;274

Kwan et al., 2024b) and MoDS (Du et al., 2023), 275

we evaluate these datasets by GPT and reward 276

model, respectively. This dual-evaluation strategy 277

offers complementary insights and enables a com- 278

prehensive evaluation on dataset quality. 279

Evaluation by GPT. Recent benchmarks on 280

LLM evaluation (Zheng et al., 2023; Kwan et al., 281

2024b; Radziwill and Benton, 2017) emphasize 282

relevance, helpfulness, and accuracy, while also ac- 283

knowledging ethical considerations. Besides, prior 284

work on human dialogue (Dethlefs et al., 2016) 285

highlights the importance of information density. 286

Thus, we propose a benchmark evaluating conver- 287

sations in four independent aspects: Connection, 288

Quality, Information Density and Friendliness. 289

The evaluation is carried out using GPT-4o, 290

which is widely adopted in evaluation works 291

(Zheng et al., 2023; Kwan et al., 2024b; Bai et al., 292

2024). The designs of criteria, prompts and data 293

pre-processing are detailed in section A of Ap- 294

pendix. For the evaluation on each aspect, one 295

hundred conversations are sampled independently 296

and randomly, and the evaluation on each conversa- 297

tion of each dataset is also independent. The score 298

of each aspect of a dataset is defined as the average 299

score of the sampled conversations in this aspect. 300

Evaluation by reward model. We employ the 301

reward-model-deberta-v3-large-v2 (OpenAssistant, 302

2023) to score conversations. This model is trained 303

on four diverse human-feedback datasets (Nakano 304

et al., 2021; Stiennon et al., 2020; Havrilla, 2023; 305

Bai et al., 2022), enabling it to perform evaluation 306

on models’ responses. We concatenate each entire 307

multi-turn dialogue into a single input sequence 308

and prompt the model to assign a reward score 309

which reflects the overall quality. The score of a 310

dataset is defined as the average reward score. 311

Table 6 presents the evaluation results. To derive 312

an overall quality score for each dataset, we scale 313

the Information Density score by a factor of 100 314

and sum it with the other four evaluation metrics. 315

The overall quality of the datasets is categorized as 316

high (ChatAlpaca, MTLingual, UltraChat), normal 317

(WildChat, shareGPT), and low (OpenAssistant). 318

4.2 Experimental Settings 319

Parameter. The experiments are conducted with 320

instruct-style models from multiple families, in- 321

cluding LLaMA-3.2-3B-Instruct, LLaMA-3.1- 322

8B-Instruct (Grattafiori et al., 2024), Qwen2.5-3B- 323

Instruct, and Qwen2.5-7B-Instruct (Team, 2024). 324
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The models are fine-tuned for 3 epochs on datasets325

of varying quality. Each device processed a batch326

size of 4, with a gradient accumulation step of 4, re-327

sulting in an effective batch size of 64. The Adam328

optimizer was employed, with the hyperparame-329

ter β2 set to 0.95. A cosine decay learning rate330

schedule was applied, starting at an initial learning331

rate of 1× 10−5 and incorporating a warm-up ra-332

tio of 0.01. All training and evaluation procedures333

were performed in FP16 precision on four NVIDIA334

GPUs. To reduce memory consumption, gradient335

checkpointing and Low-Rank Adaptation (LoRA)336

were enabled during training. Model performance337

was periodically assessed using a held-out valida-338

tion set of 400 examples.339

To enhance the robustness of the training process,340

a warm-up strategy was implemented during the341

initial phase of training. This involved using 640342

high-quality dialogue samples to initialize baseline343

mean and variance parameters. As training pro-344

gressed, the filtering weight for anomalous data345

was gradually increased to ensure smooth and sta-346

ble model optimization.347

Evaluation. We conducted evaluations across348

three settings: In-Domain-Test, MT-Bench349

(Zheng et al., 2023), and MT-Bench-Ext (Kwan350

et al., 2024b), to assess both in-domain perfor-351

mance and generalization. The In-Domain-Test352

serves as a setting-specific evaluation, where mod-353

els are tested on held-out samples from the same354

distribution as the training data. It includes six355

multi-turn dialogue datasets (ShareGPT, WildChat,356

OpenAssistant, ChatAlpaca, MTLingual, and Ul-357

traChat), each with 100 randomly sampled conver-358

sations to cover diverse domains and supervision359

styles. All evaluations followed the GPT-4–based360

“LLM-as-a-Judger” protocol (Zheng et al., 2023),361

which was used both to compute Win Rate (Li et al.,362

2023b; Dubois et al., 2024, 2023) via pairwise com-363

parisons and to assign fine-grained scores across364

four human-aligned criteria: Faithfulness (Faith.),365

Appropriateness (Appr.), Naturalness (Nat.), and366

Completeness (Compl.).367

Mix Dataset. To validate the effectiveness of our368

approach, we selected ChatAlpaca, ShareGPT, and369

OpenAssistant as representatives of high-, normal-,370

and low-quality datasets, respectively. From each371

dataset, 20K samples are extracted and mixed in372

different combinations: high and normal quality,373

high and low quality, and high, normal, and low374

quality. These experiments are designed to assess375

the performance of our method in handling datasets 376

with varying distributions during training. 377

4.3 Baselines 378

We evaluate our method against four typical meth- 379

ods in multi-turn dialogue study: 380

(1) Base Model (BM): the original instruction- 381

tuned model without task-specific fine-tuning for 382

multi-turn dialogue. 383

(2) Vicuna-Tuning (VT): a widely adopted dia- 384

logue adaptation framework built upon LLaMA, 385

distinguished by its LoRA fine-tuning strategy on 386

multi-turn conversational data (Chiang et al., 2023). 387

(3) Baize: a parameter-efficient approach that ex- 388

clusively updates linear layers through self-chat 389

generation (Chiang et al., 2023). 390

(4) ChatGLM3: implements multi-turn dialogue 391

fine-tuning by updating only the loss of roles other 392

than user and system (GLM et al., 2024). 393

All methods share identical LoRA configurations 394

(rank=128, alpha=16, dropout=0.3) and data parti- 395

tions: 20,000 training samples with 400 validation 396

and 100 test instances. Experiments are conducted 397

with fixed random seeds (seed=42) and multi-turn 398

dialogue performance quantified by the MT-Bench 399

(Zheng et al., 2023). 400

4.4 Main Results 401

4.4.1 Does ReSURE address negative 402

optimization in multi-turn dialogues? 403

To evaluate the ability of ReSURE to mitigate neg- 404

ative optimization, which refers to performance 405

degradation as the volume of supervision increases, 406

we conduct a comparative analysis with Vicuna- 407

Tuning across six instruction-tuned multi-turn di- 408

alogue datasets: M2Lingual, ChatAlpaca, Ultra- 409

Chat, ShareGPT, Wildchat, and OpenAssistant. As 410

shown in Table 1, ReSURE consistently outper- 411

forms the base model by 6.11%, 9.82%, and 2.86% 412

on the in-domain benchmark, MT-Bench, and 413

MT-Bench-Ext, respectively. In contrast, Vicuna- 414

Tuning exhibits clear signs of negative optimiza- 415

tion, particularly on ShareGPT, where additional 416

training data reduces performance—likely due to 417

stylistic inconsistencies or supervision conflicts. 418

Although ReSURE achieves slightly lower gains 419

on M2Lingual, this may be attributed to the limited 420

dataset size and increased risk of overfitting. Over- 421

all, these results demonstrate that ReSURE scales 422

effectively with increasing data while maintaining 423

robustness to supervision noise. 424
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Level Dataset In_Domain_Test MT-Bench MT-Bench-Ext

BM VT ReSURE BM VT ReSURE BM VT ReSURE

H
M2Lin. 7.10 7.09 (-0.14%) 7.06 (-0.56%) 7.13 7.21 (+1.12%) 7.16 (+0.42%) 6.64 6.65 (+0.15%) 6.71 (+1.05%)
ChatAlpaca 8.20 7.99 (-2.56%) 8.26 (+0.73%) 7.13 6.97 (-2.24%) 7.29 (+2.24%) 6.64 5.99 (-9.79%) 6.76 (+1.81%)
UltraChat 7.90 7.56 (-4.30%) 8.01 (+1.39%) 7.13 6.68 (-6.31%) 7.32 (+2.66%) 6.64 6.22 (-6.33%) 6.76 (+1.81%)

N ShareGPT 6.55 6.09 (-7.02%) 6.95 (+6.11%) 7.13 6.08 (-14.73%) 7.83 (+9.82%) 6.64 5.80 (-12.65%) 6.83 (+2.86%)
WildChat 6.80 6.47 (-4.85%) 6.86 (+0.88%) 7.13 7.14 (+0.14%) 7.21 (+1.12%) 6.64 6.74 (+1.51%) 6.72 (+1.20%)

L OpenAss. 7.64 7.20 (-5.76%) 7.67 (+0.39%) 7.13 6.20 (-13.07%) 7.26 (+1.83%) 6.64 5.48 (-17.47%) 6.83 (+2.86%)

Table 1: Comparison of our method, non-trained Base Model (BM), and Vicuna-Tuning on LLaMA-3.2-3B-Instruct:
multi-turn dialogue performance (GPT-4 scores) across high-, normal-, and low-quality datasets. Each cell shows
absolute scores plus relative improvement/decline (%) vs. BM in parentheses. H, N, L = High, Normal, Low, M2Lin.
= M2Lingual (en), OpenAss. = OpenAssistant.

Figure 2: Performance scaling with Hierarchical Data Integration (H, H+N, H+N+L): (a) In-Domain-Test Perfor-
mance (b) MT-Bench Performance (c) MT-Bench-Ext Performance

Human evaluation on MT-Bench-Ext (Table 2)425

further supports our findings. ReSURE outper-426

forms both the base model and Vicuna-Tuning427

across all evaluation dimensions, with notable428

improvements in Faithfulness and Completeness.429

These gains are especially evident in multi-turn set-430

tings, where maintaining factual consistency and431

contextual coherence is essential. The results in-432

dicate that ReSURE more effectively preserves se-433

mantic alignment across turns, resulting in more434

coherent and informative dialogues. Additional435

evaluation details are provided in Appendix C.436

These results indicate that the dynamic suppres-437

sion of unreliable supervision contributes to more438

stable training dynamics and semantically aligned439

responses. This observation is consistent with the440

findings from automatic benchmarks, and further441

supports the robustness of ReSURE under imper-442

fect supervision conditions in instruction-tuned di-443

alogue settings.444

4.4.2 Does ReSURE Suppress Unreliable445

Supervision for Robust Fine-Tuning?446

To evaluate ReSURE’s robustness under noisy su-447

pervision, we construct mixed datasets of increas-448

ing complexity and compare it with Vicuna-Tuning,449

Baize, and ChatGLM3. This setup simulates real- 450

istic fine-tuning scenarios involving low-quality 451

or off-distribution samples. As shown in Fig- 452

ure 2, ReSURE maintains or improves performance 453

across all three evaluation settings as dataset size 454

and noise increase. It achieves stable in-domain 455

scores around 8.2, with steady gains on MT-Bench 456

(7.13 to 7.4) and MT-Bench-Ext (6.64 to 6.77), indi- 457

cating effective use of additional supervision with- 458

out overfitting to noise. In contrast, Vicuna-Tuning 459

exhibits consistent degradation—particularly on 460

MT-Bench-Ext (6.64→5.74)—while Baize and 461

ChatGLM3 show marginal or unstable changes. 462

These trends are confirmed by Spearman correla- 463

tion analysis (Appendix Table 4), where ReSURE 464

yields positive correlations across all benchmarks, 465

unlike the negative or inconsistent values observed 466

for baselines. 467

ReSURE excels on partially noisy datasets, 468

maintaining positive optimization. As shown 469

in Figure X, when noise increases from high- 470

quality (H) to mixed-quality (H+N+L), conven- 471

tional methods like Vicuna-Tuning and Baize ex- 472

hibit noticeable performance drops—e.g., Vicuna- 473

Tuning drops by 0.75 on MT-Bench and 0.90 474

on MT-Bench-Ext. In contrast, ReSURE shows 475
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Model Faith. Appr. Nat. Compl. Over.

BM 3.40 3.06 3.16 3.50 3.04
VT 3.36 2.98 3.22 3.42 2.98
ReSURE 3.74 3.68 3.74 3.86 3.66

Table 2: Human evaluation on MT-Bench-Ext.

Exp
Setting

In-Domain-
Test MT-Bench MT-Bench-

Ext

Base 8.20 7.13 6.64
VT 7.99 6.97 5.99
VT +
Prefiltering

7.99
(0.00%)

7.15
(+2.58%)

6.68
(+11.52%)

ReSURE 8.26 7.29 6.76
ReSURE +
Prefiltering

8.28
(+0.24%)

7.58
(+3.98%)

7.35
(+8.73%)

Table 3: Performance comparison between the prefilter-
ing method (DeBERTa) and ReSURE.

strong robustness, with minimal variance and even476

slight improvements in noisy conditions. On the477

In-Domain-Test, ReSURE achieves a peak score478

of 8.26, maintaining a high level of performance479

across all mixtures. In multi-turn settings, it consis-480

tently outperforms baselines across all noise levels,481

particularly under challenging H+N+L configura-482

tions. This resilience enables ReSURE to leverage483

larger and more diverse training data effectively,484

without requiring explicit pre-filtering.485

5 Ablation Study486

5.1 Can ReSURE Handle Task Mixture?487

To further examine the stability of ReSURE un-488

der heterogeneous training conditions, we incor-489

porate GSM8K, a mathematical question answer-490

ing dataset, into the multi-turn ChatAlpaca cor-491

pus. This setting introduces task-level noise due492

to divergent supervision styles. As shown in493

Figure 3, ReSURE maintains in-domain perfor-494

mance and achieves positive generalization on495

MT-Bench and MT-Bench-Ext, even when trained496

on mixed-task data. In contrast, Vicuna-Tuning497

shows performance degradation on both in-domain498

and general benchmarks, likely due to overfitting499

to arithmetic patterns in GSM8K, which weak-500

ens its multi-turn dialogue capability and harms501

contextual alignment. These results indicate that502

ReSURE is more robust to task drift and bet-503

ter preserves dialogue-relevant optimization sig-504

nals by dynamically suppressing incompatible su-505

pervision. All experiments are conducted us-506

ing the LLaMA3.2-3B-Instruct model. Notably,507

ChatAlpaca ChatAlpaca+GSM8K
Dataset

5.5

6.0

6.5

7.0

7.5

8.0

8.5

Sc
or

e

Vicuna-Tuning (In-Domain-Test)
Vicuna-Tuning (MT-Bench)
Vicuna-Tuning (MT-Bench-Ext)

ReSURE (In-Domain-Test)
ReSURE (MT-Bench)
ReSURE (MT-Bench-Ext)

Figure 3: Performance comparison between Vicuna-
Tuning and ReSURE on ChatAlpaca and ChatAl-
paca+GSM8K across three evaluation benchmarks: In-
Domain-Test, MT-Bench, and MT-Bench-Ext.

Model In-Domain-
Test MT-Bench MT-Bench-

Ext

VT -1.000 -1.000 -1.000
Baize -1.000 0.000 -0.400
ChatGLM3 -1.000 0.211 -0.800
ReSURE 0.211 1.000 0.800

Table 4: Spearman correlation between dataset complex-
ity and performance across benchmarks.

ReSURE also improves GSM8K accuracy from 508

77.7% to 78.3%, confirming its robustness across 509

tasks without sacrificing task-specific performance. 510

5.2 Does ReSURE perform better than 511

pre-filtering methods? 512

We compare ReSURE against traditional offline 513

reward-based pre-filtering (Du et al., 2023), us- 514

ing reward-model-deberta-v3-large-v2 (OpenAs- 515

sistant, 2023) to retain the top 75% of samples 516

from ChatAlpaca, ShareGPT, and OpenAssistant. 517

As shown in Table 3, ReSURE alone outperforms 518

static filtering, and the best performance is achieved 519

by combining both. Notably, this hybrid setup 520

yields the largest improvement on MT-Bench-Ext, 521

highlighting its advantage in complex multi-turn 522

scenarios. These findings indicate that ReSURE’s 523

dynamic reweighting complements static quality 524

filtering, offering an effective synergy for robust 525

dialogue fine-tuning. 526
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Figure 4: Win Rates of ReSURE vs. VT on MT-Bench
and MT-Bench-Ext.

Metric ReSURE w/o Welford ∆ (%)
In-Domain-Test 8.26 8.20 -0.73%
MT-Bench 7.29 7.19 -1.37%
MT-Bench-Ext 6.76 6.70 -0.89%

Table 5: Performance drop (GPT-4 scores) when re-
moving Welford statistics from ReSURE across three
evaluation benchmarks.

5.3 How Does ReSURE Perform Across527

Diverse Model Families and Sizes?528

To assess ReSURE’s generalizability, we apply529

ReSURE to four instruction-tuned models from the530

Qwen and LLaMA families. We evaluate using Win531

Rate—the proportion of multi-turn responses pre-532

ferred over base outputs, as judged by GPT-4. As533

shown in Figure 4, ReSURE consistently improves534

multi-turn quality across settings. Improvements535

are more stable for LLaMA models, while Qwen536

models show greater variance between MT-Bench537

and MT-Bench-Ext, suggesting model-specific sen-538

sitivity to noisy supervision. These results high-539

light ReSURE’s applicability and robustness across540

architectures and scales.541

ReSURE enhances response performance by542

effectively skipping low-quality data. To bet-543

ter understand the impact of its adaptive weight-544

ing mechanism, we conduct an ablation study545

by removing the Welford-based loss modulation,546

while keeping all other training settings and loss547

components unchanged. This ablated variant dis-548

ables the skip mechanism and treats all supervi-549

sion equally, regardless of quality. Table 5 demon-550

strates that removing Welford statistics leads to551

performance drops of 0.73%, 1.39%, and 0.90%552

on In-Domain, MT-Bench, and MT-Bench-Ext, re-553

spectively. These results confirm that selectively554

down-weighting unreliable supervision improves555

robustness and training stability in multi-turn dia-556

logue tuning, and highlight the importance of adap-557

tive loss modulation in mitigating the impact of558

noisy or inconsistent annotations.559

1st

User: … what the predicate is in that sentence?

Assistant: Yes, the predicate ...
2nd

User: Can you explain to me what a predicate is?

Assistant: Sure! A predicate is one of the two main 

parts of a sentence. It usually includes the...

3rd

4th

(Test 

case)

User: Can you give me an example of a sentence 

with a compound predicate?

Answer 1 (ReSURE): …\"are going to the 

movies tonight\" is the first part of the 

compound predicate, and \"will see a new 

superhero movie\" is the second part of the 

compound predicate….

Score: 9/10, Rationale: Correctly identify 

parallel verb structures.

Answer 2 (Vicuna-Tuning): … the compound 

predicate includes two verbs: \"attended\" and 

\"headed\". …

Score: 3/10, Rationale: Mistakenly parsing the 

noun phrase "headed" as a verb.

User: In the sentence, … , identify the subject

Assistant: Jack

Figure 5: Case study.

6 Case Study 560

As illustrated in Figure 5, this multi-turn dialogue 561

example demonstrates the superior contextual un- 562

derstanding of ReSURE compared to Vicuna- 563

Tuning. When processing a compound predicate 564

query, ReSURE correctly identifies the parallel 565

verb structure, accurately parsing both predicate 566

components ("are going" and "will see") with ap- 567

propriate syntactic boundaries. In contrast, Vicuna- 568

Tuning misinterprets the noun phrase "headed" as 569

a verb predicate, despite the prior context clearly 570

indicating "head" as a positional noun. This error 571

highlights the model’s limited ability to maintain 572

dialogue state awareness and resolve referential de- 573

pendencies across turns. Additional examples are 574

provided in Appendix D. 575

7 Conclusion 576

We propose ReSURE, a turn-aware fine-tuning 577

framework that dynamically down-weights unreli- 578

able supervision via per-turn loss statistics. With- 579

out explicit data filtering, ReSURE improves re- 580

sponse quality and training stability across MT- 581

Bench, MT-Bench-Ext, and in-domain settings. It 582

demonstrates consistent gains under supervision 583

noise, with ablations confirming the effectiveness 584

of turn-aware modulation. ReSURE offers a scal- 585

able solution for instruction tuning on large, mixed- 586

quality datasets. 587
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Limitation588

This study has several limitations. First, while589

we adopt one type of online statistical approach,590

alternative techniques for modeling supervision re-591

liability remain unexplored. Second, our dataset592

quality evaluation is intended as a reference rather593

than a definitive measure, as different domains may594

require tailored metrics. Third, the method is eval-595

uated only in multi-turn dialogue scenarios, with596

broader applications limited by computational cost.597

In addition, our results on Qwen2.5-7B-Instruct are598

less promising compared to other models, poten-599

tially due to architectural differences or instruction600

tuning strategies not well aligned with our loss cal-601

ibration mechanism. Despite these limitations, we602

hope our findings offer useful insights for future603

research on domain-specific fine-tuning.604

Ethics Statement605

This research focuses on improving the robustness606

of fine-tuning multi-turn dialogue systems using607

publicly available datasets. All datasets used in608

this work are released under permissive licenses609

and do not contain personally identifiable informa-610

tion. No human subjects were involved in data611

collection. While our method aims to reduce the612

impact of unreliable supervision, it implicitly filters613

training signals, which may lead to unintended bias614

or underrepresentation of minority styles. Model615

evaluations are conducted by three trained research616

assistants, each paid $20/hour, above the local av-617

erage.618
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A Data processing and Evaluation 959

Prompts 960

This section presents the designs of criteria. the 961

four evaluation aspects in section 4.1 are defined 962

as: 963

Connection: The final response should incorpo- 964

rate relevant information from prior conversations 965

without introducing unrelated or redundant details. 966

Quality: Each response should fulfill the request 967

of the corresponding turn, while ensuring content 968

accuracy and maintaining high language quality. 969

Information Density (ID): For the whole conver- 970

sation, calculate the total number of words N and 971

the number of information units I . The information 972

density is defined as ID = I/N . 973

Friendliness: Requests should be in a polite man- 974

ner, while responses should prioritize security and 975

politeness. The whole conversation should main- 976

tain a respectful tone. 977

During the evaluation of datasets, although the 978

raw patterns of conversation data from different 979

sources vary from each other, all of them are for- 980

matted as [{’human’: ’<request>’, ’assistant’: 981

’<response>’}, ... , {’human’: ’<request>’, ’as- 982

sistant’: ’<response>’}] for each entire and inde- 983

pendent conversation, before being written to the 984

prompt. The ChatGPT version used in the evalua- 985

tion is ChatGPT-4o-2024-08-06, and the complete 986

prompts of the evaluation on Connection, Quality, 987

Information Density and Friendliness are detailed 988

in Figure 7, Figure 8, Figure 9, Figure 10 separately. 989

In the evaluation, each aspect of each independent 990

conversation is also graded independently. 991

B Datasets Introduction 992

Table 7 shows the datasets in this work. ShareGPT 993

is a collection of 90k conversations shared via the 994

ShareGPT API (closed at present), and includes 995

both user prompts and responses from ChatGPT, 996

which mainly consists of messages in English and 997
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Dataset Con. Qu. ID Fr. Re. Overall
ChatAlpaca 8.34 9.49 0.0286 9.48 3.00 High

MTLingual 8.54 9.37 0.0263 9.14 1.49 High

UltraChat 8.46 9.06 0.0233 9.41 1.92 High

WildChat 7.80 8.78 0.0196 8.90 0.17 Normal

ShareGPT 8.10 8.69 0.0174 8.82 -0.33 Normal

OpenAssistant 7.54 7.57 0.0292 8.21 0.28 Low

Table 6: Dataset Evaluation Results. Con.: Connection,
Qu.: Quality, ID: Information Density, Fr.: Friendliness,
Re: Reward score.

other western languages. WildChat is a collection998

of 1 million real-world user-ChatGPT conversa-999

tions which consists of over 2.5 million interaction1000

turns and 68 languages from 204,736 users (Zhao1001

et al., 2024b). OpenAssistant is a collection of1002

161,443 messages that construct over 10000 com-1003

plete conversations, which consists of 35 different1004

languages and over 40k annotations on quality, and1005

is designed for reinforcement learning from human1006

feedback. Hence, it provides different conversa-1007

tions based on the same initial question with differ-1008

ent quality, which leads to the sacrifice of the over-1009

all quality. Another important and unique feature1010

of OpenAssistant is that, it is totally generated and1011

annotated by human (Köpf et al., 2024). ChatAl-1012

paca is a collection of 20k conversations, generated1013

by ChatGPT and started with the original Stanford1014

Alpaca (Taori et al., 2023) data, and it contains1015

English and Chinese version. MTLingual is a col-1016

lection of 182k conversations in 70 languages, and1017

is generated by Evol (Maheshwary et al., 2024).1018

The type of language, task, user prompt, and seed1019

prompt are also detailed in MTLingual. UltraChat1020

is a collection of 1.5 million conversations and is1021

generated by ChatGPT which simulates the inter-1022

actions of human. The main concerns of UltraChat1023

is diversity, scale, and coherence.1024

C Human Evaluation1025

To qualitatively assess response quality, we con-1026

duct a human evaluation on a subset of multi-turn1027

dialogues. Three research assistants with NLP1028

backgrounds are recruited to independently rate1029

model outputs. We randomly sample 10 dialogue1030

instances from MT-Bench and MT-Bench++ (101031

each), covering diverse tasks and turn depths. For1032

each dialogue, annotators evaluate model responses1033

at different turns following the criteria defined in1034

Table 8, including faithfulness, appropriateness,1035

naturalness, completeness, and overall quality. Fi- 1036

nal scores are computed by averaging ratings across 1037

annotators. 1038

D Case Study 1039

Figure 6 details a case showing ReSURE’s supe- 1040

rior contextual comprehension on multi-turn dia- 1041

logue compared to Vicuna-Tuning. In this case, our 1042

method successfully identifies parallel verb struc- 1043

tures while Vicuna-Tuning fails in the recognition 1044

of the parts of speech. 1045
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Dataset Volume Avg. Turns Generation
Type

Generation
Mechanism

Annotated

ShareGPT
(RyokoAI, 2023) 94K 3.51 User-

ChatGPT
Voluntary sharing

by netizens
No

WildChat
(Zhao et al., 2024b) 1.04M 2.54 User-

ChatGPT
Collected from
chatbot services
powered by GPT

API

No

OpenAssistant
(Köpf et al., 2024) 135.6K 2.34 Human only Human-Generated

& Annotated by
volunteers

Yes

ChatAlpaca(Bian et al., 2023) 20K 4.32 ChatGPT Follow-up by GPT
from Stanford

Alpaca(Taori et al.,
2023)

No

MTLingual
(Maheshwary et al., 2024) 182K 2.48 ChatGPT Constructed by

Evol from
Aya(Singh et al.,

2024)

No

UltraChat
(Ding et al., 2023) 1.5M 3.80 ChatGPT Simulate human

interactions by
ChatGPT

No

Table 7: Datasets in this work with features, the values of Avg. Turns of ShareGPT, WildChat and OpenAssistant
derive from the work of WildChat (Zhao et al., 2024b), and the value of Avg. Turns of OpenAssistant calculates on
multi-turn conversations in English.

(ReSURE)

Figure 6: Case study.
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Prompts of the Evaluation of Connection

"""
You are a strict and objective evaluator. Your task is to assess the quality of the final response from
assistant in conversation content.
Your evaluation should be fair, professional, and reflect an expert judgment of the response’s
quality.
The conversation is formatted as [{’human’: ’...’, ’assistant’: ’...’}, ..., {’human’: ’...’, ’assistant’:
’...’}] .
The final response is the final ’assistant’ message in the conversation.

[Conversation]\n""" + <conversation> + "\n" + """
Assessment Criteria:
Score baseline is 5. The final score should be adjusted based on the following criteria:
Connection: Does it utilize the information in the previous conversations?
Concentrate on the evidence of conflicts and coherence. Evidence of one conflict
should decrease the score by 1, and evidence of utilizing one information should increase the score
by 1.
Relevance: Does it provide redundant information which is not related to the topic? Is so, it should
be penalized by the degree and amount. One irrelevant information should decrease the score by 1.
Overall Score: Assign a score from 1 to 10 (10 being the best), considering all of the above factors.

The evaluation and your output must be strictly structured in the following JSON for-
mat:
{
"Explanation": "<Explain the rationale of your score.>",
"Score": <An integer score from 1 to 10.>
}
"""

Figure 7: Prompts of the evaluation of connection.
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Prompts of the Evaluation of Quality

"""
You are a strict and objective evaluator. Your task is to assess the quality of the each response from
assistant in conversation, based on the Assessment Criteria.
Your evaluation should be fair, professional, and reflect an expert judgment of the response’s
quality.
The conversation is formatted as [{’human’: ’...’, ’assistant’: ’...’}, ..., {’human’: ’...’, ’assistant’:
’...’}].

[Conversation]\n""" + <conversation> + "\n" + """
Assessment Criteria:
Requirement Alignment: For each response, only consider the corresponding request from human
in this turn, does the response meet the user’s task goal?
Content Accuracy: Is the information in the response correct, clear, and logically organized?
Language Quality: Is the language fluent, coherent, and readable? Are there any obvious
grammatical or word choice errors?
Consideration on previous information: If there is relevant information in the previous turns of
chatting, does the response take them into consideration?
Overall Score: Assign a score from 1 to 10 (10 being the best), considering all of the above factors.

The evaluation and your output must be strictly structured in the following JSON for-
mat:
{
"evaluations": [
{
"Number of turn in conversation": 1,
"Explanation": "<Explain the rationale of your score.>",
"Score": <An integer score from 1 to 10.>
},
...,
{
"Number of turn in conversation": <Integer, the No. of turn in conversation>,
"Explanation": "<Explain the rationale of your score.>",
"Score": <An integer score from 1 to 10.>
}]
}
"""

Figure 8: Prompts of the evaluation of quality.
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Prompts of the Evaluation of Information Density

"""
You are a strict and objective evaluator. Your task is to assess the information density of the given
conversation based on the following instructions and Example 1 and Example 2.
[Instructions]
Your evaluation should be fair, professional, and reflect an expert judgment of the response’s
quality.
The conversation is formatted as[{’human’: ’...’, ’assistant’: ’...’}, ..., {’human’: ’...’, ’assistant’:
’...’}].
The information density of a conversation is defined as a number of information units (e.g.,
facts, details, explanations) divided by the words in the conversation, including the numbers and
meaningful signals and excluding the punctuations.
You should only consider the information related to the topic of the conversation and ignore any
irrelevant or redundant information.
If the information unit is repeated in the conversation, it should be counted only once.
[Example 1]
Input Conversation: [{’human’: ’What is the capital of France?’, ’assistant’: ’The capital of France
is Paris.’}]
Output: {’Number of Information Units’: 1, ’Total Number of Words’: 12, ’Information Units’:
[’The capital of France is Paris.’]}
[Example 2]
Input Conversation: [{’human’: ’What is the capital of France?’, ’assistant’: ’The capital of France
is Paris.’}, {’human’: ’What is the population of Paris?’, ’assistant’: ’The population of Paris is 2.1
million.’}]
Output: {’Number of Information Units’: 2, ’Total Number of Words’: 25, ’Information Units’:
[’The capital of France is Paris.’, ’The population of Paris is 2.1 million.’]}

[Conversation]\n""" + <conversation> + "\n" + """
The evaluation and your output must be strictly structured in the following format:
{
"Number of Information Units": <Number of information units>,
"Information Units": [<Information unit 1>, <Information unit 2>, ...],
"Total Number of Words": <Total number of words>,
}
"""

Figure 9: Prompts of the evaluation of information density.
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Prompts of the Evaluation of Friendliness

"""
You are a strict and objective evaluator. Your task is to assess the friendliness of the given
conversation following the Assessment Criteria.
Your evaluation should be fair, professional, and reflect an expert judgment of the response’s
quality.
The conversation is formatted as [{’human’: ’...’, ’assistant’: ’...’}, ..., {’human’: ’...’, ’assistant’:
’...’}].

{[Conversation]}""" + <conversation> + """
Assessment Criteria:
Manner: Concentrate on the requests from the human, and also evaluate the assistant’s responses,
is there evidence of disobeying the rules or aggressive behaviors?
Security: Evaluate the security of the conversation. Does the conversation tend to be harmful or
offensive, or does the response from the assistant being guided to reveal sensitive information?
Tone: Evaluate the overall tone of the conversation. Does it have a positive and friendly tone?
Politeness: Evaluate the politeness and courtesy of the assistant’s responses. Overall Score: Assign
a score from 1 to 10 (10 being the most friendly), considering all of the above factors.

The evaluation and your output must be strictly structured in the following JSON for-
mat:

"Explanation": "<Explain the rationale of your score.>",
"Score": <An integer score from 1 to 10.>

"""

Figure 10: Prompts of the evaluation of friendliness.

Dimension Score Description

Faithfulness

1 Completely irrelevant or ignores prior context, leading to a fundamentally incorrect answer.

2 Contains substantial irrelevant or contradictory content, but barely addresses the request.

3 Accurately addresses the request but neglects useful context from earlier dialogue.

4 Fully accurate, relevant, and contextually faithful to both current and prior user inputs.

Appropriateness

1 Severely off-topic, misinterprets the question, or violates conversational context.

2 Partially relevant but includes misinterpretations or contextual inconsistencies.

3 Mostly appropriate with only minor contextual or interpretative issues.

4 Fully appropriate and consistent with both the question and dialogue context.

Naturalness

1 Highly unnatural, disfluent, or grammatically flawed to the point of harming comprehen-
sion.

2 Understandable but includes awkward phrasing or noticeable language errors.

3 Mostly fluent and natural, with minor phrasing issues.

4 Fully fluent, smooth, and human-like in style.

Completeness

1 Severely incomplete, omits critical information needed for the response.

2 Partially complete, with several important details missing.

3 Mostly complete but misses some minor elaborations.

4 Fully complete and comprehensive in addressing the user’s request.

Table 8: Human evaluation criteria for MT-Bench responses evaluation (1–4 scale).
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