Under review as a conference paper at ICLR 2026

How TRANSFORMERS LEARN CAUSAL STRUCTURES
IN-CONTEXT: EXPLAINABLE MECHANISM MEETS
THEORETICAL GUARANTEE

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers have demonstrated remarkable in-context learning abilities, adapt-
ing to new tasks from just a few examples without parameter updates. However,
theoretical understanding of this phenomenon typically assumes fixed dependency
structures, while real-world sequences exhibit flexible, context-dependent rela-
tionships. We address this gap by investigating whether transformers can learn
causal structures — the underlying dependencies between sequence elements — di-
rectly from in-context examples. We propose a novel framework using Markov
chains with randomly sampled causal dependencies, where transformers must in-
fer which tokens depend on which predecessors to make accurate predictions. Our
key contributions are threefold: (1) We prove that a two-layer transformer with
relative position embeddings can implement Bayesian Model Averaging (BMA),
the optimal statistical algorithm for causal structure inference; (2) Through exten-
sive experiments and parameter-level analysis, we demonstrate that transformers
trained on this task learn to approximate BMA, with attention patterns directly re-
flecting the inferred causal structures; (3) We provide information-theoretic guar-
antees showing how transformers recover causal dependencies and extend our
analysis to continuous dynamical systems, revealing fundamental differences in
representational requirements. Our findings bridge the gap between empirical
observations of in-context learning and theoretical understanding, showing that
transformers can perform sophisticated statistical inference over structural uncer-
tainty.

1 INTRODUCTION

Modern transformers exhibit a remarkable capability: they can adapt to entirely new tasks using
only a handful of examples, without any parameter updates. This phenomenon, known as in-context
learning (ICL) Brown et al. (2020), has revolutionized our understanding of what neural networks
can achieve. A model trained on diverse text can suddenly perform arithmetic, translate languages,
or write code — all by simply observing a few demonstrations. Yet despite extensive empirical
success Wei et al. (2022); Garg et al. (2023) and theoretical investigations von Oswald et al. (2023);
Akyiirek et al. (2023); Goel & Bartlett (2024), a fundamental question remains: how do transformers
adapt to the varying dependency structures present in real-world sequences? (Allen-Zhu & Li, 2023;
Bietti et al., 2023; Zhao et al., 2023; Wibisono & Wang, 2024)

The Theory-Practice Gap. Current theoretical understanding of ICL rests on a critical simplifica-
tion: most analyses assume that dependencies between sequence elements follow a fixed, predeter-
mined structure. For instance, theoretical works typically study settings where tokens are indepen-
dent [[z1, f(21)], [x2, f(z2)], ...] or follow rigid patterns like [z1, f(x1), 22, f(x2)] (Bai et al., 2023;
Chen et al., 2024a; Wang et al., 2025). However, natural language and real-world sequences exhibit
far richer structure — words depend on previous words in complex, context-dependent ways that
vary across sentences and domains. Recent work by Nichani et al. (2024) began addressing this by
showing transformers can encode fixed causal structures during training. Specifically, they assume
an n-gram causal model (e.g., bigrams where each token depends only on the previous one) (Ra-
jaraman et al., 2024; Edelman et al., 2024), and prove that transformers can embed this structure
in their attention weights to perform inference. However, in real-world scenarios, the dependency
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graph itself is not fixed but varies across different sequences. For example, in language, the syntactic
structure can change dramatically between different documents, and in stock price prediction, the
relationships between assets can shift over time. Thus, a key challenge is

Can transformers infer and adapt to causal structure in-context? %)

Our Approach. We introduce a novel framework where sequences are generated from Markov
chains with randomly sampled causal dependencies. In our setting, each token depends on exactly
one predecessor, or its “parent”, but crucially, these parent relationships are not fixed and must be
inferred from context examples, which is a collection of sequences sharing the same underlying
causal structure. This setup captures the essence of (x) by requiring the model to adapt to different
latent structures across contexts. The transformer must infer these latent dependencies from con-
text examples to accurately predict new sequences — mirroring how language models must adapt to
different syntactic structures or reasoning patterns.

Main Contributions. We consider two types of Markov chains: discrete chains over a finite vocab-
ulary and continuous linear dynamical systems. Our work makes the following contributions:

(1) Theoretical Construction: For discrete Markov chains, we prove that a two-layer transformer
with relative position embeddings can implement Bayesian Model Averaging (BMA), the statisti-
cally optimal algorithm for inferring causal structures from observations. Our construction shows
how attention mechanisms can perform sophisticated probabilistic inference over structural uncer-
tainty. (2) Empirical Verification: Through extensive experiments on Markov chains, we demon-
strate that transformers trained via gradient descent converge to solutions remarkably similar to
our theoretical construction. Parameter-level analysis reveals that learned attention patterns directly
encode posterior probabilities over causal structures, providing mechanistic insight into how trans-
formers perform statistical inference. (3) Information-Theoretic Analysis: We establish conditions
under which causal structures can be recovered in-context, using mutual information and data pro-
cessing inequalities. Additionally, we show that gradient-based learning naturally discovers these
structures early in training through y2-mutual information maximization. (4) Extensions to Contin-
uous Systems: We extend our framework to linear dynamical systems in continuous space, reveal-
ing fundamental differences in how transformers handle discrete versus continuous causal inference.
While transformers show strong empirical performance, we identify representational limitations that
prevent exact BMA implementation in continuous settings.

Paper Organization. Section 2 introduces our problem formulation and model architecture. Sec-
tion 3 presents our main theoretical and empirical results for Markov chains. Section 4 extends the
analysis to continuous dynamical systems. Appendix A discusses related work.

2 PRELIMINARY

2.1 TASK SETUP

To investigate the question (x), we consider data are generated from distributions with a latent causal
structure. Each sample is a sequence of tokens ®1.y = [z1,...,xy], where the h-th token @},
depends on one of its predecessors, called the parent token ). This dependency relation is
represented as a directed tree graph G = {pa(h)}1e(m), where pa(h) ~ Unif(1,...,h —1),Vh €
2,...,H. Given the causal structure defined above, the generative process can be written as x;, =
G (2 pa(n)), where G(-) denotes either stochastic sampling from the transition kernel 7(-|Zpa(n)) of
Markov chains, or a deterministic transformation with additive Gaussian noise in dynamical systems.
G(-) is fixed during sampling the whole dataset.

For the in-context learning task, suppose we have L+ 1 samples {xgl:)H}le[ +1) from the same causal
graph G, the first L samples are provided as in-context demonstrations from which the model may
infer the latent graph structure, while the last sample is the target for prediction. Except the first
token :BlLH, every token wﬁ 1 in this trajectory is required to be predicted via next-token prediction

conditioned on x1£ and its past observations :cf,til

Markov Chain. Following Markovian assumption adopted in Edelman et al. (2024); Nichani
et al. (2024); Chen et al. (2024b); D’ Angelo et al. (2025), we assume sequences are sampled from
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Figure 1: Task overview of in-context causal structure learning. Each training sequence consists
of L examples with observed variables and hidden parent relations, followed by a new example L+1
where the model must infer the underlying parent indices in-context from previous demonstrations.

a Markov chain with random dependencies. In this setting, Tokens {xj} are drawn from a finite
vocabulary ¥V = {ej,...,eq}, where |V| = d and {e;} are one-hot vectors. The random depen-
dencies are specified by latent causal graph {pa(h)}se[m]. Let 7 : V — A(V) denote the Markov
transition kernel, where A()V) is the probability simplex over V. Then each token is generated as
Xp ~ (- | Xpa(n)) € A(V), Vh € [H], where by slight abuse of notation, we also regard 7 as the

stochastic matrix = € RV with (i, j] = 7 (jli), >, [, j] = 1.

Dynamical System Beyond the discrete Markov chain case, we also consider a more challeng-
ing setting with continuous sampling space. Here tokens {x,} are dense vectors in R?. The link
function g(+) replaces the discrete transition kernel, and we instantiate it as a linear dynamical sys-
tem with additive Gaussian noise: T = §(Tpa(n)) = %(ATmpa(h) + 6;,,), where A € O(R?) is
orthogonal, z1 ~ N(0, 1), e, ~ N'(0,021,), and ¢ = 1 + o2 ensures variance stability.

These settings evaluate the extent to which transformers can perform in-context causality learning.

Goal: Inferring the Causal Structure. The task formulation naturally raises the following ques-
tion: Given L in-context examples, how can the model infer the underlying graph structure G? A
classical approach to this problem is Bayesian Model Averaging (BMA), which leverages Bayes’
rule to compute the posterior distribution over possible parameter space. Treating the parent struc-
ture pa(h) as the parameter to be estimated, the distribution of having parent A’ will be predicted as
its posterior probability given L observations:

LY P(x}f | pa(h) = h') P(pa(h) = 1')
P(pa(h) =h ’131:[[;[) = Eh//e[H] Pl(qw%%[ ’pa(h) — h”) P(pa(h) — h”)'

(D

C2

This Bayesian formulation provides a principled baseline for inferring causal structure, and serves
as a point of comparison for the in-context learning behavior of transformers.

2.2 MODEL ARCHITECTURE

2.2.1 STANDARD TRANSFORMER

Decoder-only Transformer is a neural network structure dealing with sequential data. Given a se-
quence of tokens (ws, ..., wr), transformers first embed tokens and add a positional encoding to

the tokens: hEO) = E(w;) + P(t) € R? Vt € [T]. In a matrix form, the mapped tokens of input is

L
H© = hg?% € RT*4, Subsequent layers consist of multi-head attention layers (MHA) followed

by multilayer perceptron layers (MLP). At layer I, the hidden features H~1) will be updaed as
follows. First, causal-mask self-attention layer will compute the ouput by:

Attn(H; Wo, Wi, Wy) = o <M ( (HWQ\)/(di:WK)T ))HWV,
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Figure 2: Visualization of Attention Weights . Left:
Right: Six representative heads (out

of 10) from A™M . (trained with L = 10, H = 10,d = 5, 1024 steps).

where Wg, Wi, Wy € RI*dk g (v); = % applied to matrix row-wisely, M is the causal

mask where M(X);; is —oo if i > j else X;;. Then multi-headed attention gives the output:
M
MHA(H) = ( P Attn(H; Wg, Wi, W;”))WO,

m=1

where €D denotes the concatenation of vectors and Wy € RMd4x*4_ Getting intermediate features
MHA,;(H =) from attention layer, this feature will be added to the residual stream which ag-
gregate the previous output: H! = gD 4 MHA,;(H~1V). FFN layer adopts this as input and
updates this stream as:

FEN(H) = o( HW,) W2, H"Y = HY + FFN(HY),

where W, € R™dm W, € R%>4 and ¢(-) is the activation function. Finally the output of L-layer
Transformer is o (H (“)W7;) projected to vocabulary logits by Wy € RV,

2.2.2 DISENTANGLED TRANSFORMERS

To better analyze the role each part of transformers play in learning a task, prior works Friedman
et al. (2023) propose the disentangled transformer which decouples the twisted features in the resid-
ual stream. Instead of adding each layer’s output, disentangled transformer concentenates it with
residual stream. Considering the decoder-based attention-only transformers we will mainly focus
on, it will update the hidden states H (¢~ ¢ RT*di-1 py

HO = [HY Attny (HY), .. Attny (HY)] € RT*OFM)di—1 3)

where in each attention head, Wi Wg is reparametrized by Wi o, Wo Wy by Wiy and the initial

input H(®© € RT*% is given by h\”) = [E(w;), P(w;)] = [ew,, e:] € R¥T, Vt. Consider in our
task, the input sequence consists of L+1 examples of length- H chains, leading to the embedding size
T of P(w,) € RT equal to (L + 1)H. If we set vocabulary dimension d = H = L = 10, then d =
10 < T = 110 in the input embedding and Wi in the 1st layer will have ©(H?L?) = ©(10%)
parameters. Instead, considering w; is the h-th token in example [, we use two types of embeddings
representing this: Posz(w;) = e; € R, Posy(w;) = e, € R. This reduces the required
parameter for training. And the formulation of this transformer is given by Eq. (34).
G H I
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Figure 3: Parameter visualization of 2-layer transformer with RPE. Heads of inner-example RPE
w7, uniformly show the largest value at position h = 0 except Head 1, 9, 10. Correspondingly,

Wik shows similar blocks on diagonal except block 1, 9, 10. Besides, o (Woy ) approximates 7.

Relative Position Embedding. While the original Transformer employs the above absolute posi-
tional encodings, subsequent research has demonstrated the advantages of relative positional em-
beddings (RPE) Shaw et al. (2018); Su et al. (2023). RPE is parametrized by a vector w € R”
which assigns attention score w(i, j) only via relative distance ¢ — j between positions of query 4

and key j. , we adopt two types of RPE:
wit( 1) = wulh — W), ¥(h 1) € (H2, w0y = { b=
o " 7 7 M —o0, else. (for causal mask)

Attention with RPE. With RPE in the 1st layer, the output u; for x; = azﬁl is given by:

U = AttnmtquT ZO}/ WH + WL(l )).’Bt/
/ “4)
.S eX]D(WH(h W) +wi,l)
- t
t'<>(h',l7) Zt” eXp(WH( h//) twp (l’ ZN))
Self-Attention Layer. Suppose the 1st layer use K heads, for the 2nd layer, the input is v; = H, t(l) €
R?+X gjven by disentangled residual in Eq. (3). The features of last example L+ 1: v} are taken

as query, key and value tokens into the attention layer. The output gives Transformer s prediction.

Suppose the input is 1.7 = x! Ly 1L H , this transformer architecture is formulated as follows:
1st RPE Attention (K-head): u} = Attnmﬁﬂﬁm =o(wh(h,)+wh(L+1,))x]s €RY
Disentangled Residual: vp = [up, .. ul], oz = [eE T vy
2nd Attention (1-head): Fue( | HE) =0 (zf:;HlWKth)—r P 1WOV
= U(”Ihflwé'th)Terh 1 WOV €RY,
&)
where
and we assume some blocks in Wi, Wy are O:
Odxd  Odxkad W Odx Kd
Wko = Wov = ov x 6
KQ [Oded Wio |79 7 |0kaxa Okaxkad ©

where W[’(Q € REKdxKd W/, € R4 are trainable and this simplification is supported by the
results on transformers in Appendix G. To train transformers, cross-entropy loss is used
for x € V of Markov chain (MC) and MSE loss for dyanmical system (DS) shown in Eq. (15).

d+Kd
€ RaTEd
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Figure 4: The overview of constructed transformer: the 1st layer works as copier, and the attention
patterns in 2nd layer follows BMA, which approximately select correct parent token.

3 CAN TRANSFORMERS IN-CONTEXT LEARN CAUSAL STRUCTURES?

3.1 2-LAYER TRANSFORMER LEARNT TO SELECT CAUSAL STRUCTURE IN-CONTEXT

To investigate the question (%), we first train 2-layer transformers with RPE introduced above on the
Markov chain setting. Each input has L+ 1 samples {2, } of Length- H Markov chain with causal
structure G. The input sequence length is 7' = H (L + 1). We set the transformer has K heads in the
first RPE layer: {(w’;, w})}re(x] and 1 head for the 2nd attention layer (Wi, Woy ). All RPE

parameters are intialized randomly from Gaussian distribution and (W, Wov ) from zero.

For an attention layer, the attention weights .4 normalized by the o reveal which tokens a query
primarily attends to, enabling mechanistic interpretability analyses such as circuit discovery Olsson
et al. (2022). We first look at the attention patterns AWM A®) from the 1st and 2nd transformer
layer. Mathematically, they are matrix where the ¢-th row denotes the attention weights to the whole

sequence and Az(-]*-) =A™ s formulated by:

i—j
AW = o (A0, AL = why(hiy hy) + Wi (1, 1), A2 = 00 Wicqon,
where 5 is the h;-th token of ;-
th example ( ), i,j € [T, vy, are the hidden feature v{/f;' of

L + 1-th example from Layer 1 and ANk ¢ RT*T A2 ¢ R¥*H  Trained attention patterns
of A match the groundtruth causal structure in Fig. 2. And for the 1st layer, some heads of
attention weights A(1)-* didn’t learn meaningful features shown by Fig. 2 (e.g., Head 1, 9, 10).
Then we dive into the parameter level, and visualize the trainable parameters of 2-layer transformer
W’f_l, le, Wikq, Wov. Positional or diagonal patterns in w’}_l, Wk and the similarity between
Woy and log m can be observed in Fig. 3. To fully understand why the transformer can select
causal structures and what it learnt, we will need to analyze it theoretically.

5

3.2 CONSTRUCTED TRANSFORMERS IMPLEMENT STATISTICAL ALGORITHM

Based on the patterns observed in Fig. 3, we make the following assumptions for the transformer
defined by Eq. (5):

vv’;;[h]—ﬂ{“’ A vv’f,[l]—/s{“’ .

-1, he[xH]\DO, -1, le[L]\K,
W Oaxa -+ Odxd %)
__ Odxa ‘W -+ Oaxa N«
Wkq = . A c(Wovy) =,
Odxd Odaxa -+ W
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where for RPE, we can simply assume

: wh 0] > wh 0], Wk [k'] > wh[ /'] and W is unknown. Since the K heads are identical
up to their indices, we assume without loss of generality that the dominant entry occurs at
position k, i.e., WX [k] = /3 and we set K = L. aligned with the
above restriction, a constructed transformer can implement statistical algorithm for inferring causal

structure {pa(h)} hidden behind x}:% and predicting " ~ (- |:c£a+(}ll)):

Theorem 1. Under the restriction by Eq. (7), the transformer fy .
7 Bayesian

Model Averaging (see Lemma 1)

(®)

2
Jo(-| H}IZ) =7(| mpa(h))vVh € [H]. 9)

Proof Sketch. Figure. 4 gives an overview of the consctruction: in the first RPE attention layer, each
head from Eq. (7) is assigned to retrieve one historical copy of the same token x, so that concatenat-
ing L heads recovers all past observations ;; L In the second layer, with the cond1t10n in Eq (7), the
attention score between tokens (h, k') reduces to a bilinear form ph,( )= x! b TWal h» which

by W = log 7 coincides with the BMA score . With the causal mask,
the softmax attention exactly matches the parent-selection distribution in BMA.
2
The full technical proof is deferred to Appendix C.1. O

D’ Angelo et al. (2025) also consider an in-context causal learning task. With minor modification of
RPE structure and above construction, we can still show transformers can exactly implement BMA.'

3.3 WHAT ALGORITHM DOES THE TRANSFORMER LEARN?

Although we have constructed a transformer implementing this algorithm, what do transformers
actually learn after training? Since the core lies in the attention weight A and Wkaq

7)) recovering graph structures, we next analyze
their characteristics in detail. We first define the following parent selection metric which quantitively
shows the loss of algorithms to predict parent indices:

LL41, 2) 1 2
ﬁpa(A(z)( + 19),9) == Z epa(h) ‘Agt- -~ H Z IOg‘AELlpa(h)’ (10)
he[H] he[H]
where A®) is seen as an algorithm given input a:% ffl and we have

Lpa(Asm, G) = " Zhe pa ON (ph(logw)) by Eq. (2)
We visualize this metric Lpa during transformers’ training process in Flg 7 and compare it w1th
BMA’s. We observe that the transformer’s parent selection loss decreases in training while remain-
ing above the loss of BMA, gradually approaching it.

Generalized parent selection with size L' varying. We further test how well the transformer
and BMA generalize in parent selection under different sample sizes L’: Since A®) and Agy, are
formulated via p* = 3, ;) #}},_ W}, we vary the number of demonstrations as a set of L',

and finally compute p~', A%, and the parent selection loss £L, (W) with W € (W logr}.

! D’ Angelo et al. (2025
A
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Figure 5: Generalization of Parent Selection loss {Cé;} for transformers trained with L &
{1,...,20},d = 10, and H = 15 with first layer fixed as constructed.

From Fig. 5, we observe that: 1) across different test sizes L', the trained transformers achieve
performance close to BMA (loss differences mostly within a small margin); 2) smaller training
length L often generalize better, with parent loss curves approaching BMA more closely; 3) for a
model with fixed training size L, the parent loss decreases rapidly as L’ increases, converging toward
zero. The above results suggest the trained transformers have comparable performance to BMA.

Parameter Verification. Beyond behavioral agreement, a crucial question is whether the trans-
former encodes the BMA inference rule within its learned parameters. Therefore, we evaluate
the similarity between the trained weight Wé‘fl‘) and the theoretical BMA parameter W = log 7.
As a first attempt, we check whether o(W;s) = m, since for stochastic matrix 7 it holds that,
(W) =7 <= Wy =logm+bl", Vb where bl T denotes a row-wise shift of log 7, which
is canceled out by the row-softmax ¢. This provides a reasonable way to normalize KQ matrix and
makes the scale comparable to 7 with scale [0, 1] . However, the empirical results do not support this
hypothesis (c.f. Fig. 6, first three subfigures). With some efforts, we can see the attention mechanism
o(v],_,Wwy,) introduces an additional degree of freedom:

Proposition 1 (Invariances of attention scores). Since attention operates on a single query vy, if
the columns of Wz differ from those of log w by an additive factor, i.c. W.. — log 7 + la ' a ¢
2, then transformer with Wy learnt BMA by: (>, =\, Wiexl) = o>, 2, logma),).
Further, if Markov chain x1.p is stationary and Wy = log m + 1la’ +b17.a,b e RY the above
conclusion also holds asymptotically. See the detailed proof in Appendix C.3.

Following this proposition, we evaluate the discrepancy between o(Wis1a ") and 7. As illustrated
in Fig. 6, the deviation remains small, with

1
E||a(Wtf —1a") - 7||r < 0.05. (11)

This also holds across various vocabulary size d € {10, 30,50}, further confirming the structural
alignment between the learned model and the BMA algorithm. Taken together with our theoretical
construction and empirical results, these findings strongly suggest that transformers implement the
BMA method for in-context causal parent selection.

Takeaway 3. Transformers with trainable Wy closely approximate BMA in causal token selec-
tion (Fig. 5) and learn parameters which explicitly show strong alignment with BMA (Fig. 6).

3.4 THEORETICAL UNDERSTANDING AND GUARANTEE OF LEARNED ALGORITHM

Beyond identifying what algorithm a trainable transformer adopts, we further establish a theoretical
understanding of transformers’ in-context causal structure selection mechanism via information-
theoretic principles. Our approach follows Nichani et al. (2024), which leverages mutual information
together with the data’s inherent property of the Data Processing Inequality (DPI). In contrast to
their gradient-based proof, we show that transformers can exploit this property directly in context.
Moreover, our analysis generalizes the ?—mutual information framework of Nichani et al. (2024);
D’ Angelo et al. (2025) to the setting reducible to classical mutual information, by exploiting the
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Figure 6: Parameter-Level Comparison between transformer and BMA (Wxg = logm). Here,
W denotes the diagonal block being trained. Trained with d = 20, H = 50, L = 3, and 2048
training steps while Woy is fixed. (See results with both Wy and Wi trainable in Fig. 8.)

3. Finally, our proof of Theorem 2 doesn’t
rely on the stationarity assumption on the data distribution not requiring the chain to be mixed.

Definition 1 (Mutual Information and Conditional Entropy). Consider x,y are two random vari-
ables in disrcrete or continuous space §), Py, and Py, P, denote joint and marginal distribution.
The mutual infomration I(x;y), entropy H(x) and the condltlanal entropy H (x|y) is given by:

I(x;y) //ny x,y) log P’Ey)(x ?)) H(x) =—LPX($)1ong(w),

(12)
(x]y) = //ny x,y)log P"}i((ﬁ)y) H(x) = I(x;y),

Further, x%-mutual information is given by: L f fy P‘(é(;;y)? 1.

1,1,> can be uniformly derived from f-divergence which helps to prove DPI for generalized f-
mutual information /. These information metrics reveal an essential property in data:

Lemma 2 (DPI. Theorem 3.9 and 7.16 in Polyanskiy & Wu (2023)). If random variables x —
y — z, L.e. statisfies the Markov property p(x,y,z) = p(z)p(y|z)p(z|y), then we have I;(y;z) >
I¢(x;z). Further, for classic mutual information, I(x;z) = I(y;z) iff I(x;y|z) = 0iff x =z —y.

Suppose we have a Markov chain x;.y with latent causal structure {pa(h)}. Since VA’ # pa(h),
we have P(Xp, = 2|Xpqn) = ¥, X = x) = P(zly), it is easy to verify X, — X,q(n) — Xp, While
Xpr = Xp = Xpq(n) doesn’t hold. Thus, we have the following corollary:

Corollary 1. For Markov chain with causal structure G, I(Xp;Xpq(n)) > 1(Xn;Xnr),Yh' # pa(h).

Applying this corollary, we get the following Lemma:

Lemma 3. For Markov chain with causal structure G and transition kernel p(-|-), we have
Eflog p(xn|Xpa(n))] > Ellog p(xn|xpr)], VA’ # pa(h). (13)

The LHS above equals H (X4|Xpq(r)). While the RHS differs from conditional entropy but follows
H (xp,|xp) from the non-negativity of the KL divergence. Then by the relation of conditional entropy
and mutual information, we can apply DPI to prove the Lemma. See Appendix C.4. With Lemma 3,
we can build the relation between E[log p(xp|xp/)] and attention weights, showing the theoretical
guarantee concerning parent selection for the transformer:

Theorem 2. Suppose the transformer is constructed as in Theorem 1, which implements the BMA

method. Then the attention weights AF = A(Q)( LL +1) predicting parent index pa(h) will statisty:

lim AF = hm o("") = epany € R, where pht = Zlogw(azlﬁwﬁl,).

L—oo
=1

The proof of the theorem is deferred to Appendix C.5.
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3.5 CAUSAL STRUCTURE IN TRAINING DYNAMICS

We further look at the training dynamics of the transformer model. We prove the random causal
structure embedded in inputs will be recovered in the gradients of loss w.r.t. the core Wk g matrix:

Theorem 3 ( ). Consider the transformer fy constructed as in Theorem 1 with trainable
diagonal block W of Wi q specified in Eq. (7) and trained with cross-entropy loss

H H

LO)=-)E log(foo (3, ' |H) + €)] = = > Egr.[6(0;h,G)], (14)

h=1 h=1

with
and p =3, mll:ThAWm;L e Rh-1,

U6hG) Bl h,G)
813 pa(h) 01:) h’

;. Vh' # pa(h).

The theorem above is proved by leveraging the x?-mutual information, as detailed in Appendix C.6.

This result provides an explanation of how transformers can extract meaningful information from

data. To further support the theory, we verify it empirically by visualizing 6%21) in Fig. 9.

4 DYNAMICAL SYSTEM EXTENSION: FROM DISCRETE TO CONTINUOUS

Further, we consider to investigate the Markov chain in continuous space, where we look at the linear
dynamical system with latent causal structures: x;, = 2(ATx,,) + 1) € R%, ), € N(0,0%1,).
We first train a transformer with RPE introduced in Eq. (5) on data generated from the dynamical
system. Similar experimental results on attention weights A1), A() and parameter visualizations
can be found in Appendix Fig. 10, 11, 12, and 13. These RPE parameters are consistent with the
construction in Eq. (7). Moreover, the attention weights A(?) of the transformer yields accurate
predictions of parent indices across many examples. Similar to the discrete case, we can define the
transition p(+|-) by Xa[Xpa(n) ~ N (2 AT Xpan), ‘Z—j[d). Consequently, Eq. (2) specifies the BMA for-
mulation under the dynamical system setting. In this context, Lemma 3 remains valid and guarantees
the asymptotic correctness of BMA’s parent selection. To investigate transformers’ mechanism of
parent selection, we test the parent selection loss C}ﬁ; of the transformer and BMA in dynamical set-
ting, where we set various L’ in-context samples as introduced in Sec. 3.3. Fig. 15 demonstrates that
the transformer with trainable (W, W) achieves performance comparable to BMA method when
L’ approaches 20. However, the loss Elﬁ; between transformers and BMA remains a noticeable gap.
We conjecture that the proposition below may explain this discrepancy:

Proposition 2 (Representation Limitation of Transformers).
7), both the transformer and BMA take the unified form Ay = o(p™)n. In the DS set-
ting,

Hence transformers under Eq. (7) cannot represent BMA in
the DS setting.

For BMA, (pi ) = >, logp(x! |x},). In dynamical systems, transition p(-|-) involves not only
cross but also quadratic terms.

So no matrix W can yield A> = o(p"(W)) as in
Eq. (18) to represent BMA. See Appendix C.7 for detailed proof.

10
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A NOTATION AND RELATED WORK

Notation. We use [h] to denote the set {1, 2, ..., h}. For causal structure, we use pa(h) to represent
the parent index of node h. The stationary distribution of Markov chain @), ~ (-2, ) is denoted
by ;7 < AY For transformer model, the input of a sequence of vectors is given by x1.p =
[€1,x2,...,x7] € R¥T, Given the input, we denote the attention scores of standard self-attention
layer as p' = x| WL Wox; € RT. However the causal mask M in attention layer will lead
topt =z, WEWoz;, € R o(ph)y = o(M(p'))w,Vt' € [t — 1]. We do not distinguish
between them in the proofs. For the matrix form of the attention of an input sequence, we use A
and A to denote attention weights and scores correspondingly, where we have p!, = A;_,;» and
o(A) = A. In training, we use cross-entropy loss and MSE loss for Markov chain and dynamical
system settings respectively:

£MC g Z;BL“ log o(fes(- | Hn)) + 6)’
(15)

EDS ZH bt — fes(- |Hh)||2a

where 6 represents all trainable parameters and € is a small value to avoid numerical issues by log.

Related Work. A growing body of work studies the in-context learning (ICL) ability from dif-
ferent perspectives. One line of work understands ICL as a form of Bayesian inference, showing
how the latent concept can be approximately inferred under restrictive theoretical assumptions (Xie
et al., 2021; Zhang et al., 2023; Ahuja et al., 2023). Another direction of research investigates how
transformers can simulate standard algorithms, such as gradient descent on linear regression (von
Oswald et al., 2023; Ahn et al., 2023; Guo et al., 2023). While these works demonstrate the ICL
power of transformers, they commonly assume i.i.d or uncorrelated input tokens. To move beyond
i.i.d. assumptions, recent works investigate ICL with correlated data, particularly Markovian se-
quences (Edelman et al., 2024; Chen et al., 2024b; Makkuva et al., 2025). These settings provide
insight into how transformers handle in-context learning with sequential dependencies, but typically
focus on fixed dependency structures. In contrast, our work addresses variable causal structures that
differ across prompts. Pioneering this direction, Nichani et al. (2024) demonstrated that transform-
ers can encode fixed parent—child dependencies (e.g., bigrams) in Markov chains. Building on this,
D’Angelo et al. (2025) introduced selective induction heads, enabling transformers to identify the
underlying Markovian order (or ’lag”) from a candidate set in-context learning this structure. Our
work generalizes this setting. While D’ Angelo et al. (2025) focus on inferring a single global struc-
tural parameter (the lag k) shared across the sequence, we tackle local structure inference where
dependencies can vary arbitrarily for each position, effectively modeling latent trees rather than
fixed-lag chains. Theoretically, D’ Angelo et al. (2025) constructs a three-layer transformer that
asymptotically implements maximum likelihood estimation, where its construction is verified via
attention pattern visualization as well as quantitive validation through KL divergence of next-token
prediction targets. In our work, we theoretically derive a two-layer architecture that explicitly imple-
ments Bayesian Model Averaging (BMA) in-context. Empirically, we go beyond behavioral metrics
by providing parameter-level verification, demonstrating that the trained weights directly encode
the transition kernel. Furthermore, we provide theoretical understanding of in-context causal struc-
ture learning based on the Data Processing Inequality (DPI) and extend our analysis to continuous
dynamical systems, revealing representational gaps not occuring in the discrete setting.

B CONCLUSION

In this work, we investigated the capability of transformers to infer and adapt to latent causal struc-
tures in-context, moving beyond the fixed dependency assumptions common in prior theoretical
analysis. We proposed a novel framework based on Markov chains with randomly sampled causal
dependencies, requiring the model to identify position-specific predecessor-successor relationships
from context examples. First, we provided a constructive proof that a two-layer transformer with
relative position embeddings (RPE) can explicitly implement Bayesian Model Averaging (BMA).
This demonstrates that the attention mechanism is theoretically capable of performing statistical
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inference over structural uncertainty. Second, through extensive experiments and parameter-level
analysis, we showed that trained transformers implements BMA method which converge to this
theoretical construction: the learned attention patterns directly encode the posterior probabilities of
causal parents, and the weights explicitly recover the log-transition kernel of the underlying gen-
erative process. Third, we established information-theoretic guarantees using the Data Processing
Inequality (DPI) which help understand how the selection mechanism identifies causal structures
in context and showed that gradients at initialization recover these dependencies via y2-mutual in-
formation. Finally, we extended our framework to continuous linear dynamical systems. While
transformers continue to exhibit strong empirical performance in this setting, we identified the rep-
resentational difference that prevents the exact implementation of BMA, unlike in the discrete case.
Collectively, our findings offer a mechanistic explanation of how transformers perform in-context
causal learning, highlighting their ability to act as statistical inference engines for both discrete and
continuous data.

Broader Implications. Our findings support theoretical frameworks that model in-context learning
as a statistical inference task (Xie et al., 2021). Distinct from “Induction Heads” which typically fo-
cus on copying fixed positional dependencies (Olsson et al., 2022; Nichani et al., 2024), we demon-
strate a probabilistic setting where the model must infer a latent dependency structure that varies per
example. This provides a mechanistic grounding for how LLMs adapt to flexible, context-dependent
rules rather than relying solely on fixed n-gram statistics (Allen-Zhu & Li, 2023). Furthermore, this
helps understand why LLMs demonstrate ICL capabilities on empirical task with “unstructured” lan-
guage data (Wibisono & Wang, 2024 ), mirroring our setting where the transition mappings between
words are fixed while the structural positions of a couple of words vary from input to input.

Limitations and Future Work. We acknowledge that real-world sequences often involve complex
non-linear dynamics or hierarchical dependencies (e.g., context-free grammar) beyond the Marko-
vian and dynamical systems studied here. However, our primary objective in this work was to
prioritize mechanistic interpretability for Markov chain or dynamical system: explicitly characteriz-
ing how transformers infer latent structures in-context on these tasks. By focusing on these tractable
settings, we were able to derive exact theoretical guarantees and provide parameter-level verifica-
tion that the model implements Bayesian Model Averaging. We believe this explainable framework
serves as a necessary foundation, and we leave the extension to more complex non-linear and hier-
archical data generating processes for future exploration.

C PROOFS OF TECHNICAL LEMMAS

C.1 PROOF OF THEOREM 1

Proof. By the condition of (Wg, W) in Eq. (7), the attention score Aﬁl_z of query x; = :cﬁ“ is:

1, ifhy = hy, b —ly =k,
AR = Gk hy — hy )+ W — 1] =284 =1, ifhy # hy, Iy — Ly £,
0, otherwise.

k
Ty—T1:T

= o(Wi(h,) + WE(L+1,)z{r

LT T (16)
z, = (1[ht/:h,lt/:L-i-l—k])t’e[T]ml;T- (l,=L+1-k)

By disentangled residual, the output of K heads (KX = L) will be concatenated as:

v = [u}, ..., uk], withuf = 2L ™7F by Eq. (16).

Then the output '&Z = Attn of the Ist attention layer will be calculated as:
~k
up

—
B—o00

For the 2nd layer, with diagonal condition of Wi, attention weight A®) ¢ REXH ig given by:

L
AP = ol Wiqow = Y@l Wal,, A® = o(M(A?)) e REXH (17)
=1
where M is the causal mask enforcing A(?) to be strictly lower-triangular after softmax. If we define
the vector p" € R"~! with pt, = .,[lf_)m,, we have Vh' € [h — 1]:

A = oMy (o)) = o, W) = all, W, (18)
l
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where M, (+), is the causal mask applied to row h setting My, (v) = —oo if K/ > h,Vv € RH.
Then we set W as log 7 (elementwise) which leads to
Pl (logm) = AP, =Y logm(ah|al), AP = o(Mpy(Ans.) € RE. (19)
!

With the form of A(®) in Eq. (19) and Lemma 1 to be proved, we can show the BMA method of
Eq. (1) has the same formulation:

P(pa(h) = W'|@ii;) = o(p" (W =logm))p . (20)
20 16

O

In proving the theorem, we rely on the Lemma 1 proved below, which illustrates the relation between
BMA and attention weights.

C.2 PROOF OF LEMMA 1

Proof. Here we use p(s|s’) to denote P(x), = s|Tpq () = ') for generality beyond discrete Markov
chain. Based on Bayesian Theorem, it can be calculated by Eq. (1). Due to the Markovian property
p(xn|T1:n—1) = P(Th|Tpa(n)), the joint distribution of this chain x;.p:

H H
prn) = p(@1) [] p@nlzin-) = p(@1) [] p(@nl@pam)
h=2 h=2 (21)
= p(x1) H P(wi|93pa(1:)) : p($h|wpa(h))
i#£h

Here pa(h),pa(i) in Eq. (21) are random index with prior: pa(h) ~ Uniform([h — 1]). With
condition pa(h) = h in Eq. (1), we can substitue pa(h) in Eq. (21) with h’. Since {pa(h”)} are
random index out of interests, these terms are eliminated:

P(m“q |Pa(h) = h’) IL (P(wll) Hi;ﬁh p(wﬂwéa(i)) ‘p(wlhlwiﬂ))

_ - . @)
Zh”e[hfl} IP(J:}% ’ pa(h) = h//) Zh” Hl (p(xll) Hzih p(a:i'wlpa(l)) : p(xﬁllwéy,”))
which leads to:
. exp (ZZE[L] Ing(mizlwéb’)) h P
P(pa(h) = h' | z15;) = =o(p"(logW?)),,, (23)
Zh”e[hq} exXp ( Zle[L] log p(}, |‘L'§w)) ( )h
where the matrix W = 7 is induced by transition kernel P = 7 in Markov chain. O

C.3 PROOF OF PROPOSITION 1
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where c(a,h) = a’ ( > $§I> is a constant with fixed index h. Then by softmax operation, we
have:

o(ply) = (Zwlh log ! + c(a, h)1,_ 1)

- ()‘( E w]:/l,fl 1()g ﬂ-a:/),)
l

= o(phuy(log 7)),

where the last equality comes from Lemma 1. And this shows the transformer with W + 1a '
gives the same prediction of BMA’s. Further, suppose W = logm + 1la' + bl'. If we have
xj, ~ u™,Vh € [H], then we can prove the term from b1 is also a constant vector asymptotically:

ptf - § 5'31 h— IWtfwh
! log rat + x! la'z! + x! b1 2!
- 1: h 1108 T, 1: h 1 h 1: h 1 h
- 2 :El:h,fl 10g 7‘—:17}), + ( h 1/7 1 + 2 :El h— l

l

- eac : IT .
For each term of ) _, 7., b, we have

1
ZE{:wiﬁb ZZ

s€(d]

Lo E{ Z Lt ,(}_\‘]bs} = Z P(xl, = e,)b,
oy seld]

o HTI’TbH

where 1™ b is a constant d(b) w.r.t. h’. Using the same technique in Theorem 2 to eliminate this
term which goes to infinity, we have the desired result:

rlim o(plit) = lim o(phik (log m)).
L, —00 L— oo

C.4 PROOF OF LEMMA 3

Proof. Noting that if p(-) and q( -) are two distribution, then by KL divergence’s non-negativity we
have: [ p(s)logq(s) < [, p(s)logp(s). Hence we can get:

LHS :/ P(xp, = s,Xp = 8" ) log P(xp = 8[Xpan) = )
5,8’

)

2/ P(Xh/ = 8,) /]P)(Xh = 8|Xh/ = S,) logIP’(Xh = S|Xpa(h) = S/) (24)

S/ P(Xh/ = S/)H(Xh|Xh/ = S/) = —H(Xh|Xh/),

where H (xp,|xp) = H(xp) — I(xp; xp). By Corollary. 1, we have:
LHS < H(xp) — I(xp;x},) < H(xx) — I(Xp; Xpa(n)) = RHS. (25)

C.5 PROOF OF THEOREM 2

Proof. Recall that the transformer and BMA have the formula in Eq. (2):

_ exp(Y, log p(h | 2},)) _ r (26)

Dhrreih—1] EXP(2 log (@}, |[2],))  Dpr Vnr—sh

iL
Ar
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By the central limit theorem, we have

L—oco

lim %;bgp(:cm:ulh,) = E[log p(zn|zn )] < Ellog p(xn|Tpan))] = Jim_ % ;logp(mﬂm;a(h)),
Let gppr & 15, log p(a} |&!,). For all b # pa(h), we have:
V- paty = exp (Y log plahlzhyr) — > log pl@hl@hacy) ) = exp (LG — Gnpai)) = 0
l l
as L — oo and imy, o0 (Gh,h7 — Ghpa(ny) < 0. Hence, we have limz o0 Ap_pa(n) = 1. O

C.6 PROOF OF THEOREM 3

Proof. First, the transformer as constructed can be simplified as:

sim T
£ (9 = ﬂTxlzh_la(Zwll:h_lwﬁ) e RY, 27)
l

Considering p = 3, ¢}, W}, = 0 when W = 0, then p = ;< 1;,_; and:

1
feo ( | H) = WTﬂ(mlzh_l), where ﬂ(wlzh_l) = h_ Z Th . (28)

Then based on 22(2) — diag(p) —pp", computing the gradient of W w.r.t loss £ in Eq. (14) yields:

op
86(67 h7g) _ X[( Lh )TanO]
op fgo(.’Bh) +€ op
. Th T 1 T T N1 T
=K T Tipho1 — T T1.p—1)1
X[(f(#[,(m/y) +6) P l< Tip-1 (1)1, _1)]
Bq.28 1 . T T T e 4T
= h- 1EX“fHL.(m;,) o) (™ @inmn = Foo (@) 1)
B 1 E { m(Tn|T1) m(xp|Th — 1)} _1T }
h=1"" o (@n) +¢ 7 fog(an) +e’ "
1 (xn|x1) m(@plen — 1), 7 h-1
= E PR - ]. _ S R .
e Sy i)

Then let ¢, denote h’-th entry in %}f’g) € R"1 (n' € [h — 1]), we have:

1 m(zn|z},) 1 7(s|s"\Px (x, = s|zp =)
~h h
i = =X gy h-1<§ 1 (s) N2
By Cauchy-Schwartz Inequality and Data Processing Inequality, we have:
(x| n(s|s\Px (x), = s|x), = '
Ex ‘<_/ /;)71}:2 (s|s”) X(_] Ed )
- () — wr ()
o - ; (30)
I \ \ ‘T(:L'/z :I;pu(/))) ;
< E (I)\_)(X/,.x/,/) + [\,z(x/,‘ xj,,,u,)» < [\,g(x/,‘ ij(/))) =Ex { e ) ) l]
Eq. (30) has shown the desired result q,])’ < 01];(,(/,)'3 O
3Supposc ax = WTﬂ = fo,(xn). If we remove the assumption fy = ’/’TTﬂ, = . Lemma 24 in Nichani

< —-—(— 0). Under Assumption 1 and

~ Tess

) A ﬂ(m,,\m;,) ﬂ[fa:/,\m;])

et al. (2024) shows |[Ex [m l} Ex [ () l}

Strong Data Processing Inequality in Nichani et al. (2024) (Lemma 5), we can prove the non-asymptotic result
1 ' 2C

~h R
G oy — Qrr > — (L5 — R
Ipany — 9n = 71 (33 /7Te11(/\\/\)
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Assumption 1 (Assumptions on transition kernel (Nichani et al. (2024), Assumption 1)). There

exist v > 0, \ < 1 such that the following hold for m:
* (Transition lower bounded): ming ¢ 7(s" | ) > .
* (Non-degeneracy of chain): | B(7)||r > 7.
* (Spectral gap): The spectral gap of m, 1 — \(w), satisfies \(m) < A
o (Symmetry): For any permutation matrix o on' S, 0~ 'no =4 .

* (Constant mean): E[w] = %lglg.

C.7 PROOF OF PROPOSITION 2

Proof. In dynamical system setting, the transition P(-|-) is given by the pmf of xp, X4 (1)

1

2
plely) = ———s exp(—;7 o — %ATy||§> L Ac ORY,.

(2m) (22)

Then with ¢ eliminate constant terms in log p, we get the equivalent form in BMA:

1
logp(xp | xp) = % x) Az — 252 x, AA x + const(h),
L

_ c T 1 T . _
P =Y (gl Ad), — ol a),); Plpa(h)lzih) = o(p").
=1

€2y

Eq. (31) gives the BMA logits in the DS setting in a softmax form. We now show that transformers

under the observation restriction Eq. (7) cannot represent BMA in this setting.

Recall that, under Eq. (7), the transformer logits are

L
h [T l
ptffh’ - § Ly Wtf Lhs
=1

while the BMA logits are

L L
ngMA,lz/ = Z wlh—/rAajéz + dz Hwéz’ H27 C1 7é O d 7& 0.
=1 =1

Suppose, for contradiction, that the transformer exactly represents BMA, i.e.

o(ply) = o(pl,,) forall DS samples and all h € [H].

Since softmax is invariant under adding a constant independent of 4/, this means that for each fixed

h there exists a scalar b = b(h) such that

Pl +b=ppy,y forall b € [H].

Using the DS model x!, = %(ATmim(h) + €l ), we expand the logits as

1 & 1 &
h o [T T, [T J
Pis . = P E x) Wes A Tpa(h) +; E xj, Wesep,,
T =1 T =1

constant term w.r.t. h, €y, seperate term with €y,

L L L
n _a 1T T 1 12, @ IT 4.1
Pouw = 2 Tw AA x,, ) +d E llp |° + - E x), Aey, .

=1 =1 =1

constant term w.r.t. h, €p, seperate term with ey,
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Conditioning on all variables except {¢} }£_,, both sides of (*) become affine functions of the Gaus-
sian noises €!. Since the DS distribution has full support and (*) is assumed to hold for all DS
samples, the coefficients of the linear terms in {£! } must match for all realizations. Since {¢!,}, are
independently sampled, conditioning on aﬁl will eliminate other terms. Seeing Eﬁz as the only free
variable, its coefficient should be zero to keep the equation held:

xl] (Wye — c1A)el = 0,Vel e RY = ] (Wi — 1 A) = 0.

Since in the DS model each x!, ~ N(0, I) is non-degenerate with full support z! ~ N(0, I),
which forces
Wtf =C1 A.

Substituting Wys = ¢; A back into (), the representation equation is formulated by

L L
C1
b+ ? Z AAT l (h) - Z miLTAAT pa(h) + dz ||w§Ll ||2
=1 =1
Hence

L
b=d» |z} |* forall b’ € [H].
=1

However, for a DS sample the quantities >, ||z}, ||? vary across ' and across samples, while b is

a constant (depending only on h). The only way the above equality can hold for all 2’ and all DS
samples is to have b = d = 0, which contradicts the assumption d # 0 in the BMA logits.

We conclude that no Wy can make the transformer logits represent the BMA logits for all datasets
generated from DS. Therefore, under Eq. (7), transformers cannot represent BMA in the DS setting.

C.8 PROOFOF ) _, u(s")u"(s)logm(s | s') <30, ™ (s")w(s | s') logm(s|s'), Vi € Al

Let S be a finite state space, let 7(- | -) be a Markov transition kernel on S, and let ™ be a stationary
distribution of 7, i.e.,

Z,u 7(s|s') forallseS.
s'eS

Fix an arbitrary fi; € A<, and for brevity write 2 := ©™. We adopt the convention 0log0 = 0
throughout.

We first upper bound the left-hand side. For any s’ € S, consider the Kullback—Leibler divergence

KL (g || w(- | s") Zu 1ogﬁ > 0.

seS S‘S)

Expanding the inequality KL(p || 7(- | ")) > 0 yields
Zu Ylog (s | s') Zu Ylog ™ (s) =: C,
s€S s€ES

where the right-hand side C' does not depend on s’. Multiplying both sides by fi;(s’) and summing
over s’, we obtain

D s (s)logm(s [ 8') < Y m(s)C=C= p"(s)logp™(s).  (32)

5,5'€S s'€S s€ES

This bound holds for any choice of i, € A%,
Next, we lower bound the right-hand side. For each s’ € S, consider the reverse KL divergence
s|s)

KL(r(- | ) 1) = S (s | ) log T 5D 5 g,

o pr(s)
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32 33

D EXPERIMENT DETAILS

All experiments follow the same training setup unless otherwise specified: sequences are generated
from a Markov chain with transition kernel 7 (- | s) ~ Dirichlet(c - 14) with @ = 0.1. We use a
batch size of 1024 for training and evaluate on 4096 test samples. Parameters are optimized with
Adam (Kingma & Ba, 2017), using learning rate 0.05 for discrete Markov chains and 0.001 for
dynamical systems. For gradient-based analysis, we adopt SGD with learning rate 1. Fresh data are
sampled at each iteration to avoid memorization, and all implementations are based on JAX.

E ADDITIONAL EXPERIMENT RESULTS ON MARKOV CHAIN

Parent ion Per vs ian Model

—— Model Parent Selection Loss
-~ BMA Baseline (CE=0.3479)

Figure 7: Parent selection £, comparison between transformers and BMA during training. The
metric is introduced as Eq. (10). Training configuration as the experiment in Fig.2.
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Column Index ® column index
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(Distance wio adjustment: 0.370607 | Distance w/ adjustment: 0.112938 | Improvement: 69.53% |

Figure 8: Parameter-Level Comparison between transformer and BMA (W = logm). Trainable
Wxq and Woy . Trained with d = 20, H = 50, L = 3, and 1024 training steps.

Ground-Truth DAG Gradient Values c/op Attention Predictions 42
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2 L2
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&
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Figure 9: Gradient Validation of g{_ From left to right: ground-truth graph G, the gradients of

stacked as row vectors, and attention weights Af_) uniformly distributed since W = 0.

F EXPERIMENT RESULTS ON DYNAMICAL SYSTEM
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Figure 10: Visualization of Ist-layer Attention A" ¢ RT*T,
The first layer replicates the historical occurrence of the same token. Model trained with
L = 20 examples, trajectory length H = 20, vocabulary size d = 10, 20 heads in the first layer, and

2048 training steps. The RPE parameters are initialized with a small positive value (0.5) along the
construction direction, and grow to much larger magnitudes after training.
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Figure 11: 2nd-Layer Attention A®? ¢ R¥*H Visualization. Attention patterns matches the

groundtruth causal structure in dynamical system setting.
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Figure 12: Visualization of first RPE layer. The parameters are consistent with the construction.
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Parent Selection Performance vs Bayesian Model Averaging

Cross Entropy Loss

—— Model Parent Selection Loss
-~ BMA Baseline (CE=0.0000)

(Fina)

1000
Training Steps

2000

04394

Figure 14: Parent selection loss during training in dynamical system setting.

Parent Selection Loss Curves
(Color Gradient: Purple=L1 - Yellow=L30)

Parent Selection Loss Heatmap
(L'=1-10, Lower is Better)

Parent Selection Loss

T e T
L' In-context

L'

Figure 15: Generalization of parent loss {Epa

Loss Difference from BMA Baseline

0, Lower is Better)

Ls s L1
\-context Examples

} for transformers trained with L € {1,...,30} in

dynamical system setting. Trained with d = 10, H = 15 and 2048 training steps.
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G
The disentangled transformer with absolute position embedding (APE) is formulated by:
Embedding Layer: h\Y = [E(w,), Pos(w,)] = [z, e,), HO = [V, ... nYY] e R
Ist Attention (K-head):  Attnf(H©;0) = & (hg?gjl Wi '*'th)) ! RO W)k 2:3
Disentangled Residual: hgl) = [hgo), Attnl (H®:0), ..., Atn (H©); 9)] € Rbot+Kd
2nd Attention (1-head):  for(- | Hy) = o (h‘ﬁgfl W;ggghgn) T ROT W) e RY.

(34

First, we can see the model parameter Wj((%k € R4 *do where dy = d + T and T is the sequence

length. The total number of parameters in the first layer is O(d? + H2L?) compared to O(H + L)
parameters of the model with RPE in Eq. (5). The redundancy of parameters may lead to difficulties
of interpreting the mechanism of transformers. Besides, since for disentangled transformer with
APE, the embedding dimension is proportional to the length of input sequence, this may make it
difficult for us to interpret transformers’ mechanism on longer sequence tasks.

As for this transformer, we first provide a theoretical construction which is consistent with our
construction for RPE model in Theorem 1. Empirically, we show this transformer can successfully
select causal tokens. Besides, we provide results of trainable transformers showing alignments with
our construction in attention visualization and parameter verification.

G.1 THEORETICAL CONSTRUCTION

In this section, we provide a construction demonstrating how the proposed two-layer architecture
possesses the capacity to implement the specific causal selection mechanism derived in our analysis.
Let the input embedding dimension be dy = d+7T', where d is the token dimension, 7" is the sequence
length (due to absolute position embedding) and an input sequence contains L + 1 examples of
length-L chain T'= H(L + 1). Suppose N7, 11 denotes the set of nodes from the last example, i.e.,
wehave N1 ={t €T |3h € [H],t = HL + h}.

G.1.1 LAYER 1: MULTI-HEAD ATTENTION CONSTRUCTION

The first layer consists of K attention heads (X < L). The Query-Key matrix Wj((%k will attend
to specific predecessor tokens based on position. We construct it as a block matrix where the active
interaction terms are confined to the position-embedding subspace:

OmxH
wk Ui ?dﬁ)Tk WOF — 3 Opynr IH:XH (‘k-th block active). (35)
KQ Orxa | Wgoo |7 K@ :

Oprx i
From this construction, if 5 — oo, the attention score of the first attention layer is given by:
1 o
Ak )7 < T N, (36)
ij e ,
1[j:kH+h]7 if ¢ ENL_A,_}L, i1 =LH+ h.

For the value projection, Wg&’k will propagate the semantic content of the attended tokens:
Wé1‘2'7k _ |: Id><d :| c R(d+T)Xd. (37)
Orxa
And the output of the first attention will be:

Ve {ﬂ(wm—l), ifi ¢ Npqn,

At (H©®;0) = AV FROTW (38)
( )= A Woy zk, ifi € Npyn, i = LH + h.
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G.1.2 DISENTANGLED RESIDUAL STREAM

Unlike standard summation residuals, this disentangled transformer employ a concatenation strat-
egy. Nichani et al. (2024) proved this transformer is actually equivalent to a decoder based attention-
only transformer (Theorem 3). The output of the first layer is the concatenation of the original input
and the outputs of all K heads:

RV = | B Al ... Ak | € RP0HED, (39)
The dimension of the second layer inputis dy = dy + Kd =d + T + Kd.

G.1.3 LAYER 2: SINGLE-HEAD ATTENTION CONSTRUCTION

The second layer employs a single attention head to aggregate the evidence collected by the K heads
in the previous layer.

logm Ogxqa -+ Odxd
Odxd | Ogx1 | Ogxrd 0 1 0
W — | 0rva | Oper [0 W@ | o TR B (40)
KQ Txd TxT |VTxKd |, YWEkQ . . . .
Ordxd|OkdxT WI(% ' -
Odxd Ogxa --- logm

Finally, the output projection Wg& projects the aggregated context back to the semantic space by:
log 7
W) = R 41
ov= |0rxa | € : 4D
Okdxd

From the Eq. (38) and (39), we can see that hgl) = [hgo); xh, ..., xKlift e Npyi,t =LH +h

else hil) = [hEO); fit, - - -, fiz]. Then, the attention weight of the second layer for any ¢ € N1,
1 = LH + h of our interests, is given by:

. Z,i(:l logw(xﬁ\xﬁ,), forj e N1, j=LH+ R,
AP = (42)

9 K .
Spei By logmay,  forj & Ny
So for i, j € Np41, we have Ag) = ek 108 7(x¥|xk,) aligned with Theorem 1.

Furthermore, suppose K = L, i.e., we use L examples to infer the causal structure, and the

Markov chain is stationary x;, ~ u™. As L — oo, for any j ¢ N1, we have fl(f) —

Yoso Bi(sHp™(s)logm(s|s") < >, u(s)log p™(s). While for the true parent token ¢t = HL +
pa(h), we have A; — >se 1T (8")m(s]s") log m(s|s”) which is larger than } _p™(s)log ™ (s).
The above qunatity relation is drawn by non-negativity of KL divergence, whose detailed proof is
provided in Appendix C.8. Then, the attention weights of the second layer can select the causal
parent token A;_,,,;y — 1. And Wg& predicts the transition.

Empirical Verfication. We show the parameter visualization of the construction in Fig. 16a and its
empirical attention visualization of parent selection in Fig. 16b. In Fig. 17, the constructed model
shows precise parent selection accuracy (cross-entropy loss 0.0706) which is very close to the target
algorithm BMA’s (ce loss 0.0473).

G.2 EXPERIMENTS OF TRAINABLE TRANSFORMERS

In the following, we train the standard disentangled transformer formulated by Eq.(34). To show
the alignment with theoretical interpretation, we use three strategies to initialize the network: (a)
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(b) Attention pattern visualization of theoretical construction. The first layer (right) copies the previous L examples to the
hidden space of the last one L + 1. For the second layer (left), the attention weights attend to the correct causal parents
which are located in the last 5 columns. The queries don’t attend to the keys from first L examples.

Figure 16: Parameter visualization and attention pattern visualization of theoretical construction.
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fully random initialization: all the parameters are initialized randomly with Gaussian distribution;
(b) block-amplified random initialization: parameters are initialized randomly (of scale 0.1), while
the targeted block of the attention projection matrix is assigned a larger magnitude (of scale 0.5)
to introduce an inductive bias; (c) direction-consistent initialization: parameters are initialized such
that the dominant blocks point in the analytically derived construction direction, still allowing model
learning to refine the magnitudes (intial magnitudes: 0.2x optimal parameters).

We first compare the parent token prediction performance of these models during the training process
in Fig. 17. The results show that the 2-layer transforemr is fully capable of selecting causal parents
in its 2nd-layer attention head.

Then we visualize the attention pattern of the trained model in Fig. 19. For the first attention layer,
the figure shows query from the last example L + 1 mostly attend to one example among L con-
text examples, while some heads demonstrate the degeneration with uniform attention to previous
tokens. For the second attention layer, the transformers with different initializations all show their
noticable capability of predicting causal parents. Further, we visualize all the parameters of the
transformer in Fig. 18. We can see some alignments between the construction in Fig. 16a and the
trained parameters. Since the transformer with absolute position embedding has far more parameters

of ({WI((% k Wg&’k ks WI(<2<);)7 W(()Q&) than the one with RPE, the full interpretation of its first layer

is difficult. For the second layer, the parameter W;f %2 also shows the diagonal pattern consistent with
construction and Wéz& shows the log 7 pattern.
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Figure 17: Parent selection loss Ly, of the transformer with absolute position embedding and dif-
ferent initialization strategies.
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(a) With Fully Random Initialization. Head 1 and 5 of the first layer ngz exhibits an identity
submatrix (5 x 5) at the last column.
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(b) With Block-Amplified Random Initialization. Head 1 of Wé% degenerate which can be verified

in attention visualization Fig. 19b (Head 1). Head 5 shows multiple identity submatrices which
possibly suggests superposition.
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(c) With Direction-Consistent Initialization. Head 1 and 5 of the first layer WI((IC)J exhibits an identity
submatrix (5 X 5) at the last column which is aligned with the theoretical construction.

Figure 18: Parameter visualization of trained transformer with absolute position embedding. The
second layer shows strong alignment in diagonal patterns of Wi and log 7 pattern of Woy, .
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attention (uniform features are seen as constants eliminated by 2nd softmax attention layer).
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(b) With Block-Amplified Random Initialization. In the first layer, Head 3, 5, 8 and 10 of KQ matrices copies
tokens from previous examples, while Head 1 degenerates showing uniform attention.
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(c) With Direction-Consistent Initialization. In the first layer, Head 1, 5, 6, 8 and 10 of KQ matrices copies
tokens from previous examples, while Head 3 degenerates showing uniform attention.

Figure 19: Attention pattern visualization of trained transformer with absolute position embedding.
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H DISENTANGLED TRANSFORMER WITH APE VARIANT

H.1 MODEL ARCHITECTURE

34

G
Besides, we train this transformer under the same Markov chain setup as in the
transformer with RPE experiments, and obtain consistent results as shown below.

H.2 EXPERIMENT RESULTS
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Figure 20: 1st-Layer Attention Visualization of transformers in Eq. (43).

Trained with

31



Under review as a conference paper at ICLR 2026

2nd Layer Attention (Example 1)

Query Positions
Huro

) 11 a4

22 33
Parent Candidates (Key Positions)

Ground Truth DAG (Example 1)
0
1

2

Child Nodes h

3
4

Parent Nodes pa(h)

Figure 21: Visualization of 2nd-attention layer. Queries are from the last example x7’

0 1 2 3 4

10

Wbl uonuaRY.

0.0

Query Positions

o

Child Nodes h

2nd Layer Attention (Example 2)

1 2 33
Parent Candidates (Key Positions)

a

Ground Truth DAG (Example 2)
.“ i
1
2
3

0 1 2 3 4

Parent Nodes pa(h)

1.0

2yBiam uonuany

0.0

Query Positions
o

H
g
2
2
[

2nd Layer Attention (Example 3)

1 a4

22 3
Parent Candidates (Key Positions)

Ground Truth DAG (Example 3)

[ 1 2 3 4

Parent Nodes pa(h)

0
1
3
4
L

+1 Keys

1.0

Wi vonuRY.

0.0

are

z1.7 = z1'L the whole sequence. Attention layer of disentangled transformer can recognize the

causal structure in-context.

W Head 1 W Head 2 WD Head 3 W Head 4 W Head 5
0 = 0 | 0 0 10.0 0 .
6 6 6
2 .I. L 2 .I 2 W | 2 75 2 [ o
4 .I. ] N g .- N 4 n 4 4 L 50 I | b B
3 - ClEEE i ’ g L] R 5 -
< u o 2.1 0o £ o £ | u 00 2 u
z 8 z 8 u u z 8 || z 8 : 8
& | L L &8 | L 2 | L &8 || 25 & -
10 10 - ol - 10 ] 10
50
12 ; -4 12 .I -4 1248 " -4 12 12
-15
14 -6 14 || -6 141 M .. -6 14 14
i _ | | | | | -100 |
0 5 o 15 ] 5 10 s ) 5 0 Ts ] 5 T 15 ) H o 15
Colum Index Column Index Colum Index Column Index Colum Index
W Head 6 W Head 7 W) Head 8 W Head 9 W Head 10
0 | s 0 = . 0 e
2 u 6 4 2 n 2 u °
| ] a A
4 4 ) Am l | 4 | |
. L LA % . L} LI 2
3 | 23 e .- .l 36 I 3
i'm u o E . ¢ . & o £
z 8 ] z 8 L] s e :
& n P & & L &
10 L S o 2 Ty
L -4 | -4
12 12 n i =
- ,,, ~
14 .. 14 6 14 | ©
e Y
3 5 10 15 o 5 10 15 3 5 10 15 o 5 10 5 3 5 10 15
Column Index Column Index Column Index Column Index Colum Index
-(1),k

Figure 22: Parameter visualization of the first attention layer W

(10 heads in total). Full inter-

pretation is still challenging for huge parameter space. The attention-level behavior understanding

can be referred to Fig. 20.
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I

In this section, we consider a standard 2-layer transformer with FFN layer as follows.

Learnable Embedding: h§°) = Emby (w;) + Embp (w;), e RY
MHA Layer & Residual: 7" = b{" + MHA,(HO; Wi, Woy), €RY, w
FFN Layer & Residual: ~ h{'"™" = ") 4+ FEN,(H®; W b) c R,
Unembedding Layer: Foe (- | Hy) = WiyhP € RY,
where H() = [hgl), e hg)], the multi-head attention (MHA) is formulated by
L T .
MHA(H®;0) = > o (0L Wi ) hOT WL, 45)
k
and the FFN layer
FEN,(H®;0) = W, ReLU(W1 A" + b)) + bs. (46)

We consider the two-layer transformer L = 2 with K heads in the first layer and one head in the
second.* For the task, the input sequence consists of M = 10 in-context examples of Length-H
Markov chains with d = 5 states and the total length T = H (M + 1). We set the hidden dimension
as d’ = 128. For initialization, the parameters W of the transformer is initialized randomly by
Gaussian intialization: W;; ~ N(0,1/dw ) where dw is decided by the dimension of W. We
optimize the model using AdamW with a learning rate of 1 x 103 and a weight decay of 1 x 10~
Fresh data are sampled at each iteration of training without repetition.

Experiment Results. We train two transformers with 5000 steps and K = 5 or 10 heads in the
first layer. We observe the attention weights of the first layer visualized in Fig. 24a and Fig. 25a
implement the copying mechanism where the features of one context example are copied to the
position of last example M + 1: the heads of the first layer show a diagonal submatrix occuring at
the last several rows of example M + 1. Except for these, the remainings mainly show degenerated
attention patterns at the rows of the last example M + 1. In the visualization of the second layer, we
find that the trained standard transformer with MLPs can recognize the causal parents in its attention
weights of the 2nd layer. The aligned attention pattern and graph groundtruth in Fig. 24b and
Fig. 25b supports our construction of how transformers can handle with in-context causal learning.

Quantitive Results. We provide the results regarding how accurate transformers during training
can select random parents in its second attention layer in Fig. 26. We use the cross-entropy loss as
the evaluation metric for the accuracy and compare the trained transformers with BMA. We observe
during training process, standard transformers gradually acquire the capability of in-context causal
learning and approximate the loss of BMA.

*Our implementation is based on the codebase provided by Nichani et al. (2024).
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(a) Visualization of first multi-head attention layer. Heads 1, 3 and 4 show the diagonal block at the rows of the
last example. Information from previous examples is copied to the hidden space of the last example.
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(b) Visualization of second attention layer. Queries are from the last example 2~ 1. Attention layer of standard
transformer can recognize the causal structure in-context.

Figure 24: Attention visualization of standard transformer with MLP (5 heads).
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the last example. Information from previous examples is copied to the hidden space of the last example.
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Figure 25: Attention visualization of standard transformer with MLP (10 heads).
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Figure 26: Parent selection loss £, of the standard transformer with learnable position embedding
and MLP (5 or 10 heads in the first layer). During training, standard transformers gradually acquire
the capability of in-context causal learning and approximate the loss of BMA.

35



	Introduction
	Preliminary
	Task Setup
	Model Architecture
	Standard Transformer
	Disentangled Transformers


	Can Transformers In-Context Learn Causal Structures?
	2-Layer Transformer Learnt to Select Causal Structure In-Context
	Constructed Transformers Implement Statistical Algorithm
	What Algorithm does the Transformer Learn?
	Theoretical orangeUnderstanding and Guarantee of Learned Algorithm
	Causal Structure in Training Dynamics

	Dynamical System Extension: From Discrete to Continuous
	Notation and Related Work
	Conclusion
	Proofs of Technical Lemmas
	Proof of Theorem 1
	Proof of Lemma 1
	Proof of Proposition 1
	Proof of Lemma 3
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Proposition 2
	Proof of s,s't(s')(s)(ss')s,s'(s')(ss')(ss'), t d

	Experiment Details
	Additional Experiment Results on Markov Chain
	Experiment Results on Dynamical System
	orangeDisentangled Transformer with Absolute Position Embedding
	Theoretical Construction
	Layer 1: Multi-Head Attention Construction
	Disentangled Residual Stream
	Layer 2: Single-Head Attention Construction

	Experiments of Trainable Transformers

	Disentangled Transformer with APE Variant
	Model Architecture
	Experiment Results

	orangeStandard Transformer with Feedforward Neural Network

