

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HOW TRANSFORMERS LEARN CAUSAL STRUCTURES IN-CONTEXT: EXPLAINABLE MECHANISM MEETS THEORETICAL GUARANTEE

Anonymous authors

Paper under double-blind review

ABSTRACT

Transformers have demonstrated remarkable in-context learning abilities, adapting to new tasks from just a few examples without parameter updates. However, theoretical understanding of this phenomenon typically assumes fixed dependency structures, while real-world sequences exhibit flexible, context-dependent relationships. We address this gap by investigating whether transformers can learn causal structures – the underlying dependencies between sequence elements – directly from in-context examples. We propose a novel framework using Markov chains with randomly sampled causal dependencies, where transformers must infer which tokens depend on which predecessors to make accurate predictions. Our key contributions are threefold: (1) We prove that a two-layer transformer with relative position embeddings can implement Bayesian Model Averaging (BMA), the optimal statistical algorithm for causal structure inference; (2) Through extensive experiments and parameter-level analysis, we demonstrate that transformers trained on this task learn to approximate BMA, with attention patterns directly reflecting the inferred causal structures; (3) We provide information-theoretic guarantees showing how transformers recover causal dependencies and extend our analysis to continuous dynamical systems, revealing fundamental differences in representational requirements. Our findings bridge the gap between empirical observations of in-context learning and theoretical understanding, showing that transformers can perform sophisticated statistical inference over structural uncertainty.

1 INTRODUCTION

Modern transformers exhibit a remarkable capability: they can adapt to entirely new tasks using only a handful of examples, without any parameter updates. This phenomenon, known as in-context learning (ICL) [Brown et al. \(2020\)](#), has revolutionized our understanding of what neural networks can achieve. A model trained on diverse text can suddenly perform arithmetic, translate languages, or write code – all by simply observing a few demonstrations. Yet despite extensive empirical success [Wei et al. \(2022\)](#); [Garg et al. \(2023\)](#) and theoretical investigations [von Oswald et al. \(2023\)](#); [Akyürek et al. \(2023\)](#); [Goel & Bartlett \(2024\)](#), a fundamental question remains: how do transformers adapt to the varying dependency structures present in real-world sequences? ([Allen-Zhu & Li, 2023](#); [Bietti et al., 2023](#); [Zhao et al., 2023](#); [Wibisono & Wang, 2024](#))

The Theory-Practice Gap. Current theoretical understanding of ICL rests on a critical simplification: most analyses assume that dependencies between sequence elements follow a fixed, predetermined structure. For instance, theoretical works typically study settings where tokens are independent $[[x_1, f(x_1)], [x_2, f(x_2)], \dots]$ or follow rigid patterns like $[x_1, f(x_1), x_2, f(x_2)]$ ([Bai et al., 2023](#); [Chen et al., 2024a](#); [Wang et al., 2025](#)). However, natural language and real-world sequences exhibit far richer structure – words depend on previous words in complex, context-dependent ways that vary across sentences and domains. Recent work by [Nichani et al. \(2024\)](#) began addressing this by showing transformers can encode fixed causal structures during training. Specifically, they assume an n -gram causal model (e.g., bigrams where each token depends only on the previous one) ([Rajaraman et al., 2024](#); [Edelman et al., 2024](#)), and prove that transformers can embed this structure in their attention weights to perform inference. However, in real-world scenarios, the dependency

graph itself is not fixed but varies across different sequences. For example, in language, the syntactic structure can change dramatically between different documents, and in stock price prediction, the relationships between assets can shift over time. Thus, a key challenge is

$$Can \text{ transformers} \text{ infer and adapt to causal structure in-context?} \quad (*)$$

Our Approach. We introduce a novel framework where sequences are generated from Markov chains with randomly sampled causal dependencies. In our setting, each token depends on exactly one predecessor, or its “parent”, but crucially, these parent relationships are not fixed and must be inferred from context examples, which is a collection of sequences sharing the same underlying causal structure. This setup captures the essence of (\star) by requiring the model to adapt to different latent structures across contexts. The transformer must infer these latent dependencies from context examples to accurately predict new sequences – mirroring how language models must adapt to different syntactic structures or reasoning patterns.

Main Contributions. We consider two types of Markov chains: discrete chains over a finite vocabulary and continuous linear dynamical systems. Our work makes the following contributions:

(1) Theoretical Construction: For discrete Markov chains, we prove that a two-layer transformer with relative position embeddings can implement Bayesian Model Averaging (BMA), the statistically optimal algorithm for inferring causal structures from observations. Our construction shows how attention mechanisms can perform sophisticated probabilistic inference over structural uncertainty. **(2) Empirical Verification:** Through extensive experiments on Markov chains, we demonstrate that transformers trained via gradient descent converge to solutions remarkably similar to our theoretical construction. Parameter-level analysis reveals that learned attention patterns directly encode posterior probabilities over causal structures, providing mechanistic insight into how transformers perform statistical inference. **(3) Information-Theoretic Analysis:** We establish conditions under which causal structures can be recovered in-context, using mutual information and data processing inequalities. Additionally, we show that gradient-based learning naturally discovers these structures early in training through χ^2 -mutual information maximization. **(4) Extensions to Continuous Systems:** We extend our framework to linear dynamical systems in continuous space, revealing fundamental differences in how transformers handle discrete versus continuous causal inference. While transformers show strong empirical performance, we identify representational limitations that prevent exact BMA implementation in continuous settings.

Paper Organization. Section 2 introduces our problem formulation and model architecture. Section 3 presents our main theoretical and empirical results for Markov chains. Section 4 extends the analysis to continuous dynamical systems. Appendix A discusses related work.

2 PRELIMINARY

2.1 TASK SETUP

To investigate the question (\star) , we consider data are generated from distributions with a latent causal structure. Each sample is a sequence of tokens $\mathbf{x}_{1:H} = [\mathbf{x}_1, \dots, \mathbf{x}_H]$, where the h -th token \mathbf{x}_h depends on one of its predecessors, called the parent token $\mathbf{x}_{\text{pa}(h)}$. This dependency relation is represented as a directed tree graph $\mathcal{G} = \{\text{pa}(h)\}_{h \in [H]}$, where $\text{pa}(h) \sim \text{Unif}(1, \dots, h-1), \forall h \in 2, \dots, H$. Given the causal structure defined above, the generative process can be written as $\mathbf{x}_h = G(\mathbf{x}_{\text{pa}(h)})$, where $G(\cdot)$ denotes either stochastic sampling from the transition kernel $\pi(\cdot | \mathbf{x}_{\text{pa}(h)})$ of Markov chains, or a deterministic transformation with additive Gaussian noise in dynamical systems. $G(\cdot)$ is fixed during sampling the whole dataset.

For the in-context learning task, suppose we have $L+1$ samples $\{\mathbf{x}_{1:H}^{(l)}\}_{l \in [L+1]}$ from the same causal graph \mathcal{G} , the first L samples are provided as in-context demonstrations from which the model may infer the latent graph structure, while the last sample is the target for prediction. Except the first token \mathbf{x}_1^{L+1} , every token \mathbf{x}_h^{L+1} in this trajectory is required to be predicted via next-token prediction conditioned on $\mathbf{x}_{1:H}^{1:L}$ and its past observations $\mathbf{x}_{1:h-1}^{L+1}$.

Markov Chain. Following Markovian assumption adopted in [Edelman et al. \(2024\)](#); [Nichani et al. \(2024\)](#); [Chen et al. \(2024b\)](#); [D’Angelo et al. \(2025\)](#), we assume sequences are sampled from

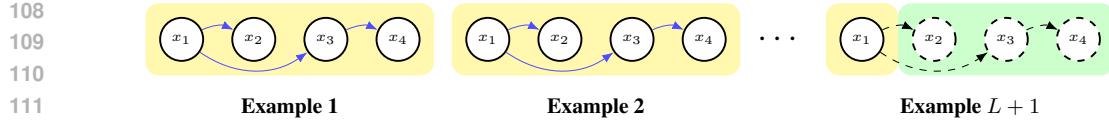


Figure 1: **Task overview of in-context causal structure learning.** Each training sequence consists of L examples with observed variables and hidden parent relations, followed by a new example $L+1$ where the model must infer the underlying parent indices in-context from previous demonstrations.

a Markov chain with random dependencies. In this setting, Tokens $\{\mathbf{x}_h\}$ are drawn from a finite vocabulary $\mathcal{V} = \{e_1, \dots, e_d\}$, where $|\mathcal{V}| = d$ and $\{e_i\}$ are one-hot vectors. The random dependencies are specified by latent causal graph $\{\text{pa}(h)\}_{h \in [H]}$. Let $\pi : \mathcal{V} \rightarrow \Delta(\mathcal{V})$ denote the Markov transition kernel, where $\Delta(\mathcal{V})$ is the probability simplex over \mathcal{V} . Then each token is generated as $\mathbf{x}_h \sim \pi(\cdot | \mathbf{x}_{\text{pa}(h)}) \in \Delta(\mathcal{V})$, $\forall h \in [H]$, where by slight abuse of notation, we also regard π as the stochastic matrix $\pi \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|}$ with $\pi[i, j] = \pi(j|i)$, $\sum_j \pi[i, j] = 1$.

Dynamical System Beyond the discrete Markov chain case, we also consider a more challenging setting with continuous sampling space. Here tokens $\{\mathbf{x}_h\}$ are dense vectors in \mathbb{R}^d . The link function $g(\cdot)$ replaces the discrete transition kernel, and we instantiate it as a *linear dynamical system with additive Gaussian noise*: $\mathbf{x}_h = g(\mathbf{x}_{\text{pa}(h)}) = \frac{1}{c}(A^\top \mathbf{x}_{\text{pa}(h)} + \varepsilon_h)$, where $A \in \mathcal{O}(\mathbb{R}^d)$ is orthogonal, $\mathbf{x}_1 \sim \mathcal{N}(0, I_d)$, $\varepsilon_h \sim \mathcal{N}(0, \sigma^2 I_d)$, and $c^2 = 1 + \sigma^2$ ensures variance stability.

These settings evaluate the extent to which transformers can perform in-context causality learning.

Goal: Inferring the Causal Structure. The task formulation naturally raises the following question: *Given L in-context examples, how can the model infer the underlying graph structure \mathcal{G} ?* A classical approach to this problem is *Bayesian Model Averaging* (BMA), which leverages Bayes' rule to compute the posterior distribution over possible parameter space. Treating the parent structure $\text{pa}(h)$ as the parameter to be estimated, the distribution of having parent h' will be predicted as its posterior probability given L observations:

$$\mathbb{P}(\text{pa}(h) = h' | \mathbf{x}_{1:H}^{1:L}) = \frac{\mathbb{P}(\mathbf{x}_{1:H}^{1:L} | \text{pa}(h) = h') \mathbb{P}(\text{pa}(h) = h')}{\sum_{h'' \in [H]} \mathbb{P}(\mathbf{x}_{1:H}^{1:L} | \text{pa}(h) = h'') \mathbb{P}(\text{pa}(h) = h'')}. \quad (1)$$

By Eq. (1) and our task assumption, we have the following lemma of the formulation of BMA.

Lemma 1. *Suppose L samples are observed from the above Markov chain (or dynamical system) $\mathbf{x}_{1:H}$ with latent causal structure \mathcal{G} . Bayesian Model Averaging give prediction of $\text{pa}(h) \in [h-1]$:*

$$\mathbb{P}(\text{pa}(h) = h' | \mathbf{x}_{1:H}^{1:L}) = \frac{\exp(\sum_{l \in [L]} \log \pi(\mathbf{x}_h^l | \mathbf{x}_{h'}^l))}{\sum_{h'' \in [h-1]} \exp(\sum_{l \in [L]} \log \pi(\mathbf{x}_h^l | \mathbf{x}_{h''}^l))} = \sigma(\hat{\mathbf{p}}^{h,L}(\log \pi))_{h'}, \quad (2)$$

where $\hat{\mathbf{p}}^{h,L}(\log \pi) \in \mathbb{R}^d$ and $\hat{\mathbf{p}}^{h,L}_{h'} = \sum_{l \in [L]} \log \pi(\mathbf{x}_h^l | \mathbf{x}_{h'}^l)$. See Appendix C.2 for detailed proof.

This Bayesian formulation provides a principled baseline for inferring causal structure, and serves as a point of comparison for the in-context learning behavior of transformers.

2.2 MODEL ARCHITECTURE

2.2.1 STANDARD TRANSFORMER

Decoder-only Transformer is a neural network structure dealing with sequential data. Given a sequence of tokens $(\mathbf{w}_1, \dots, \mathbf{w}_T)$, transformers first embed tokens and add a positional encoding to the tokens: $\mathbf{h}_t^{(0)} = E(\mathbf{w}_t) + P(t) \in \mathbb{R}^d$, $\forall t \in [T]$. In a matrix form, the mapped tokens of input is $\mathbf{H}^{(0)} = \mathbf{h}_{1:T}^{(0)\top} \in \mathbb{R}^{T \times d}$. Subsequent layers consist of multi-head attention layers (MHA) followed by multilayer perceptron layers (MLP). At layer l , the hidden features $\mathbf{H}^{(l-1)}$ will be updated as follows. First, causal-mask self-attention layer will compute the output by:

$$\text{Attn}(\mathbf{H}; \mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V) = \sigma \left(\mathcal{M} \left(\frac{(\mathbf{H} \mathbf{W}_Q)(\mathbf{H} \mathbf{W}_K)^\top}{\sqrt{d_k}} \right) \right) \mathbf{H} \mathbf{W}_V,$$

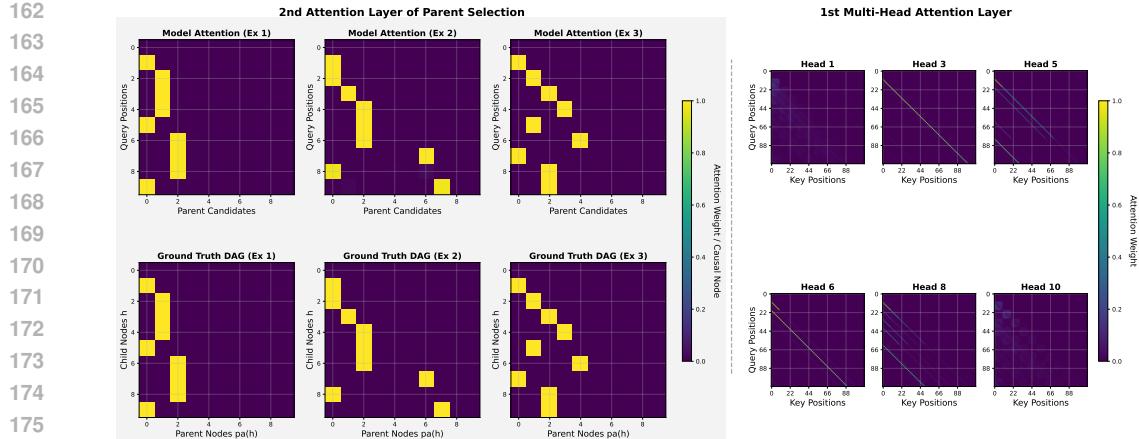


Figure 2: Visualization of Attention Weights $\mathcal{A}^{(1)}, \mathcal{A}^{(2)}$. Left: $\mathcal{A}^{(2)}$ on 3 examples. Transformer shows promising capabilities to select causal tokens in context. Right: Six representative heads (out of 10) from $\mathcal{A}^{(1)}$ (Head 1 and 10 degenerate). (trained with $L = 10, H = 10, d = 5, 1024$ steps).

where $\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V \in \mathbb{R}^{d \times d_k}$, $\sigma(\mathbf{v})_i = \frac{\exp(v_i)}{\sum_j \exp(v_j)}$ applied to matrix row-wisely, \mathcal{M} is the causal mask where $\mathcal{M}(\mathbf{X})_{ij}$ is $-\infty$ if $i > j$ else \mathbf{X}_{ij} . Then multi-headed attention gives the output:

$$\text{MHA}(\mathbf{H}) = \left(\bigoplus_{m=1}^M \text{Attn}(\mathbf{H}; \mathbf{W}_Q^m, \mathbf{W}_K^m, \mathbf{W}_V^m) \right) \mathbf{W}_O,$$

where \bigoplus denotes the concatenation of vectors and $\mathbf{W}_O \in \mathbb{R}^{Md_k \times d}$. Getting intermediate features $\text{MHA}_l(\mathbf{H}^{(l-1)})$ from attention layer, this feature will be added to the **residual stream** which aggregate the previous output: $\hat{\mathbf{H}}^l = \mathbf{H}^{(l-1)} + \text{MHA}_l(\mathbf{H}^{(l-1)})$. FFN layer adopts this as input and updates this stream as:

$$\text{FFN}(\hat{\mathbf{H}}) = \sigma(\hat{\mathbf{H}} \mathbf{W}_1) \mathbf{W}_2, \quad \mathbf{H}^{(l)} = \hat{\mathbf{H}}^{(l)} + \text{FFN}_l(\hat{\mathbf{H}}^{(l)}),$$

where $\mathbf{W}_1 \in \mathbb{R}^{d \times d_m}$, $\mathbf{W}_2 \in \mathbb{R}^{d_m \times d}$ and $\sigma(\cdot)$ is the activation function. Finally the output of L -layer Transformer is $\sigma(\mathbf{H}^{(L)} \mathbf{W}_U)$ projected to vocabulary logits by $\mathbf{W}_U \in \mathbb{R}^{d \times V}$.

2.2.2 DISENTANGLLED TRANSFORMERS

To better analyze the role each part of transformers play in learning a task, prior works Friedman et al. (2023) propose the disentangled transformer which decouples the twisted features in the residual stream. Instead of adding each layer's output, disentangled transformer concatenates it with residual stream. Considering the decoder-based attention-only transformers we will mainly focus on, it will update the hidden states $\mathbf{H}^{(l-1)} \in \mathbb{R}^{T \times d_{l-1}}$ by

$$\mathbf{H}^{(l)} = [\mathbf{H}^{(l-1)}, \text{Attn}_1(\mathbf{H}^{(l-1)}), \dots, \text{Attn}_M(\mathbf{H}^{(l-1)})] \in \mathbb{R}^{T \times (1+M)d_{l-1}}, \quad (3)$$

where in each attention head, $\mathbf{W}_K \mathbf{W}_Q^\top$ is reparametrized by \mathbf{W}_{KQ} , $\mathbf{W}_O \mathbf{W}_V$ by \mathbf{W}_{OV} and the initial input $\mathbf{H}^{(0)} \in \mathbb{R}^{T \times d_0}$ is given by $\mathbf{h}_t^{(0)} = [E(\mathbf{w}_t), P(\mathbf{w}_t)] = [\mathbf{e}_{\mathbf{w}_t}, \mathbf{e}_t] \in \mathbb{R}^{d+T}, \forall t$. Consider in our task, the input sequence consists of $L+1$ examples of length- H chains, leading to the embedding size T of $P(\mathbf{w}_t) \in \mathbb{R}^T$ equal to $(L+1)H$. If we set vocabulary dimension $d = H = L = 10$, then $d = 10 \ll T = 110$ in the input embedding and \mathbf{W}_{KQ} in the 1st layer will have $\Theta(H^2 L^2) = \Theta(10^4)$ parameters. Instead, considering \mathbf{w}_t is the h -th token in example l , we use two types of embeddings representing this: $\text{Pos}_L(\mathbf{w}_t) = \mathbf{e}_l \in \mathbb{R}^L$, $\text{Pos}_H(\mathbf{w}_t) = \mathbf{e}_h \in \mathbb{R}^H$. This reduces the required parameter for training. And the formulation of this transformer is given by Eq. (34). Empirical results presented in Appendices G, H and I demonstrate that the standard disentangled transformer with full absolute position encoding, its positional variants and standard transformers with FFNs all behave consistently with the model described below. To enable a tractable parameter-level analysis, we adopt a simplified structure that reduces the parameter count and simplifies training.

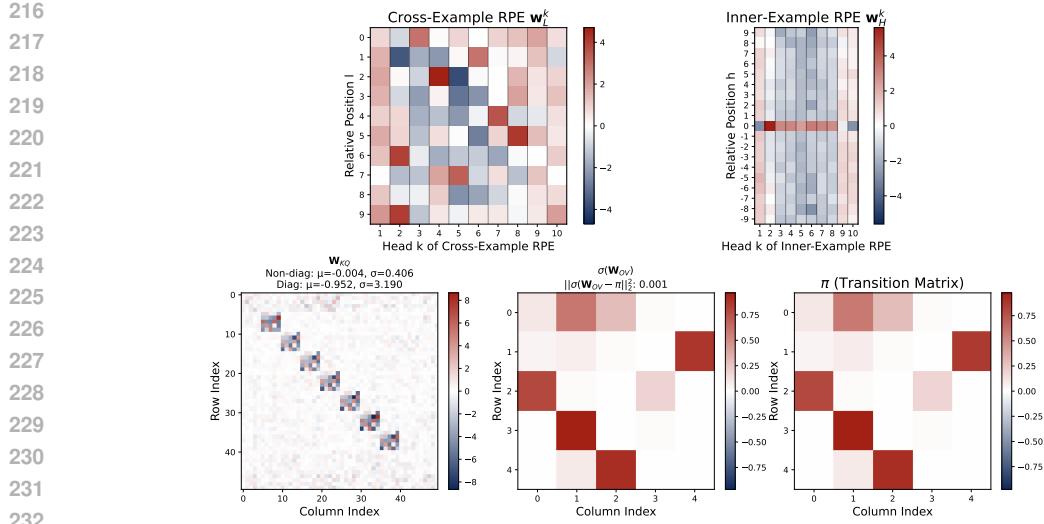


Figure 3: Parameter visualization of 2-layer transformer with RPE. Heads of inner-example RPE w_H^k uniformly show the largest value at position $h = 0$ except Head 1, 9, 10. Correspondingly, W_{KQ} shows similar blocks on diagonal except block 1, 9, 10. Besides, $\sigma(W_{OV})$ approximates π .

Relative Position Embedding. While the original Transformer employs the above absolute positional encodings, subsequent research has demonstrated the advantages of relative positional embeddings (RPE) Shaw et al. (2018); Su et al. (2023). RPE is parametrized by a vector $\mathbf{w} \in \mathbb{R}^T$ which assigns attention score $\mathbf{w}(i, j)$ only via relative distance $i - j$ between positions of query i and key j . Similar to the above absolute embedding, we adopt two types of RPE: $\mathbf{w}_H \in \mathbb{R}^{2H-1}$ representing the order l from $L+1$ examples and $\mathbf{w}_L \in \mathbb{R}^L$ representing the order h from H tokens.

$$\mathbf{w}_H(h, h') = \mathbf{w}_H[h - h'], \forall (h, h') \in [H]^2, \quad \mathbf{w}_L(l, l') = \begin{cases} \mathbf{w}_L[l - l'], & l > l', \\ -\infty, & \text{else. (for causal mask)} \end{cases}$$

Attention with RPE. With RPE in the 1st layer, the output \mathbf{u}_t for $\mathbf{x}_t = \mathbf{x}_h^l$ is given by:

$$\begin{aligned} \mathbf{u}_t &= \text{Attn}_{\mathbf{x}_t \rightarrow \mathbf{x}_{1:T}} = \sum_{t'} \sigma_{t'}(\mathbf{w}_H(h, \cdot) + \mathbf{w}_L(l, \cdot)) \mathbf{x}_{t'} \\ &= \sum_{t' \leftrightarrow (h', l')} \frac{\exp(\mathbf{w}_H(h, h') + \mathbf{w}_L(l, l'))}{\sum_{t''} \exp(\mathbf{w}_H(h, h'') + \mathbf{w}_L(l, l''))} \mathbf{x}_{t'}. \end{aligned} \quad (4)$$

Self-Attention Layer. Suppose the 1st layer use K heads, for the 2nd layer, the input is $\mathbf{v}_t = \mathbf{H}_t^{(1)} \in \mathbb{R}^{d+Kd}$ given by disentangled residual in Eq. (3). The features of last example $L+1$: \mathbf{v}_h^{L+1} are taken as query, key and value tokens into the attention layer. The output gives Transformer's prediction. Suppose the input is $\mathbf{x}_{1:T} = \mathbf{x}_{1:H}^{1:L+1}$, this transformer architecture is formulated as follows:

$$\text{1st RPE Attention (K-head): } \mathbf{u}_h^k = \text{Attn}_{\mathbf{x}_h^{L+1} \rightarrow \mathbf{x}_{1:T}}^k = \sigma(\mathbf{w}_H^k(h, \cdot) + \mathbf{w}_L^k(L+1, \cdot)) \mathbf{x}_{1:T}^\top \in \mathbb{R}^d,$$

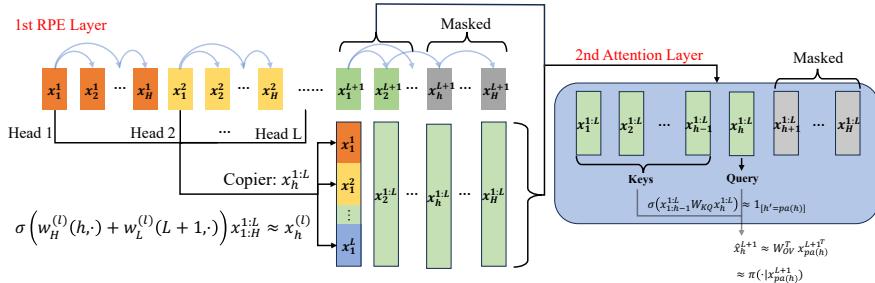
$$\text{Disentangled Residual: } \mathbf{v}_h = [\mathbf{u}_h^1, \dots, \mathbf{u}_h^K], \quad \mathbf{z}_h = [\mathbf{x}_h^{L+1}, \mathbf{v}_h] \in \mathbb{R}^{d+Kd},$$

$$\begin{aligned} \text{2nd Attention (1-head): } \mathbf{f}_{\text{tf}}(\cdot \mid \mathcal{H}_h^L) &= \sigma(\mathbf{z}_{1:h-1}^\top \mathbf{W}_{KQ} \mathbf{z}_h)^\top \mathbf{z}_{1:h-1}^\top \mathbf{W}_{OV} \\ &= \sigma(\mathbf{v}_{1:h-1}^\top \mathbf{W}'_{KQ} \mathbf{v}_h)^\top \mathbf{x}_{1:h-1}^{L+1}^\top \mathbf{W}'_{OV} \in \mathbb{R}^d, \end{aligned} \quad (5)$$

where $\mathbf{f}_{\text{tf}}(\cdot \mid \mathcal{H}_h^L) \in \mathbb{R}^d$ denotes the output of the transformer based on context $\mathcal{H}_h^L = [\mathbf{x}_{1:H}^{1:L}, \mathbf{x}_{1:h-1}^{L+1}]$ (or the context denoted by \mathcal{H} for brevity) and we assume some blocks in $\mathbf{W}_{KQ}, \mathbf{W}_{OV}$ are 0:

$$\mathbf{W}_{KQ} = \begin{bmatrix} 0_{d \times d} & 0_{d \times Kd} \\ 0_{Kd \times d} & \mathbf{W}'_{KQ} \end{bmatrix}, \quad \mathbf{W}_{OV} = \begin{bmatrix} \mathbf{W}'_{OV} & 0_{d \times Kd} \\ 0_{Kd \times d} & 0_{Kd \times Kd} \end{bmatrix}, \quad (6)$$

where $\mathbf{W}'_{KQ} \in \mathbb{R}^{Kd \times Kd}$, $\mathbf{W}'_{OV} \in \mathbb{R}^{d \times d}$ are trainable and this simplification is supported by the results on disentangled transformers in Appendix G. To train transformers, cross-entropy loss is used for $\mathbf{x} \in \mathcal{V}$ of Markov chain (MC) and MSE loss for dynamical system (DS) shown in Eq. (15).

270
271
272
273
274
275
276
277
278
279280
281
282
283
284
Figure 4: The overview of constructed transformer: the 1st layer works as copier, and the attention
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

3 CAN TRANSFORMERS IN-CONTEXT LEARN CAUSAL STRUCTURES?

3.1 2-LAYER TRANSFORMER LEARNT TO SELECT CAUSAL STRUCTURE IN-CONTEXT

To investigate the question (★), we first train 2-layer transformers with RPE introduced above on the Markov chain setting. Each input has $L+1$ samples $\{x_{1:H}^l\}$ of Length- H Markov chain with causal structure \mathcal{G} . The input sequence length is $T = H(L+1)$. We set the transformer has K heads in the first RPE layer: $\{(\mathbf{w}_H^k, \mathbf{w}_L^k)\}_{k \in [K]}$ and 1 head for the 2nd transformer layer ($\mathbf{W}_{KQ}, \mathbf{W}_{OV}$). All RPE parameters are initialized randomly from Gaussian distribution and $(\mathbf{W}_{KQ}, \mathbf{W}_{OV})$ from zero.

For an attention layer, the attention weights \mathcal{A} normalized by the σ reveal which tokens a query primarily attends to, enabling mechanistic interpretability analyses such as circuit discovery [Olsson et al. \(2022\)](#). We first look at the attention patterns $\mathcal{A}^{(1)}, \mathcal{A}^{(2)}$ from the 1st and 2nd transformer layer. Mathematically, they are matrix where the i -th row denotes the attention weights to the whole sequence and $\mathcal{A}_{ij}^{(*)} = \mathcal{A}_{i \rightarrow j}^{(*)}$ is formulated by:

$$\mathcal{A}^{(*)} = \sigma(\tilde{\mathcal{A}}^{(*)}), \quad \tilde{\mathcal{A}}_{i \rightarrow j}^{(1),k} = \mathbf{w}_H^k(h_i, h_j) + \mathbf{w}_L^k(l_i, l_j), \quad \tilde{\mathcal{A}}_{h \rightarrow h'}^{(2)} = \mathbf{v}_{h'}^\top \mathbf{W}_{KQ} \mathbf{v}_h,$$

where we consider the index i is related to token x_i from Eq. (5) which is the h_i -th token of l_i -th example (for index j , the notation is similar), $i, j \in [T]$, $\mathbf{v}_{h'}$ are the hidden feature $\mathbf{v}_{1:H}^{L+1}$ of $L+1$ -th example from Layer 1 and $\mathcal{A}^{(1),k} \in \mathbb{R}^{T \times T}, \mathcal{A}^{(2)} \in \mathbb{R}^{H \times H}$. Trained attention patterns of $\mathcal{A}^{(2)}$ match the groundtruth causal structure in Fig. 2. And for the 1st layer, some heads of attention weights $\mathcal{A}^{(1),k}$ didn't learn meaningful features shown by Fig. 2 (e.g., Head 1, 9, 10). Then we dive into the parameter level, and visualize the trainable parameters of 2-layer transformer $\mathbf{w}_H^k, \mathbf{w}_L^k, \mathbf{W}_{KQ}, \mathbf{W}_{OV}$. Positional or diagonal patterns in $\mathbf{w}_H^k, \mathbf{W}_{KQ}$ and the similarity between \mathbf{W}_{OV} and $\log \pi$ can be observed in Fig. 3. To fully understand why the transformer can select causal structures and what it learnt, we will need to analyze it theoretically.

Takeaway 1. Transformer formulated by Eq. (5) effectively identifies latent causal parents in-context (Fig. 2) and learns highly structural parameters aligned with the task (Fig. 3).

3.2 CONSTRUCTED TRANSFORMERS IMPLEMENT STATISTICAL ALGORITHM

Based on the patterns observed in Fig. 3, we make the following assumptions for the transformer defined by Eq. (5):

$$\begin{aligned} \tilde{\mathbf{w}}_H^k[h] &= \beta \begin{cases} +1, & h = 0, \\ -1, & h \in [\pm H] \setminus 0, \end{cases} \quad \exists k' \in [L] \text{ s.t. } \tilde{\mathbf{w}}_L^k[l] = \beta \begin{cases} +1, & l = k', \\ -1, & l \in [L] \setminus k', \end{cases} \\ \tilde{\mathbf{W}}_{KQ} &= \begin{bmatrix} \mathbf{W} & 0_{d \times d} & \cdots & 0_{d \times d} \\ 0_{d \times d} & \mathbf{W} & \cdots & 0_{d \times d} \\ \vdots & \vdots & \ddots & \vdots \\ 0_{d \times d} & 0_{d \times d} & \cdots & \mathbf{W} \end{bmatrix}, \quad \sigma(\tilde{\mathbf{W}}_{OV}) = \pi, \end{aligned} \tag{7}$$

324 where for RPE, we can simply assume one element k' of $\tilde{\mathbf{w}}_L^k$ dominates it while 0-th entry dominates
 325 $\tilde{\mathbf{w}}_H^k$: $\tilde{\mathbf{w}}_H^k[0] \gg \tilde{\mathbf{w}}_H^k[-0]$, $\tilde{\mathbf{w}}_L^k[k'] \gg \tilde{\mathbf{w}}_L^k[-k']$ and \mathbf{W} is unknown. Since the K heads are identical
 326 up to their indices, we assume without loss of generality that the dominant entry of $\tilde{\mathbf{w}}_L^k$ occurs at
 327 position k , i.e., $\tilde{\mathbf{w}}_L^k[k] = \beta$ and we set $K = L$. The theorem below shows that aligned with the
 328 above restriction, a constructed transformer can implement statistical algorithm for inferring causal
 329 structure $\{pa(h)\}$ hidden behind $\mathbf{x}_{1:H}^{1:L}$ and predicting $\mathbf{x}_h^{L+1} \sim \pi(\cdot | \mathbf{x}_{pa(h)}^{L+1})$:
 330

331 **Theorem 1.** Under the restriction by Eq. (7), the transformer \mathbf{f}_θ is parameterized by $\theta \in \{(\beta, \mathbf{W})\}$.
 332 Then \mathbf{f}_θ with $\mathbf{W} = \log \pi$ in Eq. (7) whose second attention layer $\mathcal{A}^{(2)}(\mathcal{H}; \theta)$ approximates Bayesian
 333 Model Averaging (see Lemma 1) satisfying the following convergence property:

$$\lim_{\beta \rightarrow \infty} \mathcal{A}_{h \rightarrow \cdot}^{(2)}(\mathcal{H}; \theta) = \lim_{\beta \rightarrow \infty} \sigma(\tilde{\mathcal{A}}_{h \rightarrow \cdot}^{(2)}(\mathcal{H}; \theta)) = \sigma(\mathbf{p}_{\text{BMA}}^{h, L}). \quad (8)$$

336 Further, the transformer’s prediction of the distribution of last example $\mathbf{x}_{1:H}$ with L context exam-
 337 ples converges to the true conditional distribution given the causal parent guaranteed by Theorem 2:
 338

$$\lim_{\beta, L \rightarrow \infty} \mathbf{f}_\theta(\cdot | \mathcal{H}_h^L) = \pi(\cdot | \mathbf{x}_{pa(h)}), \forall h \in [H]. \quad (9)$$

341 *Proof Sketch.* Figure. 4 gives an overview of the construction: in the first RPE attention layer, each
 342 head from Eq. (7) is assigned to retrieve one historical copy of the same token \mathbf{x}_h , so that concatenat-
 343 ing L heads recovers all past observations $\mathbf{x}_h^{1:L}$. In the second layer, with the condition in Eq. (7), the
 344 attention score between tokens (h, h') reduces to a bilinear form $\hat{\mathbf{p}}_{h'}^h(\mathbf{W}) = \sum_l \mathbf{x}_h^{l\top} \mathbf{W} \mathbf{x}_{h'}^l$, which
 345 by $\mathbf{W} = \log \pi$ coincides with the BMA score $\mathbf{p}_{\text{BMA}}^{h, L} = \sum_{l \in [L]} \log \pi(\mathbf{x}_h^l | \mathbf{x}_{h'}^l)$. With the causal mask,
 346 the softmax attention exactly matches the parent-selection distribution in BMA. By the theoretical
 347 guarantee of causal token selection (Theorem 2), OV matrix \mathbf{W}_{OV} receives the correct parent $\mathbf{x}_{pa(h)}^{L+1}$
 348 and make prediction for $\pi(\cdot | \mathbf{x}_{pa(h)}^{L+1})$. The full technical proof is deferred to Appendix C.1. \square
 349

351 D’Angelo et al. (2025) also consider an in-context causal learning task. With minor modification of
 352 RPE structure and above construction, we can still show transformers can exactly implement BMA.¹

353 **Takeaway 2.** Two-layer transformers can explicitly implement BMA for causal token selection.

3.3 WHAT ALGORITHM DOES THE TRANSFORMER LEARN?

358 Although we have constructed a transformer implementing this algorithm, what do transformers
 359 actually learn after training? Since the core lies in the attention weight $\mathcal{A}^{(2)}$ and \mathbf{W}_{KQ} (where we
 360 use \mathbf{W}_{tf} to denote the trainable submatrix in Eq. (7)) recovering graph structures, we next analyze
 361 their characteristics in detail. We first define the following parent selection metric which quantitatively
 362 shows the loss of algorithms to predict parent indices:

$$\mathcal{L}_{pa}(\mathcal{A}^{(2)}(\mathbf{x}_{1:H}^{1:L+1}; \mathcal{G}), \mathcal{G}) = -\frac{1}{H} \sum_{h \in [H]} \mathbf{e}_{pa(h)}^\top \log \mathcal{A}_{h \cdot}^{(2)} = -\frac{1}{H} \sum_{h \in [H]} \log \mathcal{A}_{h \rightarrow pa(h)}^{(2)}, \quad (10)$$

366 where $\mathcal{A}^{(2)}$ is seen as an algorithm of predicting $e_{pa(h)}$ given input $\mathbf{x}_{1:H}^{1:L+1}$ and we have
 367 $\mathcal{L}_{pa}(\mathcal{A}_{\text{BMA}}, \mathcal{G}) = -\frac{1}{H} \sum_{h \in [H]} \mathbf{e}_{pa(h)}^\top \sigma(\hat{\mathbf{p}}_h(\log \pi))$ by Eq. (2) where $\hat{\mathbf{p}}_h(\mathbf{W}) = \sum_l \mathbf{x}_{1:h-1}^{l\top} \mathbf{W} \mathbf{x}_h^l$.
 368 We visualize this metric \mathcal{L}_{pa} during transformers’ training process in Fig. 7 and compare it with
 369 BMA’s. We observe that the transformer’s parent selection loss decreases in training while remain-
 370 ing above the loss of BMA, gradually approaching it.

372 **Generalized parent selection with size L' varying.** We further test how well the transformer
 373 and BMA generalize in parent selection under different sample sizes L' : Since $\mathcal{A}^{(2)}$ and \mathcal{A}_{BMA} are
 374 formulated via $\hat{\mathbf{p}}^L = \sum_{l \in [L]} \mathbf{x}_{1:h-1}^{l\top} \mathbf{W} \mathbf{x}_h^l$, we vary the number of demonstrations as a set of L' ,
 375 and finally compute $\hat{\mathbf{p}}^{L'}$, $\mathcal{A}_{h \cdot}^{L'}$, and the parent selection loss $\mathcal{L}_{pa}^{L'}(\mathbf{W})$ with $\mathbf{W} \in \{\mathbf{W}_{\text{tf}}^{(L)}, \log \pi\}$.
 376

377 ¹A detailed comparison with D’Angelo et al. (2025), including similarities and differences, is provided in
 Appendix A (Related Work).

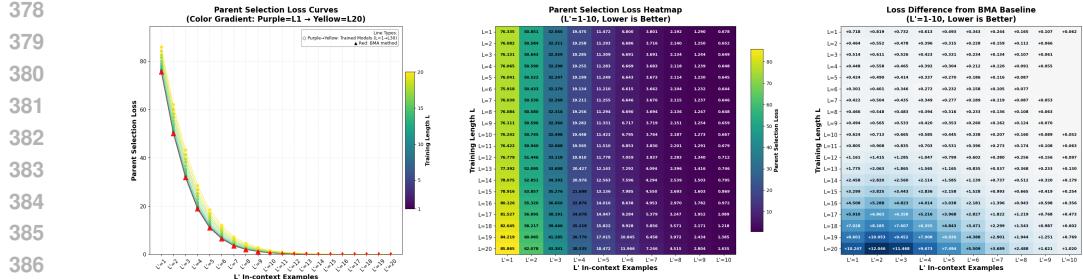


Figure 5: Generalization of Parent Selection loss $\{\mathcal{L}_{\text{pa}}^{L'}\}$ for transformers trained with $L \in \{1, \dots, 20\}$, $d = 10$, and $H = 15$ with first layer fixed as constructed.

From Fig. 5, we observe that: 1) across different test sizes L' , the trained transformers achieve performance close to BMA (loss differences mostly within a small margin); 2) smaller training length L often generalize better, with parent loss curves approaching BMA more closely; 3) for a model with fixed training size L , the parent loss decreases rapidly as L' increases, converging toward zero. The above results suggest the trained transformers have comparable performance to BMA.

Parameter Verification. Beyond behavioral agreement, a crucial question is whether the transformer encodes the BMA inference rule within its learned parameters. Therefore, we evaluate the similarity between the trained weight $\mathbf{W}_{\text{tf}}^{(L)}$ and the theoretical BMA parameter $\mathbf{W} = \log \pi$. As a first attempt, we check whether $\sigma(\mathbf{W}_{\text{tf}}) = \pi$, since for stochastic matrix π it holds that, $\sigma(\mathbf{W}_{\text{tf}}) = \pi \iff \mathbf{W}_{\text{tf}} = \log \pi + \mathbf{b} \mathbf{1}^\top$, $\forall \mathbf{b}$ where $\mathbf{b} \mathbf{1}^\top$ denotes a row-wise shift of $\log \pi$, which is canceled out by the row-softmax σ . This provides a reasonable way to normalize KQ matrix and makes the scale comparable to π with scale $[0, 1]$. However, the empirical results do not support this hypothesis (c.f. Fig. 6, first three subfigures). With some efforts, we can see the attention mechanism $\sigma(\mathbf{v}_{1:h-1}^\top \mathbf{W} \mathbf{v}_h)$ introduces an additional degree of freedom:

Proposition 1 (Invariances of attention scores). *Since attention operates on a single query \mathbf{v}_h , if the columns of \mathbf{W}_{tf} differ from those of $\log \pi$ by an additive factor, i.e. $\mathbf{W}_{\text{tf}} = \log \pi + \mathbf{1} \mathbf{a}^\top$, $\mathbf{a} \in \mathbb{R}^d$, then transformer with \mathbf{W}_{tf} learnt BMA by: $\sigma(\sum_l \mathbf{x}_{1:h-1}^{l\top} \mathbf{W}_{\text{tf}} \mathbf{x}_h^l) = \sigma(\sum_l \mathbf{x}_{1:h-1}^{l\top} \log \pi \mathbf{x}_h)$. Further, if Markov chain $\mathbf{x}_{1:H}$ is stationary and $\mathbf{W}_{\text{tf}} = \log \pi + \mathbf{1} \mathbf{a}^\top + \mathbf{b} \mathbf{1}^\top$, $\mathbf{a}, \mathbf{b} \in \mathbb{R}^d$, the above conclusion also holds asymptotically. See the detailed proof in Appendix C.3.*

Following this proposition, we evaluate the discrepancy between $\sigma(\mathbf{W}_{\text{tf}} \mathbf{1} \mathbf{a}^\top)$ and π . As illustrated in Fig. 6, the deviation remains small, with

$$\frac{1}{d} \|\sigma(\mathbf{W}_{\text{tf}} \mathbf{1} \mathbf{a}^\top) - \pi\|_F < 0.05. \quad (11)$$

This also holds across various vocabulary size $d \in \{10, 30, 50\}$, further confirming the structural alignment between the learned model and the BMA algorithm. Taken together with our theoretical construction and empirical results, these findings strongly suggest that transformers implement the BMA method for in-context causal parent selection.

Takeaway 3. Transformers with trainable \mathbf{W}_{tf} closely approximate BMA in causal token selection (Fig. 5) and learn parameters which explicitly show strong alignment with BMA (Fig. 6).

3.4 THEORETICAL UNDERSTANDING AND GUARANTEE OF LEARNED ALGORITHM

Beyond identifying what algorithm a trainable transformer adopts, we further establish a theoretical understanding of transformers’ in-context causal structure selection mechanism via information-theoretic principles. Our approach follows Nichani et al. (2024), which leverages *mutual information* together with the data’s inherent property of the *Data Processing Inequality* (DPI). In contrast to their gradient-based proof, we show that transformers can exploit this property **directly in context**. Moreover, our analysis generalizes the χ^2 -mutual information framework of Nichani et al. (2024); D’Angelo et al. (2025) to the setting reducible to classical mutual information, by exploiting the

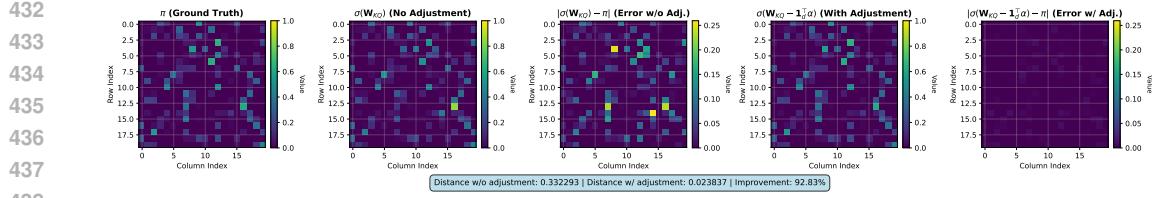


Figure 6: Parameter-Level Comparison between transformer and BMA ($W_{KQ} = \log \pi$). Here, W_{KQ} denotes the diagonal block being trained. Trained with $d = 20$, $H = 50$, $L = 3$, and 2048 training steps while W_{OV} is fixed. (See results with both W_{OV} and W_{KQ} trainable in Fig. 8.)

information-theoretic structure characterized in Lemma 3. Finally, our proof of Theorem 2 doesn't rely on the stationarity assumption on the data distribution not requiring the chain to be mixed.²

Definition 1 (Mutual Information and Conditional Entropy). *Consider x, y are two random variables in discrete or continuous space Ω , $P_{x,y}$ and P_x, P_y denote joint and marginal distribution. The mutual information $I(x; y)$, entropy $H(x)$ and the conditional entropy $H(x|y)$ is given by:*

$$I(x; y) = \int_x \int_y P_{x,y}(x, y) \log \frac{P_{x,y}(x, y)}{P_x(x)P_y(y)}, \quad H(x) = - \int_x P_x(x) \log P_x(x), \quad (12)$$

$$H(x|y) = \int_x \int_y P_{x,y}(x, y) \log \frac{P_{x,y}(x, y)}{P_y(y)} = H(x) - I(x; y),$$

Further, χ^2 -mutual information is given by: $I_{\chi^2}(x; y) := \int_x \int_y \frac{P_{x,y}(x, y)^2}{P_x(x)P_y(y)} - 1$.

I, I_{χ^2} can be uniformly derived from f -divergence which helps to prove DPI for generalized f -mutual information I_f . These information metrics reveal an essential property in data:

Lemma 2 (DPI. Theorem 3.9 and 7.16 in Polyanskiy & Wu (2023)). *If random variables $x \rightarrow y \rightarrow z$, i.e. satisfies the Markov property $p(x, y, z) = p(x)p(y|x)p(z|y)$, then we have $I_f(y; z) \geq I_f(x; z)$. Further, for classic mutual information, $I(x; z) = I(y; z)$ iff $I(x; y|z) = 0$ iff $x \rightarrow z \rightarrow y$.*

Suppose we have a Markov chain $x_{1:H}$ with latent causal structure $\{pa(h)\}$. Since $\forall h' \neq pa(h)$, we have $P(x_h = z | x_{pa(h)} = y, x_{h'} = x) = P(z|y)$, it is easy to verify $x_{h'} \rightarrow x_{pa(h)} \rightarrow x_h$ while $x_{h'} \rightarrow x_h \rightarrow x_{pa(h)}$ doesn't hold. Thus, we have the following corollary:

Corollary 1. *For Markov chain with causal structure \mathcal{G} , $I(x_h; x_{pa(h)}) > I(x_h; x_{h'}), \forall h' \neq pa(h)$.*

Applying this corollary, we get the following Lemma:

Lemma 3. *For Markov chain with causal structure \mathcal{G} and transition kernel $p(\cdot | \cdot)$, we have*

$$\mathbb{E}[\log p(x_h | x_{pa(h)})] > \mathbb{E}[\log p(x_h | x_{h'})], \quad \forall h' \neq pa(h). \quad (13)$$

The LHS above equals $H(x_h | x_{pa(h)})$, while the RHS differs from conditional entropy but follows $H(x_h | x_{h'})$ from the non-negativity of the KL divergence. Then by the relation of conditional entropy and mutual information, we can apply DPI to prove the Lemma. See Appendix C.4. With Lemma 3, we can build the relation between $\mathbb{E}[\log p(x_h | x_{h'})]$ and attention weights, showing the theoretical guarantee concerning parent selection for the transformer:

Theorem 2. *Suppose the transformer is constructed as in Theorem 1, which implements the BMA method. Then the attention weights $\tilde{A}_{h \cdot}^L = \tilde{A}_{h \cdot}^{(2)}(\mathbf{x}_{1:H}^{1:L+1})$ predicting parent index $pa(h)$ will statisly:*

$$\lim_{L \rightarrow \infty} \tilde{A}_{h \cdot}^L = \lim_{L \rightarrow \infty} \sigma(\hat{p}^{h,L}) = e_{pa(h)} \in \mathbb{R}^H, \quad \text{where } \hat{p}_h^{h,L} = \sum_{l=1}^L \log \pi(\mathbf{x}_h^l | \mathbf{x}_{h'}^l).$$

The proof of the theorem is deferred to Appendix C.5.

Takeaway 4. *Information-theoretic analysis reveals that the selection mechanism exploits the conditional entropy, where the DPI guarantees the identifiability of the true causal parent.*

²This ensures that when the chain has not mixed, i.e., when the time index h is small, the parent-selection guarantee still holds.

486 3.5 CAUSAL STRUCTURE IN TRAINING DYNAMICS
487488 We further look at the training dynamics of the transformer model. We prove the random causal
489 structure embedded in inputs will be recovered in the gradients of loss w.r.t. the core \mathbf{W}_{KQ} matrix:
490491 **Theorem 3 (Informal).** *Consider the transformer \mathbf{f}_θ constructed as in Theorem 1 with trainable
492 diagonal block \mathbf{W} of \mathbf{W}_{KQ} specified in Eq. (7) and trained with cross-entropy loss*
493

494
$$\mathcal{L}(\theta) = - \sum_{h=1}^H \mathbb{E}_{(\mathbf{x}_{1:H}^{1:L+1}, \mathcal{G}) \sim P_\pi} [\log(\mathbf{f}_{\theta_0}(\mathbf{x}_h^{L+1} | \mathcal{H}) + \epsilon)] = - \sum_{h=1}^H \mathbb{E}_{\mathcal{G} \sim P_\pi} [\ell(\theta; h, \mathcal{G})], \quad (14)$$

495

496 with joint distribution P_π of latent graph and input, $\ell(\theta; h, \mathcal{G}) = \mathbb{E}_{\mathbf{x}_{1:H}^{1:L+1} \sim P_\pi | \mathcal{G}} [\log \mathbf{f}_{\theta_0}(\mathbf{x}_h^{L+1} | \mathcal{H})]$
497 and $\hat{\mathbf{p}} = \sum_l \mathbf{x}_{1:h-1}^{l\top} \mathbf{W} \mathbf{x}_h^l \in \mathbb{R}^{h-1}$. If the Markov chain is stationary, i.e., $\mathbf{x}_h \sim \mu^\pi, \forall h \in [H]$, at
498 initialization of \mathbf{f}_{θ_0} with $\mathbf{W} = \mathbf{0}$ assuming \mathbf{f}_θ outputs μ^π for any input, then the gradient satisfies
499

500
$$\frac{\partial \ell(\theta_0; h, \mathcal{G})}{\partial \hat{\mathbf{p}}}_{pa(h)} \geq \frac{\partial \ell(\theta_0; h, \mathcal{G})}{\partial \hat{\mathbf{p}}}_{h'}, \quad \forall h' \neq pa(h).$$

501

502

503 The theorem above is proved by leveraging the χ^2 -mutual information, as detailed in Appendix C.6.
504 This result provides an explanation of how transformers can extract meaningful information from
505 data. To further support the theory, we verify it empirically by visualizing $\frac{\partial \mathcal{L}(\mathbf{W})}{\partial \hat{\mathbf{p}}}$ in Fig. 9.
506507 **Takeaway 5.** Gradient at initialization is able to recover the latent causal structure, driven by χ^2 -
508 mutual information, which facilitates structural discovery in early training (Thm. 3 and Fig. 9).
509510 511 4 DYNAMICAL SYSTEM EXTENSION: FROM DISCRETE TO CONTINUOUS
512513 Further, we consider to investigate the Markov chain in continuous space, where we look at the linear
514 dynamical system with latent causal structures: $\mathbf{x}_h = \frac{1}{c} (\mathbf{A}^\top \mathbf{x}_{pa(h)} + \varepsilon_h) \in \mathbb{R}^d, \varepsilon_h \in \mathcal{N}(0, \sigma^2 I_d)$.
515 We first train a transformer with RPE introduced in Eq. (5) on data generated from the dynamical
516 system. Similar experimental results on attention weights $\mathcal{A}^{(1)}, \mathcal{A}^{(2)}$ and parameter visualizations
517 can be found in Appendix Fig. 10, 11, 12, and 13. These RPE parameters are consistent with the
518 construction in Eq. (7). Moreover, the attention weights $\mathcal{A}^{(2)}$ of the transformer yields accurate
519 predictions of parent indices across many examples. Similar to the discrete case, we can define the
520 transition $p(\cdot | \cdot)$ by $\mathbf{x}_h | \mathbf{x}_{pa(h)} \sim \mathcal{N}(\frac{1}{c} \mathbf{A}^\top \mathbf{x}_{pa(h)}, \frac{\sigma^2}{c^2} I_d)$. Consequently, Eq. (2) specifies the BMA for-
521 mulation under the dynamical system setting. In this context, Lemma 3 remains valid and guarantees
522 the asymptotic correctness of BMA's parent selection. To investigate transformers' mechanism of
523 parent selection, we test the parent selection loss $\mathcal{L}_{pa}^{L'}$ of the transformer and BMA in dynamical set-
524 ting, where we set various L' in-context samples as introduced in Sec. 3.3. Fig. 15 demonstrates that
525 the transformer with trainable $(\mathbf{W}, \mathbf{W}_{OV})$ achieves performance comparable to BMA method when
526 L' approaches 20. However, the loss $\mathcal{L}_{pa}^{L'}$ between transformers and BMA remains a noticeable gap.
527 We conjecture that the proposition below may explain this discrepancy:
528529 **Proposition 2** (Representation Limitation of Transformers). *Under the observation restriction in
530 Eq. (7), both the transformer and BMA take the unified form $\mathcal{A}_{h \rightarrow h'} = \sigma(\mathbf{p}^h)_{h'}$. In the DS set-
531 ting, transformer logits are bilinear, $\mathbf{p}_{\text{tf}, h'}^h = \sum_l \mathbf{x}_{h'}^{l\top} \mathbf{W}_{\text{tf}} \mathbf{x}_h^l$, whereas BMA logits are $\mathbf{p}_{\text{BMA}, h'}^h =$
532 $c_1 \sum_l \mathbf{x}_{h'}^{l\top} \mathbf{A} \mathbf{x}_h^l + d \sum_l \|\mathbf{x}_{h'}^l\|^2$ with $d \neq 0$. There exists no \mathbf{W}_{tf} such that $\sigma(\mathbf{p}_{\text{tf}}^h) = \sigma(\mathbf{p}_{\text{BMA}}^h)$ holds
533 for all DS samples $(\mathbf{x}_{1:H}^{1:L+1}, \mathcal{G}) \sim P_\pi$. Hence transformers under Eq. (7) cannot represent BMA in
534 the DS setting. However, for MC setting, $\mathbf{W}_{\text{tf}} = \log \pi$ gives the BMA form.*
535536 For BMA, $(\mathbf{p}_{\text{BMA}}^h)_{h'} = \sum_l \log p(\mathbf{x}_h^l | \mathbf{x}_{h'}^l)$. In dynamical systems, transition $p(\cdot | \cdot)$ involves not only
537 cross but also quadratic terms. If the representation equation holds, substituting $\mathbf{x}_h = \frac{1}{c} \mathbf{A}^\top \mathbf{x}_{pa(h)} +$
538 ε_h and using the independence of ε_h forces the coefficient of ε_h to vanish, which implies $\mathbf{W} = c_1 \mathbf{A}$,
539 contradicting the original representation. So no matrix \mathbf{W} can yield $\mathcal{A}_{h'}^{(2)} = \sigma(\mathbf{p}^h(\mathbf{W}))$ as in
Eq. (18) to represent BMA. See Appendix C.7 for detailed proof.

540 REFERENCES
541

542 Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
543 preconditioned gradient descent for in-context learning, 2023. URL <https://arxiv.org/abs/2306.00297>. 13

544

545 Kabir Ahuja, Madhur Panwar, and Navin Goyal. In-context learning through the bayesian prism.
546 *arXiv preprint arXiv:2306.04891*, 2023. 13

547

548 Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
549 algorithm is in-context learning? investigations with linear models, 2023. URL <https://arxiv.org/abs/2211.15661>. 1

550

551 Zeyuan Allen-Zhu and Yuanzhi Li. Physics of Language Models: Part 1, Learning Hierarchical
552 Language Structures. *SSRN Electronic Journal*, May 2023. Full version available at <https://ssrn.com/abstract=5250639>. 1, 14

553

554 Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians: Prov-
555 able in-context learning with in-context algorithm selection, 2023. URL <https://arxiv.org/abs/2306.04637>. 1

556

557 Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a
558 transformer: A memory viewpoint, 2023. URL <https://arxiv.org/abs/2306.00802>.
1

559

560

561 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
562 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
563 Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
564 Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
565 Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
566 Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
567 <https://arxiv.org/abs/2005.14165>. 1

568

569 Siyu Chen, Heejune Sheen, Tianhao Wang, and Zhuoran Yang. Training dynamics of multi-head
570 softmax attention for in-context learning: Emergence, convergence, and optimality. *arXiv preprint*
571 *arXiv:2402.19442*, 2024a. 1

572

573 Siyu Chen, Heejune Sheen, Tianhao Wang, and Zhuoran Yang. Unveiling induction heads: Prov-
574 able training dynamics and feature learning in transformers. In *The Thirty-eighth Annual Confer-
575 ence on Neural Information Processing Systems*, 2024b. URL <https://openreview.net/forum?id=4fn2res0ma>. 2, 13

576

577 Francesco D’Angelo, Francesco Croce, and Nicolas Flammarion. Selective induction heads:
578 How transformers select causal structures in context. In *The Thirteenth International Confer-
579 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=bnjgzAQjwf>. 2, 7, 8, 13

580

581 Ezra Edelman, Nikolaos Tsilivis, Benjamin L. Edelman, Eran Malach, and Surbhi Goel. The
582 evolution of statistical induction heads: In-context learning markov chains. In A. Globerson,
583 L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in
584 Neural Information Processing Systems*, volume 37, pp. 64273–64311. Curran Associates, Inc.,
585 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/75b0edb869e2cd509d64d0e8ff446bc1-Paper-Conference.pdf. 1, 2, 13

586

587 Dan Friedman, Alexander Wettig, and Danqi Chen. Learning transformer programs, 2023. URL
588 <https://arxiv.org/abs/2306.01128>. 4

589

590 Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers learn
591 in-context? a case study of simple function classes, 2023. URL <https://arxiv.org/abs/2208.01066>. 1

592

593 Gautam Goel and Peter Bartlett. Can a transformer represent a kalman filter?, 2024. URL <https://arxiv.org/abs/2312.06937>. 1

594 Tianyu Guo, Wei Hu, Song Mei, Huan Wang, Caiming Xiong, Silvio Savarese, and Yu Bai. How do
 595 transformers learn in-context beyond simple functions? a case study on learning with representa-
 596 tions. *arXiv preprint arXiv:2310.10616*, 2023. 13

597

598 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
 599 <https://arxiv.org/abs/1412.6980>. 20

600 Ashok Vardhan Makkuvu, Marco Bondaschi, Adway Girish, Alliot Nagle, Martin Jaggi, Hyeji Kim,
 601 and Michael Gastpar. Attention with markov: A framework for principled analysis of transformers
 602 via markov chains, 2025. URL <https://arxiv.org/abs/2402.04161>. 13

603

604 Eshaan Nichani, Alex Damian, and Jason D. Lee. How transformers learn causal structure with
 605 gradient descent, 2024. URL <https://arxiv.org/abs/2402.14735>. 1, 2, 8, 13, 14, 17,
 606 18, 26, 33

607 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
 608 Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
 609 Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
 610 Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
 611 and Chris Olah. In-context learning and induction heads, 2022. URL <https://arxiv.org/abs/2209.11895>. 6, 14

612

613 Yury Polyanskiy and Yihong Wu. *Information Theory: From Coding to Learning*. Cambridge
 614 University Press, 2023. ISBN 9781108832908. doi: 10.1017/9781108966351. 9

615

616 Nived Rajaraman, Marco Bondaschi, Kannan Ramchandran, Michael Gastpar, and Ashok Vard-
 617 han Makkuvu. Transformers on markov data: Constant depth suffices, 2024. URL <https://arxiv.org/abs/2407.17686>. 1

618

619 Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representa-
 620 tions, 2018. URL <https://arxiv.org/abs/1803.02155>. 5

621

622 Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
 623 hanced transformer with rotary position embedding, 2023. URL <https://arxiv.org/abs/2104.09864>. 5

624

625 Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
 626 intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
 627 descent, 2023. URL <https://arxiv.org/abs/2212.07677>. 1, 13

628

629 Jiuqi Wang, Ethan Blaser, Hadi Daneshmand, and Shangtong Zhang. Transformers can learn tem-
 630 poral difference methods for in-context reinforcement learning, 2025. URL <https://arxiv.org/abs/2405.13861>. 1

631

632 Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
 633 Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In *Inter-
 634 national Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=gEZrGC0zdqR>. 1

635

636 Kevin Christian Wibisono and Yixin Wang. From unstructured data to in-context learning: Explor-
 637 ing what tasks can be learned and when, 2024. URL <https://arxiv.org/abs/2406.00131>. 1, 14

638

639 Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
 640 learning as implicit bayesian inference. *arXiv preprint arXiv:2111.02080*, 2021. 13, 14

641

642 Yufeng Zhang, Fengzhuo Zhang, Zhuoran Yang, and Zhaoran Wang. What and how does in-context
 643 learning learn? bayesian model averaging, parameterization, and generalization. *arXiv preprint
 644 arXiv:2305.19420*, 2023. 13

645

646 Haoyu Zhao, Abhishek Panigrahi, Rong Ge, and Sanjeev Arora. Do transformers parse while pre-
 647 dicting the masked word?, 2023. URL <https://arxiv.org/abs/2303.08117>. 1

648 A NOTATION AND RELATED WORK
649

650 **Notation.** We use $[h]$ to denote the set $\{1, 2, \dots, h\}$. For causal structure, we use $pa(h)$ to represent
651 the parent index of node h . The stationary distribution of Markov chain $\mathbf{x}_h \sim \pi(\cdot | \mathbf{x}_{pa(h)})$ is denoted
652 by $\mu^\pi \in \Delta^d$. For transformer model, the input of a sequence of vectors is given by $\mathbf{x}_{1:T} :=$
653 $[\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_T] \in \mathbb{R}^{d \times T}$. Given the input, we denote the attention scores of standard self-attention
654 layer as $\mathbf{p}^t := \mathbf{x}_{1:T}^\top \mathbf{W}_K^\top \mathbf{W}_Q \mathbf{x}_t \in \mathbb{R}^T$. However the causal mask \mathcal{M} in attention layer will lead
655 to $\hat{\mathbf{p}}^t := \mathbf{x}_{1:t-1}^\top \mathbf{W}_K^\top \mathbf{W}_Q \mathbf{x}_t \in \mathbb{R}^{t-1}$, $\sigma(\hat{\mathbf{p}}^t)_{t'} = \sigma(\mathcal{M}(\mathbf{p}^t))_{t'}, \forall t' \in [t-1]$. We do not distinguish
656 between them in the proofs. For the matrix form of the attention of an input sequence, we use $\tilde{\mathcal{A}}$
657 and \mathcal{A} to denote attention weights and scores correspondingly, where we have $\mathbf{p}_{t'}^t = \mathcal{A}_{t \rightarrow t'}$ and
658 $\sigma(\tilde{\mathcal{A}}) = \mathcal{A}$. In training, we use cross-entropy loss and MSE loss for Markov chain and dynamical
659 system settings respectively:

$$\begin{aligned} 660 \mathcal{L}^{MC}(\theta) &= -\frac{1}{H} \sum_{h=2}^H \mathbf{x}_h^{L+1 \top} \log (\sigma(\mathbf{f}_{\text{tf}}(\cdot | \mathcal{H}_h)) + \epsilon), \\ 661 \mathcal{L}^{DS}(\theta) &= -\frac{1}{H} \sum_{h=2}^H \|\mathbf{x}_h^{L+1} - \mathbf{f}_{\text{tf}}(\cdot | \mathcal{H}_h)\|_2^2, \end{aligned} \quad (15)$$

662 where θ represents all trainable parameters and ϵ is a small value to avoid numerical issues by log.

663 **Related Work.** A growing body of work studies the in-context learning (ICL) ability from different
664 perspectives. One line of work understands ICL as a form of Bayesian inference, showing how the latent
665 concept can be approximately inferred under restrictive theoretical assumptions (Xie et al., 2021; Zhang et al., 2023; Ahuja et al., 2023). Another direction of research investigates how
666 transformers can simulate standard algorithms, such as gradient descent on linear regression (von
667 Oswald et al., 2023; Ahn et al., 2023; Guo et al., 2023). While these works demonstrate the ICL
668 power of transformers, they commonly assume i.i.d or uncorrelated input tokens. To move beyond
669 i.i.d. assumptions, recent works investigate ICL with *correlated data*, particularly Markovian
670 sequences (Edelman et al., 2024; Chen et al., 2024b; Makkavu et al., 2025). These settings provide
671 insight into how transformers handle in-context learning with sequential dependencies, but typically
672 focus on fixed dependency structures. In contrast, our work addresses *variable causal structures* that
673 differ across prompts. Pioneering this direction, Nichani et al. (2024) demonstrated that transformers
674 can encode fixed parent-child dependencies (e.g., bigrams) in Markov chains. Building on this,
675 D’Angelo et al. (2025) introduced *selective induction heads*, enabling transformers to identify the
676 underlying Markovian order (or ”lag”) from a candidate set in-context learning this structure. Our
677 work generalizes this setting. While D’Angelo et al. (2025) focus on inferring a single global structural
678 parameter (the lag k) shared across the sequence, we tackle local structure inference where
679 dependencies can vary arbitrarily for each position, effectively modeling latent trees rather than
680 fixed-lag chains. Theoretically, D’Angelo et al. (2025) constructs a three-layer transformer that
681 asymptotically implements maximum likelihood estimation, where its construction is verified via
682 attention pattern visualization as well as quantitative validation through KL divergence of next-token
683 prediction targets. In our work, we theoretically derive a two-layer architecture that explicitly imple-
684 ments Bayesian Model Averaging (BMA) in-context. Empirically, we go beyond behavioral metrics
685 by providing *parameter-level* verification, demonstrating that the trained weights directly encode
686 the transition kernel. Furthermore, we provide theoretical understanding of in-context causal struc-
687 ture learning based on the Data Processing Inequality (DPI) and extend our analysis to continuous
688 dynamical systems, revealing representational gaps not occurring in the discrete setting.

693
694 B CONCLUSION
695

696 In this work, we investigated the capability of transformers to infer and adapt to latent causal struc-
697 tures in-context, moving beyond the fixed dependency assumptions common in prior theoretical
698 analysis. We proposed a novel framework based on Markov chains with randomly sampled causal
699 dependencies, requiring the model to identify position-specific predecessor-successor relationships
700 from context examples. First, we provided a constructive proof that a two-layer transformer with
701 relative position embeddings (RPE) can explicitly implement Bayesian Model Averaging (BMA).
This demonstrates that the attention mechanism is theoretically capable of performing statistical

702 inference over structural uncertainty. Second, through extensive experiments and parameter-level
 703 analysis, we showed that trained transformers implements BMA method which converge to this
 704 theoretical construction: the learned attention patterns directly encode the posterior probabilities of
 705 causal parents, and the weights explicitly recover the log-transition kernel of the underlying gener-
 706 ative process. Third, we established information-theoretic guarantees using the Data Processing
 707 Inequality (DPI) which help understand how the selection mechanism identifies causal structures
 708 in context and showed that gradients at initialization recover these dependencies via χ^2 -mutual in-
 709 formation. Finally, we extended our framework to continuous linear dynamical systems. While
 710 transformers continue to exhibit strong empirical performance in this setting, we identified the rep-
 711 resentational difference that prevents the exact implementation of BMA, unlike in the discrete case.
 712 Collectively, our findings offer a mechanistic explanation of how transformers perform in-context
 713 causal learning, highlighting their ability to act as statistical inference engines for both discrete and
 714 continuous data.

715 **Broader Implications.** Our findings support theoretical frameworks that model in-context learning
 716 as a statistical inference task (Xie et al., 2021). Distinct from "Induction Heads" which typically fo-
 717 cus on copying fixed positional dependencies (Olsson et al., 2022; Nichani et al., 2024), we demon-
 718 strate a probabilistic setting where the model must infer a latent dependency structure that varies per
 719 example. This provides a mechanistic grounding for how LLMs adapt to flexible, context-dependent
 720 rules rather than relying solely on fixed n-gram statistics (Allen-Zhu & Li, 2023). Furthermore, this
 721 helps understand why LLMs demonstrate ICL capabilities on empirical task with "unstructured" lan-
 722 guage data (Wibisono & Wang, 2024), mirroring our setting where the transition mappings between
 723 words are fixed while the structural positions of a couple of words vary from input to input.

724 **Limitations and Future Work.** We acknowledge that real-world sequences often involve complex
 725 non-linear dynamics or hierarchical dependencies (e.g., context-free grammar) beyond the Marko-
 726 vian and dynamical systems studied here. However, our primary objective in this work was to
 727 prioritize mechanistic interpretability for Markov chain or dynamical system: explicitly characteriz-
 728 ing how transformers infer latent structures in-context on these tasks. By focusing on these tractable
 729 settings, we were able to derive exact theoretical guarantees and provide parameter-level verifica-
 730 tion that the model implements Bayesian Model Averaging. We believe this explainable framework
 731 serves as a necessary foundation, and we leave the extension to more complex non-linear and hier-
 732 archical data generating processes for future exploration.

733 C PROOFS OF TECHNICAL LEMMAS

735 C.1 PROOF OF THEOREM 1

736 *Proof.* By the condition of $(\tilde{\mathbf{w}}_H, \tilde{\mathbf{w}}_L)$ in Eq. (7), the attention score $\hat{\mathcal{A}}_{t \rightarrow \cdot}^{(1)}$ of query $\mathbf{x}_t = \mathbf{x}_h^{L+1}$ is:

$$737 \hat{\mathcal{A}}_{t \rightarrow t'}^{(1),k} = \tilde{\mathbf{w}}_H^k[h_t - h_{t'}] + \tilde{\mathbf{w}}_L^k[l_t - l_{t'}] = 2\beta \begin{cases} +1, & \text{if } h_t = h_{t'}, l_t - l_{t'} = k, \\ -1, & \text{if } h_t \neq h_{t'}, l_t - l_{t'} \neq k, \\ 0, & \text{otherwise.} \end{cases}$$

738 Then the output $\tilde{\mathbf{u}}_h^k = \text{Attn}_{\mathbf{x}_t \rightarrow \mathbf{x}_{1:T}}^k$ of the 1st attention layer will be calculated as:

$$739 \tilde{\mathbf{u}}_h^k = \sigma(\tilde{\mathbf{w}}_H^k(h, \cdot) + \tilde{\mathbf{w}}_L^k(L+1, \cdot)) \mathbf{x}_{1:T}^\top \\ 740 \xrightarrow{\beta \rightarrow \infty} \mathbf{x}_h^{l_k \top} = (1_{[h_{t'}=h, l_{t'}=L+1-k]})_{t' \in [T]} \mathbf{x}_{1:T}^\top. \quad (l_k = L+1-k)$$

741 By disentangled residual, the output of K heads ($K = L$) will be concatenated as:

$$742 \mathbf{v}_h = [\mathbf{u}_h^1, \dots, \mathbf{u}_h^L], \text{ with } \mathbf{u}_h^k = \mathbf{x}_h^{L+1-k} \text{ by Eq. (16).}$$

743 For the 2nd layer, with diagonal condition of \mathbf{W}_{KQ} , attention weight $\mathcal{A}^{(2)} \in \mathbb{R}^{H \times H}$ is given by:

$$744 \hat{\mathcal{A}}_{h \rightarrow h'}^{(2)} = \mathbf{v}_{h'}^\top \tilde{\mathbf{W}}_{KQ} \mathbf{v}_h = \sum_{l=1}^L \mathbf{x}_{h'}^{l \top} \mathbf{W} \mathbf{x}_h^l, \quad \mathcal{A}^{(2)} = \sigma(\mathcal{M}(\hat{\mathcal{A}}^{(2)})) \in \mathbb{R}^{H \times H}, \quad (17)$$

745 where \mathcal{M} is the causal mask enforcing $\mathcal{A}^{(2)}$ to be strictly lower-triangular after softmax. If we define
 746 the vector $\hat{\mathbf{p}}^h \in \mathbb{R}^{h-1}$ with $\hat{\mathbf{p}}_{h'}^{h'} := \hat{\mathcal{A}}_{h \rightarrow h'}^{(2)}$, we have $\forall h' \in [h-1]$:

$$747 \hat{\mathcal{A}}_{h \rightarrow h'}^{(2)} = \sigma(\mathcal{M}_h(\hat{\mathcal{A}}_{h \rightarrow \cdot}))_{h'} = \sigma(\hat{\mathbf{p}}^h)_{h'}, \quad \hat{\mathbf{p}}^h(\mathbf{W}) = \sum_l \mathbf{x}_{1:h-1}^{l \top} \mathbf{W} \mathbf{x}_h^l, \quad (18)$$

756 where $\mathcal{M}_h(\cdot)$, is the causal mask applied to row h setting $\mathcal{M}_h(\mathbf{v})_{h'} = -\infty$ if $h' \geq h$, $\forall \mathbf{v} \in \mathbb{R}^H$.
 757 Then we set \mathbf{W} as $\log \pi$ (elementwise) which leads to

$$759 \hat{\mathbf{p}}_{h'}^h(\log \pi) = \hat{\mathcal{A}}_{h \rightarrow h'}^{(2)} = \sum_l \log \pi(\mathbf{x}_h^l | \mathbf{x}_{h'}^l), \quad \mathcal{A}_{h \cdot}^{(2)} = \sigma(\mathcal{M}_h(\hat{\mathcal{A}}_{h \rightarrow \cdot})) \in \mathbb{R}^H. \quad (19)$$

761 With the form of $\mathcal{A}^{(2)}$ in Eq. (19) and Lemma 1 to be proved, we can show the BMA method of
 762 Eq. (1) has the same formulation:

$$763 \mathbb{P}(pa(h) = h' | \mathbf{x}_{1:H}^{1:L}) = \sigma(\hat{\mathbf{p}}^h(\mathbf{W} = \log \pi))_{h'}. \quad (20)$$

765 Combining Eq. (20) with the limit behavior of the first layer in Eq. (16), we obtain the first conver-
 766 gence result for parent selection as $\beta \rightarrow \infty$:

$$767 \lim_{\beta \rightarrow \infty} \mathcal{A}_{h \rightarrow \cdot}^{(2)}(\mathcal{H}; \theta) = \sigma(\hat{\mathbf{p}}^h(\mathbf{W} = \log \pi)) = \sigma(\mathbf{p}_{\text{BMA}}^{h,L}).$$

769 Furthermore, guaranteed by the consistency of BMA (Theorem 2), as sample size $L \rightarrow \infty$, the pos-
 770 terior concentrates on the true parent $pa(h)$. Thus, the prediction of the token distribution converges
 771 in the limit $\beta, L \rightarrow \infty$ as:

$$773 \lim_{\beta, L \rightarrow \infty} \mathbf{f}_\theta(\cdot | \mathcal{H}) = \sigma \left(\mathbf{W}_{OV}^\top \sum_{h'} 1_{[h' = pa(h)]} \mathbf{x}_{h'}^{L+1} \right) = \pi(\cdot | \mathbf{x}_{pa(h)}^{L+1}). \quad \square$$

776 In proving the theorem, we rely on the Lemma 1 proved below, which illustrates the relation between
 777 BMA and attention weights.

779 C.2 PROOF OF LEMMA 1

780 *Proof.* Here we use $p(s|s')$ to denote $\mathbb{P}(\mathbf{x}_h = s | \mathbf{x}_{pa(h)} = s')$ for generality beyond discrete Markov
 781 chain. Based on Bayesian Theorem, it can be calculated by Eq. (1). Due to the Markovian property
 782 $p(\mathbf{x}_h | \mathbf{x}_{1:h-1}) = p(\mathbf{x}_h | \mathbf{x}_{pa(h)})$, the joint distribution of this chain $\mathbf{x}_{1:H}$:

$$784 p(\mathbf{x}_{1:H}) = p(\mathbf{x}_1) \prod_{h=2}^H p(\mathbf{x}_h | \mathbf{x}_{1:h-1}) = p(\mathbf{x}_1) \prod_{h=2}^H p(\mathbf{x}_h | \mathbf{x}_{pa(h)}) \\ 785 = p(\mathbf{x}_1) \prod_{i \neq h} p(\mathbf{x}_i | \mathbf{x}_{pa(i)}) \cdot p(\mathbf{x}_h | \mathbf{x}_{pa(h)}) \quad (21)$$

789 Here $pa(h), pa(i)$ in Eq. (21) are random index with prior: $pa(h) \sim \text{Uniform}([h-1])$. With
 790 condition $pa(h) = h$ in Eq. (1), we can substitute $pa(h)$ in Eq. (21) with h' . Since $\{pa(h'')\}$ are
 791 random index out of interests, these terms are eliminated:

$$793 \frac{\mathbb{P}(\mathbf{x}_{1:H}^{1:L} | pa(h) = h')}{\sum_{h'' \in [h-1]} \mathbb{P}(\mathbf{x}_{1:H}^{1:L} | pa(h) = h'')} = \frac{\prod_l (p(\mathbf{x}_1^l) \prod_{i \neq h} p(\mathbf{x}_i^l | \mathbf{x}_{pa(i)}^l) \cdot p(\mathbf{x}_h^l | \mathbf{x}_{h'}^l))}{\sum_{h'' \in [h-1]} \prod_l (p(\mathbf{x}_1^l) \prod_{i \neq h} p(\mathbf{x}_i^l | \mathbf{x}_{pa(i)}^l) \cdot p(\mathbf{x}_h^l | \mathbf{x}_{h''}^l))}, \quad (22)$$

795 which leads to:

$$797 \mathbb{P}(pa(h) = h' | \mathbf{x}_{1:H}^{1:L}) = \frac{\exp \left(\sum_{l \in [L]} \log p(\mathbf{x}_h^l | \mathbf{x}_{h'}^l) \right)}{\sum_{h'' \in [h-1]} \exp \left(\sum_{l \in [L]} \log p(\mathbf{x}_h^l | \mathbf{x}_{h''}^l) \right)} = \sigma(\hat{\mathbf{p}}^h(\log W^P))_{h'}, \quad (23)$$

800 where the matrix $W^P = \pi$ is induced by transition kernel $P = \pi$ in Markov chain. \square

802 C.3 PROOF OF PROPOSITION 1

803 First, suppose we have $\mathbf{W}_{\text{tf}} = \log \pi + \mathbf{1} \mathbf{a}^\top$. The attention weights of the transformer are given by:

$$805 \mathbf{p}_{\text{tf}}^h = \sum_l \mathbf{x}_{1:h-1}^{l\top} \mathbf{W}_{\text{tf}} \mathbf{x}_h^l = \sum_l \mathbf{x}_{1:h-1}^{l\top} \log \pi \mathbf{x}_h^l + \sum_l \mathbf{x}_{1:h-1}^{l\top} \mathbf{1} \mathbf{a}^\top \mathbf{x}_h^l.$$

807 For the second term, since $\{\mathbf{x}_{h'}\}$ are one-hot, we have

$$809 \sum_l \mathbf{x}_{1:h-1}^{l\top} \mathbf{1} \mathbf{a}^\top \mathbf{x}_h^l = \mathbf{1}_{h-1} \mathbf{a}^\top \left(\sum_l \mathbf{x}_h^l \right) = c(\mathbf{a}, h) \mathbf{1}_{h-1},$$

810 where $c(\mathbf{a}, h) = \mathbf{a}^\top \left(\sum_l \mathbf{x}_h^l \right)$ is a constant with fixed index h . Then by softmax operation, we
 811 have:
 812

$$\begin{aligned} 813 \quad \sigma(\mathbf{p}_{\text{tf}}^h) &= \sigma \left(\sum_l \mathbf{x}_{1:h-1}^{l\top} \log \pi \mathbf{x}_h^l + c(\mathbf{a}, h) \mathbf{1}_{h-1} \right) \\ 814 \\ 815 \quad &= \sigma \left(\sum_l \mathbf{x}_{1:h-1}^{l\top} \log \pi \mathbf{x}_h^l \right) \\ 816 \\ 817 \quad &= \sigma(\mathbf{p}_{\text{BMA}}^h(\log \pi)), \\ 818 \end{aligned}$$

819 where the last equality comes from Lemma 1. And this shows the transformer with $\mathbf{W} + \mathbf{1}\mathbf{a}^\top$
 820 gives the same prediction of BMA's. Further, suppose $\mathbf{W} = \log \pi + \mathbf{1}\mathbf{a}^\top + \mathbf{b}\mathbf{1}^\top$. If we have
 821 $\mathbf{x}_h \sim \mu^\pi, \forall h \in [H]$, then we can prove the term from $\mathbf{b}\mathbf{1}^\top$ is also a constant vector asymptotically:
 822

$$\begin{aligned} 823 \quad \mathbf{p}_{\text{tf}}^h &= \sum_l \mathbf{x}_{1:h-1}^{l\top} \mathbf{W}_{\text{tf}} \mathbf{x}_h^l \\ 824 \\ 825 \quad &= \sum_l \mathbf{x}_{1:h-1}^{l\top} \log \pi \mathbf{x}_h^l + \sum_l \mathbf{x}_{1:h-1}^{l\top} \mathbf{1}\mathbf{a}^\top \mathbf{x}_h^l + \sum_l \mathbf{x}_{1:h-1}^{l\top} \mathbf{b}\mathbf{1}^\top \mathbf{x}_h^l \\ 826 \\ 827 \quad &= \sum_l \mathbf{x}_{1:h-1}^{l\top} \log \pi \mathbf{x}_h^l + c(\mathbf{a}, h) \mathbf{1}_{h-1} + \sum_l \mathbf{x}_{1:h-1}^{l\top} \mathbf{b}. \\ 828 \end{aligned}$$

829 For each term of $\sum_l \mathbf{x}_{1:h-1}^{l\top} \mathbf{b}$, we have
 830

$$\begin{aligned} 831 \quad \frac{1}{L} \sum_l \mathbf{x}_{h'}^{l\top} \mathbf{b} &= \frac{1}{L} \sum_l \sum_{s \in [d]} \mathbf{1}_{[\mathbf{x}_{h'}^l = e_s]} \mathbf{b}_s \\ 832 \\ 833 \quad &\xrightarrow{L \rightarrow \infty} \mathbb{E} \left[\sum_{s \in [d]} \mathbf{1}_{[\mathbf{x}_{h'}^l = e_s]} \mathbf{b}_s \right] = \sum_{s \in [d]} \mathbb{P}(\mathbf{x}_{h'}^l = e_s) \mathbf{b}_s \\ 834 \\ 835 \quad &= \mu^{\pi\top} \mathbf{b}, \\ 836 \\ 837 \end{aligned}$$

838 where $\mu^{\pi\top} \mathbf{b}$ is a constant $d(\mathbf{b})$ w.r.t. h' . Using the same technique in Theorem 2 to eliminate this
 839 term which goes to infinity, we have the desired result:
 840

$$\lim_{L \rightarrow \infty} \sigma(\mathbf{p}_{\text{tf}}^{h,L}) = \lim_{L \rightarrow \infty} \sigma(\mathbf{p}_{\text{BMA}}^{h,L}(\log \pi)).$$

C.4 PROOF OF LEMMA 3

845 *Proof.* Noting that if $p(\cdot)$ and $q(\cdot)$ are two distribution, then by KL divergence's non-negativity we
 846 have: $\int_s p(s) \log q(s) \leq \int_s p(s) \log p(s)$. Hence we can get:
 847

$$\begin{aligned} 848 \quad \text{LHS} &= \int_{s,s'} \mathbb{P}(\mathbf{x}_h = s, \mathbf{x}_{h'} = s') \log \mathbb{P}(\mathbf{x}_h = s | \mathbf{x}_{pa(h)} = s') \\ 849 \\ 850 \quad &= \int_{s'} \mathbb{P}(\mathbf{x}_{h'} = s') \int_s \mathbb{P}(\mathbf{x}_h = s | \mathbf{x}_{h'} = s') \log \mathbb{P}(\mathbf{x}_h = s | \mathbf{x}_{pa(h)} = s') \\ 851 \\ 852 \quad &\leq \int_{s,s'} \mathbb{P}(\mathbf{x}_{h'} = s') H(\mathbf{x}_h | \mathbf{x}_{h'} = s') = -H(\mathbf{x}_h | \mathbf{x}_{h'}), \\ 853 \\ 854 \end{aligned} \tag{24}$$

855 where $H(\mathbf{x}_h | \mathbf{x}_{h'}) = H(\mathbf{x}_h) - I(\mathbf{x}_h; \mathbf{x}_{h'})$. By Corollary 1, we have:
 856

$$\text{LHS} \leq H(\mathbf{x}_h) - I(\mathbf{x}_h; \mathbf{x}_{h'}) < H(\mathbf{x}_h) - I(\mathbf{x}_h; \mathbf{x}_{pa(h)}) = \text{RHS}. \tag{25}$$

857 \square
 858

C.5 PROOF OF THEOREM 2

861 *Proof.* Recall that the transformer and BMA have the formula in Eq. (2):
 862

$$\tilde{\mathcal{A}}_{h \rightarrow h'}^L = \frac{\exp(\sum_l \log p(\mathbf{x}_h^l | \mathbf{x}_{h'}^l))}{\sum_{h'' \in [h-1]} \exp(\sum_l \log p(\mathbf{x}_h^l | \mathbf{x}_{h''}^l))} = \frac{1}{\sum_{h''} \mathbf{v}_{h'' \rightarrow h'}}. \tag{26}$$

864 By the central limit theorem, we have
 865

$$866 \lim_{L \rightarrow \infty} \frac{1}{L} \sum_l \log p(\mathbf{x}_h^l | \mathbf{x}_{h'}^l) = \mathbb{E}[\log p(\mathbf{x}_h | \mathbf{x}_{h'})] < \mathbb{E}[\log p(\mathbf{x}_h | \mathbf{x}_{pa(h)})] = \lim_{L \rightarrow \infty} \frac{1}{L} \sum_l \log p(\mathbf{x}_h^l | \mathbf{x}_{pa(h)}^l).$$

868 Let $\hat{g}_{h,h'} \triangleq \frac{1}{L} \sum_l \log p(\mathbf{x}_h^l | \mathbf{x}_{h'}^l)$. For all $h'' \neq pa(h)$, we have:
 869

$$870 v_{h'' \rightarrow pa(h)} = \exp \left(\sum_l \log p(\mathbf{x}_h^l | \mathbf{x}_{h''}^l) - \sum_l \log p(\mathbf{x}_h^l | \mathbf{x}_{pa(h)}^l) \right) = \exp(L(\hat{g}_{h,h''} - \hat{g}_{h,pa(h)})) \rightarrow 0$$

873 as $L \rightarrow \infty$ and $\lim_{L \rightarrow \infty} (\hat{g}_{h,h''} - \hat{g}_{h,pa(h)}) < 0$. Hence, we have $\lim_{L \rightarrow \infty} \tilde{A}_{h \rightarrow pa(h)} = 1$. \square
 874

875 C.6 PROOF OF THEOREM 3

876 *Proof.* First, the transformer as constructed can be simplified as:
 877

$$878 \mathbf{f}_\theta^{(\text{simp})}(\cdot | \mathcal{H}) = \pi^\top \mathbf{x}_{1:h-1} \sigma \left(\sum_l \mathbf{x}_{1:h-1}^l \mathbf{W} \mathbf{x}_h^l \right) \in \mathbb{R}^d, \quad (27)$$

881 Considering $\hat{\mathbf{p}} = \sum_l \mathbf{x}_{1:h-1}^l \mathbf{W} \mathbf{x}_h^l = \mathbf{0}$ when $\mathbf{W} = \mathbf{0}$, then $\mathbf{p} = \frac{1}{h-1} \mathbf{1}_{h-1}$ and:
 882

$$883 \mathbf{f}_{\theta_0}(\cdot | \mathcal{H}) = \pi^\top \bar{\mu}(\mathbf{x}_{1:h-1}), \text{ where } \bar{\mu}(\mathbf{x}_{1:h-1}) = \frac{1}{h-1} \sum_{h' \in [h-1]} \mathbf{x}_{h'}. \quad (28)$$

886 Then based on $\frac{\partial \sigma(\hat{\mathbf{p}})}{\partial \hat{\mathbf{p}}} = \text{diag}(\mathbf{p}) - \mathbf{p} \mathbf{p}^\top$, computing the gradient of \mathbf{W} w.r.t loss ℓ in Eq. (14) yields:
 887

$$\begin{aligned} 888 \frac{\partial \ell(\Theta; h, \mathcal{G})}{\partial \hat{\mathbf{p}}} &= \mathbb{E}_{\mathbf{X}} \left[\left(\frac{\mathbf{x}_h}{\mathbf{f}_{\theta_0}(\mathbf{x}_h) + \epsilon} \right)^\top \frac{\partial \mathbf{f}_{\theta_0}}{\partial \hat{\mathbf{p}}} \right] \\ 889 &= \mathbb{E}_{\mathbf{X}} \left[\left(\frac{\mathbf{x}_h}{\mathbf{f}_{\theta_0}(\mathbf{x}_h) + \epsilon} \right)^\top \frac{1}{h-1} (\pi^\top \mathbf{x}_{1:h-1} - \pi^\top \bar{\mu}(\mathbf{x}_{1:h-1}) \mathbf{1}_{h-1}^\top) \right] \\ 890 &\stackrel{Eq. (28)}{=} \frac{1}{h-1} \mathbb{E}_{\mathbf{X}} \left[\left(\frac{\mathbf{x}_h}{\mathbf{f}_{\theta_0}(\mathbf{x}_h) + \epsilon} \right)^\top (\pi^\top \mathbf{x}_{1:h-1} - \mathbf{f}_{\theta_0}(\mathbf{x}_h) \mathbf{1}_{h-1}^\top) \right] \\ 891 &= \frac{1}{h-1} \mathbb{E}_{\mathbf{X}} \left[\left[\frac{\pi(\mathbf{x}_h | \mathbf{x}_1)}{\mathbf{f}_{\theta_0}(\mathbf{x}_h) + \epsilon}, \dots, \frac{\pi(\mathbf{x}_h | \mathbf{x}_{h-1})}{\mathbf{f}_{\theta_0}(\mathbf{x}_h) + \epsilon} \right] - \mathbf{1}_{h-1}^\top \right] \\ 892 &= \frac{1}{h-1} \mathbb{E}_{\mathbf{X}} \left[\left[\frac{\pi(\mathbf{x}_h | \mathbf{x}_1)}{\mu^\pi(\mathbf{x}_h)}, \dots, \frac{\pi(\mathbf{x}_h | \mathbf{x}_{h-1})}{\mu^\pi(\mathbf{x}_h)} \right] - \mathbf{1}_{h-1}^\top \right] \in \mathbb{R}^{h-1}. \end{aligned}$$

893 Then let $\hat{g}_{h'}^h$ denote h' -th entry in $\frac{\partial \ell(\theta_0; h, \mathcal{G})}{\partial \hat{\mathbf{p}}} \in \mathbb{R}^{h-1}$ ($h' \in [h-1]$), we have:
 894

$$895 \hat{g}_{h'}^h = \frac{1}{h-1} \mathbb{E}_{\mathbf{X}} \left[\frac{\pi(\mathbf{x}_h | \mathbf{x}'_{h'})}{\mu^\pi(\mathbf{x}_h)} - 1 \right] = \frac{1}{h-1} \left(\sum_{s,s'} \frac{\pi(s | s') \mathbb{P}_{\mathbf{X}}(\mathbf{x}_h = s | \mathbf{x}_{h'} = s')}{\mu^\pi(s)} - 1 \right). \quad (29)$$

904 By Cauchy-Schwartz Inequality and Data Processing Inequality, we have:
 905

$$\begin{aligned} 906 \mathbb{E}_{\mathbf{X}} \left[\frac{\pi(\mathbf{x}_h | \mathbf{x}'_{h'})}{\mu^\pi(\mathbf{x}_h)} - 1 \right] &= \sum_{s,s'} \frac{\pi(s | s') \mathbb{P}_{\mathbf{X}}(\mathbf{x}_h = s | \mathbf{x}_{h'} = s')}{\mu^\pi(\mathbf{x}_h)} - 1 \\ 907 &\leq \frac{1}{2} (I_{\chi^2}(\mathbf{x}_h, \mathbf{x}_{h'}) + I_{\chi^2}(\mathbf{x}_h, \mathbf{x}_{pa(h)})) \leq I_{\chi^2}(\mathbf{x}_h, \mathbf{x}_{pa(h)}) = \mathbb{E}_{\mathbf{X}} \left[\frac{\pi(\mathbf{x}_h | \mathbf{x}_{pa(h)})}{\mu^\pi(\mathbf{x}_h)} - 1 \right]. \end{aligned} \quad (30)$$

911 Eq. (30) has shown the desired result $\hat{g}_{h'}^h \leq \hat{g}_{pa(h)}^h$.³ \square
 912

913
 914 ³Suppose $\hat{\mu}_{\mathbf{X}} := \pi^\top \bar{\mu} = \mathbf{f}_{\theta_0}(\mathbf{x}_h)$. If we remove the assumption $f_\theta = \pi^\top \bar{\mu} = \mu^\pi$. Lemma 24 in Nichani et al. (2024) shows $\left| \mathbb{E}_{\mathbf{X}} \left[\frac{\pi(\mathbf{x}_h | \mathbf{x}'_{h'})}{\hat{\mu}_{\mathbf{X}}(\mathbf{x}_h) + \epsilon} - 1 \right] - \mathbb{E}_{\mathbf{X}} \left[\frac{\pi(\mathbf{x}_h | \mathbf{x}'_{h'})}{\mu^\pi(\mathbf{x}_h)} - 1 \right] \right| \lesssim \frac{1}{\sqrt{T_{\text{eff}}}} (\rightarrow 0)$. Under Assumption 1 and Strong Data Processing Inequality in Nichani et al. (2024) (Lemma 5), we can prove the non-asymptotic result $\hat{g}_{pa(h)}^h - \hat{g}_{h'}^h \geq \frac{1}{h-1} \left(\frac{\gamma^3}{2S} - \frac{2C}{\sqrt{T_{\text{eff}}(\lambda)}} \right)$.
 915

918 **Assumption 1** (Assumptions on transition kernel (Nichani et al. (2024), Assumption 1)). *There
919 exist $\gamma > 0, \lambda < 1$ such that the following hold for π :*
920

- 921 • (Transition lower bounded): $\min_{s,s'} \pi(s' | s) > \gamma$.
- 922 • (Non-degeneracy of chain): $\|B(\pi)\|_F > \gamma$.
- 923 • (Spectral gap): The spectral gap of π , $1 - \lambda(\pi)$, satisfies $\lambda(\pi) < \lambda$.
- 924 • (Symmetry): For any permutation matrix σ on \mathcal{S} , $\sigma^{-1}\pi\sigma =_d \pi$.
- 925 • (Constant mean): $\mathbb{E}_\pi[\pi] = \frac{1}{S}1_S 1_S^T$.
- 926
- 927
- 928

929 C.7 PROOF OF PROPOSITION 2

930 *Proof.* In dynamical system setting, the transition $P(\cdot | \cdot)$ is given by the pmf of $\mathbf{x}_h | \mathbf{x}_{pa(h)}$:

$$933 \quad p(\mathbf{x} | \mathbf{y}) = \frac{1}{(2\pi)^{d/2} \left(\frac{\sigma^2}{c^2}\right)^{d/2}} \exp\left(-\frac{c^2}{2\sigma^2} \|\mathbf{x} - \frac{1}{c} \mathbf{A}^\top \mathbf{y}\|_2^2\right), \quad \mathbf{A} \in \mathcal{O}(\mathbb{R}^d).$$

934 Then with σ eliminate constant terms in $\log p$, we get the equivalent form in BMA:
935

$$936 \quad \log p(\mathbf{x}_h | \mathbf{x}_{h'}) = \frac{c}{\sigma^2} \mathbf{x}_h^\top \mathbf{A}^\top \mathbf{x}_{h'} - \frac{1}{2\sigma^2} \mathbf{x}_{h'}^\top \mathbf{A} \mathbf{A}^\top \mathbf{x}_{h'} + \text{const}(h), \\ 937 \quad \bar{\mathbf{p}}_{h'}^h := \sum_{l=1}^L \left(\frac{c}{\sigma^2} \mathbf{x}_{h'}^{l\top} \mathbf{A} \mathbf{x}_h^l - \frac{1}{2\sigma^2} \mathbf{x}_{h'}^{l\top} \mathbf{x}_{h'}^l \right); \quad \mathbb{P}(pa(h) | \mathbf{x}_{1:H}^{1:L}) = \sigma(\bar{\mathbf{p}}^h). \quad (31)$$

938 Eq. (31) gives the BMA logits in the DS setting in a softmax form. We now show that transformers
939 under the observation restriction Eq. (7) cannot represent BMA in this setting.
940

941 Recall that, under Eq. (7), the transformer logits are
942

$$943 \quad \mathbf{p}_{\text{tf},h'}^h = \sum_{l=1}^L \mathbf{x}_{h'}^{l\top} \mathbf{W}_{\text{tf}} \mathbf{x}_h^l,$$

944 while the BMA logits are
945

$$946 \quad \mathbf{p}_{\text{BMA},h'}^h = c_1 \sum_{l=1}^L \mathbf{x}_{h'}^{l\top} \mathbf{A} \mathbf{x}_h^l + d \sum_{l=1}^L \|\mathbf{x}_{h'}^l\|^2, \quad c_1 \neq 0, d \neq 0.$$

947 Suppose, for contradiction, that the transformer exactly represents BMA, i.e.
948

$$949 \quad \sigma(\mathbf{p}_{\text{tf}}^h) = \sigma(\mathbf{p}_{\text{BMA}}^h) \quad \text{for all DS samples and all } h \in [H].$$

950 Since softmax is invariant under adding a constant independent of h' , this means that for each fixed
951 h there exists a scalar $b = b(h)$ such that
952

$$953 \quad \mathbf{p}_{\text{tf},h'}^h + b = \mathbf{p}_{\text{BMA},h'}^h \quad \text{for all } h' \in [H]. \quad (*)$$

954 Using the DS model $\mathbf{x}_h^l = \frac{1}{c}(\mathbf{A}^\top \mathbf{x}_{pa(h)}^l + \varepsilon_h^l)$, we expand the logits as
955

$$956 \quad \mathbf{p}_{\text{tf},h'}^h = \underbrace{\frac{1}{c} \sum_{l=1}^L \mathbf{x}_{h'}^{l\top} \mathbf{W}_{\text{tf}} \mathbf{A}^\top \mathbf{x}_{pa(h)}^l}_{\text{constant term w.r.t. } h, \varepsilon_h} + \underbrace{\frac{1}{c} \sum_{l=1}^L \mathbf{x}_{h'}^{l\top} \mathbf{W}_{\text{tf}} \varepsilon_h^l}_{\text{separate term with } \varepsilon_h},$$

$$957 \quad \mathbf{p}_{\text{BMA},h'}^h = \underbrace{\frac{c_1}{c} \sum_{l=1}^L \mathbf{x}_{h'}^{l\top} \mathbf{A} \mathbf{A}^\top \mathbf{x}_{pa(h)}^l + d \sum_{l=1}^L \|\mathbf{x}_{h'}^l\|^2}_{\text{constant term w.r.t. } h, \varepsilon_h} + \underbrace{\frac{c_1}{c} \sum_{l=1}^L \mathbf{x}_{h'}^{l\top} \mathbf{A} \varepsilon_h^l}_{\text{separate term with } \varepsilon_h}.$$

Conditioning on all variables except $\{\varepsilon_h^l\}_{l=1}^L$, both sides of $(*)$ become affine functions of the Gaussian noises ε_h^l . Since the DS distribution has full support and $(*)$ is assumed to hold for all DS samples, the coefficients of the linear terms in $\{\varepsilon_h^l\}$ must match for all realizations. Since $\{\varepsilon_h^l\}_l$ are independently sampled, conditioning on ε_h^l will eliminate other terms. Seeing ε_h^l as the only free variable, its coefficient should be zero to keep the equation held:

$$\mathbf{x}_{h'}^{l\top} (\mathbf{W}_{\text{tf}} - c_1 \mathbf{A}) \varepsilon_h^l = 0, \forall \varepsilon_h^l \in \mathbb{R}^d \Rightarrow \mathbf{x}_{h'}^{l\top} (\mathbf{W}_{\text{tf}} - c_1 \mathbf{A}) = 0.$$

Since in the DS model each $\mathbf{x}_{h'}^l \sim \mathcal{N}(0, I_d)$ is non-degenerate with full support $\mathbf{x}_{h'}^l \sim \mathcal{N}(0, I_d)$, which forces

$$\mathbf{W}_{\text{tf}} = c_1 \mathbf{A}.$$

Substituting $\mathbf{W}_{\text{tf}} = c_1 \mathbf{A}$ back into $(*)$, the representation equation is formulated by

$$b + \frac{c_1}{c} \sum_{l=1}^L \mathbf{x}_{h'}^{l\top} \mathbf{A} \mathbf{A}^\top \mathbf{x}_{pa(h)}^l = \frac{c_1}{c} \sum_{l=1}^L \mathbf{x}_{h'}^{l\top} \mathbf{A} \mathbf{A}^\top \mathbf{x}_{pa(h)}^l + d \sum_{l=1}^L \|\mathbf{x}_{h'}^l\|^2.$$

Hence

$$b = d \sum_{l=1}^L \|\mathbf{x}_{h'}^l\|^2 \quad \text{for all } h' \in [H].$$

However, for a DS sample the quantities $\sum_l \|\mathbf{x}_{h'}^l\|^2$ vary across h' and across samples, while b is a constant (depending only on h). The only way the above equality can hold for all h' and all DS samples is to have $b = d = 0$, which contradicts the assumption $d \neq 0$ in the BMA logits.

We conclude that no \mathbf{W}_{tf} can make the transformer logits represent the BMA logits for all datasets generated from DS. Therefore, under Eq. (7), transformers cannot represent BMA in the DS setting.

C.8 PROOF OF $\sum_{s,s'} \bar{\mu}_t(s') \mu^\pi(s) \log \pi(s \mid s') \leq \sum_{s,s'} \mu^\pi(s') \pi(s \mid s') \log \pi(s \mid s')$, $\forall \bar{\mu}_t \in \Delta^d$

Let \mathcal{S} be a finite state space, let $\pi(\cdot \mid \cdot)$ be a Markov transition kernel on \mathcal{S} , and let μ^π be a stationary distribution of π , i.e.,

$$\mu^\pi(s) = \sum_{s' \in \mathcal{S}} \mu^\pi(s') \pi(s \mid s') \quad \text{for all } s \in \mathcal{S}.$$

Fix an arbitrary $\bar{\mu}_t \in \Delta^d$, and for brevity write $\mu := \mu^\pi$. We adopt the convention $0 \log 0 = 0$ throughout.

We first upper bound the left-hand side. For any $s' \in \mathcal{S}$, consider the Kullback–Leibler divergence

$$\text{KL}(\mu \parallel \pi(\cdot \mid s')) = \sum_{s \in \mathcal{S}} \mu(s) \log \frac{\mu(s)}{\pi(s \mid s')} \geq 0.$$

Expanding the inequality $\text{KL}(\mu \parallel \pi(\cdot \mid s')) \geq 0$ yields

$$\sum_{s \in \mathcal{S}} \mu(s) \log \pi(s \mid s') \leq \sum_{s \in \mathcal{S}} \mu(s) \log \mu(s) =: C,$$

where the right-hand side C does not depend on s' . Multiplying both sides by $\bar{\mu}_t(s')$ and summing over s' , we obtain

$$\sum_{s,s' \in \mathcal{S}} \bar{\mu}_t(s') \mu(s) \log \pi(s \mid s') \leq \sum_{s' \in \mathcal{S}} \bar{\mu}_t(s') C = C = \sum_{s \in \mathcal{S}} \mu(s) \log \mu(s). \quad (32)$$

This bound holds for any choice of $\bar{\mu}_t \in \Delta^d$.

Next, we lower bound the right-hand side. For each $s' \in \mathcal{S}$, consider the reverse KL divergence

$$\text{KL}(\pi(\cdot \mid s') \parallel \mu) = \sum_{s \in \mathcal{S}} \pi(s \mid s') \log \frac{\pi(s \mid s')}{\mu(s)} \geq 0.$$

1026 Hence

1027
$$\sum_{s \in \mathcal{S}} \pi(s | s') \log \pi(s | s') \geq \sum_{s \in \mathcal{S}} \pi(s | s') \log \mu^\pi(s).$$
 1028

1029 Multiplying by $\mu^\pi(s')$ and summing over s' yields

1030
$$\begin{aligned} \sum_{s, s' \in \mathcal{S}} \mu^\pi(s') \pi(s | s') \log \pi(s | s') &\geq \sum_{s, s' \in \mathcal{S}} \mu^\pi(s') \pi(s | s') \log \mu^\pi(s) \\ &= \sum_{s \in \mathcal{S}} \left(\sum_{s' \in \mathcal{S}} \mu^\pi(s') \pi(s | s') \right) \log \mu^\pi(s) \\ &= \sum_{s \in \mathcal{S}} \mu^\pi(s) \log \mu^\pi(s) = C, \end{aligned} \quad (33)$$
 1031 1032 1033 1034 1035 1036 1037

1038 where we used the stationarity of μ , namely $\mu^\pi(s) = \sum_{s'} \mu^\pi(s') \pi(s | s')$.1039 Combining (32) and (33), we conclude that, for any $\bar{\mu}_t \in \Delta^d$,

1040
$$\sum_{s, s' \in \mathcal{S}} \bar{\mu}_t(s') \mu^\pi(s) \log \pi(s | s') \leq C \leq \sum_{s, s' \in \mathcal{S}} \mu^\pi(s') \pi(s | s') \log \pi(s | s'),$$
 1041 1042 1043

1044 which establishes

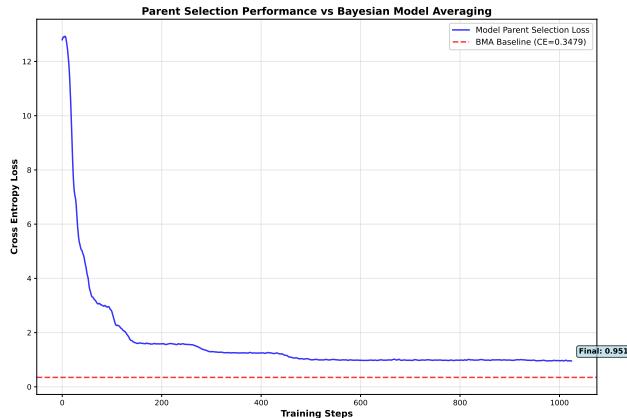
1045
$$\sum_{s, s'} \bar{\mu}_t(s') \mu^\pi(s) \log \pi(s | s') \leq \sum_{s, s'} \mu^\pi(s') \pi(s | s') \log \pi(s | s'), \quad \forall \bar{\mu}_t \in \Delta^d. \quad \square$$
 1046 1047

1048

D EXPERIMENT DETAILS

 10491050 All experiments follow the same training setup unless otherwise specified: sequences are generated 1051 from a Markov chain with transition kernel $\pi(\cdot | s) \sim \text{Dirichlet}(\alpha \cdot \mathbf{1}_d)$ with $\alpha = 0.1$. We use a 1052 batch size of 1024 for training and evaluate on 4096 test samples. Parameters are optimized with 1053 Adam (Kingma & Ba, 2017), using learning rate 0.05 for discrete Markov chains and 0.001 for 1054 dynamical systems. For gradient-based analysis, we adopt SGD with learning rate 1. Fresh data are 1055 sampled at each iteration to avoid memorization, and all implementations are based on JAX. 10561057

E ADDITIONAL EXPERIMENT RESULTS ON MARKOV CHAIN

 10581059 Figure 7: Parent selection \mathcal{L}_{pa} comparison between transformers and BMA during training. The 1060 metric is introduced as Eq. (10). Training configuration as the experiment in Fig. 2. 1061

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074

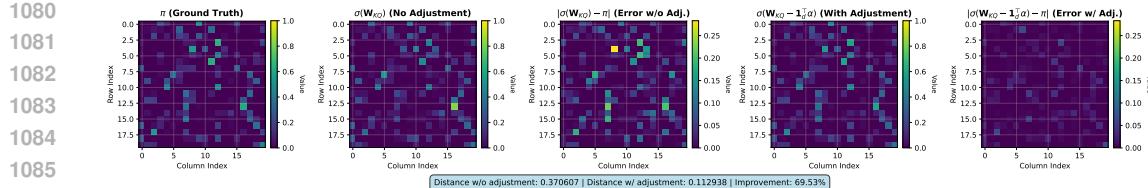


Figure 8: Parameter-Level Comparison between transformer and BMA ($W = \log \pi$). Trainable W_{KQ} and W_{OV} . Trained with $d = 20$, $H = 50$, $L = 3$, and 1024 training steps.

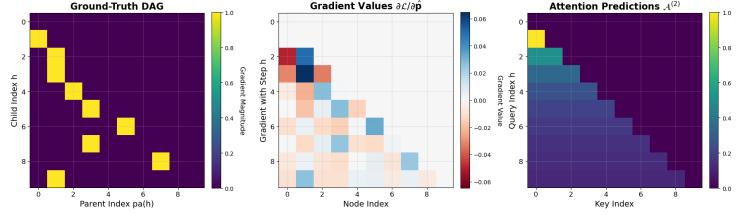


Figure 9: **Gradient Validation of $\frac{\partial \ell}{\partial \hat{p}}$** . From left to right: ground-truth graph \mathcal{G} , the gradients of $\frac{\partial \ell}{\partial \hat{p}} \in \mathbb{R}^H$ stacked as row vectors, and attention weights $\mathcal{A}_h^{(2)}$ uniformly distributed since $\mathbf{W} = 0$.

F EXPERIMENT RESULTS ON DYNAMICAL SYSTEM

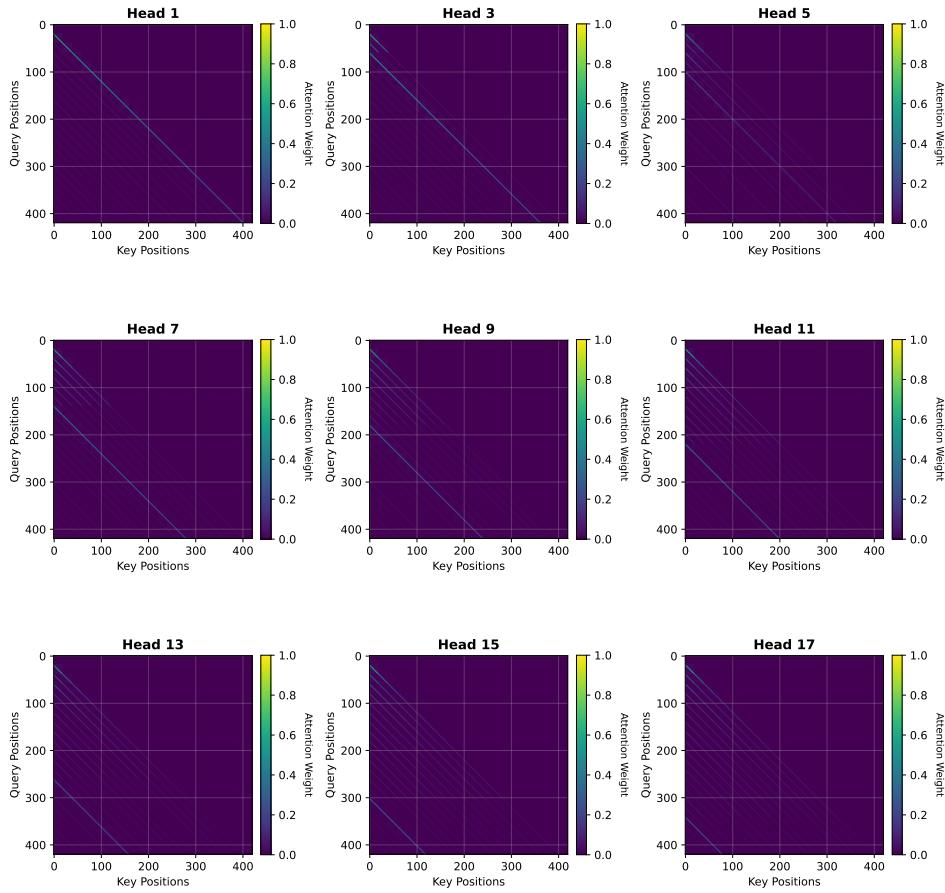


Figure 10: Visualization of 1st-layer Attention $\mathcal{A}^{(1)} \in \mathbb{R}^{T \times T}$. For readability, we visualize only nine of the twenty heads, to better highlight the attention patterns on this long sequence of length 400. The first layer replicates the historical occurrence of the same token. Model trained with $L = 20$ examples, trajectory length $H = 20$, vocabulary size $d = 10$, 20 heads in the first layer, and 2048 training steps. The RPE parameters are initialized with a small positive value (0.5) along the construction direction, and grow to much larger magnitudes after training.

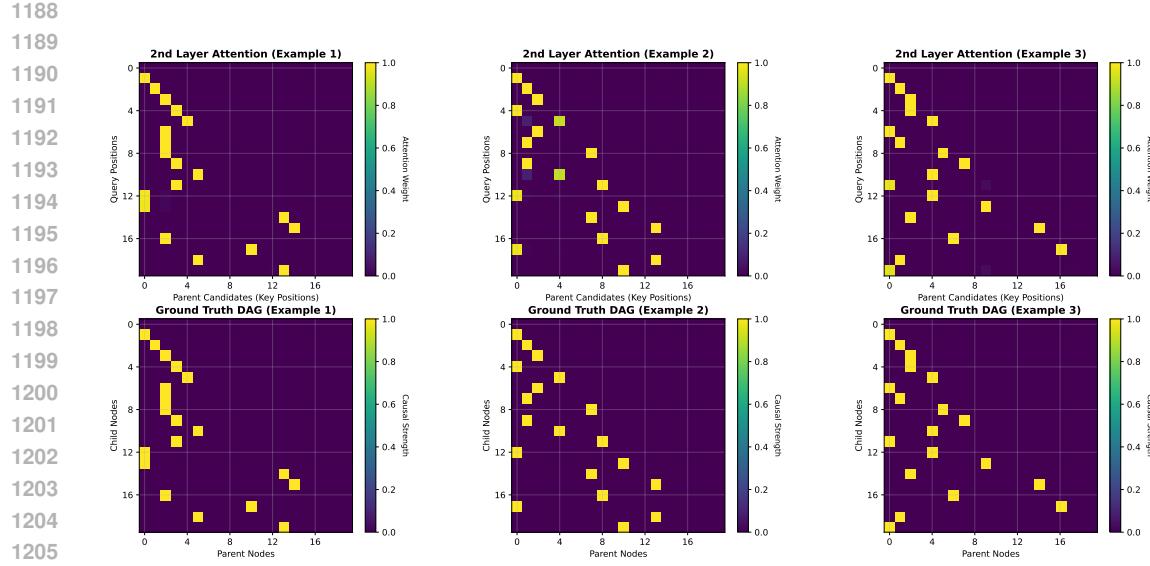


Figure 11: 2nd-Layer Attention $\mathcal{A}^{(2)} \in \mathbb{R}^{H \times H}$ Visualization. Attention patterns matches the groundtruth causal structure in dynamical system setting.

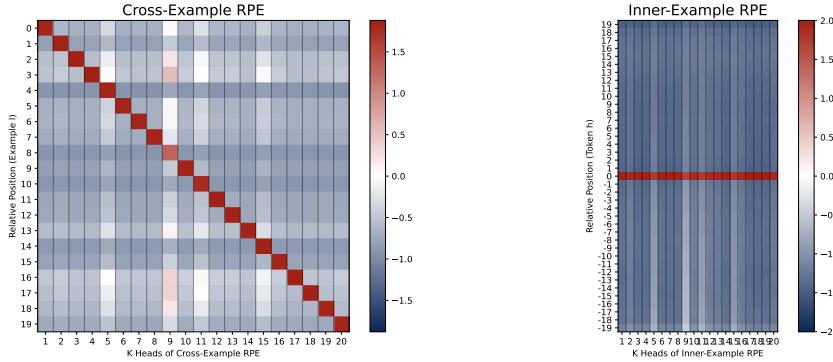


Figure 12: Visualization of first RPE layer. The parameters are consistent with the construction.

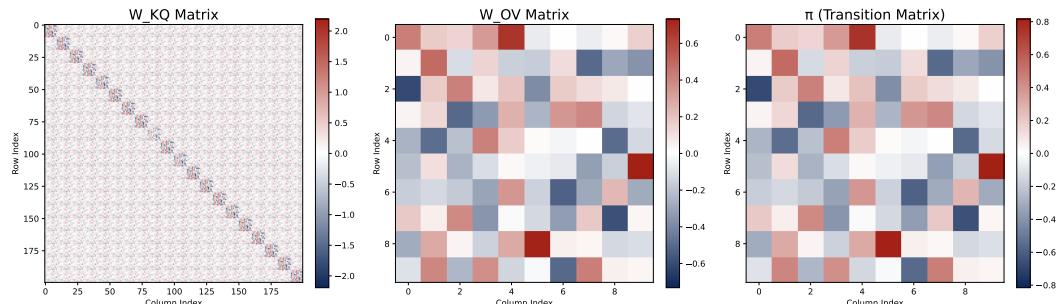


Figure 13: Visualization of 2nd-layer. $W_{KQ} \in \mathbb{R}^{dL \times dL}$ shows noticeable non-zero blocks on its diagonal. The occurring block is of size $d \times d$.

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

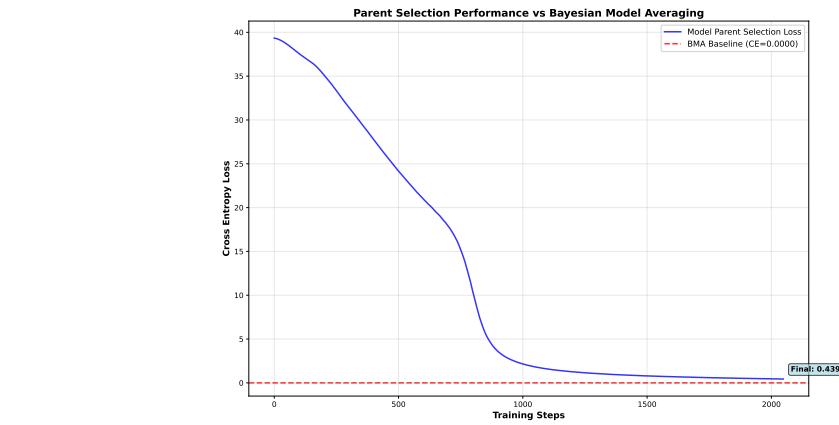
1284

1285

1286

1287

Figure 14: Parent selection loss during training in dynamical system setting.



1288

1289

1290

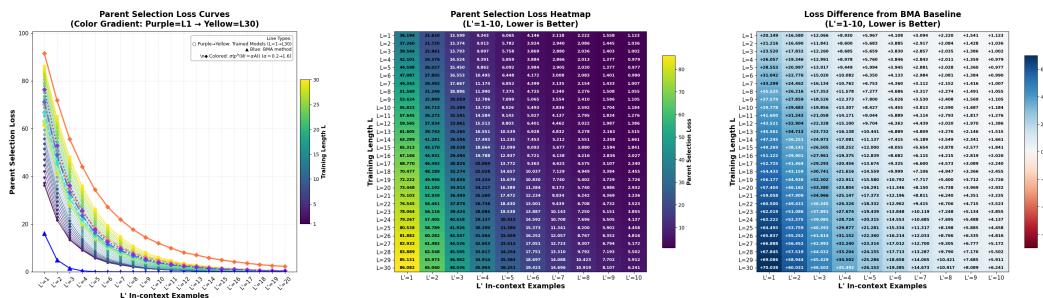
1291

1292

1293

1294

1295

Figure 15: Generalization of parent loss $\{\mathcal{L}_{\text{pa}}^L\}$ for transformers trained with $L \in \{1, \dots, 30\}$ in dynamical system setting. Trained with $d = 10, H = 15$ and 2048 training steps.

1296 **G DISENTANGLER TRANSFORMER WITH ABSOLUTE POSITION EMBEDDING**
 1297

1298 The disentangled transformer with absolute position embedding (APE) is formulated by:
 1299

$$\begin{aligned}
 \text{Embedding Layer: } \mathbf{h}_t^{(0)} &= [E(\mathbf{w}_t), \text{Pos}(\mathbf{w}_t)] = [\mathbf{x}_t, \mathbf{e}_t], \mathbf{H}^{(0)} = [\mathbf{h}_1^{(0)}, \dots, \mathbf{h}_T^{(0)}] \in \mathbb{R}^{d_0} \\
 \text{1st Attention (K-head): } \text{Attn}_t^k(\mathbf{H}^{(0)}; \theta) &= \sigma \left(\mathbf{h}_{1:t-1}^{(0)\top} \mathbf{W}_{KQ}^{(1),k} \mathbf{h}_t^{(0)} \right)^\top \mathbf{h}_{1:t-1}^{(0)\top} \mathbf{W}_{OV}^{(1),k} \in \mathbb{R}^d, \\
 \text{Disentangled Residual: } \mathbf{h}_t^{(1)} &= [\mathbf{h}_t^{(0)}, \text{Attn}_t^1(\mathbf{H}^{(0)}; \theta), \dots, \text{Attn}_t^K(\mathbf{H}^{(0)}; \theta)] \in \mathbb{R}^{d_0+Kd}, \\
 \text{2nd Attention (1-head): } \mathbf{f}_{\text{tf}}(\cdot | \mathcal{H}_t) &= \sigma \left(\mathbf{h}_{1:t-1}^{(1)\top} \mathbf{W}_{KQ}^{(2)} \mathbf{h}_t^{(1)} \right)^\top \mathbf{h}_{1:t-1}^{(1)\top} \mathbf{W}_{OV}^{(2)} \in \mathbb{R}^d.
 \end{aligned} \tag{34}$$

1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349

First, we can see the model parameter $\mathbf{W}_{KQ}^{(1),k} \in \mathbb{R}^{d_0 \times d_0}$ where $d_0 = d + T$ and T is the sequence length. The total number of parameters in the first layer is $O(d^2 + H^2 L^2)$ compared to $O(H + L)$ parameters of the model with RPE in Eq. (5). The redundancy of parameters may lead to difficulties of interpreting the mechanism of transformers. Besides, since for disentangled transformer with APE, the embedding dimension is proportional to the length of input sequence, this may make it difficult for us to interpret transformers' mechanism on longer sequence tasks.

As for this transformer, we first provide a theoretical construction which is consistent with our construction for RPE model in Theorem 1. Empirically, we show this transformer can successfully select causal tokens. Besides, we provide results of trainable transformers showing alignments with our construction in attention visualization and parameter verification.

G.1 THEORETICAL CONSTRUCTION

In this section, we provide a construction demonstrating how the proposed two-layer architecture possesses the capacity to implement the specific causal selection mechanism derived in our analysis. Let the input embedding dimension be $d_0 = d + T$, where d is the token dimension, T is the sequence length (due to absolute position embedding) and an input sequence contains $L + 1$ examples of length- L chain $T = H(L + 1)$. Suppose \mathcal{N}_{L+1} denotes the set of nodes from the last example, i.e., we have $\mathcal{N}_{L+1} = \{t \in T \mid \exists h \in [H], t = HL + h\}$.

G.1.1 LAYER 1: MULTI-HEAD ATTENTION CONSTRUCTION

The first layer consists of K attention heads ($K \leq L$). The Query-Key matrix $\mathbf{W}_{KQ}^{(1),k}$ will attend to specific predecessor tokens based on position. We construct it as a block matrix where the active interaction terms are confined to the position-embedding subspace:

$$\mathbf{W}_{KQ}^{(1),k} = \left[\begin{array}{c|c} 0_{d \times d} & 0_{d \times T} \\ \hline 0_{T \times d} & \mathbf{W}_{KQ}^{(1),k} \end{array} \right], \tilde{\mathbf{W}}_{KQ}^{(1),k} = \beta \left[\begin{array}{c|c} & 0_{H \times H} \\ \hline 0_{T \times HL} & \begin{array}{c} \vdots \\ I_{H \times H} \end{array} \\ \hline & 0_{H \times H} \end{array} \right] (\text{ }k\text{-th block } \text{active}). \tag{35}$$

From this construction, if $\beta \rightarrow \infty$, the attention score of the first attention layer is given by:

$$\mathcal{A}_{ij}^{(1),k} = \begin{cases} \frac{1}{i} \mathbf{1}_{[j < i]}, & \text{if } i \notin \mathcal{N}_{L+1}, \\ \mathbf{1}_{[j=kH+h]}, & \text{if } i \in \mathcal{N}_{L+1}, i = LH + h. \end{cases} \tag{36}$$

For the value projection, $\mathbf{W}_{OV}^{(1),k}$ will propagate the semantic content of the attended tokens:

$$\mathbf{W}_{OV}^{(1),k} = \left[\begin{array}{c} \mathbf{I}_{d \times d} \\ \hline 0_{T \times d} \end{array} \right] \in \mathbb{R}^{(d+T) \times d}. \tag{37}$$

And the output of the first attention will be:

$$\text{Attn}_i^k(\mathbf{H}^{(0)}; \theta) = \mathcal{A}_{i \rightarrow}^{(1),k} \mathbf{h}_{1:T}^{(0)\top} \mathbf{W}_{OV}^{(1),k} = \begin{cases} \bar{\mu}(\mathbf{x}_{1:i-1}), & \text{if } i \notin \mathcal{N}_{L+1}, \\ \mathbf{x}_h^k, & \text{if } i \in \mathcal{N}_{L+1}, i = LH + h. \end{cases} \tag{38}$$

1350 G.1.2 DISENTANGLLED RESIDUAL STREAM
1351

1352 Unlike standard summation residuals, this disentangled transformer employ a concatenation strat-
1353 eggy. [Nichani et al. \(2024\)](#) proved this transformer is actually equivalent to a decoder based attention-
1354 only transformer (Theorem 3). The output of the first layer is the concatenation of the original input
1355 and the outputs of all K heads:

$$1356 \quad \mathbf{h}_t^{(1)} = \left[\mathbf{h}_t^{(0)} ; \text{Attn}_t^1, \dots, \text{Attn}_t^K \right] \in \mathbb{R}^{d_0+Kd}. \quad (39)$$

1358 The dimension of the second layer input is $d_1 = d_0 + Kd = d + T + Kd$.

1360 G.1.3 LAYER 2: SINGLE-HEAD ATTENTION CONSTRUCTION
1361

1362 The second layer employs a single attention head to aggregate the evidence collected by the K heads
1363 in the previous layer.

$$1364 \quad \mathbf{W}_{KQ}^{(2)} = \left[\begin{array}{c|c|c} 0_{d \times d} & 0_{d \times T} & 0_{d \times Kd} \\ \hline 0_{T \times d} & 0_{T \times T} & 0_{T \times Kd} \\ \hline 0_{Kd \times d} & 0_{Kd \times T} & \mathbf{\tilde{W}}_{KQ}^{(2)} \end{array} \right], \quad \mathbf{\tilde{W}}_{KQ}^{(2)} = \left[\begin{array}{cccc} \log \pi & 0_{d \times d} & \dots & 0_{d \times d} \\ 0_{d \times d} & \log \pi & \dots & 0_{d \times d} \\ \vdots & \vdots & \ddots & \vdots \\ 0_{d \times d} & 0_{d \times d} & \dots & \log \pi \end{array} \right] \quad (40)$$

1371 Finally, the output projection $\mathbf{W}_{OV}^{(2)}$ projects the aggregated context back to the semantic space by:
1372

$$1373 \quad \mathbf{W}_{OV}^{(2)} = \left[\begin{array}{c} \log \pi \\ \hline 0_{T \times d} \\ \hline 0_{Kd \times d} \end{array} \right] \in \mathbb{R}^{d_1 \times d}. \quad (41)$$

1379 From the Eq. (38) and (39), we can see that $\mathbf{h}_t^{(1)} = [\mathbf{h}_t^{(0)}; \mathbf{x}_h^1, \dots, \mathbf{x}_h^K]$ if $t \in \mathcal{N}_{L+1}, t = LH + h$
1380 else $\mathbf{h}_t^{(1)} = [\mathbf{h}_t^{(0)}; \bar{\mu}_t, \dots, \bar{\mu}_t]$. Then, the attention weight of the second layer for any $i \in \mathcal{N}_{L+1}$,
1381 $i = LH + h$ of our interests, is given by:
1382

$$1383 \quad \tilde{\mathcal{A}}_{ij}^{(2)} = \begin{cases} \sum_{k=1}^K \log \pi(x_h^k | x_{h'}^k), & \text{for } j \in \mathcal{N}_{L+1}, j = LH + h', \\ \sum_{k=1}^K \bar{\mu}_j^\top \log \pi x_h^k, & \text{for } j \notin \mathcal{N}_{L+1}. \end{cases} \quad (42)$$

1387 So for $i, j \in \mathcal{N}_{L+1}$, we have $\tilde{\mathcal{A}}_{ij}^{(2)} = \sum_{k \in [K]} \log \pi(x_h^k | x_{h'}^k)$ aligned with Theorem 1.

1388 Furthermore, suppose $K = L$, i.e., we use L examples to infer the causal structure, and the
1389 Markov chain is stationary $\mathbf{x}_h \sim \mu^\pi$. As $L \rightarrow \infty$, for any $j \notin \mathcal{N}_{L+1}$, we have $\tilde{\mathcal{A}}_{ij}^{(2)} \rightarrow$
1390 $\sum_{s, s'} \bar{\mu}_j(s') \mu^\pi(s) \log \pi(s | s') \leq \sum_s \mu^\pi(s) \log \mu^\pi(s)$. While for the true parent token $t = HL +$
1391 $pa(h)$, we have $\tilde{\mathcal{A}}_{it} \rightarrow \sum_{s, s'} \mu^\pi(s') \pi(s | s') \log \pi(s | s')$ which is larger than $\sum_s \mu^\pi(s) \log \mu^\pi(s)$.
1392 The above quantity relation is drawn by non-negativity of KL divergence, whose detailed proof is
1393 provided in Appendix C.8. Then, the attention weights of the second layer can select the causal
1394 parent token $\mathcal{A}_{i \rightarrow pa(i)} \rightarrow 1$. And $\mathbf{W}_{OV}^{(2)}$ predicts the transition.
1395

1396 **Empirical Verification.** We show the parameter visualization of the construction in Fig. 16a and its
1397 empirical attention visualization of parent selection in Fig. 16b. In Fig. 17, the constructed model
1398 shows precise parent selection accuracy (cross-entropy loss 0.0706) which is very close to the target
1399 algorithm BMA's (ce loss 0.0473).

1400 G.2 EXPERIMENTS OF TRAINABLE TRANSFORMERS
1401

1402 In the following, we train the standard disentangled transformer formulated by Eq.(34). To show
1403 the alignment with theoretical interpretation, we use three strategies to initialize the network: (a)

1404

1405

1406

1407

1408

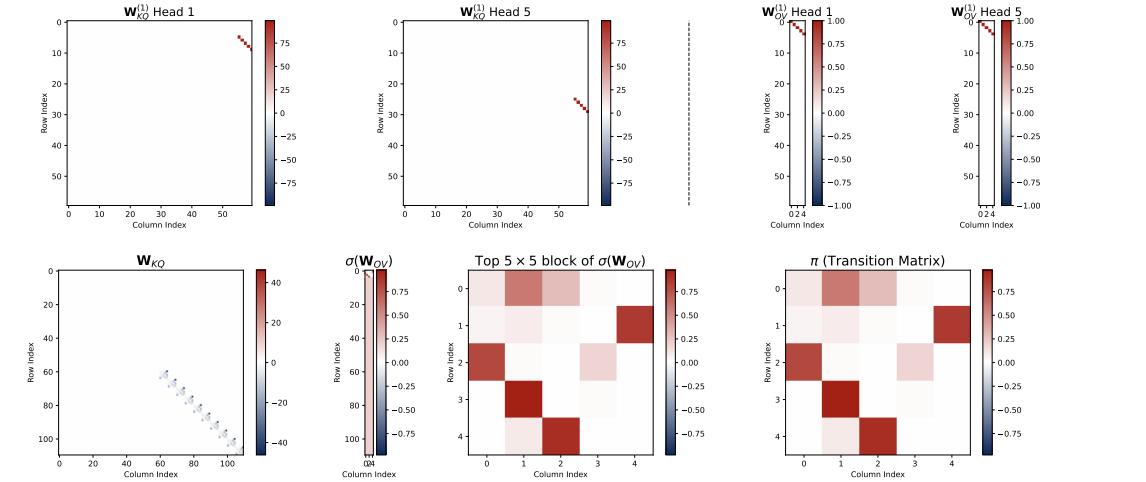
1409

1410

1411

1412

1413



(a) The parameter visualization of theoretical construction.

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

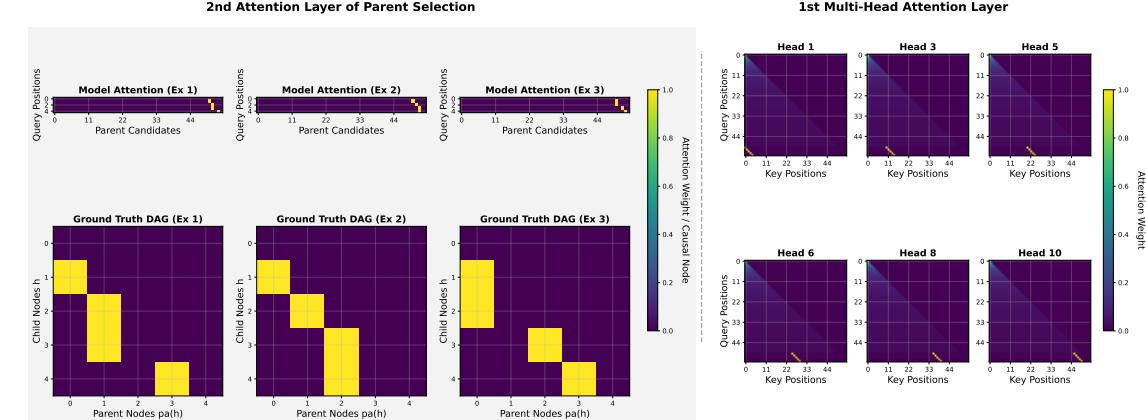
1440

1441

1442

1443

1444

(b) Attention pattern visualization of theoretical construction. The first layer (right) copies the previous L examples to the hidden space of the last one $L + 1$. For the second layer (left), the attention weights attend to the correct causal parents which are located in the last 5 columns. The queries don't attend to the keys from first L examples.

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

fully random initialization: all the parameters are initialized randomly with Gaussian distribution; (b) block-amplified random initialization: parameters are initialized randomly (of scale 0.1), while the targeted block of the attention projection matrix is assigned a larger magnitude (of scale 0.5) to introduce an inductive bias; (c) direction-consistent initialization: parameters are initialized such that the dominant blocks point in the analytically derived construction direction, still allowing model learning to refine the magnitudes (initial magnitudes: $0.2 \times$ optimal parameters).

We first compare the parent token prediction performance of these models during the training process in Fig. 17. The results show that the 2-layer transformer is fully capable of selecting causal parents in its 2nd-layer attention head.

Then we visualize the attention pattern of the trained model in Fig. 19. For the first attention layer, the figure shows query from the last example $L + 1$ mostly attend to one example among L context examples, while some heads demonstrate the degeneration with uniform attention to previous tokens. For the second attention layer, the transformers with different initializations all show their noticeable capability of predicting causal parents. Further, we visualize all the parameters of the transformer in Fig. 18. We can see some alignments between the construction in Fig. 16a and the trained parameters. Since the transformer with absolute position embedding has far more parameters of $(\{\mathbf{W}_{KQ}^{(1),k}, \mathbf{W}_{OV}^{(1),k}\}_k, \mathbf{W}_{KQ}^{(2)}, \mathbf{W}_{OV}^{(2)})$ than the one with RPE, the full interpretation of its first layer is difficult. For the second layer, the parameter $\mathbf{W}_{KQ}^{(2)}$ also shows the diagonal pattern consistent with construction and $\mathbf{W}_{OV}^{(2)}$ shows the $\log \pi$ pattern.

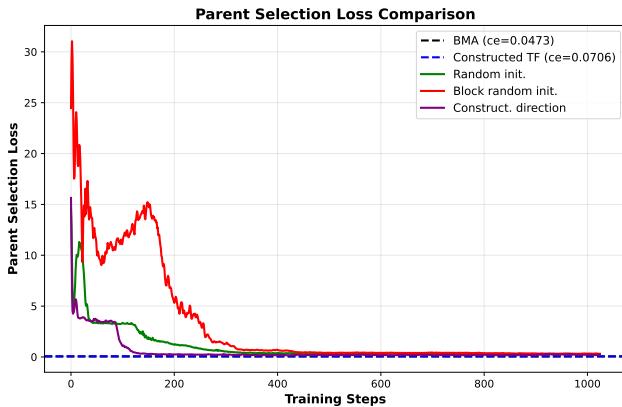


Figure 17: Parent selection loss \mathcal{L}_{pa} of the transformer with absolute position embedding and different initialization strategies.

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

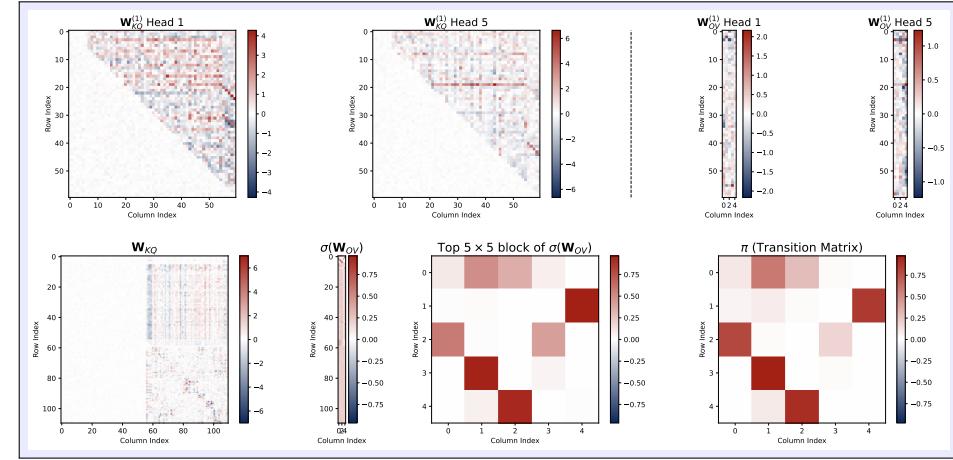
1524

1525

1526

1527

1528



(a) With Fully Random Initialization. Head 1 and 5 of the first layer $W_{KQ}^{(1)}$ exhibits an identity submatrix (5×5) at the last column.

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

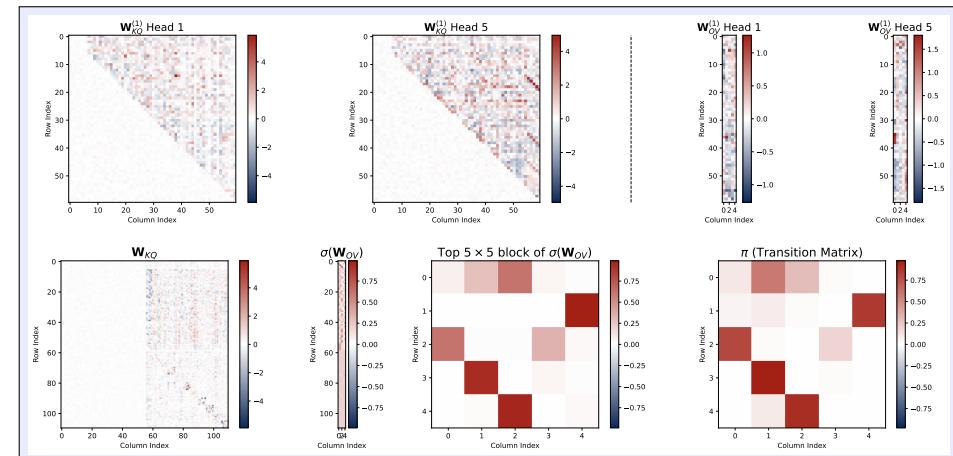
1539

1540

1541

1542

1543



(b) With Block-Amplified Random Initialization. Head 1 of $W_{KQ}^{(1)}$ degenerate which can be verified in attention visualization Fig. 19b (Head 1). Head 5 shows multiple identity submatrices which possibly suggests superposition.

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

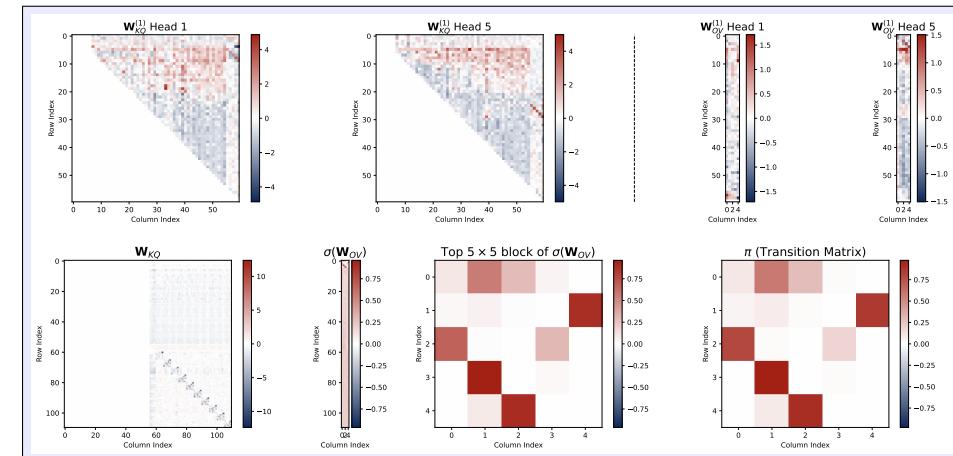
1561

1562

1563

1564

1565



(c) With Direction-Consistent Initialization. Head 1 and 5 of the first layer $W_{KQ}^{(1)}$ exhibits an identity submatrix (5×5) at the last column which is aligned with the theoretical construction.

Figure 18: Parameter visualization of trained transformer with absolute position embedding. The second layer shows strong alignment in diagonal patterns of W_{KQ} and log π pattern of W_{OV} .

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

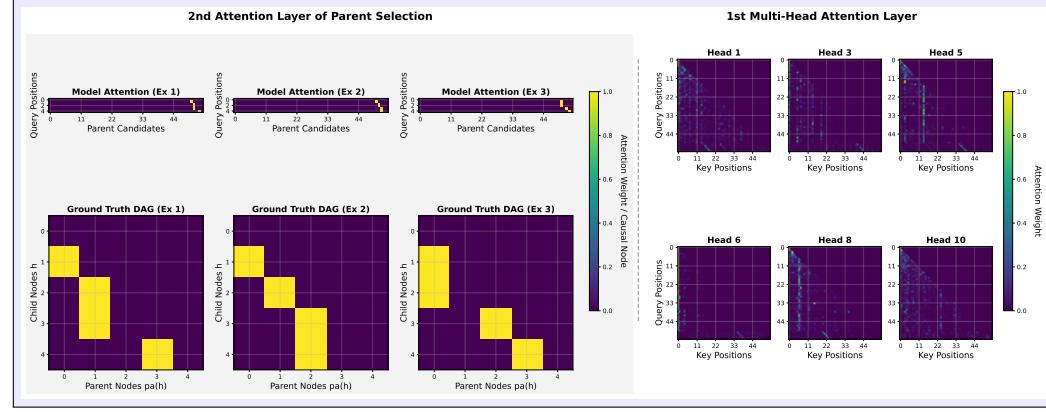
1576

1577

1578

1579

1580

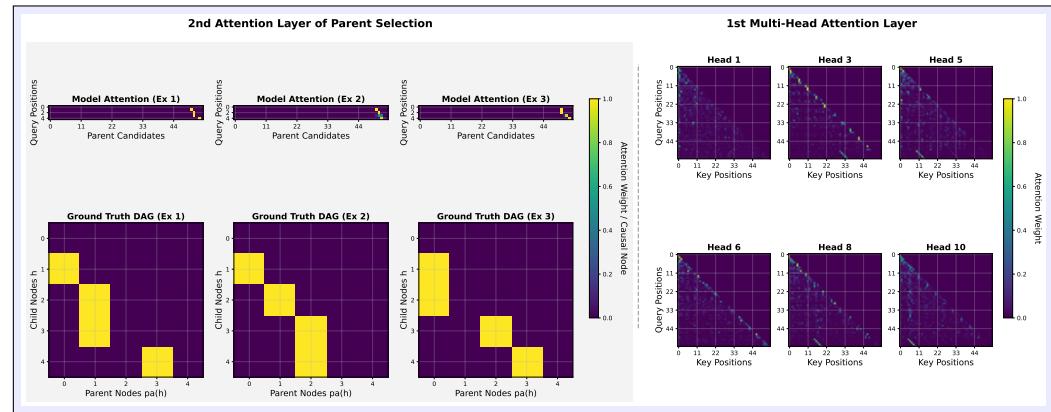


(a) With Fully Random Initialization. In the first layer, Head 1, 3, 5, 6 and 8 of KQ matrices copies tokens from previous examples (to the query token of the last example), while Head 10 degenerates showing uniform attention (uniform features are seen as constants eliminated by 2nd softmax attention layer).

1581

1582

1583



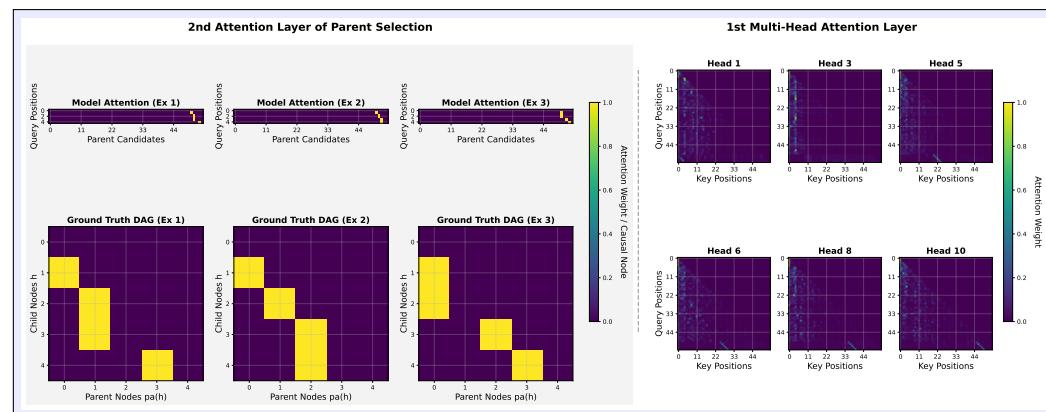
(b) With Block-Amplified Random Initialization. In the first layer, Head 3, 5, 8 and 10 of KQ matrices copies tokens from previous examples, while Head 1 degenerates showing uniform attention.

1598

1599

1600

1601



(c) With Direction-Consistent Initialization. In the first layer, Head 1, 5, 6, 8 and 10 of KQ matrices copies tokens from previous examples, while Head 3 degenerates showing uniform attention.

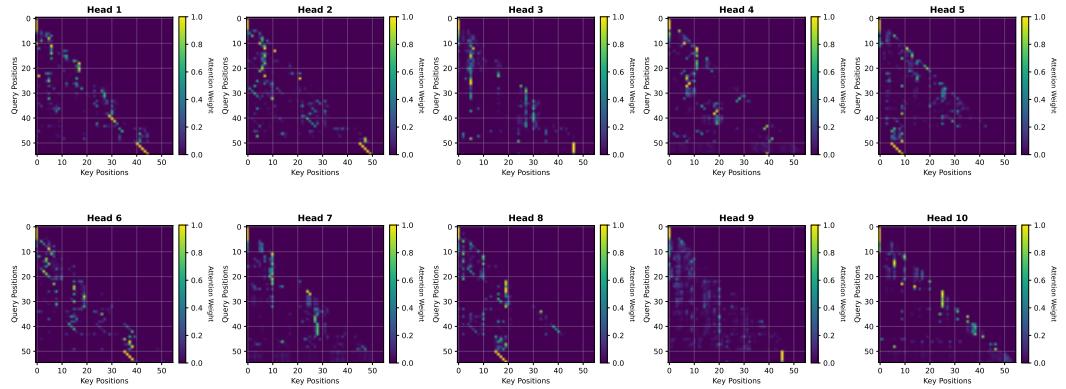
Figure 19: Attention pattern visualization of trained transformer with absolute position embedding.

1618

1619

1620 **H DISENTANGLER TRANSFORMER WITH APE VARIANT**
16211622 **H.1 MODEL ARCHITECTURE**
16231624 For the variant of two types of APE, we consider the disentangled transformer simplified by eliminating some components added to residual stream. The transformer structure we consider below
1625 can be seen as substituting the position embedding of structure Eq. (34) and simplify the model by
1626 assuming zero blocks in model weights.
1627

1628 **Embedding Layer:** $\tilde{h}_t^{(0)} = [\text{Pos}_L(\mathbf{w}_t), \text{Pos}_H(\mathbf{w}_t)] \in \mathbb{R}^{d_0}$
1629
1630 **1st Attention (K-head):** $\text{Attn}_t^k = \sigma(\tilde{h}_t^{(0)\top} \mathbf{W}_{KQ}^{(1),k} \tilde{h}_t^{(0)\top} \mathbf{x}_{1:t-1}^\top \mathbf{W}_{OV}^{(1),k}) \in \mathbb{R}^d,$
1631
1632 **Disentangled Residual:** $\tilde{h}_t^{(1)} = [\text{Attn}_t^1, \dots, \text{Attn}_t^K] \in \mathbb{R}^{Kd},$
1633
1634 **2nd Attention (1-head):** $\mathbf{f}_{\text{tf}}(\cdot | \mathcal{H}_t) = \sigma(\tilde{h}_{1:t-1}^{(1)\top} \mathbf{W}_{KQ}^{(2)} \tilde{h}_t^{(1)})^\top \mathbf{x}_{1:t-1}^\top \mathbf{W}_{OV}^{(2)} \in \mathbb{R}^d,$
1635

1636 where we simply assume $\mathbf{W}_{OV}^{(1),k} = \mathbf{I}_d$. Since the difference lies in the positional embedding,
1637 the construction in Appendix G remains valid which can exhibit capabilities in causal token selection
1638 empirically. Besides, we train this transformer under the same Markov chain setup as in the
1639 transformer with RPE experiments, and obtain consistent results as shown below.
16401641 **H.2 EXPERIMENT RESULTS**
16421643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655 **Figure 20: 1st-Layer Attention Visualization of transformers in Eq. (43).** Heads 1, 2, 5, 6 and 8
1656 exhibits the diagonal block pattern at the last rows performing the copying mechanism, while Heads
1657 4, 7 and 10 degenerate to uniform attention. Heads 3 and 9 gives uniform outputs not influencing
1658 the 2nd attention layer (eliminated by softmax attention). Trained with $H = 5, L = 10, d = 5$ and
1659 10000 training steps.
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

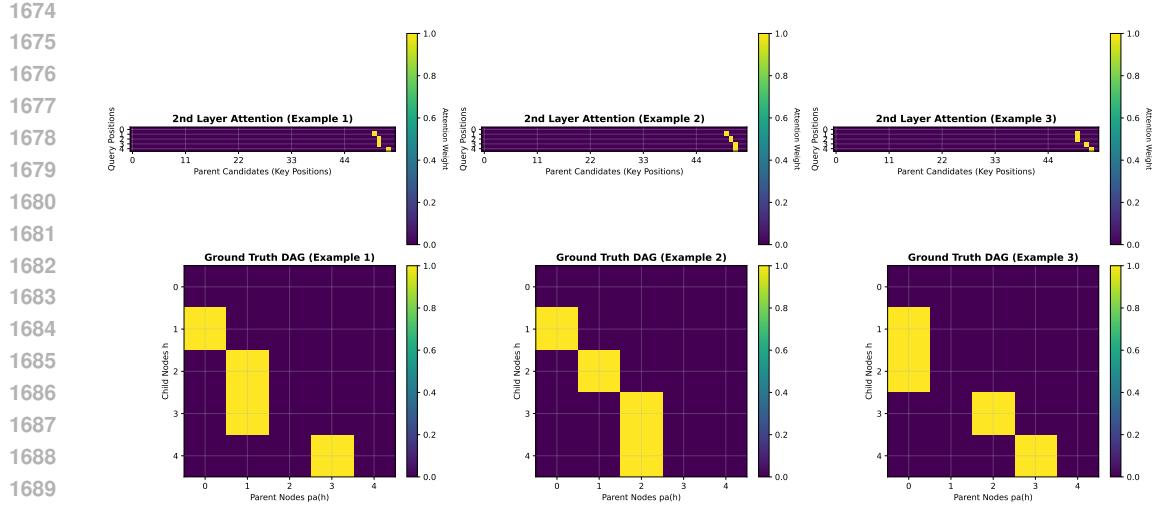


Figure 21: Visualization of 2nd-layer attention layer. Queries are from the last example $x_{1:H}^{L+1}$. Keys are $x_{1:T} = x_{1:H}^{1:L}$ the whole sequence. Attention layer of disentangled transformer can recognize the causal structure in-context.

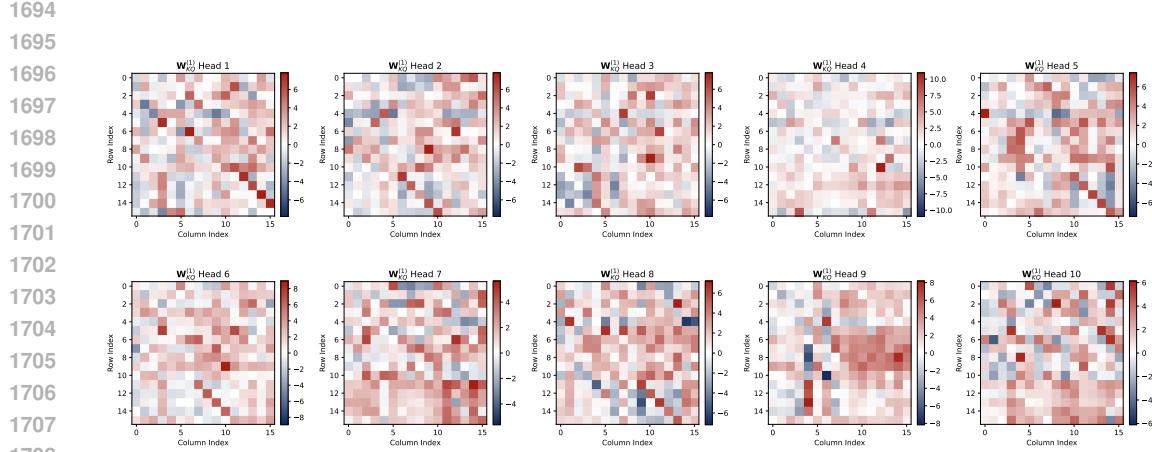


Figure 22: Parameter visualization of the first attention layer $W_{KQ}^{(1),k}$ (10 heads in total). Full interpretation is still challenging for huge parameter space. The attention-level behavior understanding can be referred to Fig. 20.

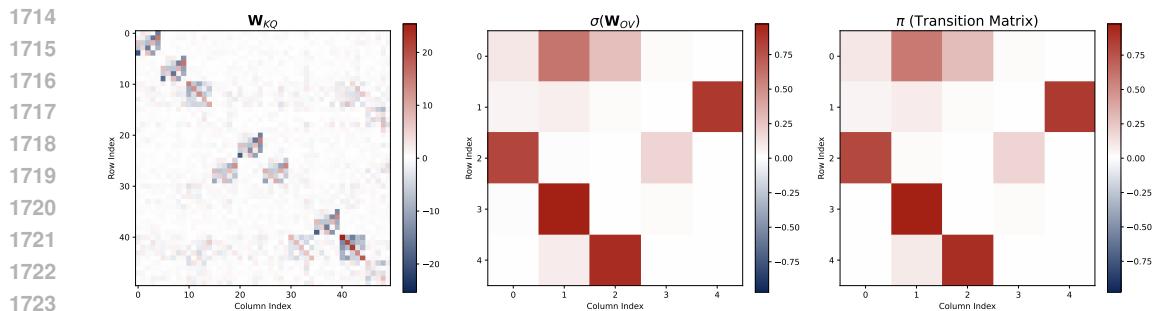


Figure 23: Parameter visualization of the second attention layer $W_{KQ}^{(2)}$, $W_{OV}^{(2)}$. In the variant of two types of Absolute position embedding, the second layer also shows strong alignment in diagonal patterns of W_{KQ} and log π pattern of W_{OV} .

1728 I STANDARD TRANSFORMER WITH FEEDFORWARD NEURAL NETWORK

1730 In this section, we consider a standard 2-layer transformer with FFN layer as follows.

$$\begin{aligned}
 1732 \text{Learnable Embedding: } \mathbf{h}_t^{(0)} &= \mathbf{Emb}_{\mathbf{V}}(\mathbf{w}_t) + \mathbf{Emb}_{\mathbf{P}}(\mathbf{w}_t), & \in \mathbb{R}^{d'} \\
 1733 \text{MHA Layer \& Residual: } \tilde{\mathbf{h}}_t^{(l)} &= \mathbf{h}_t^{(l)} + \text{MHA}_t(\mathbf{H}^{(l)}; \mathbf{W}_{KQ}, \mathbf{W}_{OV}), & \in \mathbb{R}^{d'}, \\
 1734 \text{FFN Layer \& Residual: } \mathbf{h}_t^{(l+1)} &= \tilde{\mathbf{h}}_t^{(l)} + \text{FFN}_t(\tilde{\mathbf{H}}^{(l)}; \mathbf{W}, \mathbf{b}) & \in \mathbb{R}^{d'}, \\
 1736 \text{Unembedding Layer: } \mathbf{f}_{\text{tf}}(\cdot \mid \mathcal{H}_t) &= \mathbf{W}_{\mathbf{U}} \mathbf{h}_t^{(L)} & \in \mathbb{R}^d,
 \end{aligned} \tag{44}$$

1738 where $\mathbf{H}^{(l)} = [\mathbf{h}_1^{(l)}, \dots, \mathbf{h}_T^{(l)}]$, the multi-head attention (MHA) is formulated by

$$\begin{aligned}
 1740 \text{MHA}_t(\mathbf{H}^{(l)}; \theta) &= \sum_k \sigma \left(\mathbf{h}_{1:t-1}^{(l)\top} \mathbf{W}_{KQ}^{(l),k} \mathbf{h}_t^{(l)} \right)^\top \mathbf{h}_{1:t-1}^{(l)\top} \mathbf{W}_{OV}^{(l),k}, \\
 1741
 \end{aligned} \tag{45}$$

1742 and the FFN layer

$$\text{FFN}_t(\tilde{\mathbf{H}}^{(l)}; \theta) = \mathbf{W}_2 \text{ReLU}(\mathbf{W}_1 \tilde{\mathbf{h}}_t^{(l)} + \mathbf{b}_1) + \mathbf{b}_2. \tag{46}$$

1745 We consider the two-layer transformer $L = 2$ with K heads in the first layer and one head in the
 1746 second.⁴ For the task, the input sequence consists of $M = 10$ in-context examples of Length- H
 1747 Markov chains with $d = 5$ states and the total length $T = H(M + 1)$. We set the hidden dimension
 1748 as $d' = 128$. For initialization, the parameters \mathbf{W} of the transformer is initialized randomly by
 1749 Gaussian intialization: $\mathbf{W}_{ij} \sim \mathcal{N}(0, 1/d_{\mathbf{W}})$ where $d_{\mathbf{W}}$ is decided by the dimension of \mathbf{W} . We
 1750 optimize the model using AdamW with a learning rate of 1×10^{-3} and a weight decay of 1×10^{-4} .
 1751 Fresh data are sampled at each iteration of training without repetition.

1752 **Experiment Results.** We train two transformers with 5000 steps and $K = 5$ or 10 heads in the
 1753 first layer. We observe the attention weights of the first layer visualized in Fig. 24a and Fig. 25a
 1754 implement the copying mechanism where the features of one context example are copied to the
 1755 position of last example $M + 1$: the heads of the first layer show a diagonal submatrix occurring at
 1756 the last several rows of example $M + 1$. Except for these, the remainings mainly show degenerated
 1757 attention patterns at the rows of the last example $M + 1$. In the visualization of the second layer, we
 1758 find that the trained standard transformer with MLPs can recognize the causal parents in its attention
 1759 weights of the 2nd layer. The aligned attention pattern and graph groundtruth in Fig. 24b and
 1760 Fig. 25b supports our construction of how transformers can handle with in-context causal learning.

1761 **Quantitive Results.** We provide the results regarding how accurate transformers during training
 1762 can select random parents in its second attention layer in Fig. 26. We use the cross-entropy loss as
 1763 the evaluation metric for the accuracy and compare the trained transformers with BMA. We observe
 1764 during training process, standard transformers gradually acquire the capability of in-context causal
 1765 learning and approximate the loss of BMA.

1768 ⁴Our implementation is based on the codebase provided by [Nichani et al. \(2024\)](#).

1782

1783

1784

1785

1786

1787

1788

1789

1790

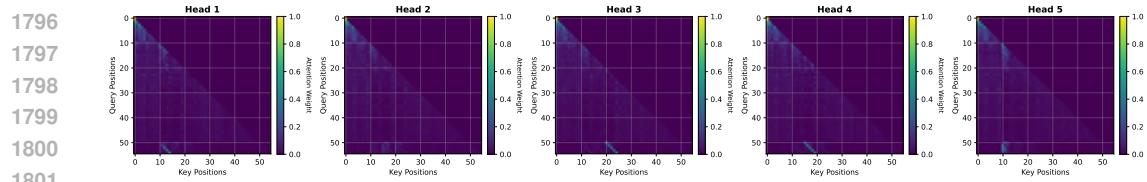
1791

1792

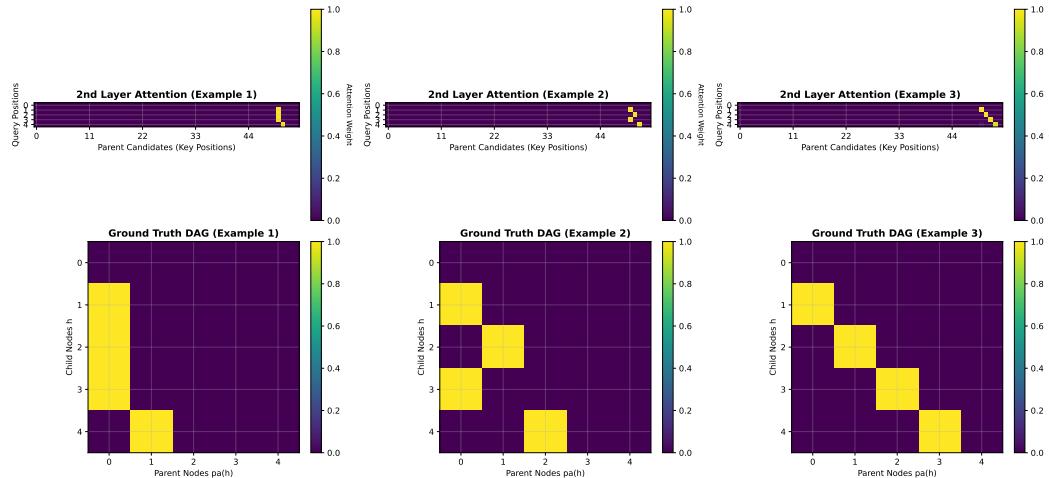
1793

1794

1795



(a) Visualization of first multi-head attention layer. Heads 1, 3 and 4 show the diagonal block at the rows of the last example. Information from previous examples is copied to the hidden space of the last example.



(b) Visualization of second attention layer. Queries are from the last example $x_{1:H}^{L+1}$. Attention layer of standard transformer can recognize the causal structure in-context.

Figure 24: Attention visualization of standard transformer with MLP (5 heads).

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

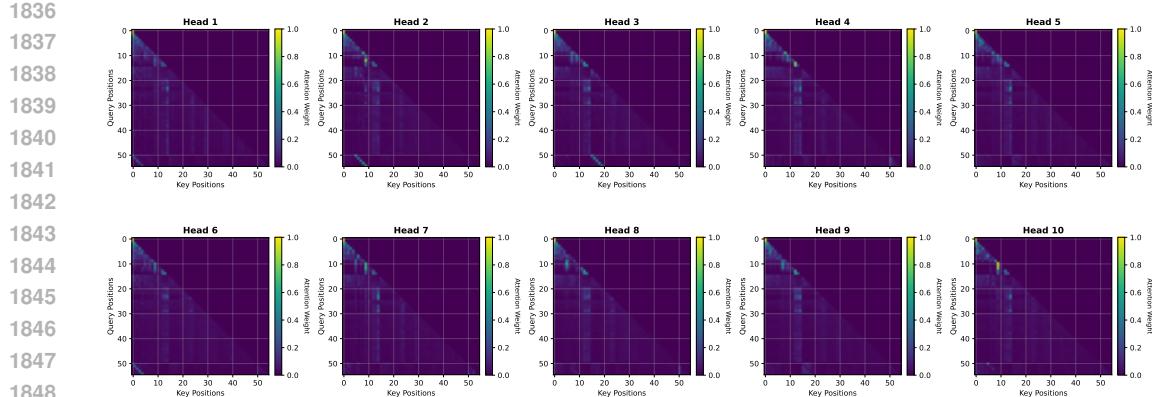
1831

1832

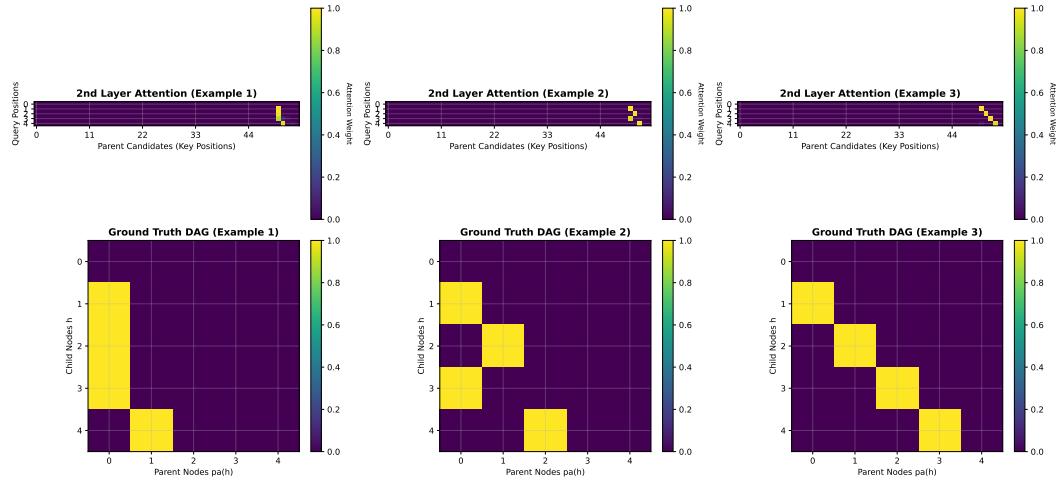
1833

1834

1835



(a) Visualization of first multi-head attention layer. Heads 1, 2, 3 and 6 show the diagonal block at the rows of the last example. Information from previous examples is copied to the hidden space of the last example.



(b) Visualization of second attention layer. Queries are from the last example $\mathbf{x}_{1:H}^{L+1}$. Attention layer of standard transformer can recognize the causal structure in-context.

Figure 25: Attention visualization of standard transformer with MLP (10 heads).

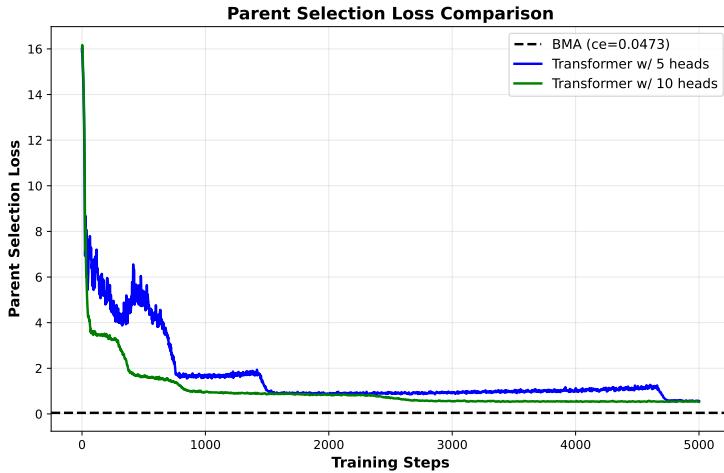


Figure 26: Parent selection loss \mathcal{L}_{pa} of the standard transformer with learnable position embedding and MLP (5 or 10 heads in the first layer). During training, standard transformers gradually acquire the capability of in-context causal learning and approximate the loss of BMA.