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Abstract

Planning, reasoning, and sequential decision-making have
played a pivotal role in the development of Al systems. While
Large Language Models (LLMs) have demonstrated impres-
sive capabilities, their evaluation for planning and Reason-
ing about Action and Change (RAC) problems is performed
using strict binary success criteria, which limits information
for further analysis and development of real-world agentic
systems. Given the probabilistic and autoregressive nature
of LLMs, this work proposes the use of simple non-binary
task-specific metrics for the evaluation of LLM responses for
planning and reasoning tasks that go beyond perfect matching
with ground truth, by utilizing set comparison methods, while
still maintaining rigid and non-malleable evaluation criteria.
We demonstrate the utility and usefulness of this type of met-
ric in obtaining richer data fidelity and information about the
quality, precision, nature of LLMs’ responses, and their close-
ness to the ground truth through evaluations on six different
tasks across two domains. With multiple case study exam-
ples, we additionally demonstrate the feasibility of compar-
ative analysis of different task-specific data distributions ob-
tained through this metric.

Introduction

The ability to plan, perform sequential decision-making,
and reason about action and change is one of the funda-
mental tenets of human intelligence, and has been one of
the cornerstones of Al. Today, modern generative Al and
Large Language Models (LLMs) are useful for a plethora of
applications, from question answering and document sum-
marization to code generation (Hagos, Battle, and Rawat
2024). Despite their impressive capabilities, LLMs have
shown significant limitations in planning, reasoning, and
decision-making, particularly in autonomous applications
(Kokel et al. 2025b; Valmeekam et al. 2023b; Kambhampati
et al. 2024; Handa et al. 2025). Such limitations in LLMs’
performance are noted through task evaluations that utilize
binary success criteria metrics that involve comparison with
ground truth answers obtained by automated solvers, plan-
ners, or validators. However, there exists useful information
about the quality and precision of the models’ responses for
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these task evaluations, which is not necessarily captured by
standard binary metrics, that can help with comprehensive
and domain/instance-specific diagnostic analyses, for devel-
oping real-world deployable agentic systems.

As LLMs are probabilistic models and generate tokens in
an autoregressive manner, it is perhaps not surprising that
they struggle to perform accurately on Reasoning about Ac-
tion, Change (RAC), and planning problems. However, by
considering intersection over union (IoU) metrics for task
evaluations, we find a more nuanced picture of these mod-
els’ task performance than is elicited by standard binary suc-
cess metrics. Specifically, our proposed metrics elicit more
information about LLMs’ task performance, related to pre-
cision and quality, that is missed when applying standard
binary success criteria as overviewed in figure 3. Having in-
formation about how close a model is to optimal or expected
task performance can be extremely useful for failure analy-
sis, causal analysis, and to make decisions about how best to
utilize the model in architectural frameworks that are based
on LLM-Modulo (Kambhampati et al. 2024), ReAct (Yao
et al. 2022), and other finetuning or prompting setups to en-
hance performance.

In the next section, we review benchmarks and related
works that evaluate LLMs on Planning and RAC tasks,
briefly detailing the tasks and metrics used. Then, we out-
line our evaluation domains, proposed metrics, and tasks.
Finally, we discuss the results, utility, and usefulness of our
metrics for RAC and Planning tasks through two examples.

Background & Related Works
Related Works

Recognizing the importance of benchmarking and evaluat-
ing the planning, decision-making, and reasoning abilities
of LLMs, various benchmarks have been proposed in the lit-
erature (Valmeekam et al. 2023a; Handa et al. 2025; He et al.
2022; Kokel et al. 2025b). He et al. propose the Textual Rea-
soning about Action and Change (TRAC) benchmark, with
4 Reasoning about Action and Change (RAC) tasks such as
projection, action executability, plan verification, and goal
recognition, evaluated in the Planning Domain Definition
Language (PDDL) based Blocksworld planning domain (He
et al. 2022). They pre-train and evaluate transformer mod-
els such as GPT-2 (Radford et al. 2019) on TRAC, and find



that they struggle to generalize to scaling of objects, action
sequence lengths, and composite tasks. The evaluations are
conducted in a standard binary (true/false) manner and the
overall accuracies are computed. However, it is unclear if
the task design maintains structural validity (measurement
reflecting the internal structure of the construct) (Salaudeen
et al. 2025).

Valmeekam et al. developed PlanBench, a PDDL-based
planning benchmark suite with 8 planning-related tasks,
such as plan generation, cost-optimal planning, plan ver-
ification, goal recognition, replanning, plan reuse, rea-
soning about actions and effects, and plan generalization
(Valmeekam et al. 2023a). the PlanBench work evaluates
LLMs like GPT-4 (Achiam et al. 2023) and Instruct-GPT-
3 (Ouyang et al. 2022) on their generated plans across
Blocksworld and Logistics domains, with a primary focus
on variants of planning tasks and a limited focus on RAC
tasks. The evaluations are performed based on the standard
binary plan success criteria, as has been used in automated
planning (Russell, Norvig, and Intelligence 1995; Ghallab,
Nau, and Traverso 2025).

Another notable benchmark is ActionReasoningBench,
which evaluates multiple LLMs on RAC tasks such as state
tracking, fluent tracking, action executability, and compos-
ite question combinations, on 8 different classical planning
competition domains (competition 2024) like Blocksworld
(Handa et al. 2025). The evaluation is performed on bi-
nary and free-response answers of LLMs, for a few fixed
sequence lengths of actions. However, it is important to note
here that the free response questions were evaluated using a
Llama-70B model in an LL.M-as-a-judge framework in or-
der to make the evaluation scalable, potentially leading to
inaccurate reporting of performance statistics (Wang et al.
2023).

More recently, Kokel et al. proposed ACP Bench that con-
sists of binary and multiple-choice questions on 7 differ-
ent atomic reasoning and planning tasks, such as reasoning
about applicable actions, atom reachability, action reachabil-
ity, plan verification, progression, landmarks, and plan jus-
tification. They perform comprehensive evaluations on vari-
ous LLMs on multiple classical planning domains, including
the Alfworld household domain (Shridhar et al. 2021) and a
novel ’swap’ planning domain (Kokel et al. 2025b). Follow-
ing this work, Kokel et al. performs evaluations on the gen-
erative response version of this dataset, where task-specific
evaluations use binary success metrics with perfect match-
ing criteria against stored ground truth answers (Kokel et al.
2025a), which may lead to low or unclear construct validity
(Salaudeen et al. 2025).

Domains

To demonstrate the utility of our proposed benchmarks, we
utilize standard IPC planning domains (competition 2024)
such as Blocksworld and Depots for our experiments to eval-
uate the planning and action reasoning abilities of LLMs.
For these two domains, we create 500 problem instances in
PDDL, for each of which we further create natural language
templates for the initial and goal states, and questions for
6 different tasks, resulting in approximately 6000 questions

that we use to evaluate the Llama 8B and 70B models. For
each problem, all the 6 task questions have the same object
complexity, initial state, and goal state, only differing in the
question prompt. A common natural language context con-
taining the domain description, initial state description and
goal state description (if necessary) is utilized for evaluating
the LLMs, to ensure as holistic an evaluation as possible.

Blocksworld: Blocksworld is a domain where blocks can
be placed on top of each other or on the table. There is one
robotic arm that can move the blocks. The goal is to rear-
range the blocks from an initial configuration to a goal con-
figuration. This can be challenging as there may be inter-
actions between subgoals. For our evaluation, we design a
challenging dataset of 500 problems with 3-12 blocks, that
have non-neutral initial states (A subset of blocks are in a
stack, and the problems require unstacking and re-stacking),
with an average optimal plan length of 18.7 actions.

Depots: The Depots domain is a combination of the
blocksworld and logistics domains. In this domain, trucks
can transport crates between places, the crates can be
stacked onto pallets using hoists, and crates can be loaded
into and unloaded from trucks using hoists. This do-
main inherits the challenges of subgoal interactions from
Blocksworld, and reasoning about unreachable actions and
states from Logistics. In this domain, we maintain the same
object complexity (18) across all problems of the dataset,
with an average optimal plan length 12 actions.

Tasks: Reasoning about Action, Change, and
Planning

Drawing from the above benchmarks in Section , we select
a set of key atomic tasks, such as action applicability, state
tracking, progression of effects, and optimal plan genera-
tion, along with a new atomic task called State Comprehen-
sion (each task is detailed below). We focus on evaluating
LLMs on free-response answers to task questions, instead of
multiple-choice and binary responses, in order to obtain bet-
ter construct validity and avoid construct confounds (Reuel-
Lamparth et al. 2024; Salaudeen et al. 2025).

Additionally, we formulate a simple non-binary task-
specific metric for evaluation of RAC and planning tasks: we
compute the Intersection over Union (IoU) of LLM answers
and ground truth answers as shown in equation 1, resulting
in task-specific metrics as shown in Table 1. Unlike binary
evaluation metrics that have a success/ failure criterion based
on perfect matching with ground truth answers, this kind
of ’set comparison’-based metric allows us to obtain more
fine-grained information about the quality of LLMs’ perfor-
mance for each task.

. LLM Answers N Ground Truth
Task Metric = (D)
LLM Answers U Ground Truth

The tasks are detailed as follows (with extended descrip-
tions available in the Appendix ):

Action Applicability: One of the fundamental atomic
RAC tasks is the ability to reason about applicable actions
at a given state. We evaluate the generative free responses of
LLMs by asking the LLM to list the applicable actions in a
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Figure 1: Llama 70B Performance with Standard bi-
nary success metric on Action Applicability Task in
Blocksworld; Accuracy = 0.014%; The model’s re-
sponses are correct on only 7/501 problems.

Histogram of Action Applicability for Llama 70B model on Blocksworld domain
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Figure 2: Llama 70B Performance with IoU metric on
Action Applicability Task in Blocksworld; This right-
skewed distribution provides information on the precision
of the model’s responses. We can see that the model is
close to correctness(> 75%) on more than 200/501 prob-
lems.

Figure 3: Comparison of IoU Metric vs Standard Binary Success metric. We get a lot more data fidelity and information about
precision and quality of responses from the IoU metric compared to the binary success metric.

given state, provided the common context, as mentioned in
the Domains section above, using the IoU evaluation metric
shown in equation 1 and table 1.

State Comprehension: This task is simply about under-
standing the given state, such as all the objects, predicates
associated with their properties, as well as the environment
properties. Thus, this task requires the LLM to provide all
the predicates associated with a given state, given the com-
mon context of domain and initial state descriptions.

Progression: This task evaluates the LLMs’ ability to un-
derstand the effects of an action on the state. We design two
separate atomic tasks asking the LLM for the positive and
negative effects of a single action, respectively, given the
common context of domain and initial state descriptions and
the specified action.

State Tracking: State tracking is the ability to track en-
tire states across multiple time steps after executing a se-
quence of actions. We design an atomic version of this task
by asking LLMs to provide the complete set of predicates
that represent the final state after performing a sequence of
two actions.

Plan Generation: Plan generation is a classical planning
task where the task is to provide a valid sequence of ac-
tions that can be executed consecutively from a given state
to reach the goal state. We prompt the LLMs for generating
plans given the domain, state, and goal contexts. Evaluation
is performed using the well-known set comparison metric
called *Action Distance’ (Nguyen et al. 2012), as shown in
Table 1 and the evaluation is further detailed in the Appendix

Cost-Optimal Plan Generation: For a plan generation
task, if actions have costs, then an optimal plan has the mini-
mum possible cost. We prompt the LLMs to provide optimal

plans given the domain, state, and goal context. Evaluation is
performed using the Action Distance metric (Nguyen et al.
2012).

Results and Discussion

In this work, we perform evaluations with 6 tasks (consid-
ering progression effects as two tasks) across two domains
of 500 problems each, on two instruction-tuned pretrained
LLMs, using informative task-specific IoU metrics. In fig-
ure 2, we can see that the data distribution obtained through
the IoU metric provides us with substantial information on
the precision, quality, and nature of models’ responses that
are entirely missed by binary success metrics, as shown in
figure 1.

In figure 2, the right-skewness of the distribution demon-
strates that the model is much closer to being correct than the
0 values for 494 samples imply. In fact, the model’s perfor-
mance is over 75% accurate for more than 200 samples. This
information is extremely beneficial for compute-intensive
and cost-incurring decisions such as finetuning procedures,
and for inference-time decisions such as model-routing, re-
peated sampling or prompting setups. Additionally, figure
2 shows that over 70 instances have a low performance of
< 0.05%, indicating the need for instance-specific analysis
of those samples. Further, this metric helps the design of fu-
ture experiments to understand and improve specific atomic
reasoning constructs or capabilities of generative Al models,
such as reasoning about action applicability and state under-
standing.

In figure 6, we compare the IoU metric performance
graphs of action applicability and state comprehension tasks
of Llama 8B model from the Depots domain. From the stark
contrast in the skewness of the distributions, it is pretty



Table 1: IoU Task Evaluation Metrics Summary. (GT: Ground Truth)

Task

Resulting Evaluated Formula

Action Applicability
State Comprehension
Progression (Positive/ Negative)

State Tracking

Plan Generation & Cost-Optimal Plan Generation

# Correct LLM Answered Actions
#LLM Answered ActionsU# GT Applicable Actions

# Correct LLM Answered Predicates
Total LLM Answered PredicatesUGT Predicates

# Correct LLM Answered Effects
Total LLM Answered EffectsUGT Effects

# Correct LLM Answered Predicates
Total LLM Answered PredicatesUGT Predicates

1— # Overlapping Unique Actions
All Unique LLM ActionsUUnique Actions from GT Plan

Histogram of Action Applicability for Llama 8B model on Depots domain
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Figure 4: Llama 8B Performance with IoU metric on Ac-
tion Applicability in Depots domain;

Histogram of State Description for Llama 8B model on Depots domain
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Figure 5: Llama 8B Performance with IoU metric on
State Comprehension/ Description Task in Depots do-
main

Figure 6: Comparison of IoU Metric evaluation of Action Applicability and State Comprehension tasks. It is evident from
the left-skewed distribution of figure 4 and the right-skewed distribution of figure 5 that Llama 8B model’s responses and
performance is more precise and of higher quality for state comprehension than for reasoning about applicable actions.

clear that the quality and precision of the model’s responses
for state comprehension are much better than its ability for
reasoning about applicable actions. Also, the spread of the
distribution for the Action applicability task, according to
figure 7, indicates that the model’s responses are less pre-
cise and more fuzzy compared to those of State comprehen-
sion in the Depots domain. Thus, the IoU metric can poten-
tially provide discriminant validity (Salaudeen et al. 2025),
where the evaluation helps differentiate between constructs
that should be distinct. Essentially, this distributional com-
parison indicates that the model is better at understanding a
given initial state than at reasoning about what actions can
be applied in that state in the Depots domain.

Also, these distributions can be compared with those of
State Tracking over 2 actions, shown in figure 11, which has
a slightly lesser height, but a more chaotic spread, which
can provide information about the model’s reasoning ability
with reference to the domain-specific state properties. Com-

paring figures 4 and 11, the model seems to be more precise
at tracking changes across states than at reasoning about ap-
plicable actions in the current state. However, further case-
based analysis is required to examine the action sequence
and the corresponding affected objects in high-state-tracking
performance samples, to investigate whether any particular
domain dynamics lead to higher state-tracking performance.
Using the state tracking IoU metric, we have found prelimi-
nary evidence of specific domain dynamics acutely affecting
the variance in state tracking performance in both domains,
particularly with odd and even numbered action sequence
lengths.

Thus, the IoU metric is beneficial in reasoning and plan-
ning tasks, to obtain information on the precision, quality,
nature of models’ responses, and their closeness to ground
truth, all of which are highly valuable for development
decisions on finetuning and model utility in architectural
frameworks. We have demonstrated the utility of the met-



ric through evaluations and comparative examples across
two domains. A more in-depth correlational analysis across
tasks, domain-specific and task-specific investigations that
are beyond the scope of this project is left for future work.
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Extended Task Descriptions
Action Applicability

One of the fundamental atomic RAC tasks is the ability to
reason about applicable actions at a given state. Previous
works have shown that LLMs fall short of this ability and
tend to provide invalid or hallucinated actions (Xie et al.
2024; Kokel et al. 2025b; Handa et al. 2025). For actions
to be valid in a given state, specific preconditions required
by those actions must hold. We evaluate the generative free
responses of LLMs by asking the LLM to list the applica-
ble actions in a given state, provided the common context,
as mentioned in section , using the IoU evaluation metric
shown in equation 1 and table 1.

State Comprehension

A fundamental requirement of reasoning about actions,
change, and planning is to simply understand the given state,
such as all the objects, predicates associated with their prop-
erties, and the environment properties. It is impossible to
accurately perform any higher-level reasoning task, such as
state tracking, action applicability, or planning, without fully
understanding the properties of the current state. We ask the
LLM to provide the list of predicates that fully represent
the current state, giving the domain and state description,
and available predicate information as context. Note that the
task still involves some basic inferences about state proper-
ties from the generic domain description, based on the initial
state. The ground truth predicates representing the state are
stored and used for evaluating LLMs’ responses using the
IoU metric mentioned in Table 1.

Progression

This task evaluates the LLMs’ ability to understand the ef-
fects of an action on the state. Keeping track of effects
and changes through multiple states and action sequences
is an important aspect of sequential decision-making and
planning. LLMs have been shown to struggle with tracking
changes across sequences of actions and states (Handa et al.
2025; Kokel et al. 2025b; Valmeekam et al. 2023b). Also,
prior works have found that LLMs’ performance differs with
positive and negative predicates (Handa et al. 2025). We de-
sign two atomic tasks for tracking the positive and negative
effects of a single action, given the domain description, cur-
rent state description, and the available predicates (that can
be used to represent effects on states). For both tasks, the
predicates representing the corresponding effects are stored
as ground truth and used for evaluating LLMs’ responses
using the progression IoU metric mentioned in Table 1.

Positive Effects Positive effects are those that are not true
in the current state and become true in the following state af-
ter the action is performed. These are also called add effects.
Identifying positive effects is important as emerging effects
can be preconditions to future actions along a plan.

Negative Effects Negative effects are those that are true
in the current state and become false in the following state
after the action is performed. These are also called delete ef-
fects. Identifying negative effects is extremely important to

avoid dead loops, inconsistent states, and ruling out invalid
actions.

State Tracking

State tracking is the ability to track entire states across mul-
tiple time steps after executing a sequence of actions. State
tracking is a fundamental ability required for planning, as
it involves generating valid successor states and actions at
every visited state. Similar to Handa et al.’s ActionReason-
ingBench, we design an atomic version of this task by asking
LLMs to provide the complete set of predicates that repre-
sent the final state after performing an action or sequence of
actions. In this work, we provide a sequence of 2 actions, and
prompt the LLM for the predicates of the final state, with do-
main and initial-state descriptions as context. The evaluation
is performed in the same manner as State Comprehension,
using the IoU metric in Table 1.

Plan Generation

Plan generation is a classical planning task where the task
is to provide a valid sequence of actions that can be exe-
cuted consecutively from a given initial state to reach the
goal state. Given the domain description, initial state, and
goal state, this task asks the LLM to provide a sequence of
actions that constitute a plan to reach the goal state from
the initial state. As there may be multiple possible satisfic-
ing plans from the initial state to reach the goal state, we
store only the optimal plan as the ground truth reference for
evaluation with the action distance metric.

Evaluation with the Action Distance Metric Unlike for
previous tasks, there are already various proposed metrics
in the planning literature to measure plan quality, such as
Action Distance, Causal-Link Distance, and State Sequence
Distance (Nguyen et al. 2012; Kulkarni et al. 2016). These
metrics have been used to measure the quality of plans com-
pared to an optimal plan. As LLMs are probabilistic mod-
els and fare poorly at generating valid plans (Kambham-
pati et al. 2024), utilizing such metrics can shed some light
on their performance at generating plans that would not be
available with perfect accuracy measures. Hence, we utilize
the action distance metric for our evaluation. However, it
is important to note that action distance is a set compari-
son metric between unique action sets and does not account
for the ordering of actions. Also, unlike the IoU metrics for
other tasks, the action distance metric has an additive inverse
with respect to 1. This means that an action distance of 1
represents that the model’s plan has an entirely different set
of actions compared to the ground truth reference plan. And
an action distance of O represents that the model’s plan has
the same set of actions as the ground truth reference plan.
Howeyver, as the action distance metric does not account for
ordering of actions, a plan with action distance 0 may still
be invalid and incorrect. This can be construed as “’the plan
has all the right actions, but not in the right order”. From
this perspective, the action distance metric can be useful to
identify how far off generative Al models are at generating
the correct set of actions.



For the plan generation task, although there may be nu-
merous satisficing plans for a given pair of initial state and
goal state, we evaluate the action distance metric with re-
spect to an optimal plan as the reference. This provides us
with information on the model’s ability to choose landmark
actions (actions that are part of all plans for a given initial
state and goal state).

Cost-Optimal Plan Generation

If actions have costs, then an optimal plan is one that has the
minimum cost. Unlike the other RAC tasks, the expected
answer here is an ordered and optimal set of actions. This
inherently implies a stricter evaluation criterion and, hence,
is also more complex, as it requires coming up with optimal,
goal-reaching actions, in addition to generating valid plans.
Evalution is performed similarly to plan generation using the
action distance metric with optimal plan as the reference,
which is also the ground truth for this task.

Evaluation Setup

In order to enable performance comparison between
tasks and characterize model-specific and model-agnostic
strengths, the evaluation is set up to be as holistic as possible.
Thus, to prompt the models for each task, a common prompt
comprising the domain description, action model descrip-
tion, description of the initial state conditions, and (if neces-
sary) goal state conditions is provided to the models. Finally,
the question that is specific to each task, such as ”Gener-
ate a list of actions that are applicable in the given state,” is
provided to the model. Depending on whether the task in-
volves output of actions or predicates, the system prompt is
also task-specific, instructing the model to ”provide actions
within [] and separated by commas.” As the models that we
are evaluating are instruction-tuned, we believe the changes
in the system prompt instructing the model to provide an-
swers in certain formats, to enable robust and easier evalua-
tion, should not affect the model performance significantly.
The full prompts are provided in the Prompts section of the
Appendix .

Tasks Performance Graphs for IoU metric on
Depots Domain

Histogram of Action Applicability for Llama 8B model on Depots domain
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Figure 7: Llama 8B Performance on Action Applicability in
Depots Domain

Histogram of State Description for Llama 88 model on Depots domain
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Figure 8: Llama 8B Performance on State Comprehension
in Depots Domain



Histogram of Progression Positive for Llama 8B model on Depots domain
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Figure 9: Llama 8B Performance on Identifying Positive Ef-
fects of Action progression in Depots Domain

Histogram of Progression Negative for Llama 8B model on Depots domain
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Figure 10: Llama 8B Performance on Identifying Negative
Effects of Action Progression in Depots Domain

Histogram of State Tracking 2 for Llama 8B model on Depots domain
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Figure 11: Llama 8B Performance on State tracking with 2
Actions in Depots Domain

Histogram of Optimal Plan Action Distance for Llama 8B model on Depots domain
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Figure 12: Llama 8B Optimal Plan Responses’ Action Dis-
tance Histogram



Tasks Performance Graphs for IoU metric on
Blocksworld Domain

Histogram of Action Applicability for Llama 8B model on Blocksworld domain
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Figure 13: Llama 8B Action Applicability Histogram on
Blocksworld Domain

Histogram of State Description for Llama 8B model on Blocksworld domain
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Figure 14: Llama 8B State Comprehension Histogram on
Blocksworld domain

Histogram of State Tracking 2 for Llama 8B model on Blocksworld domain
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Figure 15: Llama 8B Performance Histogram for State
tracking with 2 actions

Histogram of Plan Gen Action Distance for Llama 8B model on Blocksworld domain
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Figure 16: Llama 8B Plan Generation Action Distance His-
togram

Histogram of Action Applicability for Llama 70B model on Blocksworld domain
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Figure 17: Llama 70B Action Applicability Histogram



Histogram of Optimal Plan Action Distance for Llama 70B model on Blockswerld domain
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Figure 18: Llama 70B Optimal Plan Action Distance His-
togram

Prompts

Prompt: Plan Generation

”This is a blocksworld domain where blocks can be
placed on top of each other or on the table. There is one
robotic arm hand that can move the block. Here are the
actions that can be performed:

(pick-up block) to Pick up a block from the table,
(unstack block another_block) to Unstack a block from
on top of another block,

(put-down block) to put down a block on the table,
(stack block another_block) to stack a block on top of
another block.

There are the following restrictions on actions:

Only one block at a time can be picked up or unstacked.
A block can only be picked up or unstacked if the hand
is empty. A block can only be picked up if it is on the
table and is clear. A block is clear if no other blocks are
on top of it and if it is not picked up. A block can only
be unstacked from on top of another block if it is truly
on top of the other block. A block can only be unstacked
from on top of another block if it is clear. Once a block is
picked up or unstacked, it is being held and is no longer
clear. One a block is being held, that block can either be
put-down or stacked on top of another block. A block
can only be stacked on top of another block by me if
the block onto which it is being stacked is clear. Once a
block is put down or stacked, the hand becomes empty.
Once a block is stacked on top of a second block, the
second block is no longer clear.

There are 3 blocks. Currently, the robotic arm is empty.
The following blocks are on the table: i, f. The following
blocks are stacked on top of another block: block g is on
block i. The goal is to reach a state where the following
facts hold: The following blocks are on the table: f. The
following blocks are stacked on top of another block:
block g is on block i and block i is on block f.

Provide a plan as a list of actions that can be executed
consecutively from the current state to reach the goal
state. The available actions are: (pick-up ?ob) - pick
up block ?ob; (put-down ?0b) - put down block ?ob;
(stack ?ob 2underob) - stack ?ob on top of 2underob;
(unstack ?ob ?underob) - unstack ?ob from on top of
?underob;”

. J

Prompt: Action Applicability

”This is a blocksworld domain where blocks can be
placed on top of each other or on the table. There is one
robotic arm hand that can move the block. Here are the
actions that can be performed:
(pick-up block) to Pick up a block from the table,
(unstack block another_block) to Unstack a block from
on top of another block,
(put-down block) to put down a block on the table,
(stack block another_block) to stack a block on top of
another block.
There are the following restrictions on actions:
Only one block at a time can be picked up or unstacked.
A block can only be picked up or unstacked if the hand
is empty. A block can only be picked up if it is on the
table and is clear. A block is clear if no other blocks are
on top of it and if it is not picked up. A block can only
be unstacked from on top of another block if it is truly
on top of the other block. A block can only be unstacked
from on top of another block if it is clear. Once a block is
picked up or unstacked, it is being held and is no longer
clear. One a block is being held, that block can either be
put-down or stacked on top of another block. A block
can only be stacked on top of another block by me if
the block onto which it is being stacked is clear. Once a
block is put down or stacked, the hand becomes empty.
Once a block is stacked on top of a second block, the
second block is no longer clear.
There are 3 blocks. Currently, the robotic arm is empty.
The following blocks are on the table: i, . The following
blocks are stacked on top of another block: block g is on
block i.
Generate a list of ground actions that are applicable
in this state. The available actions are: (pick-up ?ob)
- pick up block ?obj; (put-down ?ob) - put down block
?0b; (stack ?0b ?underob) - stack ?ob on top of ?un-
derob; (unstack ?ob ?underob) - unstack ?ob from
on top of ?underob;”

- J
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Figure 20: Llama 70B Performance with IoU metric on

Figure 19: Llama 8B Performance with IoU metric on
Action Applicability in Blocksworld domain

Action Applicability in Blocksworld domain;

Figure 21: Comparison of IoU Metric evaluation of Llama 8B and 70B models on the Action Applicability Task. It is evident
from the left-skewed distribution of figure 19 and the right-skewed distribution of figure 20 that Llama 70B model’s responses
and performance is more precise and of higher quality than those of the Llama 8B Model.



