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Abstract

Concept-based explanations work by map-001
ping complex model computations to human-002
understandable concepts. Evaluating such ex-003
planations is very difficult, as it includes not004
only the quality of the induced space of possi-005
ble concepts but also how effectively the chosen006
concepts are communicated to users. Existing007
evaluation metrics often focus solely on the008
former, neglecting the latter.009

We introduce an evaluation framework for mea-010
suring concept explanations via automated sim-011
ulatability: a simulator’s ability to predict the012
explained model’s outputs based on the pro-013
vided explanations. This approach accounts014
for both the concept space and its interpreta-015
tion in an end-to-end evaluation. Human stud-016
ies for simulatability are notoriously difficult017
to enact, particularly at the scale of a wide,018
comprehensive empirical evaluation (which is019
the subject of this work). We propose using020
large language models (LLMs) as simulators021
to approximate the evaluation and report vari-022
ous analyses to make such approximations reli-023
able. Our method allows for scalable and con-024
sistent evaluation across various models and025
datasets. We report a comprehensive empirical026
evaluation using this framework and show that027
LLMs provide consistent rankings of explana-028
tion methods. Code available at GitHub.029

1 Introduction030

The need for transparent and interpretable models031

has remained a principal need in NLP, leading to032

the emergence of Explainable AI (XAI) as a means033

of fostering trust and understanding in these sys-034

tems. Among the various XAI approaches, concept-035

based explanations stand out for their ability to036

bridge the gap between complex model computa-037

tions and human-understandable concepts. Unlike038

feature attribution methods that focus on individual039

input features, concept-based explanations group040
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Figure 1: How can we choose concept extraction (1)
and interpretation methods (2) to make them more useful
to humans? Concept-based XAI relies on identifying
relevant, interpretable concepts in the model’s latent
space. Different techniques yield varying concepts and
importance scores (3). The simulatability score (bottom)
evaluates how effectively these explanations help users
understand model predictions.

features into higher-level abstractions or "concepts" 041

more aligned with human cognition (Deveaud et al., 042

2014; Kim et al., 2018; Ghorbani et al., 2019; Fel 043

et al., 2023b), facilitating better interpretation of 044

the model’s internal reasoning. 045

However, evaluating such methods remains a 046

challenge. Evaluation metrics often lack ground- 047

ing in human interpretation (e.g., see Fig. 1–while 048

SVD has a much higher score with many metrics, 049

it leads to concepts that are much less useful for un- 050

derstanding the model’s predictions). Current met- 051

rics are proxies for either faithfulness or plausibil- 052

ity (Jacovi and Goldberg, 2020), and the trade-off 053

between the two is rarely explored in this setting. 054

Furthermore, existing metrics focus on concept- 055

space evaluation and overlook the interpretation of 056

concept dimensions. Following previous work (Fel 057
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et al., 2023a), we argue that concept-based expla-058

nation frameworks have three main components:059

constructing the concept space, evaluating concept060

importance, and interpreting concepts.061

We propose using simulatability (Hase and062

Bansal, 2020; Colin et al., 2022) as a reliable063

method of enacting a comprehensive evaluation.064

Simulatability assesses the ability of a meta-065

predictor Ψ (simulator) to understand predictions066

of a model f by measuring the capacity of Ψ to067

simulate the predictions of f empirically. This ap-068

proach evaluates both faithfulness and plausibility.069

A simulatability experiment consists of three070

phases: i) Ψ is introduced to the task during the071

Initial Phase (IP); ii) learns the model’s behavior in072

the Learning Phase (LP); and iii) attempts to sim-073

ulate f ’s predictions during the Evaluation Phase074

(EP). We adapted simulatability to concept-based075

explanations, optionally introducing model-wise076

explanations at IP and sample-wise explanations077

at LP. However, explanations should never be pro-078

vided at EP so that the labels are not leaked.079

Simulatability is often evaluated through user080

studies. However, the number of participants081

necessary for an extensive method benchmark082

makes such studies prohibitively costly (Poursabzi-083

Sangdeh et al., 2021; De Bona et al., 2024)084

and notoriously sensitive to superficial con-085

founders (Schuff et al., 2022). In this paper, we086

explore the use of large language models (LLMs)087

as meta-predictors, referred to as user-LLMs. Pre-088

vious work (De Bona et al., 2024) has shown the089

potential of such meta-predictors, with results ex-090

hibiting high correlations with human performance.091

We experiment with a wide variety of datasets,092

models, user-LLMs, and methods. As simulatabil-093

ity scores are only comparable for equivalent set-094

tings, we aggregated these scores using Copeland’s095

ranked-choice voting method (Copeland, 1951;096

Szpiro, 2010). This gave us comparable method097

rankings regardless of the experimental setup. Fur-098

thermore, most of the differences between the pair-099

wise methods were statistically significant. We100

tested five different methods across various datasets101

and meta-predictors. Non-negative Matrix Factor-102

ization (NMF; Lee and Seung, 1999) was overall103

the best-performing method.104

Contributions:105

A generalizing formalization of concept-based106

explanations components: (1) concept space, (2)107

concept importance, and (3) concept interpretation.108

An evaluation framework using simulatability to 109

assess the interpretability of concept-based expla- 110

nation methods. 111

User-LLMs for simulatability: A demonstra- 112

tion of user-LLMs as effective meta-predictors in a 113

simulatability framework. 114

A comprehensive empirical analysis across mul- 115

tiple use-cases, with statistical significance. 116

2 Concept Explanations: Background 117

The field of explainable artificial intelligence (XAI) 118

for classification tasks has witnessed significant 119

growth, driven by the widespread adoption of 120

deep learning techniques. Among the various ap- 121

proaches, attribution methods (Zeiler and Fergus, 122

2014; Ribeiro et al., 2016; Shrikumar et al., 2017; 123

Lundberg, 2017) have traditionally dominated the 124

literature, offering insights by highlighting the con- 125

tributions of input features to model predictions. 126

However, concept-based methods (Kim et al., 2018; 127

Ghorbani et al., 2019; Koh et al., 2020; Yeh et al., 128

2020; Zarlenga et al., 2022; Jourdan et al., 2023b) 129

have recently gained increasing attention, provid- 130

ing a complementary perspective by focusing on 131

high-level, human-interpretable concepts to explain 132

model behavior. 133

Supervised vs. Unsupervised. Within concept- 134

based explainability methods, two main categories 135

can be identified. The first relies on supervised con- 136

cepts constructed using labeled concept datasets. 137

This category includes methods such as CAV (Con- 138

cept Activation Vector) (Kim et al., 2018) for post- 139

hoc approaches and CBM (Concept Bottleneck 140

Model) (Koh et al., 2020) for by-design frame- 141

works. However, finding labeled concepts is in- 142

herently difficult, and creating datasets to repre- 143

sent concepts often introduces substantial human 144

bias (Ramaswamy et al., 2023). 145

By contrast, unsupervised concept-based meth- 146

ods do not rely on labeled concepts and instead 147

extract them directly from the model’s latent space. 148

Neurons are not interpretable in themselves (El- 149

hage et al., 2022; Colin et al., 2024; Dreyer et al., 150

2024). Hence, the most widely used approach treats 151

concepts as a linear combination of neurons – di- 152

rections in the latent space (Kim et al., 2018; Yeh 153

et al., 2020; Zhang et al., 2021; Cunningham et al., 154

2023; Fel et al., 2023b; Jourdan et al., 2023b; Zhao 155

et al., 2024). Recent advances in mechanistic inter- 156

pretability have focused on Sparse Auto-Encoders 157
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(SAEs; Ng et al., 2011; Makhzani and Frey, 2013;158

Domingos, 2015) to find these concepts (Bricken159

et al., 2023; Rajamanoharan et al., 2024a,b; Tem-160

pleton et al., 2024; Gao et al., 2024; Lieberum et al.,161

2024; Fel et al., 2024).162

Evaluations. Post-hoc, unsupervised concept-163

based explanations evaluation typically focuses on164

two main properties: faithfulness and plausibility165

(Jacovi and Goldberg, 2020). Faithfulness-oriented166

metrics – such as completeness (Yeh et al., 2020),167

fidelity (Zhang et al., 2021), relative ℓ2 (Fel et al.,168

2023a), FID and OOD (Fel et al., 2023a), and MAE169

(Bricken et al., 2023) – measure how well the iden-170

tified concepts preserve the information from the171

model’s original embeddings. In addition, plausibil-172

ity is often inferred from simplicity-based proxies173

such as sparsity (Fel et al., 2023a; Bricken et al.,174

2023) and conciseness (Vielhaben et al., 2023).175

Many evaluation frameworks rely on labeled con-176

cepts (e.g., CEBaB (Abraham et al., 2022)), which177

are often challenging to define, validate, and align178

with a model’s internal representations. Although179

some studies have performed human evaluations180

(Zhang et al., 2021; Barua et al., 2024), to the best181

of our knowledge, no previous work has applied182

simulatability to concept-based explanations.183

Simulatability. Simulatability can be defined as184

the degree to which “a user can correctly and ef-185

ficiently predict the method’s results” (Kim et al.,186

2016; Hase and Bansal, 2020; Colin et al., 2022).187

It evaluates how useful and understandable an ex-188

planation is to a user. Recent findings indicate that189

large language models (LLMs) can approximate190

human judgments at scale (De Bona et al., 2024).191

Hence, we propose using LLMs as meta-predictors192

to evaluate simulatability and explainability with-193

out relying on predefined labeled concepts.194

3 A Theoretical Framework for Post-hoc195

Unsupervised Concept-XAI196

Consider classification models f : X −→ Y with197

input space X and output space Y . The model is198

decomposed into: f = g ◦ h : X h−→ H g−→ Y with199

H ⊆ Rp the embedding space. In our experiments,200

we divide the model at the penultimate layer, in201

DistilBERT (Sanh et al., 2019a) h outputs would202

be the token [CLS]. Concept-based explanations203

have three main components described in the three204

following subsections and illustrated in Fig. 2.205
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Figure 2: A generalizing formalization of Concept-
based explanations. For a model f = g ◦ h, concepts
can be extracted from its activations A = h(X) using
the concept encoder t, and can be decoded using the
concept decoder t−1. The explanation can interpreted
by keeping the most relevant words for each concept.
Finally, an importance score can be attributed to each
concept to understand their role in the model’s rationale.

3.1 Concepts Space 206

The first step of post-hoc unsupervised concept- 207

based explainability is to define the concept space 208

C ⊆ Rk through concept extraction methods. 209

Concept extraction methods allow the construc- 210

tion of a projection t : H −→ C and its bi- 211

jection (or approximation) t−1 : C −→ H (ap- 212

pendix C.3 defines how are obtained such con- 213

cept projection). Note the input-to-concept part 214

fic : X h−→ H t−→ C and the concept-to-output 215

part fco : C t−1

−−→ H g−→ Y . Finally, we can con- 216

struct fc = fco ◦ fic : X fic−−→ C fco−−→ Y , an unsu- 217

pervised CBM (Concept-Bottleneck Model) (Koh 218

et al., 2020). Note that in many concept-based 219

explainability methods for classification, concept 220

extractions are done class-by-class. In our case, we 221

treat all classes at the same time to obtain a com- 222

mon concept space, as in Jourdan et al. (2023a). 223

3.2 Concepts Interpretability 224

The second part of post-hoc unsupervised concept- 225

based explainability is to interpret concepts. Con- 226

cepts are directions in the latent space and are not 227

interpretable as is. How to represent a concept is 228

still an open question. It is possible to represent 229

concepts as word clouds (Dalvi et al., 2022), give 230
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examples that activate the concepts and highlight231

important words (Jourdan et al., 2023b), or label232

the given concepts by either: asking human annota-233

tors (Dalvi et al., 2022); finding the most aligned234

label in a concept bank (Sajjad et al., 2022); or235

asking an LLM to label the concept based on max-236

imally activating examples (Bricken et al., 2023;237

Templeton et al., 2024). The last solution has been238

the most popular in the mechanistic interpretability239

literature. However, its computational cost is high240

for interpreting a single concept. In this paper, we241

explored two different interpretability methods:242

Concept Maximally Activating Words (CMAW)243

selects the five words that most strongly activate244

a concept and, if negative activations exist, also245

the five least activating words. These words are246

selected from words frequent enough in the dataset.247

With regards to concept dimension i, CMAW can248

be computed as follows:249

CMAW (cpti) = topk
x∈words

fic(x)i (1)250

o1 Concept Alignment (o1CA) . For o1CA, we251

prompt GPT o1 (OpenAI, 2024a) for potential con-252

cept labels and corresponding representative sen-253

tences, then align discovered concepts to these la-254

bels by choosing the label with the highest mean255

activation on the corresponding sentence. Thus, for256

our concept dimension i, with Xj the sentences257

corresponding to o1 concept j, we have:258

o1CA(cpti) = max
j∈o1_cpt

mean
x∈Xj

fic(x)i (2)259

3.3 Concepts Importance260

Concept attribution methods φ : C −→ Rk provide261

the importance of each concept for a given predic-262

tion based on the concepts. Fel et al. (2023a) show263

(theorem 3.2) that when the model is divided at the264

penultimate layer, certain attribution methods (e.g.,265

Gradient Input (Shrikumar et al., 2017)) are opti-266

mal. We, therefore, choose Gradient Input for its267

simplicity and efficiency. Local concepts’ impor-268

tance φ can be defined for a given sample x ∈ X ,269

with concepts representation u = fic(x) ∈ C, by270

Eq. 3. Through this, with X ∈ X n the train set271

samples and U = fic(x) ∈ Cn their concepts rep-272

resentations, we can define global concepts impor-273

tance Φ with regard to class c through Eq. 4.274

φfco(u) = u∇ufco(u) (3)275
276

Φfco,c = mean
u∈U |fco(u)=c

φfco(u) (4)277

4 Our Evaluation Framework 278

4.1 Simulatability 279

Simulatability aims to quantify how well a meta- 280

predictor Ψ (also called simulator) can replicate 281

the predictions of an AI model f (Kim et al., 2016; 282

Hase and Bansal, 2020; Colin et al., 2022). The 283

meta-predictor is usually a human, but in our ex- 284

periments, we use an LLM as a meta-predictor. 285

The meta-predictor is given samples and tasked to 286

predict what would have predicted the AI model. 287

A simulatability experiment consists of three 288

phases. These parts are illustrated in Fig. 3 through 289

reduced examples of prompt parts: 290

Initial Phase (IP): The meta-predictor receives a 291

description of the task and possibly some global 292

explanations of the model. Global explanations 293

consist of global concepts’ importance Φ as defined 294

by Eq. 4 and the important concepts’ interpretation. 295

Learning Phase (LP): The meta-predictor is 296

shown examples with the model’s predictions and, 297

optionally, local explanations. The explanations 298

are concepts’ importance φ as defined by Eq. 3. 299

Evaluation Phase (EP): The meta-predictor must 300

predict the model’s outputs on new samples without 301

access to these predictions. No explanation is given 302

at the phase as it would leak the label. 303

In summary, Ψ is introduced to the task during IP, 304

learns the model’s behavior in LP, and attempts to 305

simulate f ’s predictions in EP. Since Ψ’s perfor- 306

mance may depend on the experimental settings s 307

and the chosen concept extraction method m, we 308

denote it as Ψs,m. By assessing how accurately Ψ 309

replicates f ’s outputs, this approach mitigates is- 310

sues like confirmation bias and prediction leakage 311

(Colin et al., 2022). We measure simulatability as 312

the accuracy of the meta-predictor’s guesses on EP 313

samples XEP : 314

accΨ,s,m = E
x∈XEP

1 {Ψs,m(xi) = f(xi)} (5) 315

In each setting, samples for LP and EP were 316

selected to represent the dataset and better differen- 317

tiate methods explaining performance. Each setting 318

had different seeds for more statistically significant 319

results. Details are described in appendix B.1. 320

4.2 User-LLM and Prompting 321

We refer to LLMs replacing users in user studies 322

as user-LLMs (De Bona et al., 2024). User-LLMs 323
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1. Meta- predictors Ψ’s 
Initial Phase (IP):

You are a classifier. Your predictions should be
based on the concepts and examples below.
The classes are [’nurse’, ’physician’, ’surgeon’]

Task description

Global explanation: 𝜱𝒇

+

2. Meta- predictors Ψ’s 
Learning Phase (LP):

Sample_0: Dr. Lee have great scalpel skills.
Sample_1: She takes care of her patients.
Sample_2: He helps after surgery.

Learning samples: 𝑿𝑳𝑷

Sample_0: surgeon
Sample_1: nurse
Sample_2: surgeon

Learning predictions: 𝒇(𝑿𝑳𝑷)
+

3. Meta- predictors Ψ’s 
Evaluation Phase (EP):

Sample_3: Dr. Jones works at the hospital.
Sample_4: He writes articles on his research.
Sample_5: She keeps updated on new drugs.

Evaluation samples: 𝑿𝑬𝑷

nurse: Healthcare; Hospital; Patient care.
physician: Diagnosis; Healthcare; Prescription.
surgeon: Healthcare; Hospital; Surgery.

Sample_0: [Surgery: +]
Sample_1: [Patient care: ++]
Sample_2: [Surgery: ++]

Local explanations: 𝝋𝒇 𝑿𝑳𝑷

+

Method C’s
explanations

Method B’s
explanations

Method A’s
explanations

⚠ No explanation at evaluation

Ask Ψ’s predictions: 𝜳 𝑿𝑬𝑷
Compute simulatability score:

Accuracy [𝚿 𝑿𝑬𝑷 , 𝒇(𝑿𝑬𝑷)]

𝚿𝐀 𝚿𝐁 𝚿𝐂

Method C’s
score

Method B’s
score

Method A’s
score

Figure 3: Overview of our simulatability framework. For a given meta-predictor Ψ (User-LLM or human), our
simulatability framework is composed of three distinct stages: (i) an initial phase (IP) where the task is carefully
described to Ψ and the global explanation is shown to it; (ii) a learning phase (LP) where some samples are shown
to Ψ, along with the model f predictions; (iii) a final evaluation phase (EP) where a different set of samples is
input to Ψ without the corresponding predictions, and it is asked to predict what the model f would have predicted.
With this information, the simulatability score can be computed as the accuracy in guessing the model’s outputs.

do not replace studies with real humans, but they324

allow experiments at a much larger scale to provide325

an approximation and motivation for future invest-326

ment in human user studies. Furthermore, it was327

shown the conclusions of studies through the lens328

of user-LLMs tend to correlate with human studies329

(De Bona et al., 2024).330

In our case, we leverage GPT-4o-mini (OpenAI,331

2024b, §5.1) and Gemini-1.5 Flash and Pro (Team332

et al., 2024, §6.1). The Gemini experiments cover a333

representative subset of the full experiment scope.334

Selecting the concepts. Some of the induced con-335

cept spaces had 500 concepts. Showing them all336

would complicate the prompt unnecessarily. There-337

fore, for global and local explanations, we only338

show concepts with normalized global importance339

Φ̂c,cpt in absolute value above a threshold of 0.05340

for at least one class. For a given class c and con-341

cept cpt, its normalized global importance is de-342

fined in appendix B.2, Eq. 9. Similarly, for the re-343

maining concepts, local explanations only include344

concepts with importance values above 0.05 for345

the given sample. Normalized local importance is346

defined in appendix B.2, Eq.10. In prompts, con-347

cepts’ importance is encoded into four buckets for348

simplicity; details in appendix B.3.349

4.3 Ranking350

Different settings are constructed by fixing the351

dataset, model, seed, concepts’ extraction method,352

concepts’ interpretation method, prompt type, and 353

user-LLM. However, the simulatability scores 354

accΨ,s,m (Eq. 5) between the two methods can only 355

be compared when the setting s is the same. There- 356

fore, to rank methods, we make the parallel with 357

ranked-choice voting systems. We consider the sim- 358

ulatability score from a setting as a vote with order 359

between methods and aggregate these votes using 360

Copeland’s method (Copeland, 1951; Szpiro, 2010) 361

with the "0/1/2" rule, a kind of Condorcet method 362

(Pomerol and Barba-Romero, 2012). Afterward, 363

with S the settings, i, and j methods, we construct 364

the pairwise comparison matrix P through Eq. 6. 365

Note that here, "methods" are either concept extrac- 366

tion methods, concept interpretation methods, or 367

concept importance methods. 368

Pi,j =
∑
s∈S


0 if accΨ,s,i < accΨ,s,j

1 if accΨ,s,i = accΨ,s,j

2 if accΨ,s,i > accΨ,s,j

(6) 369

Each value is then normalized to obtain a value 370

between 0 and 100 comparable to a percentage of 371

wins. Finally, the ranking of a method i is con- 372

structed from the number of times method i is pre- 373

ferred over method j, with M the list of concepts 374

explanation methods: 375

rankP (i) = |M |+ 1−
∑
j∈M

1 {Pi,j ≥ 50} (7) 376

Furthermore, another pairwise comparison ma- 377

trix was computed to determine if the pairwise 378
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differences were statistically different 0. We used a379

student’s test (Student, 1908) with a p-value thresh-380

old of 0.05. To do so, the mean differences between381

accuracies were computed with:382

Diffi,j = mean
s∈S

[accΨ,s,i − accΨ,s,j ] (8)383

5 Ranking Methods with GPT-4o-mini384

The first experiment was conducted with GPT-4o-385

mini (OpenAI, 2024b) as meta-predictor Φ. Com-386

parison of the ranking between several user-LLMs387

are described in Sec. 6.388

5.1 GPT-4o-mini Experiments Description389

Experiments with GPT-4o-mini were conducted390

with an extended set of settings compared to the391

latter comparison. We use 4 datasets, 5 models,392

7 seeds, 5 concept extraction methods, 2 concept393

interpretation methods, 6 prompt types for expla-394

nations, 4 other prompt types for baselines, and,395

for some settings, 7 different numbers of concepts.396

There are also several baseline prompts. Resulting397

in 23, 360 different experiment settings reported398

and used for GPT-4o-mini. Prompt mean size was399

about 2, 000 tokens; hence, through the OpenAI400

API, this cost around 7$. The different settings401

variables are listed below:402

Datasets. We consider four classification datasets:403

(i) A reduced version of BIOS (De-Arteaga et al.,404

2019), limited to the 10 most frequent classes; (ii)405

IMDB (Maas et al., 2011); (iii) Rotten Tomatoes406

(Pang and Lee, 2005); (iv) The "emotion" subset407

of the Tweet Eval dataset (Barbieri et al., 2020).408

For concept extraction, we often augment the orig-409

inal datasets by including split samples (partial410

sentences) derived from the initial samples. See411

extended details in Appendix C.1.412

Models. We evaluate three model architectures:413

an encoder model DistilBERT (Sanh et al., 2019a),414

an encoder-decoder model T5 (Raffel et al., 2020),415

and a decoder model Llama3-8B (Dubey et al.,416

2024). DistilBERT and T5 were fine-tuned for the417

classification tasks, while Llama3-8B used prompt-418

ing. Details of model fine-tuning and adaptation419

are in appendix C.2. DistilBERT and T5 were fine-420

tuned with positive embeddings to enable NMF-421

based concept extraction. These modified models422

are denoted with + in Tab. 2 and Tab. 3, resulting423

in five distinct models in total.424

Concept extraction methods. We employed five425

concept extraction methods, each representing a426

Simulatability Phase L1 E1 L2 E2 E3

IP
Task desc. ✓ ✓ ✓ ✓ ✓
Global expl. ✓ ✓ ✓

LP
XLP , f(XLP ) ✓ ✓ ✓
Local expl. ✓

Table 1: Elements present in the simulatability prompt
depending on the experiment (E1, E2, or E3) or the
baseline (L1 or L2). Details in Sec. 4.1 and Fig. 3.

form of dictionary learning as generalized in (Fel 427

et al., 2023a): (i) Independent Component Analysis 428

(ICA) (Ans et al., 1985; Hyvärinen and Oja, 2000), 429

(ii) Non-negative Matrix Factorization (NMF) (Lee 430

and Seung, 1999; Sra and Dhillon, 2005), (iii) Prin- 431

cipal Component Analysis (PCA) (Pearson, 1901; 432

Hotelling, 1992), (iv) Sparse Auto-Encoder (SAE) 433

(Ng et al., 2011; Makhzani and Frey, 2013; Domin- 434

gos, 2015), and (v) Singular Value Decomposition 435

(SVD) (Eckart and Young, 1936). See appendix 436

C.3 for details on their implementation and the 437

corresponding notation. 438

Concept interpretation methods. Experiments 439

use the two concept interpretability methods intro- 440

duced in Section 3.2, namely CSAW and o1CA. 441

Prompt types. We explored several prompt con- 442

figurations to answer questions, such as whether 443

a learning phase (LP) improves user-LLM perfor- 444

mance and whether local explanations are bene- 445

ficial. Tab. 1 details these prompt settings. The 446

simplest baselines, L1 and L2, include no explana- 447

tions. E1 is compared to L1, and any setting that 448

includes an LP is compared to L2. All instructions 449

are provided in the system prompt, except those for 450

the evaluation phase (EP), which are given in the 451

user prompt. 452

Anonymous prompt types. While the user- 453

LLMs (Ψ) can achieve performance levels close to 454

those of the fine-tuned models on the initial task, 455

our objective is for them to predict exactly what 456

model f would predict. To increase complexity, 457

we introduced experiments where class labels are 458

anonymized (denoted by "-a" in Lx-a or Ex-a vari- 459

ants), ensuring that Ψ must rely more on the pro- 460

vided concepts and explanations rather than directly 461

recognizing class names. 462

Number of concepts. Finally, each concept ex- 463

traction method includes a hyperparameter spec- 464

ifying the number of concepts. We tested k ∈ 465

{3, 5, 10, 20, 50, 150, 500} concepts. Some config- 466
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Experiment setting subset Concept extraction Concept interpretation

NMF SAE ICA PCA SVD Baseline CMAW o1CA Baseline

Datasets

BIOS10 1 2 3 4 5 6 1 2 3
IMDB 1 4 3 6 5 2 1 3 2

rotten tomatoes 1 2 4 6 5 3 1 2 3
tweet eval 1 3 2 5 6 4 1 2 3

Models

DistilBERT N/A 1 1 4 5 3 1 2 3
DistilBERT+ 1 2 3 4 6 5 1 2 3
Llama-3-8B N/A 2 1 5 4 3 1 2 3

T5 N/A 1 2 4 5 3 2 1 3
T5+ 1 2 3 5 6 4 1 2 3

All settings 1 2 2 5 6 4 1 2 3

Table 2: Methods ranking with GPT-4o-mini. Comparison of concept extraction methods and concept interpre-
tation methods rankings across different sets of settings. In a setting (a line), we fix either one of the datasets or
models. The last line shows the ranking for all settings of the extended GPT-4o-mini experiments.

Figure 4: Pairwise comparison matrices on GPT-4o-
mini experiments described in Sec. 5.1. Percentage
of simulatability experiments where method 1 is over
method 2. Ranking by number of pairwise victories.

urations timed out with a large k (ICA and NMF).467

Instead of reporting results for every setting or468

always selecting the best outcome, we followed469

the validation procedure described at the end of470

Sec. 4.1, using two 40-sample sets to determine471

the optimal number of concepts for each dataset-472

method pair. The best number of concepts was473

often very high, which can be explained by the fact474

that we only showed the most important concepts.475

In summary, a large variety of settings were ex-476

plored to obtain statistically robust and generaliz-477

able results. This experiment has shown that NMF,478

SAE, and ICA are the most promising concept ex-479

traction methods. Furthermore, the concept inter-480

pretation method CMAW – the simplest of the two481

– is above o1CA in most cases.482

5.2 GPT-4o-mini Results 483

GPT-4o-mini experiments can be analyzed from 484

different angles: first, comparing concept extrac- 485

tion methods; second, comparing concept interpre- 486

tation methods; and third, comparing the prompt 487

types. In any case, results are primarily aggregated 488

in pairwise comparison matrices Eq. 6 and Eq. 8, 489

then the ranking is constructed following Eq. 7. 490

Concept extraction methods. Examples of pair- 491

wise comparison matrices defined in Eq. 6 and 492

Eq. 8 are respectively shown in Fig. 4 and Fig. 5. 493

Fig. 4 shows the percentage of wins between two 494

methods and the final ranking of methods, putting 495

the NMF above the others. Fig. 4 shows that most 496

differences are statistically significant with respect 497

to a student’s test (Student, 1908) with a p-value 498

threshold of 0.05. 499

Tab. 2 summarizes the ranking across settings 500

with GPT-4o-mini as the user-LLM. The first line 501

shows that overall, NMF ranks higher than SAE 502

and ICA, which also rank higher than the baseline 503

(no explanation). Finally, the PCA and SVD rank, 504

overall, below the baseline. Tab. 2 also shows that 505

across subsets of settings with either one of the 506

dataset, model, or concept interpretation methods 507

fixed, the ranking is similar. Indeed, NMF, when 508

applicable, is always ranked first, SAE and ICA 509

occupy the top 3 apart from one time, and finally, 510

PCA and SVD stay in the bottom three in any case. 511

However, the baseline rank, thus the performance 512

of methods overall, varies a lot with the dataset. 513

Concept interpretation method. With regards 514

to the comparison of the concepts’ interpretabil- 515

ity methods, Tab. 2 shows that CMAW is better 516

than o1CA. Both methods also appear above the 517

baseline (prompts, no explanation). This can be 518
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User-LLMs Concept extraction Concept interpretation

NMF SAE ICA PCA SVD Baseline CMAW o1CA Baseline

GPT-4o-mini 1 2 3 4 6 5 1 2 3
Gemini-1.5-flash 1 2 3 4 5 6 1 2 3
Gemini-1.5-pro 1 2 3 4 6 5 1 2 3

Table 3: User-LLMs ranking comparison. Comparison of concept extraction methods and concept interpretation
methods rankings across different user-LLMs on the representative subset of experiments described in Sec. 6.1.

explained by the fact that PCA and SVD were re-519

moved from these experiments, knowing that their520

concepts were not interpretable; comparing inter-521

pretability methods with them did not make sense.522

Finally, Tab. 2 shows consistent results across set-523

tings, with about half of them being statistically524

significant.525

Prompt types. The statistical differences between526

prompt types are illustrated in Fig. 6, where sig-527

nificant differences are in bold. It shows that no528

difference can be made between settings with real529

class names, suggesting that GPT-4o-mini short-530

cuts the task and ignores concepts. However, for531

setting anonymous classes representing more com-532

plex tasks, the GPT-4o-mini simulatability score533

obtains a clear gain with explanations. Finally, it534

seems that local explanations do not help if global535

explanations are given.536

6 User-LLMs Comparison Experiments537

6.1 Comparison Experiments Description538

For the second set of experiments, we compared the539

previous GPT-4o-mini results with more advanced540

user-LLMs, such as Gemini-1.5 (flash and Pro)541

(Team et al., 2024). This comparison was done542

on a subset of the previously defined settings. We543

restricted this comparison to the two non-binary544

classification datasets (BIOS10 and Tweet Eval545

Emotion). Additionally, we only considered the546

positively fine-tuned versions of DistilBERT and547

T5, ensuring that all concept extraction methods548

were compatible. Finally, we used prompt types E1549

and E2 and their anonymized variants, along with550

the corresponding baselines, to enable a consistent551

and fair comparison across different user-LLMs.552

6.2 Comparison Experiments Results553

Concept extraction methods. Through the com-554

parison of the 3 user-LLMs in Tab. 3, the ranking555

is maintained apart between SVD and the baseline;556

details in Fig. 7a and Fig. 8a. Not all pairwise dif-557

ferences are significant: Fig. 8b and Fig. 8b show558

that the difference between SAE and ICA is not 559

statistically significant for all user-LLMs. Simi- 560

larly, the order of the three last methods, namely, 561

PCA, SVD, and the baseline, is not statistically sig- 562

nificant. However, NMF ranks first in all settings 563

Similarly, SAE and ICA remain in the top 3. 564

Concept interpretation methods. Tab. 3 shows 565

that the ranking is conserved across the different 566

user-LLMs, placing CMAW on top. Differences 567

are statistically significant. 568

7 Conclusion 569

We present a simulatability experiment for post-hoc 570

unsupervised concept-based explanations with user- 571

LLMs. The results show that concept-based expla- 572

nations can help user-LLMs predict what would 573

have predicted a classification model, and that user- 574

LLM accuracy can be used to rank methods with 575

statistical significance, across multiple user-LLMs. 576

Recommendations. Our evaluation framework 577

and empirical report gives concrete recommenda- 578

tions with regard to the different parts of concept- 579

based explanations: the NMF method appears to be 580

the most interpretable, however, it requires positive 581

embeddings. Hence, without positive embeddings 582

we recommend the use of SAEs. These methods 583

are popular in recent literature as they can create 584

over-complete concept banks which are necessary 585

for generative tasks. However, these models are 586

fragile and difficult to implement. Thus, the ICA 587

would be the most simple to apply as it does not 588

have such constraints. 589

With regards to the concept interpretability meth- 590

ods, using the CMAW only requires the model and 591

have a constant cost, regardless of the number of 592

methods or concepts. This makes it suitable as a 593

baseline. It obtained better results than the sec- 594

ond method. The method used by (Bricken et al., 595

2023; Templeton et al., 2024) seems to be more 596

interpretable but requires much more computing, a 597

more complex pipeline, and the use of an LLM. 598
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Limitations599

Despite our efforts to design thorough and compre-600

hensive experiments, we acknowledge that certain601

blind spots and limitations may still remain, reflect-602

ing the inherent challenges in achieving complete603

coverage in such analyses. Namely, three major604

points could be raised:605

• We followed the suggestion in (Fel et al.,606

2023a) of computing the concepts in the penul-607

timate layer of the model. We assume Com-608

puter Vision models behave similarly to NLP609

models in this regard, but this might not be610

the case. However, our framework can also611

be applied elsewhere in the residual stream or612

MLP layers of a transformer model.613

• Due to the sudden popularity and speed at614

which the state-of-the-art of SAEs changes615

at the time of writing, the SAE studied in616

this work – described in appendix C.3 – did617

not include the latest improvements (Raja-618

manoharan et al., 2024a,b; Gao et al., 2024;619

Leask et al., 2024; Bussmann et al., 2024).620

Therefore, SAEs results are probably underes-621

timated.622

• Although previous work seems to provide ev-623

idence towards LLM’s being a useful proxy624

for human behavior (De Bona et al., 2024),625

there is no actual proof that the ranking would626

be similar to one calculated using humans as627

meta-predictor Ψ.628

References629

Eldar D Abraham, Karel D’Oosterlinck, Amir Feder,630
Yair Gat, Atticus Geiger, Christopher Potts, Roi Re-631
ichart, and Zhengxuan Wu. 2022. Cebab: Estimating632
the causal effects of real-world concepts on nlp model633
behavior. Advances in Neural Information Process-634
ing Systems (NeurIPS).635

AI@Meta. 2024. Llama 3 model card.636
https://huggingface.co/meta-llama/Meta-Llama-3-637
8B.638

B Ans, J Hérault, and C Jutten. 1985. Architectures neu-639
romimétiques adaptatives: Détection de primitives.640
Proceedings of Cognitiva.641

Francesco Barbieri, Jose Camacho-Collados, Luis642
Espinosa-Anke, and Leonardo Neves. 2020. Tweete-643
val: Unified benchmark and comparative evaluation644
for tweet classification. In Proceedings of the Con-645
ference on Empirical Methods in Natural Language646
Processing (EMNLP).647

Adrita Barua, Cara Widmer, and Pascal Hitzler. 2024. 648
Concept induction using llms: a user experiment for 649
assessment. ArXiv e-print. 650

Trenton Bricken, Adly Templeton, Joshua Batson, 651
Brian Chen, Adam Jermyn, Tom Conerly, Nick 652
Turner, Cem Anil, Carson Denison, Amanda Askell, 653
Robert Lasenby, Yifan Wu, Shauna Kravec, Nicholas 654
Schiefer, Tim Maxwell, Nicholas Joseph, Zac 655
Hatfield-Dodds, Alex Tamkin, Karina Nguyen, 656
Brayden McLean, Josiah E Burke, Tristan Hume, 657
Shan Carter, Tom Henighan, and Christopher 658
Olah. 2023. Towards monosemanticity: Decom- 659
posing language models with dictionary learning. 660
Transformer Circuits Thread. Https://transformer- 661
circuits.pub/2023/monosemantic- 662
features/index.html. 663

Bart Bussmann, Patrick Leask, and Neel Nanda. 2024. 664
Batchtopk sparse autoencoders. In Workshop in Ad- 665
vances in Neural Information Processing Systems 666
(NeurIPS). 667

Julien Colin, Thomas Fel, Rémi Cadène, and Thomas 668
Serre. 2022. What i cannot predict, i do not under- 669
stand: A human-centered evaluation framework for 670
explainability methods. Advances in Neural Informa- 671
tion Processing Systems (NeurIPS). 672

Julien Colin, Lore Goetschalckx, Thomas Fel, Victor 673
Boutin, Jay Gopal, Thomas Serre, and Nuria Oliver. 674
2024. Local vs distributed representations: What is 675
the right basis for interpretability? ArXiv e-print. 676

Arthur H Copeland. 1951. A reasonable social welfare 677
function. Technical report, mimeo, 1951. University 678
of Michigan. 679

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert 680
Huben, and Lee Sharkey. 2023. Sparse autoencoders 681
find highly interpretable features in language models. 682
In Proceedings of the International Conference on 683
Learning Representations (ICLR). 684

Fahim Dalvi, Abdul Rafae Khan, Firoj Alam, Nadir 685
Durrani, Jia Xu, and Hassan Sajjad. 2022. Discover- 686
ing latent concepts learned in bert. In Proceedings of 687
the International Conference on Learning Represen- 688
tations (ICLR). 689

Maria De-Arteaga, Alexey Romanov, Hanna Wal- 690
lach, Jennifer Chayes, Christian Borgs, Alexandra 691
Chouldechova, Sahin Geyik, Krishnaram Kenthapadi, 692
and Adam Tauman Kalai. 2019. Bias in bios: A case 693
study of semantic representation bias in a high-stakes 694
setting. In proceedings of the Conference on Fairness, 695
Accountability, and Transparency. 696

Francesco Bombassei De Bona, Gabriele Dominici, 697
Tim Miller, Marc Langheinrich, and Martin Gjoreski. 698
2024. Evaluating explanations through llms: Beyond 699
traditional user studies. Workshop in Advances in 700
Neural Information Processing Systems (NeurIPS). 701

9

https://aclanthology.org/2020.findings-emnlp.148
https://aclanthology.org/2020.findings-emnlp.148
https://aclanthology.org/2020.findings-emnlp.148
https://aclanthology.org/2020.findings-emnlp.148
https://aclanthology.org/2020.findings-emnlp.148
https://proceedings.neurips.cc/paper_files/paper/2022/hash/13113e938f2957891c0c5e8df811dd01-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/13113e938f2957891c0c5e8df811dd01-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/13113e938f2957891c0c5e8df811dd01-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/13113e938f2957891c0c5e8df811dd01-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/13113e938f2957891c0c5e8df811dd01-Abstract-Conference.html


Romain Deveaud, Eric SanJuan, and Patrice Bellot.702
2014. Accurate and effective latent concept mod-703
eling for ad hoc information retrieval. Document704
numérique.705

Pedro Domingos. 2015. The master algorithm: How the706
quest for the ultimate learning machine will remake707
our world. Basic Books.708

Maximilian Dreyer, Erblina Purelku, Johanna Viel-709
haben, Wojciech Samek, and Sebastian Lapuschkin.710
2024. Pure: Turning polysemantic neurons into pure711
features by identifying relevant circuits. ArXiv e-712
print.713

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,714
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,715
Akhil Mathur, Alan Schelten, Amy Yang, Angela716
Fan, et al. 2024. The llama 3 herd of models. ArXiv717
e-print.718

Carl Eckart and Gale Young. 1936. The approximation719
of one matrix by another of lower rank. Psychome-720
trika.721

Nelson Elhage, Tristan Hume, Catherine Olsson,722
Nicholas Schiefer, Tom Henighan, Shauna Kravec,723
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain,724
Carol Chen, et al. 2022. Toymodelsof superposition.725
Transformer Circuits Thread.726

Thomas Fel, Louis Bethune, Andrew Kyle Lampinen,727
Thomas Serre, and Katherine Hermann. 2024. Un-728
derstanding visual feature reliance through the lens729
of complexity. ArXiv e-print.730

Thomas Fel, Victor Boutin, Mazda Moayeri, Rémi731
Cadène, Louis Bethune, Mathieu Chalvidal, Thomas732
Serre, et al. 2023a. A holistic approach to unifying733
automatic concept extraction and concept importance734
estimation. Advances in Neural Information Process-735
ing Systems (NeurIPS).736

Thomas Fel, Agustin Picard, Louis Bethune, Thibaut737
Boissin, David Vigouroux, Julien Colin, Rémi738
Cadène, and Thomas Serre. 2023b. Craft: Concept739
recursive activation factorization for explainability.740
In Proceedings of the IEEE Conference on Computer741
Vision and Pattern Recognition (CVPR).742

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel743
Goh, Rajan Troll, Alec Radford, Ilya Sutskever, Jan744
Leike, and Jeffrey Wu. 2024. Scaling and evaluating745
sparse autoencoders. ArXiv e-print.746

Amirata Ghorbani, James Wexler, James Y Zou, and747
Been Kim. 2019. Towards automatic concept-based748
explanations. Advances in Neural Information Pro-749
cessing Systems (NeurIPS).750

Peter Hase and Mohit Bansal. 2020. Evaluating explain-751
able AI: Which algorithmic explanations help users752
predict model behavior? In Proceedings of the An-753
nual Meeting of the Association for Computational754
Linguistics (ACL).755

Harold Hotelling. 1992. Relations between two sets of 756
variates. In Breakthroughs in statistics: methodology 757
and distribution. Springer. 758

Aapo Hyvärinen and Erkki Oja. 2000. Independent 759
component analysis: algorithms and applications. 760
Neural networks. 761

Alon Jacovi and Yoav Goldberg. 2020. Towards faith- 762
fully interpretable nlp systems: How should we de- 763
fine and evaluate faithfulness? In Proceedings of the 764
Annual Meeting of the Association for Computational 765
Linguistics (ACL). 766

Fanny Jourdan, Louis Béthune, Agustin Picard, Laurent 767
Risser, and Nicholas Asher. 2023a. Taco: Targeted 768
concept erasure prevents non-linear classifiers from 769
detecting protected attributes. ArXiv e-print. 770

Fanny Jourdan, Agustin Picard, Thomas Fel, Laurent 771
Risser, Jean Michel Loubes, and Nicholas Asher. 772
2023b. Cockatiel: Continuous concept ranked at- 773
tribution with interpretable elements for explaining 774
neural net classifiers on nlp tasks. Proceedings of the 775
Annual Meeting of the Association for Computational 776
Linguistics (ACL). 777

Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. 778
2016. Examples are not enough, learn to criticize! 779
Criticism for Interpretability. In Advances in Neural 780
Information Processing Systems (NeurIPS). 781

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie 782
Cai, James Wexler, Fernanda Viegas, et al. 2018. In- 783
terpretability beyond feature attribution: Quantitative 784
testing with concept activation vectors (tcav). In Pro- 785
ceedings of the International Conference on Machine 786
Learning (ICML). 787

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen 788
Mussmann, Emma Pierson, Been Kim, and Percy 789
Liang. 2020. Concept bottleneck models. In Pro- 790
ceedings of the International Conference on Machine 791
Learning (ICML). 792

Patrick Leask, Bart Bussmann, Joseph Isaac Bloom, 793
Curt Tigges, Noura Al Moubayed, and Neel Nanda. 794
2024. Stitching sparse autoencoders of different 795
sizes. In Workshop in Advances in Neural Infor- 796
mation Processing Systems (NeurIPS). 797

Daniel D Lee and H Sebastian Seung. 1999. Learning 798
the parts of objects by non-negative matrix factoriza- 799
tion. nature. 800

Tom Lieberum, Senthooran Rajamanoharan, Arthur 801
Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant 802
Varma, János Kramár, Anca Dragan, Rohin Shah, 803
and Neel Nanda. 2024. Gemma scope: Open sparse 804
autoencoders everywhere all at once on gemma 2. 805
ArXiv e-print. 806

Scott Lundberg. 2017. A unified approach to interpret- 807
ing model predictions. In 31st Conference on Neural 808
Information Processing Systems (NIPS 2017), Long 809
Beach, CA, USA. 810

10

https://transformer-circuits.pub/2022/toy_model/index.html
https://aclanthology.org/2020.acl-main.491
https://aclanthology.org/2020.acl-main.491
https://aclanthology.org/2020.acl-main.491
https://aclanthology.org/2020.acl-main.491
https://aclanthology.org/2020.acl-main.491
https://storage.googleapis.com/gemma-scope/gemma-scope-report.pdf
https://storage.googleapis.com/gemma-scope/gemma-scope-report.pdf
https://storage.googleapis.com/gemma-scope/gemma-scope-report.pdf


Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan811
Huang, Andrew Y. Ng, and Christopher Potts. 2011.812
Learning word vectors for sentiment analysis. In813
Proceedings of the Annual Meeting of the Association814
for Computational Linguistics (ACL).815

Alireza Makhzani and Brendan Frey. 2013. K-sparse816
autoencoders. ArXiv e-print.817

Andrew Ng et al. 2011. Sparse autoencoder. CS294A818
Lecture notes.819

OpenAI. 2024a. Introducing openai o1-preview: A new820
series of reasoning models for solving hard prob-821
lems. https://openai.com/index/introducing-openai-822
o1-preview/.823

OpenAI. 2024b. Openai o1-mini: Advancing cost-824
efficient reasoning. https://openai.com/index/openai-825
o1-mini-advancing-cost-efficient-reasoning/.826

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting827
class relationships for sentiment categorization with828
respect to rating scales. In Proceedings of the An-829
nual Meeting of the Association for Computational830
Linguistics (ACL).831

Karl Pearson. 1901. Liii. on lines and planes of clos-832
est fit to systems of points in space. The London,833
Edinburgh, and Dublin philosophical magazine and834
journal of science.835

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,836
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,837
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,838
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-839
esnay. 2011. Scikit-learn: Machine learning in840
Python. The Journal of Machine Learning Research841
(JMLR).842

Jean-Charles Pomerol and Sergio Barba-Romero. 2012.843
Multicriterion decision in management: principles844
and practice. Springer Science & Business Media.845

Forough Poursabzi-Sangdeh, Daniel G Gold-846
stein, Jake M Hofman, Jennifer Wortman847
Wortman Vaughan, and Hanna Wallach. 2021.848
Manipulating and measuring model interpretability.849
In Proceedings of the ACM Conference on Human850
Factors in Computing systems (CHI).851

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine852
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,853
Wei Li, and Peter J Liu. 2020. Exploring the limits854
of transfer learning with a unified text-to-text trans-855
former. The Journal of Machine Learning Research856
(JMLR).857

Senthooran Rajamanoharan, Arthur Conmy, Lewis858
Smith, Tom Lieberum, Vikrant Varma, János Kramár,859
Rohin Shah, and Neel Nanda. 2024a. Improving860
dictionary learning with gated sparse autoencoders.861
ArXiv e-print.862

Senthooran Rajamanoharan, Tom Lieberum, Nicolas 863
Sonnerat, Arthur Conmy, Vikrant Varma, János 864
Kramár, and Neel Nanda. 2024b. Jumping ahead: Im- 865
proving reconstruction fidelity with jumprelu sparse 866
autoencoders. ArXiv e-print. 867

Vikram V Ramaswamy, Sunnie SY Kim, Ruth Fong, 868
and Olga Russakovsky. 2023. Overlooked factors in 869
concept-based explanations: Dataset choice, concept 870
learnability, and human capability. In Proceedings 871
of the IEEE Conference on Computer Vision and 872
Pattern Recognition (CVPR). 873

Marco Tulio Ribeiro, Sameer Singh, and Carlos 874
Guestrin. 2016. " why should i trust you?" explaining 875
the predictions of any classifier. In Proceedings of 876
the 22nd ACM SIGKDD international conference on 877
knowledge discovery and data mining, pages 1135– 878
1144. 879

Hassan Sajjad, Nadir Durrani, Fahim Dalvi, Firoj Alam, 880
Abdul Khan, and Jia Xu. 2022. Analyzing encoded 881
concepts in transformer language models. In Pro- 882
ceedings of the Conference of the North American 883
Chapter of the Association for Computational Lin- 884
guistics (NAACL). 885

Victor Sanh, Lysandre Debut, Julien Chaumond, and 886
Thomas Wolf. 2019a. Distilbert, a distilled version 887
of bert: smaller, faster, cheaper and lighter. ArXiv 888
e-print. 889

Victor Sanh, Lysandre Debut, Julien Chaumond, 890
and Thomas Wolf. 2019b. Distilbert model 891
card. https://huggingface.co/distilbert/distilbert- 892
base-uncased. 893

Hendrik Schuff, Alon Jacovi, Heike Adel, Yoav Gold- 894
berg, and Ngoc Thang Vu. 2022. Human interpre- 895
tation of saliency-based explanation over text. In 896
Proceedings of the 2022 ACM Conference on Fair- 897
ness, Accountability, and Transparency, FAccT ’22, 898
page 611–636, New York, NY, USA. Association for 899
Computing Machinery. 900

Avanti Shrikumar, Peyton Greenside, and Anshul Kun- 901
daje. 2017. Learning important features through 902
propagating activation differences. In Proceedings of 903
the International Conference on Machine Learning 904
(ICML). 905

Suvrit Sra and Inderjit Dhillon. 2005. Generalized non- 906
negative matrix approximations with bregman diver- 907
gences. Advances in Neural Information Processing 908
Systems (NIPS). 909

Student. 1908. The probable error of a mean. 910
Biometrika. 911

George Szpiro. 2010. Numbers rule: the vexing math- 912
ematics of democracy, from Plato to the present. 913
Princeton University Press. 914

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan 915
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer, 916
Damien Vincent, Zhufeng Pan, Shibo Wang, et al. 917

11

https://aclanthology.org/P11-1015
https://aclanthology.org/P05-1015
https://aclanthology.org/P05-1015
https://aclanthology.org/P05-1015
https://aclanthology.org/P05-1015
https://aclanthology.org/P05-1015
https://doi.org/10.1145/3531146.3533127
https://doi.org/10.1145/3531146.3533127
https://doi.org/10.1145/3531146.3533127


2024. Gemini 1.5: Unlocking multimodal under-918
standing across millions of tokens of context. ArXiv919
e-print.920

HuggingFace team. 2020. T5 model card.921
https://huggingface.co/google-t5/t5-base.922

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack923
Lindsey, Trenton Bricken, Brian Chen, Adam Pearce,924
Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy925
Cunningham, Nicholas L Turner, Callum McDougall,926
Monte MacDiarmid, C. Daniel Freeman, Theodore R.927
Sumers, Edward Rees, Joshua Batson, Adam Jermyn,928
Shan Carter, Chris Olah, and Tom Henighan. 2024.929
Scaling monosemanticity: Extracting interpretable930
features from claude 3 sonnet. Transformer Circuits931
Thread.932

Johanna Vielhaben, Stefan Bluecher, and Nils933
Strodthoff. 2023. Multi-dimensional concept discov-934
ery (mcd): A unifying framework with completeness935
guarantees. ArXiv e-print.936

Chih-Kuan Yeh, Been Kim, Sercan Arik, Chun-Liang937
Li, Tomas Pfister, and Pradeep Ravikumar. 2020. On938
completeness-aware concept-based explanations in939
deep neural networks. Advances in neural informa-940
tion processing systems.941

Mateo Espinosa Zarlenga, Pietro Barbiero, Gabriele942
Ciravegna, Giuseppe Marra, Francesco Giannini,943
Michelangelo Diligenti, Zohreh Shams, Frederic Pre-944
cioso, Stefano Melacci, Adrian Weller, et al. 2022.945
Concept embedding models: beyond the accuracy-946
explainability trade-off. In Advances in Neural Infor-947
mation Processing Systems (NeurIPS).948

Matthew D Zeiler and Rob Fergus. 2014. Visualiz-949
ing and understanding convolutional networks. In950
Proceedings of the IEEE European Conference on951
Computer Vision (ECCV).952

Ruihan Zhang, Prashan Madumal, Tim Miller, Krista A953
Ehinger, and Benjamin IP Rubinstein. 2021. Invert-954
ible concept-based explanations for cnn models with955
non-negative concept activation vectors. In Proceed-956
ings of the AAAI Conference on Artificial Intelligence957
(AAAI).958

Ruochen Zhao, Tan Wang, Yongjie Wang, and Shafiq959
Joty. 2024. Explaining language model predictions960
with high-impact concepts. In Proceedings of the961
Conference of the European Chapter of the Associa-962
tion for Computational Linguistics (EACL).963

A Experiments Supplementary964

Visualizations965

A.1 Ranking Methods with GPT-4o-mini966

Fig. 4 and Fig. 5 illustrate concept extraction meth-967

ods pairwise comparison matrices when all GPT-968

4o-mini settings are taken into account.969

Fig. 6 shows the pairwise comparison matrix970

with the percentages of wins between prompt types.971

Figure 5: Pairwise comparison matrices on GPT-4o-
mini experiments described in Sec. 5.1. Difference
means and standard deviations between method 1 and
method 2 simulatability scores across experiments. Bold
differences are statistically significant.

Interpretation NMF SAE ICA PCA SVD Baseline

CMAW 1 3 2 5 6 4
o1CA 1 2 3 5 6 4

Table 4: Experiments with GPT-4o-mini as a user-
LLM. Concepts extraction methods ranking for the two
concept interpretation methods.

It takes into the top3 concept extraction methods 972

(NMF, SAE, and ICA) and all of the GPT-4o-mini 973

settings on other variables. 974

Tab. 4 and Tab. 4 shows the rankings of con- 975

cept extraction methods and concept interpretation 976

methods when the other is fixed. In both cases, 977

the order is conserved, and the NMF-CMAW pair 978

emerged on the first rank. 979

A.2 User-LLMs Comparison 980

Fig. 7 illustrates concept extraction methods pair- 981

wise comparison matrices for Gemini-1.5-flash as 982

the meta-predictor. 983

Fig. 8 illustrates concept extraction methods pair- 984

wise comparison matrices for Gemini-1.5-pro as 985

the meta-predictor. 986

B Simulatability Prompting 987

B.1 Prompt Samples 988

In our simulatability experiments, we select 40 sam- 989

ples for each dataset-model pair: 20 for the Learn- 990

ing Phase (LP) and 20 for the Evaluation Phase 991

(EP). These samples are chosen to cover each class 992

uniformly. Among them, 20 are correctly classified 993
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Figure 6: Percentage of simulatability experiments where method 1 is over method 2. Ranking by number of
pairwise victories. GPT-4o-mini experiments described in Sec. 5.1 subset to the top 3 methods NMF, SAE, and
ICA. Experiments (E1, E2, and E3) and baselines (L1 and L2) are described in Sec. 5.1 and Tab. 1. They differ in
the simulatability elements present in the prompt. Experiments and baselines with "-a" are done with anonymous
classes.

Extraction CMAW o1CA Baseline

ICA 1 2 3
NMF 1 2 3
SAE 1 2 3

Table 5: Experiments with GPT-4o-mini as a user-
LLM. Concepts interpretation methods ranking for the
top 3 concept extraction methods.

by f , and 20 are misclassified, ensuring a balanced994

challenge for the meta-predictor. We then randomly995

distribute these samples between the LP and EP.996

To increase statistical robustness, we repeat this997

selection with 5 different random seeds, resulting in998

5 distinct sets of 40 samples. Additionally, we use999

2 more sets of 40 samples to determine the optimal1000

number of concepts for each dataset-method pair.1001

Finally, this paper reports 23, 360 for GPT-4o-1002

mini and 960 for both Gemini-1.5 Flash and Pro.1003

These prompts had a mean number of tokens1004

around 2, 000, mostly represented by the samples.1005

B.2 Normalizing Concept Importance1006

For a given class c and concept cpt, its normalized1007

global importance is defined by:1008

Φ̂fco,c,cpt =
Φfco,c,cpt∑k
i=1 |Φfco,c,i|

(9) 1009

For a local explanation of sample x with con- 1010

cepts projection u = fic(x), the normalized local 1011

importance for a given concept cpt is given by: 1012

φ̂fco(u)cpt =
φfco(u)cpt∑k
i=1 |φfco(u)i |

(10) 1013

B.3 Communicate Importance in Prompts 1014

In several cases, communicating how important 1015

some concepts are is necessary. However, LLMs 1016

have been proven to be unable to compare numer- 1017

ical values. Furthermore, encoding importance 1018

value via a single token would make the compari- 1019

son far easier. Finding a one-token word to encode 1020

these values was not trivial. Hence we opted for the 1021

signs "- -", "-", "+", and "+ +". Concepts with low 1022

local importance were not shown for local explana- 1023

tions either. To decide what sign to show, we used 1024

arbitrary thresholds. The correspondences can be 1025

found in Tab. 6. 1026
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(a) Percentage of simulatability experiments where method 1 is
over method 2. Ranking by number of pairwise victories.

(b) Difference means and standard deviations between method
1 and method 2 simulatability scores across experiments. Bold
differences are statistically significant.

Figure 7: Pairwise comparison matrices on Gemini-1.5-Flash experiments described in Sec. 6.1. NMF comes first,
and with SAE and ICA, these methods are significantly improving over the baseline (i.e. without explanations).

φ̂ intervals [-1, -0.3] ]-0.3, -0.05] [0.05, 0.3[ [0.3, 1]

Encoding "- -" "-" "+" "+ +"

Table 6: Table of buckets for concept importance encod-
ing in prompts.

C Experiment Settings1027

C.1 Datasets1028

Some of the datasets were too small for concept1029

extraction methods to converge to satisfying results.1030

Therefore we artificially increased the datasets by1031

adding modified versions of the samples. The new1032

samples were obtained by splitting the initial ones1033

by punctuation marks. Hence [“This is a first1034

example, made up for understanding.”] be-1035

comes [“This is a first example, made1036

up for understanding.”, “This is a first1037

example”, “made up for understanding”].1038

C.2 Models1039

DistilBERT and T5. The models used1040

were extracted from HuggingFace. The model1041

cards are: DistilBERT (Sanh et al., 2019b),1042

T5 (team, 2020), Llama-3-8B (AI@Meta,1043

2024). For DistilBERT and T5, we used the1044

ModelForSequenceClassification fine-tuned1045

for each dataset.1046

DistilBERT+ and T5+. To build the positive1047

versions, we added a ReLU function in the forward1048

pass before the latent space we wanted to study.1049

Then, these models were fine-tuned for the task. 1050

Llama. We adapted LlamaForCausalLM to our 1051

task through prompting and only considered the 1052

next predicted token. The unembedding operation 1053

was used as our g part of the model, and we limited 1054

it to the classes present in the dataset. The h part 1055

was all the rest of the model. 1056

C.3 Concepts Extraction Methods 1057

The goal is to define a concept space C ⊆ Rk 1058

through the concept transformation t : H −→ C 1059

and its bijection (or approximation) t−1 : C −→ H. 1060

We note X ∈ X n a set of samples, A ∈ Hn their 1061

latent embeddings, and U ∈ Cn their projection in 1062

the concept space. Similarly, respectively, we note 1063

x, a, and u as elements of these sets. Unlike many 1064

unsupervised concept-based explicability methods, 1065

here we make a single projection for the task and 1066

not a projection for each predicted class (similar to 1067

(Jourdan et al., 2023a)). 1068

Apart from SAE, all implementations are from 1069

scikit-learn (Pedregosa et al., 2011) with default 1070

parameters apart from the ‘n_components‘ that 1071

we vary with the number of required concepts. 1072

The used classes are FastICA, NMF, PCA, and 1073

TruncatedSVD. 1074

Independent Component Analysis (ICA) (Ans 1075

et al., 1985; Hyvärinen and Oja, 2000) extracts 1076

independent components or sources S such that 1077

S = W · whiten(A). The whitening function 1078

centers the data on 0. We could write whiten(a) = 1079
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(a) Percentage of simulatability experiments where method 1 is
over method 2. Ranking by number of pairwise victories.

(b) Difference means and standard deviations between method
1 and method 2 simulatability scores across experiments. Bold
differences are statistically significant.

Figure 8: Pairwise comparison matrices on Gemini-1.5-Pro experiments described in Sec. 6.1. NMF comes first,
and with SAE and ICA, these methods are significantly improving over the baseline (i.e. without explanations).

a − µ. Therefore, in our case we could define1080

tICA(a) := W · (a − µ). Then we can compute1081

the Moore-Penrose pseudo-inverse W+, hence we1082

can define t−1
ICA(u) := W+u+ µ.1083

We use the FastICA implementation from scikit-1084

learn (Pedregosa et al., 2011) with default param-1085

eters apart from the ‘n_components‘ that we vary1086

with the number of required concepts.1087

Non-negative Matrix Factorization (NMF) (Lee1088

and Seung, 1999; Sra and Dhillon, 2005) factorizes1089

the matrix A into two matrices U and W such that1090

A = UW . The particularity of the NMF is that all1091

three matrices have non-negative weights.1092

It is easy to construct t−1 as U is the concepts1093

activations, thus t−1(u) = uW . But this factoriza-1094

tion is nonlinear, and we cannot inverse W . There-1095

fore, to obtain U2 corresponding to other latent em-1096

beddings A2, an U2 is optimized to fit A2 = U2W1097

with W fixed. Hence, t cannot be defined by matrix1098

multiplications and can only be done by solving an1099

equation.1100

We use the NMF implementation from scikit-learn1101

(Pedregosa et al., 2011) with default parameters1102

apart from the ‘n_components‘ that we vary with1103

the number of required concepts.1104

Principal Component Analysis (PCA) (Pearson,1105

1901; Hotelling, 1992) transforms a zero-centered1106

matrix A − µ into another matrix U through lin-1107

ear combinations W such that U = (A − µ)W .1108

Hence we can define t by t(a) = (a− µ)W once1109

W is computed, then by investing W we define1110

t−1(u) = uW−1 + µ. 1111

We use the PCA implementation from scikit-learn 1112

(Pedregosa et al., 2011) with default parameters 1113

apart from the ‘n_components‘ that we vary with 1114

the number of required concepts. 1115

Sparse Auto-Encoder (SAE) (Ng et al., 2011; 1116

Makhzani and Frey, 2013; Domingos, 2015) are 1117

neural networks whose outputs should be the same 1118

as the inputs, the particularity is that some con- 1119

straints are applied in the middle during their train- 1120

ing. Hence t is the encoder and t−1 the decoder. 1121

In our case, we follow most of the recommen- 1122

dations from Bricken et al. (2023). In some, we 1123

use a ℓ1 component with a 1e − 3 coefficient in 1124

the loss to push toward sparsity. We apply dead 1125

neuron resampling; this part is very sensitive to 1126

modifications in the hyperparameters. Finally, we 1127

do 100, 000 steps with a learning rate starting at 1128

1e − 3. Note that in some cases, early stopping 1129

fires. 1130

Singular Value Decomposition (SVD) (Eckart 1131

and Young, 1936) factorizes the matrix A into three 1132

components, such that A = UΣV T . In our case, 1133

we use UΣ as concept activations that we usually 1134

denote U . Hence with our notations, we have A = 1135

UV T . Since with the SVD, V TV = I , then we can 1136

define the projections by t(a) = aV and t−1(u) = 1137

uV T . 1138
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