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Abstract

How do large language models (LLMs) develop
and evolve over the course of training? How do
these patterns change as models scale? To an-
swer these questions, we introduce Pythia, a suite
of 16 LLMs all trained on public data seen in
the exact same order and ranging in size from
70M to 12B parameters. We provide public ac-
cess to 154 checkpoints for each one of the 16
models, alongside tools to download and recon-
struct their exact training dataloaders for further
study. We intend Pythia to facilitate research in
many areas, and we present several case stud-
ies including novel results in memorization, term
frequency effects on few-shot performance, and
reducing gender bias. We demonstrate that this
highly controlled setup can be used to yield novel
insights toward LLMs and their training dynam-
ics. Trained models, analysis code, training
code, and training data can be found at https:
//github.com/EleutherAI/pythia.

1. Introduction

Over the past several years, large transformer models have
established themselves as the premier methodology for gen-
erative tasks in natural language processing (Brown et al.,
2020; Sanh et al., 2021; Chowdhery et al., 2022). Beyond
NLP, transformers have also made big splashes as genera-
tive models in areas as diverse as text-to-image synthesis
(Ramesh et al., 2022; Crowson et al., 2022; Rombach et al.,
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2022), protein modeling (Jumper et al., 2021; Ahdritz et al.,
2022), and computer programming (Chen et al., 2021; Xu
et al., 2022; Fried et al., 2022). Despite these successes,
very little is known about how and why these models are so
successful.

Critical to understanding the functioning of transformers
is better understanding how these models behave along
two axes: training and scaling. It is well established that
there are regular and predictable patterns in the behavior of
trained language models as they scale (Kaplan et al., 2020;
Henighan et al., 2020; Hernandez et al., 2021; Mikami et al.,
2021; Pu et al., 2021; Sharma & Kaplan, 2020; Ghorbani
etal., 2021), but prior work connecting these “Scaling Laws”
to the learning dynamics of language models is minimal.
One of the driving reasons for this gap in research is a lack
of access to appropriate model suites to test theories: al-
though there are more publicly available LLMs than ever,
they do not meet common requirements for researchers, as
discussed in Section 2 of this paper. Of the research along
these lines that does exist (McGrath et al., 2021; Tirumala
et al., 2022; Xia et al., 2022), it is overwhelmingly done on
non-public models or model checkpoints, further emphasiz-
ing the importance of having publicly available model suites
for scientific research.

In this paper we introduce Pythia, a suite of decoder-only
autoregressive language models ranging from 70M to 12B
parameters designed specifically to facilitate such scientific
research. The Pythia suite is the only publicly released suite
of LLMs that satisfies three key properties:

1. Models span several orders of magnitude of model
scale.

2. All models were trained on the same data in the same
order.

3. The data and intermediate checkpoints are publicly
available for study.

We train 8 model sizes each on both the Pile (Gao et al.,
2020; Biderman et al., 2022) and the Pile after deduplication,
providing 2 copies of the suite which can be compared.
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Model Size Non-Embedding Params Layers Model Dim Heads Learning Rate Equivalent Models

70M 18,915,328 6 512 8 10.0 x 10~* —

160 M 85,056,000 12 768 12 6.0 x 107*  GPT-Neo 125M, OPT-125M

410 M 302,311,424 24 1024 16 3.0 x 107* OPT-350M
1.0B 805,736,448 16 2048 8 3.0 x 107* —
14B 1,208,602,624 24 2048 16 2.0 x 1074 GPT-Neo 1.3B, OPT-1.3B
2.8B 2,517,652,480 32 2560 32 1.6 x 1074 GPT-Neo 2.7B, OPT-2.7B
69B 6,444,163,072 32 4096 32 1.2 x 1074 OPT-6.7B
12B 11,327,027,200 36 5120 40 1.2 x 1074 —

Table 1. Models in the Pythia suite and select hyperparameters. For a full list of hyper-parameters, see Appendix E. Models are named
based on their total number of parameters, but for most analyses we recommend people use the number of non-embedding parameters as
the measure of “size.” Models marked as “equivalent” have the same architecture and number of non-embedding parameters.

We use these key properties of Pythia in order to study for
the first time how properties like gender bias, memorization,
and few-shot learning are affected by the precise training
data processed and model scale. We intend the following ex-
periments to be case studies demonstrating the experimental
setups Pythia enables, and to additionally provide directions
for future work.

Mitigating Gender Bias There is much work cataloging
how language models reflect the biases encoded in their
training data. However, while some work has explored
finetuning’s effects on bias in language models (Gira et al.,
2022; Kirtane et al., 2022; Choenni et al., 2021), or the
relationship between the corpus statistics and the measured
bias (Bordia & Bowman, 2019; Van der Wal et al., 2022b),
researchers have generally lacked the tools to study the role
of the training data on the learning dynamics of bias in large
language models of different sizes. To demonstrate what is
now possible with Pythia, we analyze whether deliberately
modifying the frequency of gendered terms in the pretrain-
ing data of a language model can have an impact on its
downstream behavior and biases. We leverage the known
pretraining data and public training codebase of our model
suite, and counterfactually retrain models such that the last
7% and 21% of model training has a majority of pronouns
modified such that their grammatical gender is feminine
rather than masculine. We demonstrate that such interven-
tions are successful at reducing bias measures on a targeted
benchmark, and propose counterfactual interventions and
retrainability of portions of our models as a key tool for
future study of the influence of training corpora on model
behavior.

Memorization is a Poisson Point Process Building on
the extensive literature on memorization in large language
models (Carlini et al., 2019; 2021; Hu et al., 2022), we ask
the following question: does the location of a particular
sequence in the training dataset influence the likelihood
of it being memorized? Leveraging Pythia’s reproducible

dataloader setup we answer this question in the negative,
and furthermore find that a poisson point process is a very
good model for the occurrence of memorized sequences
over the course of training.

Emergence of the Impact of Pretraining Frequencies
Recent work has identified the frequency of specific facts
within a corpus as an important factor in how likely a model
is capable of applying that fact in response to a natural lan-
guage question (Razeghi et al., 2022; Elazar et al., 2022;
Kandpal et al., 2022; Mallen et al., 2022). Existing work has
been heavily dependent on the handful of models trained on
public data, such as GPT-J (Wang & Komatsuzaki, 2021)
and BLOOM (Scao et al., 2022), which lack frequent in-
termediate checkpoints, so none of these papers are able to
look at the fine-grained evolution of this phenomenon over
the course of training. To address this gap in the literature,
we examine how the role of pretraining term frequencies
changes over the course of training. We find that a signifi-
cant phase change occurs after 65,000 training steps (45%
through training): the models with 2.8 billion parameters or
more start to exhibit a correlation between task accuracy and
occurrence of task-relevant terms which is not present in
prior checkpoints and which is largely absent from smaller
models.

2. The Pythia Suite

Following the advice of Birhane et al. (2021), in this section
we seek to explicitly document our choices, rationales, and
values in designing and implementing Pythia. As our goal is
to promote scientific research on large language models, we
prioritize consistency in model design and controlling for as
many potential sources of variation as possible, rather than
trying to eke out the most performance from each model.
For example, we use the parallel attention and feedforward
approach for all models, as it is becoming widely used for
the largest models, even though it is generally not recom-
mended for models with less than 6B parameters. To our
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surprise, we find that despite making choices we expect to
hurt performance at smaller scales, we find that our models
perform the same as equi-parameter OPT models across all
scales. We discuss areas where our results contradict widely
accepted maxims for training LL.Ms in Section 2.6.

2.1. Requirements for a Scientific Suite of LLMs

Pythia is envisioned as a suite for enabling and empowering
scientific research on the capacities and limitations of large
language models. After surveying the existing literature, we
found no existing suite of models which satisfied all of the
following conditions:

Public Access Models are publicly released and are
trained on publicly available data.

Training Provenance Intermediate checkpoints are avail-
able for analysis, all models are trained with the same data
ordering, and intermediate checkpoints can be linked with
the exact data seen up to that checkpoint. Training pro-
cedure as well as model and training hyperparameters are
well-documented.

Consistency Across Scale Model scaling sequences
should have self-consistent design decisions that reason-
ably adhere to common practice for training state-of-the-art
large models. Model sizes should cover a variety of scales
across multiple orders of magnitude.

Table 2 provides our assessment of a number of popular
language model suites along these criteria. We note that
for “number of checkpoints” we go with the number of
checkpoints by the model in the model suite with the fewest
checkpoints. While some model suites (e.g., GPT-Neo, OPT,
BLOOM) have a subset that have more available, for most
research purposes this is insufficient. This is exacerbated by
the fact that typically smaller models are the ones with more
checkpoints; the only model suite from the above list whose
largest model has more checkpoints than smaller ones is
GPT-Neo.

2.2. Training Data

We train our models on the Pile (Gao et al., 2020; Bi-
derman et al., 2022), a curated collection of English lan-
guage datasets for training large language models that
is popular for training large autoregressive transformers.
This dataset has three major benefits over its competitors:
first, it is freely and publicly available; second, it reports
a higher downstream performance (Le Scao et al., 2022)
than popular crawl-based datasets C4 (Raffel et al., 2020;
Dodge et al., 2021) and OSCAR (Suérez et al., 2019);
and third, it has been widely used by state-of-the-art mod-
els including GPT-J-6B (Wang & Komatsuzaki, 2021),

GPT-NeoX-20B (Black et al., 2022), Jurassic-1 (Lieber
et al., 2021)!, Megatron-Turing NLG 530B (Smith et al.,
2022), OPT (Zhang et al., 2022), and WuDao (Tang, 2021).
We use the tokenizer developed by Black et al. (2022), which
is a BPE tokenizer that is trained specifically on the Pile.

While we considered training on a multilingual corpus in-
stead of a monolingual one, we ultimately opted against
doing so for the following reasons:

1. While we are confident that we are generally aware
of the contents and quality of the Pile, we cannot
say the same for multilingual datasets. Existing mas-
sive multilingual datasets can be of dubious quality
(Caswell et al., 2020; Kreutzer et al., 2021) and we do
not feel qualified to vet existing multilingual datasets
well enough to determine issues that may arise due
to using them. ROOTS (Laurengon et al., 2022), the
dataset that BLOOM (Scao et al., 2022) was trained
on, was styled after the Pile and would potentially be a
good candidate, but it was not publicly available when
we started training our models.

2. As this framework is intended to be used as a baseline
for future research, we feel it is important to stay close
to currently accepted common practices. While the Pile
is widely used for training English-language models,
there is no equally widespread multilingual dataset. In
particular, ROOTS has not been used to train models
beyond BLOOM.

3. We do not have access to a multilingual evaluation
framework that is anywhere near as comprehensive as
Gao et al. (2021).

We train 2 copies of the Pythia suite using identical archi-
tectures. Each suite contains 8 models spanning 8 different
sizes. We train one suite of 8 models on the Pile, and the
other on a copy of the Pile after applying near-deduplication
with MinHashLLSH and a threshold of 0.87, following the
advice that LLMs trained on deduplicated data are better
and memorize less of their data (Lee et al., 2021). After
deduplication, the deduplicated Pile is approximately 207B
tokens in size, compared to the original Pile which contains
300B tokens.

2.3. Architecture

Our model architecture and hyperparameters largely follow
Brown et al. (2020), with a few notable deviations based on
recent advances in best practices for large scale language

'While the paper discusses the Pile at length, it does not ex-
plicitly state that Jurassic-1 was trained on the Pile. We originally
discovered this fact by executing data extraction attacks on the
API, and confirmed with private communication with the authors.
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GPT-2 GPT-3 GPT-Neo OPT T5 BLOOM Pythia (ours)

Public Models @ | [ J e © o [ J

Public Data [ [ ¢ o

Known Training Order o q o

Consistent Training Order o q o
Number of Checkpoints 1 1 30 2 1 8 154
Smallest Model  124M Ada 125M 125M  60M 560M 70M

Largest Model 1.5B  DaVinci 20B 175B  11B 176B 12B

Number of Models 4 4 6 9 5 5 8

Table 2. Commonly used model suites and how they rate according to our requirements. Further information can be found in Appendix F.1.

modeling (Black et al., 2022; Chowdhery et al., 2022; Zeng
etal., 2022):

1. Brown et al. (2020) describes using sparse and dense
attention layers in alternation, while we follow all sub-
sequent work and use fully dense layers for our models.

2. We use Flash Attention (Dao et al., 2022) during train-
ing for improved device throughput.

3. We use rotary embeddings introduced by Su et al.
(2021) and now in widespread use (Black et al., 2022;
Chowdhery et al., 2022; Zeng et al., 2022) as our posi-
tional embedding type of choice.

4. We use the parallelized attention and feedforward tech-
nique and model initialization methods introduced by
Wang & Komatsuzaki (2021) and adopted by (Black
et al., 2022; Chowdhery et al., 2022), because they im-
prove training efficiency and do not harm performance.

5. We use untied embedding / unembedding matrices, as
prior work has suggested that this makes interpretabil-
ity research easier (Belrose et al., 2023).

2.4. Training

We train our models using the open source library GPT-
NeoX (Andonian et al., 2021) developed by EleutherAl. We
train using Adam and leverage the Zero Redundancy Opti-
mizer (ZeRO) (Rajbhandari et al., 2020) to efficiently scale
to multi-machine set-ups. We additionally leverage data par-
allelism (Goyal et al., 2017) and tensor parallelism (Shoeybi
etal., 2019) as appropriate to optimize performance. We use
Flash Attention (Dao et al., 2022) for improved hardware
throughput.

The most notable divergence from standard training proce-
dures is that we use a much larger batch size than what is
standard for training small language models. It is widely
held (McCandlish et al., 2018; Zhang et al., 2019; Kaplan
et al., 2020; Brown et al., 2020; Hoffmann et al., 2022)

that using larger batch sizes is desirable, but that smaller
LLMs require smaller batch sizes to avoid convergence is-
sues. Contrary to this literature, we find no convergence
issues with using batch sizes 4 x to 8 x what is considered
standard for models with less than 1 billion parameters.
Consequently, we use a batch size of 1024 samples with a
sequence length of 2048 (2,097,152 tokens) for all models,
in order to maintain consistency across all Pythia model
training runs.

Model Size GPU Count GPT-3 GPUs Speed-Up
70M 32 4 8%
160 M 32 8 4x
410 M 32 8 4x
1.0B 64 16 4x

Table 3. Models in the Pythia suite, number of GPUs used during
training, and the number of GPUs we would have been able to use
had we used the GPT-3 suite’s batch sizes. Due to the ability of
GPT-NeoX to scale linearly as the number of GPUs increases, this
produces substantial wall-clock speed-ups for small models. All
GPUs are A100s with 40 GiB VRAM.

A large batch size is essential to training models quickly:
in a regime where one is not bottlenecked by access to
GPUs or high quality interconnect, doubling the batch size
halves the training time. A maximum batch size therefore
directly implies a minimum wall-clock training time and
maximum number of compute-saturated GPUs. By inflating
batch sizes beyond previous standards, we achieve wall-
clock speed-ups of factors as large as 10x compared with
standard batch sizes on our smaller models (Table 5). We
also note that our models still perform on par with widely
used models of the same size like GPT-Neo (Black et al.,
2021) or OPT (Zhang et al., 2022) (see Appendix G for
plots on common benchmarks).

We save model checkpoints at initialization and every
2,097,152,000 tokens (or 1,000 iterations), resulting in 144
checkpoints evenly spaced throughout training. Addition-
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ally, we save log-spaced checkpoints early in training at
iterations {1,2,4, 8,16, 32,64, 128,256, 512}. This gives
a total of 154 checkpoints per model, far more than any
other suite of publicly available language models.

We train all models for 299,892,736,000 ~ 300B tokens,
token-matching our models to the original GPT-3 and OPT
model suites. The standard (duplicated) Pile is 334B tokens
using the GPT-NeoX tokenizer, so some data in the Pile may
not be seen by the standard Pythia models. For this reason
we urge anyone seeking to study the effect of training data
on the Pythia models use our provided data loaders to ensure
accurate counts. The deduplicated Pile only contains 207B
tokens, so we run for /~1.5 epochs on it. This allows users
of the Pythia suite to study deduplication in greater detail
by comparing models shortly before the epoch boundary to
those slightly after the epoch boundary. We find that there
is no evidence that the second epoch negatively impacts
evaluation scores on a variety of benchmarks (for more
information, see Section 2.6 and Appendix G).

We refer to the models trained on the original Pile as
“Pythia-xxx”, where ‘xxx’ is the model’s total parameter
count rounded to 2 significant figures, and their counterparts
trained on the deduplicated Pile as “Pythia-xxx-deduped”.

2.5. Evaluation

While the primary focus of this work is to promote scien-
tific research on the behaviors of large language models,
and state-of-the-art performance is not necessarily a core
requirement, we find that Pythia and Pythia (Deduplicated)
perform very similarly to OPT and BLOOM models on a
variety of NLP benchmarks. These results are presented in
Appendix G. We use the Language Model Evaluation Har-
ness (Gao et al., 2021) to run evaluations on eight common
language modeling benchmarks (Appendix G). We consis-
tently find that Pythia and Pythia (Deduplicated) perform
very similarly to OPT and BLOOM models.

2.6. Novel Observations in Evaluation

We find three interesting phenomena that run counter to
the prevailing narratives in the literature. Firstly, we find
that deduplication of our training data has no clear bene-
fit on language modeling performance. This is consistent
with the results of Black et al. (2022), but inconsistent with
other papers. This may indicate that the upsampling of cer-
tain subsets of the Pile does not accord with conventional
assumptions about duplicated data, or that the general ten-
dency of deduplicated data to outperform non-deduplicated
data is primarily a statement about the quality of the data
used in other works. Secondly, we find that we achieve
(equi-token and equi-parameter) performance on-par with
OPT despite the use of parallel attention + MLP sublayers
at all model scales. Both Black et al. (2022) and Chowdhery

et al. (2022) state that this architecture choice causes a per-
formance regression at scales < 6B parameters. Thirdly, we
find a minimal and inconsistent “curse of multilinguality”
(Conneau et al., 2020; Pfeiffer et al., 2022) for BLOOM.
While BLOOM certainly underperforms other models on
LAMBADA, PIQA, and WSC, it does not appear to do
so on WinoGrande, ARC-easy, ARC-challenge, SciQ, and
LogiQA. We interpret this as a sign that some of the existing
literature on the curse of multilinguality may need to be
revisited using more diverse evaluation benchmarks. Plots
supporting all of these claims can be found in Appendix G.

2.7. Public Release and Reproducibility

To ensure that our work is fully reproducible, we seek to
only make use of codebases and dependencies that are freely
and publicly available. As previously mentioned, we use
the open source GPT-NeoX and DeepSpeed libraries for
training. For evaluating our models we use the Language
Model Evaluation Harness (Gao et al., 2021) and run all
evaluations ourselves instead of copying claimed results
from previous papers.

We release all of our models and checkpoints to the public
under the Apache 2.0 license via the HuggingFace Hub
(Wolf et al., 2019)> We additionally release the code used
for all evaluations and the raw benchmark scores generated
on GitHub.?

In addition to training our models on the public Pile dataset,
we also provide a tool for downloading the pre-tokenized
data files utilized by our dataloader in the GPT-NeoX library,
as well as a script that can be used to reproduce the exact
dataloader used by our models during training, so that the
contents of each batch at each training step can be read out
or saved to disk by researchers.

3. Case Studies

We perform three case studies in language modeling re-
search that would not have been possible to perform using
any pre-existing model suites. These case studies were cho-
sen to cover a variety of topical domains and address small
but important questions in their respective fields. We es-
pecially seek to leverage the public training data order to
derive novel insights about these models that have not been
previously studied.

3.1. How Does Data Bias Influence Learned Behaviors?

Large language models are typically trained on minimally
curated human-authored data. While it is widely known that
models typically learn the biases encoded in their training

https://huggingface.co/EleutherAl
*https://github.com/EleutherAI/pythia


https://huggingface.co/EleutherAI
https://github.com/EleutherAI/pythia

Pythia: A Suite for Analyzing Large Language Models

data, virtually nothing is known about the actual learning
dynamics of how these biases develop throughout training.
This is particularly concerning as one of the best established
phenomena in the study of bias in deep learning models
is bias amplification—the fact that social biases in deep
learning models tend to be more extreme than those found
in their training data (Zhao et al., 2017; Hirota et al., 2022;
Hall et al., 2022). To mitigate the biases learned from data,
previous works have used finetuning on balanced datasets
to reduce the gender bias of language models with some
success (Levy et al., 2021; Gira et al., 2022; Kirtane et al.,
2022), yet little is known about the role of specific corpus
statistics in the emergence of bias during pretraining.

We seek to investigate a counterfactual claim—if we were to
train our models on a corpus with different properties, how
would these models’ properties change downstream? To test
the effects of corpus statistics on the biases learned by lan-
guage models, we repeat segments of pretraining on specific
models, with altered corpus statistics. In particular, for the
size 70M, 410M, 1.4B, and 6.9B Pythia (deduplicated) mod-
els, we take a checkpoint and optimizer state 21B tokens
(7%) prior to the end of training, and resume training of the
model such that it sees the exact same data until the end
of training, but with morphologically masculine pronouns
replaced by their feminine counterparts. We also repeat
this intervention for 63B tokens (21%) prior to the end of
training on just the Pythia-1.4B-deduped model. We then
measure model performance on the WinoBias (Zhao et al.,
2018) benchmark and the English subset of the multilin-
gual CrowS-Pairs (Névéol et al., 2022)* to observe whether
this altered pretraining data affects downstream gender bias.
Neither of these benchmarks were originally intended for
autoregressive language models or text generation, so we
describe our modifications to the evaluation setups in Ap-
pendix C.1.

The controlled setup provided by Pythia—with precise ac-
cess to the data samples seen during training—enables us
to isolate the effect of pronoun frequency in pretraining. If
instead we chose to compare two different training datasets,
we would change a large number of potential explanatory
factors that we cannot control for. In fact, it has been
suggested that even the choice of hyperparameters, such
as the data ordering, can have an effect on the resulting
bias (D’ Amour et al., 2020). Therefore, without being able
to resume pretraining on the exact same data in the exact
same order, we could not be confident our experiment was
indeed measuring only the effect of particular gendered
terms’ frequency.

*While previous works have found the original version of
CrowS-Pairs (Nangia et al., 2020) benchmark of questionable
validity (Blodgett et al., 2021), Névéol et al. (2022) have revised
the English dataset to take care of the raised concerns.

For our WinoBias implementation (see Appendix C.1), we
see a clear effect of the intervention in Figure 2: a de-
crease in stereotypical accuracy for each intervention and
across model scale. On the largest model scale tested,
6.9B, applying the intervention also successfully changes
the model throughout training on the intervention from a
pro-stereotypical bias to an anti-stereotypical one. We hy-
pothesize that these results indicate that larger capacity mod-
els show less pro-stereotypical bias due to their ability to
learn more complex relationships between occupation and
pronouns, and that the intervention effect size increases
across scale for similar reasons.
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Figure 1. The CrowS-Pairs gender bias, shown as the percentage
of times that the perplexity of the stereotyping sentence is lower
than its less stereotyped counterpart (% Stereotype) for the Pythia
models of different sizes at the end of training. We also show the
effect of the gender swapping intervention on the measured bias
for the partially retrained models.
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Figure 2. The WinoBias gender bias results, shown as the propor-
tion of the time that the model placed a higher log probability on
the more stereotyped pronoun as an answer to a multiple choice
gender—occupation co-reference question.

Figure 1 shows the progression of the CrowS-Pairs gen-
der bias metric and the effect of the interventions. We
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can clearly see a reduction in the bias as a result of swap-
ping the gendered pronouns in the last 7% or 21% of the
training for all model sizes, but most prominently for the
larger ones, although these are also more biased to begin
with. We hypothesize that because larger models are bet-
ter at modeling correlations and distributions within their
corpora, their increased capacity causes features of bias
to be more strongly or robustly learned. We also see that
the interventions only lead to a marginal decrease in the
model perplexity on LAMBADA (Paperno et al., 2016) (Ap-
pendix C.1), which demonstrates the effectiveness of the
bias mitigation without hurting language modeling perfor-
mance downstream to a large degree. Whether the noisiness
of the progression reflects actual changes in the language
model’s bias or poor reliability of CrowS-Pairs is an open
question we leave for future work.

We propose that performing such modifications to portions
of language model training data, retraining, and comparing
to the baseline model (“interventions’) should be studied
further for applications including but not limited to investi-
gating bias amplification and devising new mitigation strate-
gies. For example, while not explored in this case study, we
think that the finegrained information that Pythia provides
on the data seen during training could benefit the promis-
ing literature on influence functions to estimate the role of
specific training samples on the encoded bias (Brunet et al.,
2019; Silva et al., 2022). While this was beyond the scope
of this case study, we believe that the extensive availability
of checkpoints, consistent training order, and retrainabil-
ity could be useful in assessing the zest-retest reliability of
existing bias measures (Van der Wal et al., 2022a).

3.2. Does Training Order Influence Memorization?

Although memorization in neural language models is widely
studied, many basic questions about the dynamics of mem-
orization remain unanswered. Prior work on the dynamics
of memorization is generally limited to a few models in
isolation (Jagielski et al., 2022; Elazar et al., 2022) or pa-
pers which train (but do not release) custom models for
their studies (Tirumala et al., 2022; Hernandez et al., 2022).
Carlini et al. (2022) studies the impact of scaling on memo-
rization and repeatedly remark on the lack of suitable model
suites for their study. They ultimately focus on the GPT-Neo
model suite (Black et al., 2021; Wang & Komatsuzaki, 2021;
Black et al., 2022), despite the fact that these models were
trained on slightly different datasets, in different orders, and
with inconsistent checkpointing.

In this experiment we test whether training order influences
memorization. This is an explicitly theoretically-driven ex-
periment: several authors realized that their mental model
of transformers was that they work iteratively—by adding
new information to a latent space and then processing the

space as a whole to obtain a better representation. This
mental model predicts that data encountered later in training
will be memorized more, as the model has had less time to
incorporate it more fully into its representation space. If
true, this would potentially be highly useful for mitigating
the memorization of sequences for which verbatim memo-
rization would be undesirable, by intentionally modifying a
model’s training data order prior to training.

To test our hypothesis, we measure the memorization of
an initial segment of each sequence in the training corpus.
While there are several reasonable definitions of memoriza-
tion, we use the one from Carlini et al. (2021) as it has
received considerable attention in the literature (Yoon &
Lee, 2021; Huang et al., 2022; Ginart et al., 2022; Ippolito
et al., 2022; Biderman et al., 2023). In their context, a string
is (k, £)-memorized if prompting the model with a string of
length k from the training data induces the model to gener-
ate the next ¢ tokens from the training data correctly. We
choose k = £ = 32 largely arbitrarily, and note that doing
all reasonable pairs of (k, ¢) would have a computational
cost comparable to retraining all of our models from scratch.
To avoid potential covariate effects, we only use the first 64
tokens from each context seen during training.

Surprisingly, we find that a Poisson model fits the data ex-
tremely well (Figure 3), indicating that training order has
little impact on memorization. This model implies that mem-
orized sequences are not spaced more densely toward the
beginning or end of training, and that between each check-
point roughly the same number of memorized sequences
can be found.

The Poisson process here describes an event of the occur-
rence of a memorized sequence within a batch of training
data. As the evaluation was performed on the first 64 tokens
of every sequence within the training corpus, in the same
order of training, we can consider each batch to represent a
hypothetical time interval, where a unit of time corresponds
to a sequence of the training corpus, with sample distribu-
tion defined as the number of memorized sequences in a
batch of training data, and the theoretical distribution as the
best fit Poisson distribution from samples. We use a batch
size of 512 sequences for these plots, but we observe similar
results for various batch sizes.

The count (color bar to the right in Figure 3) indicates the
density of plotted points (also indicated by size) on the Q-Q
plot. Q-Q plots serve the purpose of being a goodness of
fit test for asserting the fact that the rate of occurrence of
memorized sequences in training data is uniform.

This finding is important for practitioners seeking to control
which sequences are memorized by a model. It implies
that one cannot simply place sequences that are undesir-
able to memorize at the beginning or end of training and
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Figure 3. Quantile-Quantile plot of rate of occurrence of memo-
rized sequences in 12B model compared to a Poisson Point Process,
with (top) and without (bottom) deduplication. Color and dot size
indicates number of points. We assume each mini-batch to be a
time-slice in a Poisson process where we count the events (number
of memorized sequences) within a time-slice.

successfully reduce the chance of memorization. However,
we propose that a practitioner especially worried about the
memorization of certain sequences place those sequences
at the beginning of training, thus increasing the odds that
the practitioner may observe prior to the completion of the
training run that undesirable memorization behavior occurs
in the partially-trained model.

3.3. Do Pretraining Term Frequencies Influence Task
Performance Throughout Training?

Recent work has explored the effect of statistics of language
model corpora on numerous downstream tasks. Findings
presented in Shin et al. (2022) demonstrate how the pre-
training corpus can impact few-shot performance, while
Razeghi et al. (2022) investigates how models are able to
perform numerical reasoning from in a few-shot setting. By
charting the performance of a arithmetic task given an input
operand and the frequency at which it is found in the pre-
training corpus, they concluded that accuracy tends to be

higher for terms that are found more frequently compared
to terms that are less frequent. Other works also suggest
that the pretraining corpus has a significant impact on few-
shot behavior (Elazar et al., 2022; Kandpal et al., 2022).
These works observe a correlational and causal relationship
between the ability to answer factual questions and the fre-
quency of salient entities found in the pretraining corpus.
While the aforementioned works experiment with various
model sizes, it is not yet studied when during training and at
what model sizes this effect occurs. We further investigate
this phenomenon across model checkpoints and model sizes
by adapting arithmetic tasks of multiplication and addition
(Razeghi et al., 2022) and a QA task (Kandpal et al., 2022)
using natural language prompts evaluated over a set of k-
shot settings. We calculate the relevant term frequencies for
all model checkpoints based on the pretraining data seen
by each checkpoint, which means counting through each
subset of the pretraining corpus sampled and seen by the
model up to each chosen train step. Model evaluation was
performed on the Pythia (Deduplicated) suite using the LM
Evaluation Harness (Gao et al., 2021).

Following Razeghi et al. (2022), the formulation of the
arithmetic task consists of input operands z; € [0, 99] and
x9 € [1,50] and an output y. The input operands are con-
verted into a prompt with the prompt template “Q:What is
x1 #x9? A:” with # being “plus” for addition and “times”
for multiplication. We measure the accuracy of a prompt
instance by checking the model’s prediction against y. To
measure the term frequency and task performance correla-
tion, the average accuracy of all prompts with the same z;
over all values of x5 is mapped to the number of times x1
is found in the sampled pretraining data that each evaluated
model checkpoint sees. In few-shot settings, we sample
examples with digits that differ from the x; values being
measured.

As a QA task, we use TriviaQA (Joshi et al., 2017) with
a simple template of “Q: x1 \n A: y” with x; being the
question and y answer, where y is included for a few-shot
sample or left blank for the sample being evaluated. The
model prediction is evaluated with exact match over the
set of possible answers. The term frequencies of a single
question-answer pair (“QA pair”) are calculated based on
the number of times all salient entities of that QA pair appear
in a sampled pretraining data sequence seen by a given
checkpoint. We follow the original experiment using 4 shots
and evaluate both the training and the validation split of the
dataset. Performance is averaged over a group of log-spaced
bins.

We observe that for both arithmetic and QA experiments,
model sizes affect the correlation between average perfor-
mance and the term frequencies, indicating that this corre-
lation is an emergent property in larger models. Smaller
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Figure 4. Accuracy on Trivia QA plotted againts the number of relevant entity counts found in a QA-pair. Each subfigure shows the
impact of performance across various model sizes over multiple intermediate checkpoints. (With train step counts denoted by color on the
right) Each point represents the average accuracy (y-axis) of binned counts (x-axis).

models rarely produce accurate results on the task despite
being given up to 16 few-shot examples, as shown in Fig-
ure 7, where models at sizes below 1 billion are unable to
perform well even in later stages of training, suggesting
that these models are not successful at learning these tasks
regardless of frequency of pertinent information in their
training data. Similar patterns can be seen in Figure 4 where
performance increase as training progresses mainly happens
for larger models only. For the multiplication task, we also
calculate the performance discrepancy between the top 10%
most frequent input operands and the bottom 10% least fre-
quent input operands also following Razeghi et al. (2022)
(see Table 4). We find that this performance gap widens
over the course of training.

Pythia allows the observation of the dynamics of which term
frequencies affect performance in greater clarity than previ-
ous works. With confounding factors such as difference in
model architecture, pretraining datasets, and training hyper-
parameters removed, we can better understand when effects
that term frequencies have over a model’s task performance
occur. In practice, observing the phenomenon with respect
to model size and intermediate checkpoints allows for better
choices in future training runs. For example, if one cares
about a model knowing the answer to some given question,
one can calculate how many times that information occurs
in the training data to predict whether it is likely or less
likely a model of X size will be capable of retaining and
recalling this information from its training data.

4. Conclusion

We release Pythia, a suite of language models trained with
consistent data ordering and model architecture across mul-

tiple orders of magnitude of scale. We demonstrate how
Pythia can be used to empower experiments at unprece-
dented levels of detail for a public model suite by present-
ing novel analyses and results on gender debiasing, mem-
orization, and term frequency effects. We hope that these
analyses will inspire further follow-up work showing how
pretraining data drives the acquisition and emergence of
capabilities across more complex tasks and that these mod-
els and their dataset tooling will be broadly useful for a
variety of practitioners, and recommend using the suite as a
framework for novel experimental setups on LLMs.
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A. Author Contributions

All authors other than the first two are listed in alphabetical order.

Stella Biderman Conceived, organized, and lead the project. Designed the experiments for the memorization and
pretraining frequencies case studies. Lead the writing of the paper.

Hailey Schoelkopf Trained the models, wrote the paper, uploaded and converted all model checkpoints for hosting, and
planned the gender bias case study.

Quentin Anthony Optimized the model implementation, advised the choice of hyper-parameters, and wrote the paper.
Herbie Bradley Carried out the WinoBias analysis and wrote portions of the gender bias case study.

Kyle O’Brien Conducted zero- and five-shot evaluations of several of the models on NLP benchmarks.

Eric Hallahan Evaluated the models on standard NLP benchmarks and authored most plots in the paper.

Mohammad Aflah Khan Helped in implementing the CrowS-Pairs evaluation and performed analysis on the results.
Shivanshu Purohit Optimized the model implementation, advised the choice of hyperparameters.

USVSN Sai Prashanth  Conducted the memorization case study, evaluated the models on standard NLP benchmarks and
wrote the paper.

Edward Raff Advised on the project and wrote the paper.
Aviya Skowron Wrote documentation for the model suite and analysis, including the model card. Edited the paper.
Lintang Sutawika Conducted the experiments and wrote the section for the pretraining frequencies case study.

Oskar van der Wal Helped with the CrowS-Pairs evaluation and writing up the gender bias case study.

B. Corrections and Updates

Following the value of “doing science in the open” (Phang et al., 2022), we released a variety of artifacts over the course
of training our models for the public to use. However, after this initial release of preliminary versions of the Pythia suite
(“Pythia v0”), we decided that in order to make Pythia as controlled as possible, it was necessary to update the model suite
with slightly better-controlled hyperparameter selection.

The updated version of the Pythia suite (“v1”) features several small changes to hyperparameters in a redone version,
detailed below:

* All model sizes are now trained with uniform batch size of 2M tokens. Previously, the models of size 160M, 410M, and
1.4B parameters were trained with batch sizes of 4M tokens, but in the course of training the initial suite we discovered
that it was feasible to train all models with uniform batch size, though based on prior literature we had not been certain
of this fact before performing our own experiments on batch size.

* We configured additional model checkpoint saving in order to obtain checkpoints at initialization (step 0) and
steps {1,2,4,8,16,32,64,128,256,512} in addition to every 1000 training steps. This enables practitioners to
use our new suite to study training dynamics and emergent behaviors early in training, as well as access the random
weight initializations easily.

» Before retraining the suite, we received a contribution to our codebase integrating Flash Attention (Dao et al., 2022).
Utilizing the Flash Attention fused attention kernel greatly increased per-device throughput for the second set of
training runs.
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* We remedied a minor inconsistency that existed in the original suite: all models of size 2.8B parameters or smaller had
a learning rate (LR) schedule which decayed to a minimum LR of 10% the starting LR rate, but the 6.9B and 12B
models all used an LR schedule which decayed to a minimum LR of 0. In the redone training runs, we rectified this
inconsistency: all models now were trained with LR decaying to a minimum of 0.1 x their maximum LR.

We did not expect these changes to significantly impact any experimental findings in the paper, and we reran all analyses
and evaluations on the new models to confirm this was indeed the case. All experiments in the paper report results from
this updated version of the suite. We chose to rerun the training runs in order to make the Pythia suite maximally useful to
practitioners, and report this change for full transparency.

We overwrote the previously public preliminary ver-
sion of the suite (which now remains available
athttps://huggingface.co/models?other=

Model Name Previous Model Name

pythia_vO0 to enable replicability of experiments us- 0M 19M
ing vO of the suite) on March 31, 2023. Going forward, 160 M 125 M
we will use semantic versioning for additional fixes as 410 M 350 M
needed. Current best practices and details on further 1.0B 800 M
fixes can be found at https://www.github.com/ 1.4B 13B
EleutherAI/pythia. 2.8B 2.7B
. 6.9B 6.7B
Additionally, on January 20, 2023, we chose to rename 2B 13B

the Pythia model suite to better reflect including both em-

bedding layer and unembedding layer parameters in our Figure 5. Model Names used for the Pythia suite, before and after up-

total parameter counts, following the naming conventions dating nomenclature to include the untied embedding / unembedding
from the GPT-2, BLOOM, and OPT suites, among others.  Jayers we use.

We chose to do so to minimize documentation debt ac-

crued in the field across model releases, and recommend

future work explicitly use parameter counts derived from including embedding layers to obtain estimates more closely
matching on-device memory required for running a given model.

C. Additional Plots for Case Studies

C.1. Gender Bias Interventions

We also describe our modifications to the evaluation setups in the gender bias case study (see Section 3.1), as neither of the
benchmarks were originally intended for autoregressive language models or text generation.

WinoBias is a coreference resolution benchmark testing how a model links gendered pronouns to stereotypical occupations
for each gender (Zhao et al., 2018). WinoBias contains both pro and anti-stereotypical versions of these tasks (the latter
created by swapping pronouns), but we formulate the benchmark by taking only the pro-stereotypical subset and prompting
the language model in multiple choice fashion with both pronouns, then obtaining log probabilities. To use this benchmark
with our autoregressive language models, we use PromptSource (Bach et al., 2022) to prompt our models with templates:
Given a sentence containing two occupations and a pronoun, the model is asked which of two pronouns an occupation
refers to. We then take the pronoun with the highest log probability and calculate a ‘stereotype accuracy’ metric in which 1
represents perfectly predicting stereotypes and 0.5 represents random accuracy, or no bias.’ This formulation is different
from the original WinoBias setup (Zhao et al., 2018), which measured the gender bias of older coreference approaches such
as rule-based systems that do not require prompting.

CrowS-Pairs is a stereotype benchmark that presents a model with two versions of a sentence: a stereotyped version and
a version which is less stereotyping (Névéol et al., 2022). While the original task was designed for masked language models
(Nangia et al., 2020), we measure the percentage of sentences for which the language model assigns a lower perplexity for
the stereotyping sentence over the less stereotyping sentence. We evaluate our models only on the English subset for gender

>For example, to query the model for an occupation linked with the pronoun ‘her’, we might start with a sentence such as “The mover

greeted the librarian and asked the librarian where the books were.”, then append “In this sentence, what can ‘the librarian’ be replaced by:
‘him’ or ‘her’? ” before prompting the model with the concatenation. The target completion for the model is then ‘her’.
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bias, since our models are monolingual and we intervene on gendered pronouns.

Figure 6 demonstrates the performance of different models in the Pythia suite on the LAMBADA Dataset (Paperno et al.,
2016). The plots also show how intervening by swapping gendered pronouns does not lead to major dips in accuracy. Hence
the interventions are successful in reducing bias while preserving the text understanding capabilities of the model.

0.520{ — Pythia 400M
Intervention 400M

0.27 — pythia 70M
Intervention 70M

0515
20510
€508
<0.500
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Figure 6. Zero-shot evaluations of Pythia models over training, as well as their intervened counterparts, on the LAMBADA dataset.

C.2. Pretraining Term Frequency

. 160 M 1.0B 2.8B 12B
checkpoint
Ap=o Ap=4 Ap=16 Ap=0 Ap=4 Ap=16 Dp=0 Ap=4 Ar—16 Ar=0 Ar=1 Dp=16

13000 102 2.8 0.6 132 7.8 6.4 88 126 140 54 132 11.6
39000 74 7.0 54 120 11.8 160 9.0 336 306 162 29.0 37.8
65000 9.0 4.0 28 13.0 12.8 11.0 10.8 344 248 202 470 492
91000 13.8 112 32 142 11.0 128 52 464 47.0 26.0 580 54.2
117000 58 4.0 20 166 11.0 104 6.8 666 644 362 724 634
143000 122 8.6 3.0 152 128 122 40 660 66.6 422 756 624
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Figure 7. Accuracy of the arithmetic addition task with 16 shots, across various model sizes (divided by subfigure). For each model,
multiple intermediate checkpoints (differentiated by color and their step number) are plotted. Each point represents the average accuracy
(y-axis) of binned term frequency (x-axis).
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D. Training Hardware and GPU hours

We additionally report the number of accelerators used to train each Pythia model size, alongside counts of total GPU-hours
required for training our models at the throughputs that we achieve.

Model Size GPU Count  Total GPU hours required

0M 32 510
160 M 32 1,030
410 M 32 2,540

1.0B 64 4,830

14B 64 7,120

28B 64 14,240

69B 128 33,500

12B 256 72,300

Total 136,070

Table 5. Model sizes in the Pythia suite, number of GPUs used during training, and the total number of GPU hours, calculated via
(iteration time (s) X number of iterations X number of GPUs = 3600 s/hour). All GPUs are A100s with 40GB of memory.

Here “total” refers to training one model of each size in our suite. For this paper, we trained two models of each size (one on

the Pile and one on the Pile deduplicated) and had to retrain both model suites an additional time as discussed in Appendix B.
Thus the total compute required for training the models for this paper was 544,280 A100-hours.
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E. Full Configuration Details

In Table 6 we attach the full configuration details to train the models in this paper. Individual configuration files are available
in the config files in our GitHub Repository.

Configuration Key Value Configuration Key Value
attention-config [[[“flash™], n-layers]] num-layers -
attention-dropout 0 optimizer.params.betas [0.9, 0.95]
bias-gelu-fusion True optimizer.params.eps 1e-08
checkpoint-activations True optimizer.params.Ir -
checkpoint-num-layers 1 optimizer.type Adam
data-impl mmap output-layer-init-method wang-init
distributed-backend nccl output-layer-parallelism column
eval-interval 143000 partition-activations False
eval-iters 10 pipe-parallel-size 1
fpl6.enabled True pos-emb rotary
fpl6.fpl6 True rotary-pct 0.25
fp16.hysteresis 2 save-interval 1000
fp16.initial-scale-power 12 scaled-upper-triang-masked-softmax-fusion True
fp16.loss-scale 0 seq-length 2048
fp16.loss-scale-window 1000 split 969,30,1
fp16.min-loss-scale 1 steps-per-print 10
global-batch-size 1024 synchronize-each-layer True
gpt-j-residual True tokenizer-type HFTokenizer
gradient-accumulation-steps - train-iters 143000
gradient-clipping 1.0 train-micro-batch-size-per-gpu -
hidden-dropout 0 vocab-file 20B-tokenizer.json
hidden-size - wall-clock-breakdown True
init-method small-init warmup 0.01
log-interval 10 weight-decay 0.01
Ir-decay-iters 143000 zero-optimization.allgather-bucket-size -
Ir-decay-style cosine zero-optimization.allgather-partitions True
max-position-embeddings 2048 zero-optimization.contiguous-gradients True
min-Ir 0.1 * optimizer.params.Ir zero-optimization.cpu-offload False
model-parallel-size - zero-optimization.overlap-comm True
no-weight-tying True zero-optimization.reduce-bucket-size -
norm layernorm zero-optimization.reduce-scatter True
num-attention-heads - zero-optimization.stage 1

Table 6. The full configuration details for Pythia training. Exact model config files are also made available via our Github repository.

Configuration values marked with “~” differ between models. Table 1 provides particular model dimensions. Additionally,
some modifications are necessary to enable appropriate parallelism: while most models are trained with “model-parallel-size
=17, the 6.9b models were trained with “model-parallel-size = 2” and the 12b models were trained with “model-parallel-size
=4”. Both these larger models were trained using ‘““zero-optimization.allgather-bucket-size = zero-optimization.reduce-
bucket-size = 12600000007, while all other models were trained with a value of 500000000. Exact number of GPUs,
microbatch size per accelerator, and gradient accumulation steps per train step, for each model, are available in the config
files in our Github repository.
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F. Additional Details on Design and Considerations
F.1. Assessment of Existing Suites

We assessed existing model suites to determine if any pre-existing models met all of researchers’ requirements and
expectations for rigorous scientific study on language models.

GPT-2 (Radford et al., 2019) No further notes.

GPT-3 (Brown et al., 2020) These models receive a half-mark for “Public Models” because while they have a publicly
accessible API, the API costs money and OpenAl places substantial limitations on the research they allow you to do with
the API. While these models are known to be similar to the models described in Brown et al. (2020), they are not the same
models. Gao (2021) estimates the size of these models as being 350M, 1.3B, 6.7B, and 175B parameters respectively, which
has been generally adopted by subsequent work.

GPT-Neo (Black et al., 2021; Wang & Komatsuzaki, 2021; Black et al., 2022) These models strictly speaking do not
form a suite and have some non-negligible differences between them with respect to model architecture implementation,
training codebase, tokenizer, and training data setup and order. Despite that, they are commmonly used as if they were a
consistent model suite.

OPT (Zhang et al., 2022) While more checkpoints of OPT models exist (as is seen by their use in Xia et al. (2022)) they
largely are not publicly available (less than 10 checkpoints available, only for the 2.7b, 6.7b, and 13b parameter models).
Additionally, the training dataset for OPT is not public.

TS5 (Raffel et al., 2020) The original paper did not release its training data, but it did release code for producing it which
was subsequently run and released by Dodge et al. (2021).

BLOOM (Scao et al., 2022) The ROOTS dataset that BLOOM was trained on is available via application to researchers,
but the authors suggest that they may not make the full data indefinitely available in accompanying work (Jernite et al., 2022;
McMillan-Major et al., 2022). The BLOOM models were mostly trained in a known and consistent order, however they
handled training divergences by rewinding and skipping the offending sequences. Thus there are small (and undocumented)
differences in the exact training composition and ordering across BLOOM models.

F.2. Contrast with Multiply Trained Models

A kind of dual question to the one considered in this paper regards how stable analysis of a particular model is when the
random seed is allowed to vary. There are several model suites designed to answer this question, including the causal
decoder Mistral suite (Karamcheti et al., 2021) and the multiBERT suite (Sellam et al., 2021). While we view this research
as valuable, we ultimately decided against including several training runs of the same model in our suite because it would be
ruinously expensive to do rigorously (doing 25 random seeds would cost approximately 10 million USD in compute) and
we felt that the way to make the biggest impact with the resources we had available was to train one copy of each model.
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G. Evaluations

We provide detailed evaluation scores and plots over the course of training for select benchmarks. In Appendix G.1
and Appendix G.2 we report raw scores for the final trained models, as well as comparisons to baseline model suites
(Appendix G.3), on a number of standard NLP tasks, as well as scores for both model suites prior to the deduplicated Pythia
models starting the second epoch on their training data, and in Appendix G.4 we provide plots of benchmarks over training.
Full evaluation data, as well as evaluations on a wider range of tasks, can be found at https://github.com/EleutherAl/pythia.

G.1. Raw Benchmark Scores - Zero Shot

Task

70M

160M

410M

1B

Lambada (OpenAl)
PIQA

WinoGrande

WSC

ARC - Easy

ARC - Challenge
SciQ

LogiQA

0.185 £ 0.005
0.595 £ 0.011
0.528 £0.014
0.365 £ 0.047
0.374 £0.010
0.181 £0.011
0.601 +=0.015
0.210 £ 0.016

0.328 £ 0.007
0.627 £0.011
0.531 £0.014
0.365 £ 0.047
0.435£0.010
0.188 £0.011
0.741 £0.014
0.190 £ 0.015

0.516 £ 0.007
0.668 = 0.011
0.537£0.014
0.567 £ 0.049
0.521 £ 0.010
0.213 £ 0.012
0.811 +£0.012
0.220 +0.016

0.562 £ 0.007
0.707 £ 0.011
0.537+£0.014
0.365 £ 0.047
0.569 £ 0.010
0.244 +£0.013
0.840 £ 0.012
0.223 £0.016

Task

1.4B

2.8B

6.9B

12B

Lambada (OpenAl)
PIQA

WinoGrande

WSC

ARC - Easy

ARC - Challenge
SciQ

LogiQA

0.616 £ 0.007
0.711 £0.011
0.573 £0.014
0.365 £ 0.047
0.606 £ 0.010
0.260 £ 0.013
0.865 £ 0.011
0.210 £0.016

0.647 £ 0.007
0.739 £0.010
0.594 £0.014
0.385 £ 0.048
0.644 £ 0.010
0.295 £ 0.013
0.882 £0.010
0.212 £0.016

0.673 £ 0.007
0.752 £0.010
0.609 £0.014
0.365 £ 0.047
0.673 £0.010
0.313£0.014
0.897 £0.010
0.253 £0.017

0.705 £ 0.006
0.760 £ 0.010
0.639 £0.013
0.548 £ 0.049
0.702 £ 0.009
0.318 £0.014
0.902 £ 0.009
0.224 £0.016

Table 7. Zero-shot results on selected NLP Benchmarks, for the fully-trained Pythia suite.
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Task

70M

160M

410M

1B

Lambada (OpenAl)
PIQA

WinoGrande

WSC

ARC - Easy

ARC - Challenge
SciQ

LogiQA

0.192 £ 0.005
0.598 £ 0.011
0.492 +£0.014
0.365 £ 0.047
0.385+£0.010
0.162 +£0.011
0.606 £ 0.015
0.235 £ 0.017

0.342 £ 0.007
0.618 £0.011
0.497 £0.014
0.365 £ 0.047
0.440 £ 0.010
0.201 £ 0.012
0.720 £0.014
0.210 £0.016

0.524 £ 0.007
0.675 £ 0.011
0.534 £0.014
0.471 £ 0.049
0.517£0.010
0.202 +£0.012
0.826 £0.012
0.209 £0.016

0.580 £ 0.007
0.700 £ 0.011
0.529 £ 0.014
0.365 £ 0.047
0.585 £ 0.010
0.245 £ 0.013
0.870 £ 0.011
0.212 +£0.016

Task

1.4B

2.8B

6.9B

12B

Lambada (OpenAl)
PIQA

WinoGrande

WSC

ARC - Easy

ARC - Challenge
SciQ

LogiQA

0.619 £ 0.007
0.720 £ 0.010
0.566 £0.014
0.442 +0.049
0.617 £ 0.010
0.272 +0.013
0.865 £ 0.011
0.221 +£0.016

0.651 £ 0.007
0.741 £0.010
0.582 £0.014
0.385 £ 0.048
0.635 £ 0.010
0.301 £0.013
0.882 £0.010
0.214 £+ 0.016

0.689 £ 0.006
0.760 £ 0.010
0.631 £0.014
0.442 + 0.049
0.686 = 0.010
0.331 £0.014
0.911 £ 0.009
0.215£0.016

0.710 £ 0.006
0.763 £ 0.010
0.660 £ 0.013
0.394 £ 0.048
0.708 £ 0.009
0.332£0.014
0.929 £ 0.008
0.224 £ 0.016

Table 8. Zero-shot results on selected NLP Benchmarks, for the fully-trained Pythia (Deduplicated) suite.

Task

70M

160M

410M

1B

Lambada (OpenAl)
PIQA

WinoGrande

WSC

ARC - Easy

ARC - Challenge
SciQ

LogiQA

0.214 £ 0.006
0.598 £ 0.011
0.508 £0.014
0.365 £ 0.047
0.359 £ 0.010
0.172+0.011
0.642 £0.015
0.220 £0.016

0.368 £ 0.007
0.625 £ 0.011
0.512 £0.014
0.365 £ 0.047
0.463 £0.010
0.192 +£0.012
0.764 £0.013
0.214 £ 0.016

0.500 £ 0.007
0.667 £0.011
0.525 £0.014
0.625 £ 0.048
0.512 £ 0.010
0.218 £ 0.012
0.808 £0.012
0.206 £ 0.016

0.549 £ 0.007
0.701 £0.011
0.519£0.014
0.365 £ 0.047
0.551 £ 0.010
0.229 +£0.012
0.837£0.012
0.224 +£0.016

Task

1.4B

2.8B

6.9B

12B

Lambada (OpenAl)
PIQA

WinoGrande

WSC

ARC - Easy

ARC - Challenge
SciQ

LogiQA

0.592 £ 0.007
0.705 £ 0.011
0.560 £ 0.014
0.394 £ 0.048
0.594 £ 0.010
0.253 £0.013
0.873 £0.011
0.224 +£0.016

0.633 £ 0.007
0.731 £0.010
0.592 £0.014
0.365 £ 0.047
0.622 £0.010
0.281 £ 0.013
0.875 £ 0.010
0.220 £0.016

0.657 £ 0.007
0.741 £ 0.010
0.593 £0.014
0.365 £ 0.047
0.657 £0.010
0.318 £0.014
0.901 £ 0.009
0.240 £ 0.017

0.684 £ 0.006
0.755 £ 0.010
0.630 £0.014
0.635 £ 0.047
0.686 £ 0.010
0.312£0.014
0.909 £ 0.009
0.230 £0.017

Table 9. Zero-shot results on selected NLP Benchmarks, for the Pythia suite after 93k steps of pretraining (the closest step we measure
prior to Pythia (Deduplicated) entering a second epoch at the 207B token mark).
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Task

70M

160M

410M

1B

Lambada (OpenAl)
PIQA

WinoGrande

WSC

ARC - Easy

ARC - Challenge
SciQ

LogiQA

0.230 £ 0.006
0.585 £ 0.011
0.511£0.014
0.365 £ 0.047
0.380 £ 0.010
0.177 £ 0.011
0.654 £0.015
0.232 £ 0.017

0.398 £ 0.007
0.628 £0.011
0.519 £0.014
0.462 £ 0.049
0.455 £ 0.010
0.200 £ 0.012
0.774 £0.013
0.217£0.016

0.529 £ 0.007
0.670 £0.011
0.530 £0.014
0.625 £ 0.048
0.526 £0.010
0.209 £ 0.012
0.824 +£0.012
0.230 £0.017

0.573 £ 0.007
0.696 + 0.011
0.540 £ 0.014
0.365 £ 0.047
0.564 £ 0.010
0.247 £ 0.013
0.858 £ 0.011
0.224 £ 0.016

Task

1.4B

2.8B

6.9B

12B

Lambada (OpenAl)
PIQA

WinoGrande

WSC

ARC - Easy

ARC - Challenge
SciQ

LogiQA

0.598 £ 0.007
0.715 £ 0.011
0.554 £0.014
0.413 £ 0.049
0.609 £ 0.010
0.266 £ 0.013
0.869 £ 0.011
0.214 +£0.016

0.633 £ 0.007
0.733 £0.010
0.583 £0.014
0.365 £ 0.047
0.622 £0.010
0.288 £0.013
0.882 £0.010
0.209 £0.016

0.670 £ 0.007
0.746 £ 0.010
0.624 +0.014
0.365 £ 0.047
0.667 £+ 0.010
0.319£0.014
0.896 £ 0.010
0.227 £ 0.016

0.697 £ 0.006
0.755 £ 0.010
0.636 £0.014
0.500 £ 0.049
0.691 £ 0.009
0.325+£0.014
0.925 £ 0.008
0.220 £ 0.016

Table 10. Zero-shot results on selected NLP Benchmarks, for the Pythia (Deduplicated) suite after 93k steps of pretraining (the closest

step we measure prior to Pythia (Deduplicated) entering a second epoch at the 207B token mark).

G.2. Raw Benchmark Scores - Five Shot

Task

70M

160M

410M

1B

Lambada (OpenAl)
PIQA

WinoGrande

WSC

ARC - Easy

ARC - Challenge
SciQ

LogiQA

0.125 £ 0.005
0.573 £0.012
0.522 +0.014
0.365 £ 0.047
0.381 £0.010
0.180 £ 0.011
0.577£0.016
0.218 £0.016

0.257 £ 0.006
0.621 £ 0.011
0.507 £0.014
0.365 £ 0.047
0.449 £0.010
0.186 £0.011
0.779 £ 0.013
0.217 £0.016

0.455 £ 0.007
0.678 £0.011
0.530 £0.014
0.365 £ 0.047
0.555 £0.010
0.221 +£0.012
0.891 £ 0.010
0.220 £ 0.016

0.507 £ 0.007
0.705 £ 0.011
0.532£0.014
0.365 £ 0.047
0.594 £ 0.010
0.259 £0.013
0.920 = 0.009
0.227 £ 0.016

Task

1.4B

2.8B

6.9B

12B

Lambada (OpenAl)
PIQA

WinoGrande

WSC

ARC - Easy

ARC - Challenge
SciQ

LogiQA

0.578 £ 0.007
0.705 £0.011
0.580 £0.014
0.365 £ 0.047
0.643 £ 0.010
0.290 £ 0.013
0.92 £ 0.009
0.240 £0.017

0.605 £ 0.007
0.736 £0.010
0.606 £ 0.014
0.365 £ 0.047
0.673 £0.010
0.323 £0.014
0.943 £ 0.007
0.217 £ 0.016

0.638 £ 0.007
0.755 £ 0.010
0.637 £0.014
0.365 £ 0.047
0.702 £ 0.009
0.356 £0.014
0.951 £ 0.007
0.270 £0.017

0.673 £ 0.007
0.760 £ 0.010
0.642 £0.013
0.365 £ 0.047
0.710 £ 0.009
0.365 £ 0.014
0.953 £ 0.007
0.218 £0.016

Table 11. Five-shot results on selected NLP Benchmarks, for the fully-trained Pythia suite.
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Task

70M

160M

410M

1B

Lambada (OpenAl)
PIQA

WinoGrande

WSC

ARC - Easy

ARC - Challenge
SciQ

LogiQA

0.134 £ 0.005
0.582 £0.012
0.499 £ 0.014
0.365 £ 0.047
0.383 £0.010
0.177 £ 0.011
0.598 £0.016
0.250 £ 0.017

0.268 £ 0.006
0.620 £ 0.011
0.513 £0.014
0.365 £ 0.047
0.453 £0.010
0.205 £ 0.012
0.792 £0.013
0.237£0.017

0.466 £ 0.007
0.676 £0.011
0.536 £0.014
0.365 £ 0.047
0.539 £0.010
0.230 £0.012
0.880 £0.010
0.210 £0.016

0.528 £ 0.007
0.704 £ 0.011
0.540 £ 0.014
0.365 £ 0.047
0.601 £ 0.010
0.260 £ 0.013
0.916 £ 0.009
0.226 £0.016

Task

1.4B

2.8B

6.9B

12B

Lambada (OpenAl)
PIQA

WinoGrande

WSC

ARC - Easy

ARC - Challenge
SciQ

LogiQA

0.568 £ 0.007
0.725 £ 0.010
0.569 £0.014
0.365 £ 0.047
0.633 £ 0.001
0.276 £ 0.013
0.926 £ 0.008
0.230 £0.017

0.606 £ 0.007
0.734 £0.010
0.604 £ 0.014
0.365 £ 0.047
0.675 £ 0.010
0.329 £0.014
0.942 £ 0.007
0.220 £0.016

0.663 £ 0.007
0.758 £0.010
0.638 £0.014
0.365 £ 0.047
0.702 £ 0.009
0.356 £0.014
0.952 £ 0.007
0.257 £0.017

0.691 £ 0.006
0.767 £ 0.010
0.666 £ 0.013
0.365 £ 0.047
0.715 £ 0.009
0.368 £ 0.014
0.955 £ 0.007
0.244 £ 0.017

Table 12. Five-shot results on selected NLP Benchmarks, for the fully-trained Pythia (Deduplicated) suite.

Task

70M

160M

410M

1B

Lambada (OpenAl)
PIQA

WinoGrande

WSC

ARC - Easy

ARC - Challenge
SciQ

LogiQA

0.134 £ 0.005
0.592 £ 0.011
0.531 £0.014
0.365 £ 0.047
0.375£0.010
0.178 £0.011
0.605 £ 0.015
0.223 £0.016

0.293 £ 0.006
0.627 £ 0.011
0.508 +£0.014
0.365 £ 0.047
0.461 £ 0.010
0.194 £ 0.012
0.810 £0.012
0.215£0.016

0.433 £ 0.007
0.674 £0.011
0.530 £0.014
0.365 £ 0.047
0.544 £0.010
0.211 +0.012
0.889 £0.010
0.229 £0.016

0.493 £ 0.007
0.693 £ 0.011
0.545 £0.014
0.365 £ 0.047
0.587 £ 0.010
0.261 £0.013
0.907 £ 0.009
0.224 +£0.016

Task

1.4B

2.8B

6.9B

12B

Lambada (OpenAl)
PIQA

WinoGrande

WSC

ARC - Easy

ARC - Challenge
SciQ

LogiQA

0.555 £ 0.007
0.697 £0.011
0.575£0.014
0.365 £ 0.047
0.622 £ 0.010
0.283 £0.013
0.921 £ 0.009
0.223 £0.016

0.590 £ 0.007
0.731 £0.010
0.603 £0.014
0.365 £ 0.047
0.667 £ 0.010
0.311 +£0.014
0.942 £ 0.007
0.215 £ 0.016

0.619 £ 0.007
0.748 £0.010
0.627 £0.014
0.365 £ 0.047
0.685 £ 0.010
0.351 £0.014
0.942 £ 0.007
0.250 £ 0.017

0.650 £ 0.007
0.757 £0.010
0.639 £0.014
0.356 £ 0.047
0.702 £ 0.009
0.347 £ 0.014
0.952 £ 0.007
0.229 £ 0.016

Table 13. Five-shot results on selected NLP Benchmarks, for the Pythia suite after 93k steps of pretraining (the closest step we measure
prior to Pythia (Deduplicated) entering a second epoch at the 207B token mark).
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Task

70M

160M

410M

1B

Lambada (OpenAl)
PIQA

WinoGrande

WSC

ARC - Easy

ARC — Challenge
SciQ

LogiQA

0.153 £ 0.005
0.589 £ 0.011
0.515+£0.014
0.365 £ 0.047
0.392 £ 0.010
0.172 £0.011
0.600 £ 0.015
0.238 £ 0.017

0.333 £ 0.007
0.628 £0.011
0.513 £0.014
0.365 £ 0.047
0.468 £ 0.010
0.201 £ 0.012
0.815£0.012
0.238 £0.017

0.468 £ 0.007
0.671 £0.011
0.542 £0.014
0.365 £ 0.047
0.540 £ 0.010
0.231 £ 0.012
0.877 £ 0.010
0.209 £0.016

0.513 £ 0.007
0.697 £ 0.011
0.558 £0.014
0.365 £ 0.047
0.593 £ 0.010
0.250 £0.013
0.913 £ 0.009
0.214 £0.016

Task

1.4B

2.8B

6.9B

12B

Lambada (OpenAl)
PIQA

WinoGrande

WSC

ARC - Easy

ARC — Challenge
SciQ

LogiQA

0.563 £ 0.007
0.712 +£0.011
0.567 £0.014
0.365 £ 0.047
0.630 £0.010
0.274 £0.013
0.918 £ 0.009
0.229 £ 0.017

0.593 £ 0.007
0.727 £ 0.010
0.596 £ 0.014
0.365 £ 0.047
0.664 £ 0.010
0.310 £0.014
0.942 £ 0.007
0.220 £0.016

0.652 £ 0.007
0.750 £ 0.010
0.636 £0.014
0.346 £ 0.047
0.683 £0.010
0.355 £ 0.014
0.947 £ 0.007
0.240 £ 0.017

0.685 £ 0.006
0.751 £ 0.010
0.643 £0.013
0.365 £ 0.047
0.712 £ 0.009
0.369 £ 0.014
0.948 £ 0.007
0.229 £ 0.016

Table 14. Five-shot results on selected NLP Benchmarks, for the Pythia (Deduplicated) suite after 93k steps of pretraining (the closest

step we measure prior to Pythia (Deduplicated) entering a second epoch at the 207B token mark).

G.3. Comparison to Baseline Models

Task

560M

1.1B

1.7B

3B

Lambada (OpenAl)
PIQA

WinoGrande

WSC

ARC - Easy

ARC — Challenge
SciQ

LogiQA

0.341 £ 0.007
0.637 £0.011
0.504 £0.014
0.442 +0.049
0.476 £ 0.010
0.221 +£0.012
0.804 £0.013
0.217£0.016

0.426 £ 0.007
0.672 £0.011
0.547 £0.014
0.365 £ 0.047
0.515£0.010
0.236 £0.012
0.833 £0.012
0.189 £0.015

0.462 £ 0.007
0.686 £ 0.011
0.572 £0.014
0.365 £ 0.047
0.562 £ 0.010
0.238 £0.012
0.851 £0.011
0.217 £ 0.016

0.518 £ 0.007
0.708 £0.011
0.586 £0.014
0.375 £ 0.048
0.594 £ 0.010
0.280 £ 0.013
0.891 £0.010
0.206 £ 0.016

Table 15. Zero-shot results on standard NLP benchmarks for the BLOOM model suite, reported for comparison with Pythia’s performance.
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Task

125M

350M

1.3B

2.7B

Lambada (OpenAl)
PIQA

WinoGrande

WSC

ARC - Easy

ARC — Challenge
SciQ

LogiQA

0.379 £ 0.007
0.630 £ 0.011
0.503 £0.014
0.365 £ 0.047
0.435+£0.010
0.189 + 0.011
0.751 £ 0.014
0.227 £ 0.016

0.452 £ 0.007
0.644 +0.011
0.523 £0.014
0.365 £ 0.047
0.440 £ 0.010
0.207 £0.012
0.748 £0.014
0.210 £0.016

0.579 £ 0.007
0.717 £ 0.011
0.597 £0.014
0.385 £ 0.048
0.570 £0.010
0.231 £0.012
0.845 £ 0.011
0.223 £0.016

0.636 £ 0.007
0.739 £ 0.010
0.610 £0.014
0.635 £ 0.047
0.608 £0.010
0.268 £ 0.013
0.858 £0.011
0.210 £0.016

Task

6.7B

13B

30B

66B

Lambada (OpenAl)
PIQA

WinoGrande

WSC

ARC - Easy

ARC — Challenge
SciQ

LogiQA

0.677 £ 0.007
0.763 £0.010
0.653 £0.013
0.423 £ 0.049
0.656 £ 0.010
0.305 £ 0.013
0.901 £ 0.009
0.235 £ 0.017

0.686 £ 0.006
0.760 £ 0.010
0.652 £0.013
0.606 £ 0.048
0.671 £0.010
0.329 £0.014
0.908 £ 0.009
0.227 £ 0.016

0.715 £ 0.006
0.776 £0.010
0.682 £0.013
0.596 £ 0.048
0.700 £ 0.009
0.346 £0.014
0.911 £ 0.009
0.217£0.016

0.739 £ 0.006
0.788 £0.010
0.687 £ 0.013
0.548 £ 0.049
0.717 £ 0.009
0.372£0.014
0.926 £ 0.008
0.227 £ 0.016

Table 16. Zero-shot results on standard NLP benchmarks for the OPT model suite up to 66B parameters, reported for comparison with

Pythia’s performance.
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Figure 8. Zero-shot evaluations of final Pythia checkpoints against OPT and BLOOM.

30



Pythia: A Suite for Analyzing Large Language Models

1.0
0.8 [
2 06|
g I
= [
3 r
< 04 B
02| — Pythia
[ ——— Pythia (Deduplicated)
0.07 Lol [N L L L1l
107 10® 10° 1010
Size (Parameters)
(a) LAMBADA (OpenAl)
1.0 -
0.8
Z 06|
g I
= [
8 [
< 04 B
02| — Pythia
[ ——— Pythia (Deduplicated)
0.07 Lol [N L L L1l
107 108 10° 1010
Size (Parameters)
(c) Winogrand Schema Challenge
1.0
0.8
2 06|
g I
= [
8 I
< 04 B
0.2 } ——— Pythia
[ ——— Pythia (Deduplicated)
0‘07 Lol [N L L L1l
107 108 10° 1010

Size (Parameters)

(e) AI2 Reasoning Challenge — Easy Set

Accuracy

Accuracy

Accuracy

1.0 -
0.8 |
0.4
0.2} — Pythia
[ ——— Pythia (Deduplicated)
0.07 Lol [ L L1l
107 10® 10° 1010
Size (Parameters)
(b) PIQA
1.0 -
0.8
0.6 - J
0.4
02 ——— Pythia
[ ——— Pythia (Deduplicated)
0.07 Lol [ L L1l
107 108 10° 1010
Size (Parameters)
(d) Winogrande
1.0 -
0.8
0.6 -
0.4
0.2 } —— Pythia
[ ——— Pythia (Deduplicated)
0.07 Lol [ L L1l
107 108 10° 1010

Size (Parameters)

(f) SciQ

Figure 9. Zero-shot evaluations of last Pythia checkpoints prior to the second epoch for deduplicated models.
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Figure 12. Winogrande over the course of training. Left is the standard Pile, while the right is the deduplicated Pile. The dashed line
indicates where the deduplicated Pile began its second epoch.
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Figure 13. AI2 Reasoning Challenge — Easy Set over the course of training. Left is the standard Pile, while the right is the deduplicated
Pile. The dashed line indicates where the deduplicated Pile began its second epoch.
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