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Abstract

Accurate performance prediction of Deep Learn-
ing (DL) models is essential for efficient resource
allocation and optimizations in various stages of
the DL system stack. While existing approaches
can achieve high prediction accuracy, they lack
ability to quickly adapt to new hardware environ-
ments or emerging workloads. This paper lever-
ages both Graph Neural Networks (GNNs) and
Large Language Models (LLMs) to enhance the
accuracy and adaptability of DL performance pre-
diction. Our intuition is that GNNs are adept at
capturing the structural information of DL mod-
els, naturally represented as graphs, while LLMs
provide generalization and the ability to quickly
adapt to various tasks thanks to extensive pre-
training data. We empirically demonstrate that
using GNN-derived graph embeddings as inputs
to an LLM outperforms traditional representa-
tions, including high-level text summary and loss-
less semi-structured text (e.g., JSON), for this
task. Furthermore, we propose a structured pre-
training strategy to enable model adaptation to
new hardware environments, significantly reduc-
ing the need for extensive retraining. Our experi-
ments validate the effectiveness of this approach,
showing an 8.8 percentage-point improvement
in accuracy over a state-of-the-art GNN baseline.
Notably, when adapted to new hardware with few
samples, our method achieves a remarkable 30-70
percentage-point increase in accuracy compared
to the GNN baseline.
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1. Introduction

Performance prediction for Deep Learning (DL) models is
essential for all sorts of optimization methods in the DL
system stack: from Neural Architecture Search, to model
partitioning and sharding, to low-level compiler optimiza-
tions. Performance prediction involves estimating various
operational metrics — such as inference time, memory us-
age, and power consumption — that are crucial for efficient
hardware utilization and scheduling. Since DL models are
computation graphs, researchers have employed Graph Neu-
ral Networks (GNNs) to extract information from the DL
model for various optimization decisions given hardware
components (Phothilimthana et al., 2023; Panner Selvam &
Brorsson; 2023; Liu et al., 2022).

Unfortunately, aforementioned GNN-based approaches re-
quire comprehensive retraining to accommodate new hard-
ware environments or DL architectures, often requiring large
labeled datasets. These requirements can hinder a rapid
adaptation and optimization, limiting the flexibility of these
models when new architectures or configurations emerge.
Fortunately, the recent successes of Large Language Models
(LLMs) in various domains have underscored their capa-
bility to understand and generate complex systems (Team
et al., 2024; Singhal et al., 2023; Wayne et al., 2023; Wu
et al., 2023; Li et al., 2023). This includes not only natural
language but also structured data such as code, configuration
settings, and textual descriptions of hardware configurations
and DL architectures. Given their extensive pre-training
on diverse datasets, LLMs can generalize effectively when
fine-tuned on specific tasks. Their generalization capability
makes them good candidates for enhancing DL performance
prediction.

However, employing LLMs in the performance prediction
domain poses challenges, primarily due to the need for rep-
resenting DL models in a format that LLMs can efficiently
process. Prior works have considered using high-level de-
scriptions to represent programs and graphs as text inputs
for compiler optimizations and performance predictions
(Cummins et al., 2023; Jawahar et al., 2023). Nonetheless,
these representations often fail to maintain the full structural
intricacies of DL models, losing crucial connectivity and
hierarchical information. An alternative representation is
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Figure 1: Our approach integrates GNNs and LLMs for DL model performance prediction. The methodology utilizes soft
prompting to fine-tune pre-trained GNN weights and projection layer weights, while updating pre-trained LLMs with the
LoRA technique. During fine-tuning, gradients flow from the LLM to the GNN, allowing the system to process graphs and
prompts effectively and generate accurate performance metrics predictions.

to use structured text format (e.g. JSON, XML, Protobuf,
etc.), which maintains detailed information of node features
and their connections. However, DL models can contain
tens-of-thousands of nodes (Phothilimthana et al., 2023),
which can hinder the processing efficiency and scalability
when used with LLMs.

Recent research has explored the use of GNNs as encoders
to convert graph data into embeddings as inputs to LLMs,
thereby effectively bridging the gap between graph data and
the textual input preferred by LLMs. However, these studies
primarily focus on graph-based question answering, rather
than directly on performance prediction (Perozzi et al., 2024;
Liu et al., 2024).

In line with (Perozzi et al., 2024) findings, We hypothe-
size that graph embeddings, derived from GNNss, represent
DL models more effectively for performance prediction
than conventional text representations because the graph
embeddings could better capture structures and connectivity.
Based on this hypothesis, we propose the GNN-LLM model
for DL performance prediction, as illustrated in Figure 1.
Our experiment has confirmed that using graph embeddings
significantly outperforms using a semi-structured text for-
mat (JSON) and a high-level text format in both accuracy
and computational efficiency. Specifically, our approach
surpasses a JSON format by approximately 6% in accuracy
and is 21 times faster in terms of training time. Likewise,
our approach surpasses high-level text by 134% in accuracy
and is 2 times faster in terms of training time, demonstrating
a substantial improvement over text-based representation.

To enhance the adaptability and accuracy of the model, we
further develop a structured pre-training strategy that ob-

viates the need for extensive retraining from scratch. The
approach begins by training a GNN using a mask autoencod-
ing technique on unlabeled DL models, inspired by (Hou
et al., 2022) research. In this initial phase, the GNN learns
to capture DL graph structures and node information. Sub-
sequently, we refine the integration between the DL graph
data and the LLM by fine-tuning the projection layer and
the LLM through a graph-to-text task. This graph-to-text
translation will enable the LLM to comprehend DL graph
structures and improve the model’s ability to adapt to new
hardware with minimal training samples for downstream
performance prediction tasks. Finally, all components are
fine-tuned for the final performance prediction task.

In the evaluation, our method achieves a 8.8 percentage-
point increase in accuracy over the state-of-the-art GNN
baseline on the NNLQP multi-platform dataset, and a re-
markable 30-70 percentage-point increase in accuracy when
adapted to new hardware with few samples. The results con-
firms our method’s efficacy in enhancing both the accuracy
and adaptability of performance predictions across varied
computational environments.

1. We empirically evaluate different DL model representa-
tions for LLMs on performance prediction tasks, show-
ing that a graph embedding-based input is most effec-
tive.

2. We introduce a method integrating GNNs and LLMs
for the DL performance prediction domain, combining
GNNs’ structural insights and LLMs’ generalization
capabilities.

3. We propose a structured pre-training strategy to en-
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hance model performance in a new hardware environ-
ment with limited training samples.

4. We contribute a specialized graph-to-text dataset de-
signed to further research into the integration of GNN
and LLMs. This dataset is particularly valuable for
benchmarking and advancing the application of GNN-
LLM combinations in graph learning tasks.

5. Our research offers a promising direction for improving
DL performance prediction accuracy and adaptability
across diverse hardware environments.

2. Related Work

The field of performance prediction for DL models has wit-
nessed growing interest in recent years. Early work by (Qi
et al., 2017) proposed an analytical model to estimate DL
model training time. Subsequent studies like that of (Gao
et al., 2020) extended these methods to predict memory con-
sumption, utilizing analytical models to estimate resource
utilization during training. To improve prediction accuracy,
researchers have explored machine learning approaches.
(Bouhali et al., 2021) used an MLP-based regressor with
features like trainable parameter counts, but it was con-
strained by a shallow understanding of DL layers’ dynamics.
Others, such as (Justus et al., 2018) and (Gianniti et al.,
2018), adopted a layer-by-layer technique, they predicted
performance for each layer instead of the whole model,
incorporating parameters like FLOPs to predict execution
times and power consumption.

However, this layerwise strategy failed to capture the net-
work structure of DL models (Liu et al., 2022) To ad-
dress this limitation, many methods (Kaufman et al., 2021;
Dudziak et al., 2020; Liu et al., 2022; Bai et al., 2022; Yi
et al., 2023; Zhou et al., 2020; Phothilimthana et al., 2023;
Panner Selvam & Brorsson, 2023; Panner Selvam & Brors-
son) utilized graph learning techniques to generate embed-
dings that encapsulate the DL model network topology, as
well as the features of the computation graph. These embed-
dings are trained to predict performance characteristics.

Despite these advancements, prior approaches lack online
adaptability. Current methods require retraining for new DL
architectures or hardware configurations. On the other hand,
our proposed approach aims to overcome this challenge by
integrating GNNs with LLMs to create a predictive system
that is more adaptable and flexible in real-world scenarios.

3. Background

3.1. DL Models as Computational Graphs & Graph
Neural Networks (GNNs)

DL models can be represented as directed acyclic compu-
tational graphs, where nodes correspond to mathematical

operations and edges represent data flow between these op-
erations. The input features of every node include the op
code (e.g., einsum, relu, efc), the output data type (e.g.,
float32, uint8, etc) and the shape of the output tensor — See
(Phothilimthana et al., 2023) for comprehensive list of node-
wise features.

GNNss are designed to operate on graph-structured data. Let
graph of n nodes be represented with a node feature ma-
trix X € RY* and an adjacency matrix A € {0, 1}V*¥,
GNNSs use an iterative message passing process to generate
embeddings for nodes. During message passing, each node
updates its embedding by aggregating information from its
neighbors. GNN layer can be written as:

H( = TRANSFORM (H{™",A) ()

where H(® is the node embedding matrix at the I-th layer
and H® = X. Through multiple message-passing lay-
ers, each node aggregates information from a wider neigh-
borhood, capturing both immediate and distant neighbor
information. GNNs have excelled in tasks such as node
classification, link prediction, and graph-level classification.
There are many possible choices for TRANSFORM function
(Kipf & Welling, 2017; Velickovi¢ et al., 2018; Hamilton
et al., 2017; Xu et al., 2019). In our work, we use a variant
of the GIN model (Xu et al., 2019):

H()\ = MLP (A + Ty HO™), ®)

where MLP stands for multi-layer perceptron, I is n X n
identity matrix, and e is small constant.

3.2. Large Language Models
3.2.1. PRE-TRAINED LARGE LANGAUGE MODELS

Pre-trained LLMs are advanced neural networks for natural
language processing tasks. They leverage the Transformer
architecture (Vaswani et al., 2017), which uses self-attention
mechanisms to manage long-range dependencies in text.
LLMs are pre-trained on extensive corpora to predict subse-
quent tokens, enabling them to capture intricate linguistic
patterns. This pre-training is followed by finetuning task-
specific datasets to adapt to various applications like text
classification and translation.

3.2.2. PARAMETER-EFFICIENT FINE-TUNING

With the rapid increase in the size of state-of-the-art
LLMs, traditional fine-tuning has become resource inten-
sive. Parameter-Efficient Fine-Tuning (PEFT) aims to adapt
models to new tasks by updating only a small subset of
parameters (Xu et al., 2023).

Low-Rank Adaptation (LoRA): LoRA introduces low-
rank matrices into model layers, represented as AW = BA,
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where B and A are trainable low-rank matrices. This ap-
proach reduces the computational burden by updating fewer
parameters while keeping the main model’s parameters
frozen, thus preserving the pre-trained knowledge (Hu et al.,
2021).

Soft Prompting: Soft prompts are learnable vectors inte-
grated into the model’s input to guide its behavior toward
specific tasks. This method updates only a small number of
parameters, making it computationally efficient and preserv-
ing the broad knowledge of the model(Bulat & Tzimiropou-
los, 2023).

4. Methodology

Figure 1 displays our proposed model architecture. Our
approach takes a DL model graph and a textual prompt
as inputs. The DL graph is initially processed by a GNN
encoder and then projected as an embedding to an LLM,
along with the token embeddings of the textual prompt.

4.1. DL Representation

We consider the following methods to represent DL models
for processing by LLMs.

Graph Representation. This method first encodes a DL
model in the Open Neural Network Exchange (ONNX)
format, represented as a graph with node feature matrix X
formulated as:

XU — Xg}Op) @ ngmr) EB X-'E]Shape) VU S N (3)

where Xq(f)p) is the one-hot encoded vector indicating the
type of the node operation. X" includes the node’s at-
tribute vector, containing parameters such as kernel size
and stride, and Xgﬁhape) encodes the output shape. The op-
eration @ represents a vector concatenation. This method
is adapted from the framework established in (Liu et al.,
2022). Subsequently, we feed the node feature matrix X
and the adjacency matrix A into the GNN. The GNN then
produces a graph embedding for input into the LLM, along
with prompt’s token embeddings, to predict the model’s

performance.

High-level Text Representation. We use a predefined
template that captures essential computational and structural
properties of a DL model. This includes overall model
statistics — such as FLOPs, parameter count, and batch
size — offering insights into the model’s complexity and
capacity. We also include layer-specific statistics, detailing
each layer’s FLOPs and parameter counts. These elements
together offer a holistic view of a DL model’s architecture
and its computational behavior. To predict its performance,
we simply tokenize and apply a conventional word encoder

on the textual prompt for LLM processing.

Semi-Structured Text Representation. We adopt a semi-
structured JSON format to comprehensively encapsulate a
DL architecture. This format itemizes each node’s character-
istics, including the operator type, input and output shapes,
computation complexities, and node attributes. Addition-
ally, it capture node connectivity. For LLM processing,
we tokenize and apply a conventional word encoder on the
semi-structured description.

4.2. Graph Encoding

Our GNN encoder is based on the Graph Isomorphism Net-
work (GIN)(Xu et al., 2019), defined as:

H{), = (A +Ie)MLP(H!™) @

with MLP(Z) = ReLU(BN(ZWl + bl))WQ + by

We inspired this architecture by (Hou et al., 2022). This
setup ensures each node feature undergoes transformation,
normalization, and activation, promoting the learning of non-
linear dependencies. After processing through L layers, we
aggregate node features to form a graph-level representation:

N

1 (L)
> HY. 5
8=y 2 M )

Next, the projection layer transforms the GNN output g
into an embedding vector of size dempedding fOr the LLM
processing.:

GraphToken = MLP,(g), ©)

where MLP,,,; encapsulates a series of linear transforma-
tions and non-linear activations. It ensures the alignment
of dimensionalities and contextual relevance. Note that the
output dimension size of the projection is larger than the
input dimension size: |GraphToken| > |g|.

The LLM input is then constructed by integrating graph
embeddings GraphToken with token embeddings Q. A
textual prompt describing the task like “Predict the
inference time of DL model” is tokenized as
q = [¢1,42,---,qn]- The tokens are then converted into
word embeddings: Q = E[q], where E represents the
embedding matrix. The complete LLM input is the con-
catenation of the projected graph embedding and the token
embeddings:

Input; | \y = [<graph>, GraphToken, </graph>, Q].  (7)

In this sequence, <graph> and </graph> are text tokens di-
rectly generated by the tokenizer, marking the beginning and
end of the graph embedding. A single graph embedding vec-
tor GraphToken efficiently encapsulates the entire graph’s
structure, compactly representing complex information in a
form that complements textual embeddings in LLMs.
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Stage 1: GNN Pretraining

Stage 2: Graph-Text Adaptation

Stage 3: Performance Prediction Finetuning

Figure 2: The three stages of our approach: (1) GNN Pre-training: Using Scaled Cosine Error (SCE) loss with masked node
features (Xmask) approach to pre-train the GNN. (2) Graph-Text Adaptation: Fine-tuning the pre-trained GNN encoder
(frozen) and updating LLM weights and projection weights using soft prompting and LoRA techniques. (3) Performance
Prediction Fine-tuning: Updating all GNN projection and LLM parameters through soft prompting and LoRA techniques
to predict performance metrics for deep learning graphs on various hardware.

4.3. Training Strategy: 3-stage training

We hypothesize that directly fine-tuning both LLMs and
GNNs for performance prediction tasks, starting from
scratch, may not yield optimal adaptability for new tasks.
The challenge lies in the initial lack of domain-specific
knowledge, which is crucial for the model to effectively
process and predict the DL performance metrics. To address
this, we propose a novel structured pre-training methodol-
ogy, designed to enhance the model’s intrinsic understand-
ing of DL graph structures before fine-tuning for perfor-
mance prediction. The pre-training strategy comprises the
three stages as shown in Figure 2.

Stage 1. GNN Pre-training. We employ the Graph
Maked Auto Encoder technique (GraphMAE) for GNN
pre-training (Hou et al., 2022). We use GIN as both en-
coder and decoder. Given a DL graph with X and A, we
mask a portion of X using a learnable mask vector to pro-
duce X. The GIN encoder processes (X, A) to generate
latent embeddings Z, effectively capturing the obscured
structural details. The GIN decoder reconstructs the node
features from Z to X, aimed at closely approximating the
original X. Reconstruction accuracy is quantified using
Scaled Cosine Error (SCE), which evaluates alignment in
both direction and magnitude of the feature vectors. Using
GIN for both encoding and decoding optimizes the preser-
vation and reconstruction of local graph structures, essential
for understanding DL graphs. The SCE, by assessing both
vector orientation and length, enhances model sensitivity
to structural and feature variations, preparing it for robust
performance on subsequent tasks.

Stage 2. Graph-Text Adaptation. For this stage we up-
date only projection layer and LLM weights. The projection
layer W, adapts the graph embeddings GraphToken for
integration with the LLM. During training, we update the

projection layer weights using soft prompting techniques.

oc oL 0Output
OW,  OOutput OGraphToken

. GraphTokenT

Here, ﬁﬁvut represents the gradient of the loss with respect
to the LLM’s output, and % captures how changes

in GraphToken affect the output. We used cross-entropy loss
for the next word prediction. We utilize the LoRA technique
to efficiently update the LLM weights. The updates for the
low-rank matrices B and C are given by:

9L _ 9L a0 gy 0L
0B 0AW T oC 0AW

where AW = BC represents the low-rank update to the
LLM weights. The GNN encoder weights remain frozen
during this stage to preserve the integrity of the initial graph
embeddings learned during pre-training. This selective up-
dating strategy helps maintain foundational graph under-
standing and ensures consistent model performance across
various adaptation scenarios.

Stage 3. Performance Prediction Fine-Tuning. In this
final stage, we load the pre-trained GIN encoder weights
from Stage 1 and the projection W,, and LoRA weights
from Stage 2. We fine-tune the entire GNN to LLM model
for performance prediction.

Note that naively feeding the GNN embedding outputs as
multiple concrete text tokens to the LLM does not work
because the gradient does not flow from the LLM to the
GNN. This is why we adopt the proposed approach.

Training Datasets. We utilize three distinct datasets for
the different stages of our model’s training process. For
GNN pre-training, we use a dataset containing 20,000 un-
labeled DL graphs (Liu et al., 2022). This extensive set of
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Table 1: Performance comparison of different representations of DL models for performance prediction tasks. Our proposed
method (DL graph as embedding) demonstrates superior accuracy and efficiency, outperforming both JSON and high-level

text representations.

Method MAPE| ACC(10%)1 TTT(hr)l Max Token Length |

Ours 12.61 52.83
JSON 13.55 49.80
Text 41.42 22.50

0.23 512
5.02 2048
0.46 512

Table 2: Performance comparison of LLM models with and
without graph-text adaptation combined with GNNs having
either random or pre-trained weights. Results indicate that
graph-text adaptation significantly improves LLM perfor-
mance.

Models MAPE | Acc(10%) T
LLM + GNN 14.71 49.27
LLM + GNNprg 20.02 36.58
LLMPRE + GNN 13.57 55.12
LLMPRE + GNNPRE 12.50 57.10

graphs allows our GNN to capture a wide range of node and
edge features, providing robust initial embeddings.

For graph-to-text adaptation, we introduce a novel dataset
based on the NNLQP dataset (Liu et al., 2022). Each sum-
mary provides comprehensive details, including the total
number of nodes, edges, model complexity, and statistics
for each layer. The dataset comprises 20,000 prompts.

For performance prediction fine-tuning, we utilize the
NNLQP Multi-platform dataset, which encompasses DL
graphs, platform IDs, and inference latency metrics across
10 different hardware platforms. The dataset consists of
7,396 graphs designated for training and 3,201 for test-
ing, totaling 10,597 graphs. For additional details on these
datasets, please refer to the Appendix A.3.

5. Experiments

This section presents a series of experiments designed to
validate the efficacy of our integrated model for DL perfor-
mance prediction. We utilized our performance prediction
datasets described in section 4.3 to challenge our model
under different conditions and compared it with the GNN
baseline to underscore its advantages and unique capabili-
ties. The computing details are explained in appendix A.1.

5.1. Experiment: DL Representation

This experiment explores the efficacy of different represen-
tations of DL models for performance prediction tasks using
LLMs. The DL representations are mentioned in Section
4.1. We investigated three primary formats: our proposed

method (DL graph as embedding), semi-structured format
(JSON), and high-level text. Each format presents unique
challenges in how effectively it can be processed by LLMs.

Setting: For this experiment, we utilized the Llama3-8B!
pre-trained model as the base LLM. The Adam optimizer
was used with a learning rate of 1 x 10~°, and LoRA with
rank 8 was employed for efficient parameter updating. The
GIN encoder used a learning rate of 1 x 10~3. Each model
was trained over 10 epochs, repeated 3 times to ensure
stability and convergence of results.

In experiments with the performance prediction dataset (Liu
et al., 2022), the entire set of 20,000 ONNX models was
converted to JSON format and tokenized using the Llama3-
8B model tokenizer to assess context length. The JSON
format reached a maximum context length of 18,000 tokens.
Therefore, we selected the AlexNet family in the dataset due
to its shorter context length compared to other families. A
90:10 train-test split was used for this experiment, consistent
with previous work (Liu et al., 2022).

Result: Our proposed approach outperforms both JSON
and high-level text representations significantly in terms of
MAPE and ACC(10%), as shown in Table 1. Our method
also demonstrated substantial efficiencies in training time,
with the Total Training Time (TTT) notably lower than
that required for JSON, which had the highest tokenization
length and training duration. These results highlight the
critical impact of DL model representation on the perfor-
mance prediction capabilities of LLMs. High-level text,
while simple, fails to capture the necessary connectivity
information, leading to poor prediction accuracy. The semi-
structured JSON format offers some improvement by pro-
viding hierarchical data, but its verbosity and resulting long
token sequences increase computational costs. Our pro-
posed method, which embeds the DL graph structure into
a compact representation, strikes an optimal balance by
preserving essential connectivity information within a man-
ageable token length.

This approach not only enhances prediction accuracy but
also ensures computational efficiency. The graph embed-
dings naturally align with the inherent structure of DL mod-

"https://llama.meta.com/llama3/
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Table 3: Performance comparison of the GNN baseline against our models with different base LLMs (Llama3-8B and
Mistral-7B) using a multi-platform performance prediction dataset. Both our models utilize GNN pre-training and graph-text
adaptation. The results demonstrate that our approach outperforms the baseline, highlighting the effectiveness of the

integrated method.

MAPE | Ace (10%) 1
Platforms GNN Llama3-8B Mistral-7B  GNN Llama3-8B  Mistral-7B
cpu-openppl-fp32 10.48 12.57 12.22 58.94 54.91 56.26
hi3559A-nniel 1-int8 7.55 6.24 5.38 73.19 80.72 88.15
gpu-T4-trt7.1-fp32 9.32 10.00 9.69 60.87 56.52 58.74
gpu-T4-trt7.1-int8 18.10 15.17 14.05 27.90 47.85 46.78
gpu-P4-trt7.1-fp32 9.75 10.81 9.91 60.97 53.58 58.89
gpu-P4-trt7.1-int8 13.75 12.55 12.05 36.68 48.93 48.83
hi3519A-nniel2-int8 7.13 6.94 5.96 77.53 81.01 85.02
atlas300-acl-fp16 14.41 11.38 9.47 47.76 59.62 68.05
mul270-neuware-int8§  26.18 26.88 28.31 21.61 30.77 33.70
Average 12.96 12.50 11.89 51.72 57.10 60.49

els, enabling the LLM to process and predict performance
metrics more effectively.

5.2. Experiment: Effect of Pre-training Strategy

This study assesses the impacts of the GNN pre-training
and the graph-to-text adaptation. The hypothesis driving
this experiment is that pre-training can provide foundational
knowledge that aids in subsequent performance prediction
tasks. In this study, we leverage the performance prediction
fine-tuning dataset as mentioned in Section 4.3. We used
the Llama3-8B as the base LLM, optimizing with a learning
rate of 0.0001 for the LLM and 0.001 for the GNN. The
training was conducted over 10 epochs for 3 times.

Result: The configuration with graph-text adaptation
(LLMpgrg) and pre-trained GNN initialization (GNNpgrg)
significantly outperforms other setups as shown in Table 2.
This validates our hypothesis that initial knowledge acquisi-
tion through auxiliary tasks can substantially enhance the
model’s ability to predict performance metrics accurately.
Interestingly, GNN pre-trained alone performs worse than
randomly initialized GNN. We believe that randomly initial-
ized GNN weights prevent overfitting to pre-existing biases,
encouraging the LLM to learn more generalized and robust
features during training.

5.3. Experiment: Comparison with State-of-the-Art
GNN

To rigorously evaluate our proposed architecture, we con-
ducted a comparative analysis against the established GNN
baseline (Liu et al., 2022) model across the multi-platform
performance prediction fine-tuning dataset as mentioned
in Section 4.3. This comparison is crucial to validate the
enhancements offered by our approach, particularly in terms
of accuracy. In this experiment, we used two variants of our

model: one with Llama3-8B and one with Mistral-7B as the
base LLM, both utilizing GNN pre-training and graph-text
adaptation.

Settings: The baseline GNN model was utilized with no
architectural modifications as described in its original im-
plementation. For both of our models, we used the Adam
optimizer with a learning rate of 0.0001 for the LLM and
0.001 for the GNN, across 10 training epochs conducted
three times.

Results: According to the results shown in Table 3, both
variants of our model with the pre-training strategy out-
performed the GNN baseline. Notably, our model with
the Mistral-7B base LLM outperforms the baseline by ap-
proximately 8.26% reduction in MAPE and 16.96% (8.8
percentage-point) increase in Acc (10%). These results high-
light the critical impact of the effective model representation
and the pre-training strategy on the performance prediction
capabilities of LLMs.

Additionally, the results show that the choice of LLM signifi-
cantly affects performance prediction accuracy. For instance,
our model with the Mistral-7B base LLM consistently out-
performs across various platforms, demonstrating the im-
portance of model selection in achieving higher accuracy.

5.4. Experiment: Adaptation

This experiment assesses the real-world adaptability of our
model to new hardware environments, particularly under
conditions of limited training data. Our comparative anal-
ysis involved three models: a standard GNN baseline and
two variants of our model, one with and one without both
GNN pre-training and graph-text adaptation. Both variants
of our model employ Llama3-8B as the base LLM, consis-
tent with the settings described in section 5.3. Each model
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Figure 3: Adaptability experiment demonstrating model transfer ability across different hardware platforms. We compared
three models: a GNN baseline and two variants of our model-Llama3-8B (with and without the structured pre-training).
Each model was trained on eight hardware configurations, followed by a transfer of learned weights to fine-tune on a new
unseen hardware platform (hi3519A-nniel2-int8 or atlas300-acl-fp16) with a varying number of training samples. Our
model with the structured pre-training outperformed both the GNN baseline and our model variant without the structured

pre-training.

was trained across eight distinct hardware platforms for ten
epochs, after which the learned weights were transferred to
additional, unseen hardware platforms for further training
for three epochs.

The results, illustrated in Figure 3, demonstrate the superior
adaptability and performance of our enhanced model on
new unseeen hardware with sparse training samples. On the
hi3519A-nniel2-int8 and atlas300-acl-fp16 platform, our
model equipped with the structured pre-training achieves
70% and 29% Acc(10%) respectively, while GNN achieves
0%, when training on just 32 samples. The results also
highlight the importance of our structured pre-training strat-
egy, increasing the accuracy of the LLM-GNN model by up
to 50 percentage-point. Notice that without the structured
pre-training, the LLM-GNN model even underperformed
the GNN baseline in some scenarios. These results under-
score the critical roles of both LLMs and our structured-pre-
training strategy in enhancing model adaptability, proving
essential for the deployment of learned performance model-
ing in dynamic real-world applications.

6. Discussion and Conclusion

This paper has investigated the integration of GNNs and
LLMs to enhance the accuracy and adaptability of DL per-
formance prediction. Our empirical evaluations have demon-
strated that graph embeddings, derived from GNNs, are
more effective inputs for LLMs than traditional text-based
representations, leading to significant improvements in both
accuracy and computational efficiency. Additionally, we
have proposed a structured pre-training strategy that en-
ables model adaptation to new hardware environments with
minimal retraining, further enhancing the practicality and
efficacy of our approach. We believe that our research offers
a promising direction for advancing the field of DL perfor-
mance prediction and its applications in various stages of
the DL system stack.

References

Bai, L., Ji, W., Li, Q., Yao, X., Xin, W., and Zhu, W. Dnnaba-
cus: Toward accurate computational cost prediction for
deep neural networks, 2022.



Can LLMs Enhance Performance Prediction for Deep Learning Models?

Bouhali, N., Ouarnoughi, H., Niar, S., and El Cadi, A. A.
Execution time modeling for cnn inference on embed-
ded gpus. In Proceedings of the 2021 Drone Systems
Engineering and Rapid Simulation and Performance
Evaluation: Methods and Tools Proceedings, DroneSE
and RAPIDO 21, pp. 59-65, New York, NY, USA,
2021. Association for Computing Machinery. ISBN
9781450389525.

Bulat, A. and Tzimiropoulos, G. Lasp: Text-to-text op-
timization for language-aware soft prompting of vision
language models, 2023.

Cummins, C., Seeker, V., Grubisic, D., Elhoushi, M., Liang,
Y., Roziere, B., Gehring, J., Gloeckle, F., Hazelwood, K.,
Synnaeve, G., and Leather, H. Large language models
for compiler optimization, 2023.

Dudziak, L., Chau, T., Abdelfattah, M. S., Lee, R., Kim, H.,
and Lane, N. D. Brp-nas: Prediction-based nas using gcns.
In Proceedings of the 34th International Conference on
Neural Information Processing Systems, NIPS 20, Red
Hook, NY, USA, 2020. Curran Associates Inc. ISBN
9781713829546.

Gao, Y., Liu, Y., Zhang, H., Li, Z., Zhu, Y., Lin, H., and
Yang, M. Estimating gpu memory consumption of deep
learning models. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engi-
neering, ESEC/FSE 2020, pp. 1342-1352, New York,
NY, USA, 2020. Association for Computing Machin-
ery. ISBN 9781450370431. doi: 10.1145/3368089.
3417050. URL https://doi-org.proxy.bnl.
1u/10.1145/3368089.3417050.

Gianniti, E., Zhang, L., and Ardagna, D. Performance pre-
diction of gpu-based deep learning applications. In 2018
30th International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD), pp. 167—
170, 2018. doi: 10.1109/CAHPC.2018.8645908.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive rep-
resentation learning on large graphs. In Proceedings of
the 31st International Conference on Neural Informa-
tion Processing Systems, NIPS 17, pp. 1025-1035, Red
Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964.

Hou, Z., Liu, X., Cen, Y., Dong, Y., Yang, H., Wang, C.,
and Tang, J. Graphmae: Self-supervised masked graph
autoencoders. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining,
pp- 594-604, 2022.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation
of large language models, 2021.

Jawahar, G., Abdul-Mageed, M., Lakshmanan, L. V. S., and
Ding, D. LIm performance predictors are good initializers
for architecture search, 2023.

Justus, D., Brennan, J., Bonner, S., and McGough, A. S.
Predicting the computational cost of deep learning mod-
els. In 2018 IEEE International Conference on Big Data
(Big Data), pp. 3873-3882, 2018.

Kaufman, S., Phothilimthana, P., Zhou, Y., Mendis, C., Roy,
S., Sabne, A., and Burrows, M. A learned performance
model for tensor processing units. In Smola, A., Dimakis,
A., and Stoica, 1. (eds.), Proceedings of Machine Learning
and Systems, volume 3, pp. 387-400, 2021.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations, 2017.

Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D.,
Mou, C., Marone, M., Akiki, C., Li, J., Chim, J., Liu, Q.,
Zheltonozhskii, E., Zhuo, T. Y., Wang, T., Dehaene, O.,
Davaadorj, M., Lamy-Poirier, J., Monteiro, J., Shliazhko,
0., Gontier, N., Meade, N., Zebaze, A., Yee, M.-H., Uma-
pathi, L. K., Zhu, J., Lipkin, B., Oblokulov, M., Wang,
Z., Murthy, R., Stillerman, J., Patel, S. S., Abulkhanov,
D., Zocca, M., Dey, M., Zhang, Z., Fahmy, N., Bhat-
tacharyya, U., Yu, W., Singh, S., Luccioni, S., Villegas,
P., Kunakov, M., Zhdanov, F., Romero, M., Lee, T., Timor,
N., Ding, J., Schlesinger, C., Schoelkopf, H., Ebert, J.,
Dao, T., Mishra, M., Gu, A., Robinson, J., Anderson,
C. J., Dolan-Gavitt, B., Contractor, D., Reddy, S., Fried,
D., Bahdanau, D., Jernite, Y., Ferrandis, C. M., Hughes,
S., Wolf, T., Guha, A., von Werra, L., and de Vries, H.
Starcoder: may the source be with you!, 2023.

Liu, L., Shen, M., Gong, R., Yu, F, and Yang, H. Nnlqp:
A multi-platform neural network latency query and pre-
diction system with an evolving database. In 51 Interna-
tional Conference on Parallel Processing - ICPP, ICPP
’22. Association for Computing Machinery, 2022.

Liu, Z., He, X., Tian, Y., and Chawla, N. V. Can we soft
prompt llms for graph learning tasks? In Companion Pro-
ceedings of the ACM on Web Conference 2024, WWW
24. ACM, May 2024. doi: 10.1145/3589335.3651476.
URL http://dx.doi.org/10.1145/3589335.
3651476.

Panner Selvam, K. and Brorsson, M. Can semi-supervised
learning improve prediction of deep learning model re-
source consumption? In Machine Learning for Systems
Workshop at 37th NeurIPS Conference, 2023, New Or-
leans, LA, USA. URL https://openreview.net/
forum?id=C4nDgK470dJ.


https://doi-org.proxy.bnl.lu/10.1145/3368089.3417050
https://doi-org.proxy.bnl.lu/10.1145/3368089.3417050
http://dx.doi.org/10.1145/3589335.3651476
http://dx.doi.org/10.1145/3589335.3651476
https://openreview.net/forum?id=C4nDgK47OJ
https://openreview.net/forum?id=C4nDgK47OJ

Can LLMs Enhance Performance Prediction for Deep Learning Models?

Panner Selvam, K. and Brorsson, M. Dippm: A deep learn-
ing inference performance predictive model using graph
neural networks. In Euro-Par 2023: Parallel Process-
ing, pp. 3—16. Springer Nature Switzerland, 2023. ISBN
978-3-031-39698-4.

Perozzi, B., Fatemi, B., Zelle, D., Tsitsulin, A., Kazemi,
M., Al-Rfou, R., and Halcrow, J. Let your graph do the
talking: Encoding structured data for llms, 2024.

Phothilimthana, P. M., Abu-El-Haija, S., Cao, K., Fatemi,
B., Burrows, M., Mendis, C., and Perozzi, B. Tpugraphs:
A performance prediction dataset on large tensor compu-
tational graphs, 2023.

Qi, H., Sparks, E. R., and Talwalkar, A. Paleo: A perfor-
mance model for deep neural networks. In International
Conference on Learning Representations, 2017.

Singhal, K., Azizi, S., Tu, T., Mahdavi, S. S., Wei, J., Chung,
H. W, Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S.,
Payne, P., Seneviratne, M., Gamble, P., Kelly, C., Babiker,
A., Schirli, N., Chowdhery, A., Mansfield, P., Demner-
Fushman, D., Agiiera Y Arcas, B., Webster, D., Corrado,
G. S., Matias, Y., Chou, K., Gottweis, J., Tomasev, N.,
Liu, Y., Rajkomar, A., Barral, J., Semturs, C., Karthike-
salingam, A., and Natarajan, V. Large language models
encode clinical knowledge. Nature, 620(7972):172-180,
August 2023. ISSN 0028-0836, 1476-4687. doi: 10.1038/

s41586-023-06291-2. URL https://www.nature.

com/articles/s41586-023-06291-2.

Team, G., Mesnard, T., Hardin, C., Dadashi, R., Bhupatiraju,
S., Pathak, S., Sifre, L., Riviere, M., Kale, M. S., Love,
J., Tafti, P,, Hussenot, L., Sessa, P. G., Chowdhery, A.,
Roberts, A., Barua, A., Botev, A., Castro-Ros, A., Slone,
A., Héliou, A., Tacchetti, A., Bulanova, A., Paterson, A.,
Tsai, B., Shahriari, B., Lan, C. L., Choquette-Choo, C. A.,
Crepy, C., Cer, D., Ippolito, D., Reid, D., Buchatskaya,
E., Ni, E., Noland, E., Yan, G., Tucker, G., Muraru, G.-
C., Rozhdestvenskiy, G., Michalewski, H., Tenney, 1.,
Grishchenko, 1., Austin, J., Keeling, J., Labanowski, J.,
Lespiau, J.-B., Stanway, J., Brennan, J., Chen, J., Ferret,
J., Chiu, J., Mao-Jones, J., Lee, K., Yu, K., Millican, K.,
Sjoesund, L. L., Lee, L., Dixon, L., Reid, M., Mikuta, M.,
Wirth, M., Sharman, M., Chinaev, N., Thain, N., Bachem,
0., Chang, O., Wahltinez, O., Bailey, P., Michel, P., Yotov,
P., Chaabouni, R., Comanescu, R., Jana, R., Anil, R.,
Mcllroy, R., Liu, R., Mullins, R., Smith, S. L., Borgeaud,
S., Girgin, S., Douglas, S., Pandya, S., Shakeri, S., De,
S., Klimenko, T., Hennigan, T., Feinberg, V., Stokowiec,
W., hui Chen, Y., Ahmed, Z., Gong, Z., Warkentin, T.,
Peran, L., Giang, M., Farabet, C., Vinyals, O., Dean, J.,
Kavukcuoglu, K., Hassabis, D., Ghahramani, Z., Eck, D.,
Barral, J., Pereira, F., Collins, E., Joulin, A., Fiedel, N.,

10

Senter, E., Andreev, A., and Kenealy, K. Gemma: Open
models based on gemini research and technology, 2024.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. 2017. URL https://arxiv.org/
pdf/1706.03762.pdf.

Velickovié, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P, and Bengio, Y. Graph attention networks. In
International Conference on Learning Representations,
2018.

Wayne, X., Kun, Z., and Junyi, L. A survey of large lan-
guage models, 2023.

Wu, Q., Bansal, G., Zhang, J., Wu, Y., Li, B, Zhu, E., Jiang,
L., Zhang, X., Zhang, S., Liu, J., Awadallah, A. H., White,
R. W,, Burger, D., and Wang, C. Autogen: Enabling next-
gen llm applications via multi-agent conversation, 2023.

Xu, K., Hu, W,, Leskovec, J., and Jegelka, S. How powerful
are graph neural networks?, 2019.

Xu, L., Xie, H., Qin, S.-Z. J., Tao, X., and Wang, F. L.
Parameter-efficient fine-tuning methods for pretrained
language models: A critical review and assessment, 2023.

Yi, Y., Zhang, H., Xiao, R., Wang, N., and Wang, X. Nar-
former v2: Rethinking transformer for universal neural
network representation learning, 2023.

Zhou, Y., Roy, S., Abdolrashidi, A., Wong, D., Ma, P., Xu,
Q., Liu, H., Phothilimtha, M. P., Wang, S., Goldie, A.,
Mirhoseini, A., and Laudon, J. Transferable graph opti-
mizers for ml compilers. In Proceedings of the 34th Inter-
national Conference on Neural Information Processing
Systems, NIPS *20, Red Hook, NY, USA, 2020. Curran
Associates Inc. ISBN 9781713829546.

A. Appendix
A.1. Environment setup

All experiments were conducted on hardware featuring
AMD EPYC 7402 processors with two sockets (24 cores
per socket), 512 GB DDR4-3200 RAM, and a 4 x NVIDIA
A100 GPU with 40 GB HBM. Our software environment
included Python libraries such as PyTorch 2.2.1, torch-
geometric 2.5.3, transformers 4.41.0, and peft 0.10.1, run-
ning on CUDA version 12.1.

A.2. Evaluation Metrics

To assess the accuracy of our performance prediction mod-
els, we use the following two primary metrics:
Mean Absolute Percentage Error (MAPE): This metric
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quantifies the average of the absolute percentage differences
between each predicted value and its corresponding actual
value. It is defined mathematically as:

n

MAPE — * Z

n -
=1

Yi —y§

Yi

x 100%

Here, y; represents the actual value and y, represents the
predicted value. MAPE is a non-negative number, where a
smaller value indicates a more accurate model.

Accuracy within a delta threshold (ACC(6)): This metric
measures the percentage of predicted values that are within
a specified percentage (9) of the actual values. It is defined
as:

Yi —y§

K2

ACC(6) = %Zpos (5 - ) x 100%
=1

where pos(z) is a function that returns 1 if z < 0 and 0
otherwise. A higher ACC(4) value reflects better predictive
performance of the model.

These metrics are widely used in previous works(Panner Sel-
vam & Brorsson; Yi et al., 2023; Liu et al., 2022), providing
a reliable means to compare the effectiveness of different
models in terms of both overall error magnitude and the
proportion of predictions within acceptable error thresholds.

A.3. Datasets

We leverages the NNLQP Multi-Platform dataset (Liu
et al., 2022), renowned for its diversity in DL models and
hardware configurations. The dataset contains ten differ-
ent model families, including ResNets, EfficientNets, Mo-
bileNets, and GoogleNets, spanning various computational
architectures from multiple GPUs to NPUs and FPGAs.
This dataset is ideal for assessing our proposed architec-
ture due to its extensive collection of performance metrics
across varied hardware platforms. Despite its comprehen-
sive nature, the NNLQP dataset was originally tailored for
GNN-based performance prediction models. To align it with
our LLM-focused methodology, we have restructured the
dataset into a format conducive to LLM processing.

A.3.1. GNN PRE-TRAINING DATASET

We transformed the 20K ONNX models into a node feature
matrix and adjacency matrix, then converted these into the
PyTorch Geometric data format (PyG), as detailed in Section
4.1, for GNN pre-training (Section 4.3).

A.3.2. GRAPH TO TEXT DATASET

For graph-text adaptation, we structured the dataset into
{(G,Q, A)} format: G represents the DL model’s graph
structure in PyG format, @) is a textual prompt (Summarise
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the graph), and A is the summary of DL architecture, which
is the response from the LLM. Similarly, we generated a
graph-to-text dataset for the entire NNLQP dataset.

Graph to Text: Sample Prompt

Q: Summarise the graph

A: The graph contains 42 nodes and 40 edges. The
batch size is 8. The graph has 12.1 GFLOPs, 0.33
billion parameters, and 0.4 billion MACs.

Layer Stats Summary:

Layer: convolution, Implemented: 20 times, FLOPs:
12.5 billion, MACs: 32.3 million, Parameters: 35.8
million

Layer: relu, Implemented: 17 times, FLOPs: 0,
MAC:sSs: 0, Parameters: 3.3 million

Layer: max pooling, Implemented: 1 times, FLOPs:
0, MACs: 0, Parameters: 335.6 thousand Layer:
addition, Implemented: 1 times, FLOPs: 0, MACs:
0, Parameters: 865

A.3.3. PERFORM PREDICTION FINE-TUNING DATASET

For general performance prediction tasks, () queries the
LLM along with G to predict inference times. The response
A is the predicted inference latency, directly corresponding
to the LLM’s output.

A.4. GNN Pre-training Hyper-parameters
A.5. Limitations and Future Work

While our model effectively leverages static prompting to
enhance performance prediction, exploring diverse prompt-
ing strategies could further optimize its adaptability and
effectiveness across various scenarios.

Future research will explore several avenues to enhance
the current model’s robustness and applicability. We plan
to extend our methodology to additional DL performance
datasets such as TPU Graphs(Phothilimthana et al., 2023),
allowing us to validate and refine our approach across a
wider range of network architectures and operational envi-
ronments.

Additional Experiment: Graph Embedding Projection

This experiment investigates the effectiveness of different
graph embedding projection techniques, essential for com-
municating the graph structural information from the GNN
encoder to the LLM. It allow gradient flow from the LLM
back to the GNN encoder, thereby enhancing the learning
feedback loop.
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Table 4: Hyper-parameters used for GNN pre-training.

Hyperparameter Value
Number of Hidden Units 1024
Number of Features 44
Number of Layers 5
Learning Rate (Ir) 0.0005
Weight Decay 0.00
Mask Rate 0.5
Drop Edge Rate 0.0
Maximum Epochs 500
Encoder Type GIN
Decoder Type GIN
Activation Function PReLU
Loss Function SCE
Use of Scheduler No
Batch Size 128
Alpha_l 2
Replace Rate 0.1
Normalization Type BatchNorm
Optimizer Adam
Input Dropout 0.2
Attention Dropout 0.1

Table 5: Performance comparison for Single vs. Multi Embedding -Projection methods

Type MAPE | ACC(10%)1T TTT]| Max Token Length
Single Proj. 12.61 52.83 0.23 512
Multi Proj. 13.66 48.50 2.32 2048

Setting: For this experiment, we utilized the same dataset
and the same Llama3-8B and GIN encoder as DL repre-
sentation experiment explained in Section 5.1. Each model
was trained over 10 epochs 3 times to ensure stability and
convergence of results.

Results: As result shown in Table 5, our proposed ar-
chitecture, the single projection technique where the DL
graph is projected as a single input embedding to LLM (g1)
demonstrated superior performance compared to the multi-
projection method, which attempts to capture the graph
structure as multiple embeddings from g; to g, - This
finding suggests that maintaining a focused, singular projec-
tion of graph features into the LLM not only preserves essen-
tial structural details but also enhances computational effi-
ciency. This single embedding approach resulted in MAPE,
higher ACC(10%), and reduced TTT. These results validate
the importance of optimizing graph projection methods to
enhance the interplay between GNN encodings and LLM
capabilities for performance prediction tasks.
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