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ABSTRACT

A key challenge in artificial intelligence is inferring underlying factors that are
not directly observable but are crucial for understanding and predicting complex
behaviors. In this paper, we introduce a novel neural-symbolic framework that
advances beyond traditional rule induction by integrating latent predicate discov-
ery with rule learning. Our approach utilizes a recurrent unit to iteratively refine
and learn rules from observed data, employing dynamic programming techniques
to identify fixed points and solve complex problems. This framework enables the
discovery of hidden predicates—such as user engagement or underlying motiva-
tions—that influence observable outcomes but are not directly grounded in the
data. By encoding both explicit and latent predicates into a unified rule embed-
ding, our method facilitates a deeper understanding of complex phenomena and
enhances predictive accuracy. This joint learning process captures explicit rela-
tionships and invents new predicates essential for comprehensive inference. We
validate our method across various tasks, demonstrating its capability to reveal
hidden structures and enhance symbolic reasoning with deeper, more accurate in-
sights.

1 INTRODUCTION

Neural-symbolic reasoning integrates neural networks’ ability to learn complex patterns from data
with symbolic reasoning’s precision in applying logical rules Hitzler & Sarker| (2022). This hybrid
approach creates Al systems capable of not only detecting intricate patterns in unstructured data but
also reasoning about them in a structured, explainable manner Yang et al.|(2024).

Traditional rule induction methods focus on extracting explicit patterns from data but often fail to un-
cover latent predicates—hidden variables or relationships that are not directly observable Campero
et al.| (2018)Claire Glanois| (2022). These methods are effective for learning surface-level rules
but struggle with identifying underlying factors that drive complex phenomena. For example, in
healthcare diagnostics, critical latent conditions must be inferred from incomplete or noisy data, and
predicate invention is crucial for discovering these hidden factors and generating new, abstract con-
cepts. Probabilistic models like Markov Logic Networks (MLNs) Richardson & Domingos| (2006)
can infer latent predicates but typically assume that the logical rules are predefined, which can limit
adaptability and lead to computational challenges Oltramari et al.| (2020).

Our framework tackles this gap by jointly learn the logical rules and infer (and discover) the hidden
predicates. We employ a specialized recurrent unit, which we call the Recurrent Neuro-Symbolic
Forward Chaining Network (RNS-FCN). Our RNS-FCN operates in two distinct phases: forward in-
ference, where the current logical rules are applied recursively to make the inference, and backprop-
agation, where the model refines and updates its logical rules based on error signals. The forward
inference is achieved by running the recurrent unit through several steps until the states converge
to a fixed point, making latent predicate inference straightforward. Rule learning is achieved in a
differentiable manner, allowing for adaptive updates based on error signals and ensuring both trans-
parency and flexibility in the model.

Our RNS-FCN shares some similarities with traditional Recurrent Neural Networks (RNNs) |Gross-
berg| (2013)). Like RNNs, we utilize recurrent units where each layer reuses the same set of model
parameters across steps. However, the depth of our model refers to more than just the number of
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neural layers—it represents deeper reasoning akin to human thought processes. Much like how hu-
mans engage in iterative reasoning, refining their understanding as new evidence emerges. Think of
it as a process of deeper thinking: as our model progresses through multiple layers, it is reasoning
more deeply about the logical connections in the data, adjusting its beliefs until it reaches a stable
conclusion Kuang et al.|(2024)). This contrasts with traditional deep learning, where increased depth
typically refers to larger networks, but without a logical reasoning process guiding the layers. In this
way, our model simulates recursive reasoning, pushing beyond surface-level pattern recognition and
engaging in multi-step inferencing akin to human thought, offering a novel depth of interpretability
and precision.

Each recurrent layer in the RNS-FCN performs a one-step inference guided by the current set of
logical rules. The rules themselves, represented by the parameters of the recurrent units, are updated
not during the inference phase but through backpropagation. In the forward computation, these rules
act as constraints, shaping how the model updates its beliefs or hypotheses about the data at each
step. The iterative process continues until the model reaches a fixed point where its inferences stabi-
lize and no further updates are required. In the backward computation, backpropagation via gradient
descent adjusts the model’s parameters based on the discrepancy between predicted and actual out-
comes, ensuring that the learned logical rules improve with each iteration. The backpropagation
mechanism allows us to optimize the rule set in an end-to-end differentiable way.

In summary, our framework bridges the gap between traditional rule induction and the modeling of
latent variables. The RNS-FCN framework provides a robust tool for discovering hidden structures
and generating new concepts, offering a comprehensive solution for tasks that require deep under-
standing and adaptability. This end-to-end approach enhances our ability to uncover latent factors,
making it invaluable for applications ranging from user behavior analysis to advanced decision-
making systems in Al

2 RELATED WORK

Traditional ILP Methods Inductive Logic Programming (ILP) focuses on learning logical rules
from relational data. Some papers rely on heuristic methods for efficiency. (Cohen| (1995) pro-
posed RIPPER, a fast rule induction algorithm that builds rules iteratively using a separate-and-
conquer strategy. Similarly, |Quinlan| (1990) developed FOIL, which operates by iteratively gen-
erating clauses that define target relations based on a training set of examples. It uses a greedy
algorithm to add literals (conditions) to the rules, aiming to generalize the target relation effectively.
The method presented in [Dash et al.| (2018)) learns Boolean decision rules in disjunctive normal
form (DNF) or conjunctive normal form (CNF) for binary classification. The method uses column
generation (CG) to efficiently search through the exponentially large space of possible clauses. Wei
et al.|(2019) propose Generalized Linear Rule Models (GLRM), which integrate decision rules into
generalized linear models (GLM) to balance interpretability and accuracy. The method formulates
the rule learning process as an optimization problem, trading off rule complexity and predictive per-
formance. |Cropper & Morel| (2023)) propose an ILP approach called Learning from Failures (LFF),
which consists of three stages: generate, test, and constrain. In the generate stage, a hypothesis is
created based on syntactic constraints. In the test stage, the hypothesis is evaluated against training
examples. The method is implemented in Popper, which integrates Answer Set Programming (ASP)
and Prolog to learn optimal and recursive logic programs efficiently. These approaches demonstrate
the reliance of ILP and related methods on heuristics to manage complexity. However, they gener-
ally may not guarantee globally optimal solutions. [Pellegrina & Vandin| (2024) propose SamRuLe,
a scalable algorithm for learning nearly optimal rule lists via sampling. This method leverages VC-
dimension bounds to ensure that the learned rule lists are close to the optimal solution on the full
dataset. However, due to its reliance on sampling, SamRuLe may not handle noisy data effectively.

ILP Methods with Differentiable Model Traditional Inductive Logic Programming (ILP) models
struggle with noisy data and scalability. Differentiable approaches address these issues by integrat-
ing continuous relaxation, which allows gradient descent for optimization. Evans & Grefenstette
(2018)) proposed OILP, which represents logic rules in a differentiable form and combines neural
networks with symbolic logic. Manhaeve et al| (2018) introduced DeepProbLog, which extends
ProbLog by integrating neural predicates for reasoning over both symbolic and subsymbolic data.
While these differentiable ILP methods improve robustness to noise and enable joint optimization,
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they face challenges in scalability and computational cost. Neural Logic Machines (NLMs) (Dong
et al.l 2019) combine MLPs with logic programming to perform inductive learning and logical rea-
soning. However, the implicit representation of rules in the network weights reduces interpretability.

ILP Methods with Neural Embedding Embedding-based models are widely used for Knowl-
edge Base (KB) completion. These models typically represent entities as low-dimensional vectors,
while relations are modeled as linear or bilinear operators applied to these entities. Early models like
TransE (Bordes et al., 2013) interpret relations as translations in the vector space but struggle with
complex relations. TransH (Wang et al., 2014} and TransR (Lin et al.|[2015) address this by project-
ing entities onto hyperplanes or distinct relation-specific spaces, improving the handling of diverse
relations. More expressive models, such as Neural Tensor Networks (NTN) (Socher et al.,[2013)) and
RESCAL (Nickel et al.,[2011)), capture higher-order interactions at the cost of increased complexity.
ComplEx (Trouillon et al.l 2016) introduces complex-valued embeddings for asymmetric relations,
while multi-hop reasoning methods like Guu et al. (2015) (Guu et al., |2015) leverage path-based
embeddings for traversing knowledge graphs. However, these approaches often face limitations in
reasoning power, particularly in multi-hop scenarios.

Recent advances in inductive logic programming (ILP) are significantly influenced by Rocktéischel
& Riedel| (2017), who propose Neural Theorem Proving (NTP). NTP integrates symbolic logic with
neural networks through differentiable backward-chaining reasoning. Building on this, |(Campero
et al.| (2018) introduces a neural forward-chaining differentiable rule induction network. However,
both approaches still rely on carefully hand-designed templates for each ILP task, which limits
scalability. |Claire Glanois| (2022) advance these models by incorporating a hierarchical structure
with an expressive set of meta-rules, enabling more flexible rule induction without the need for
manual template design. Nevertheless, the model struggles to discover latent variables or invent
new predicates, limiting its ability to uncover hidden patterns in complex reasoning tasks.

3 BACKGROUND

Predicate In the context of logic-based Al systems, a predicate is a fundamental Boolean logic
variable used to describe properties of or relationships between entities. Predicate variables are
grounded by data, being True or False, and are served as the basic building blocks for logical expres-
sions. For instance, a predicate like Has_Fever(Patient) denotes whether a patient has a fever,
while Use_Drug(Patient) specifies whether a drug treats a particular patient. These predicates
capture essential aspects of the system’s state and relationships.

Logic rules are formal constructs used to infer new knowledge based on the relationships among
predicates. A prevalent form of logic rule is the Horn clause, which is expressed as:

f: QP AP,AN---NPy (D

where P;, P, ..., P are predicates constituting the body, representing conditions that must be
satisfied, while () is a predicate in the head, representing the conclusion. The rule indicates that if
all predicates in the body hold true, the predicate () can be inferred. Horn rules are integral to logical
reasoning systems, enabling the derivation of new facts from existing knowledge.

Latent Predicates and Rule Learning In many complex domains, such as healthcare, finance,
or social networks, not all predicates are known a priori. Latent predicates are variables represent-
ing hidden or unknown aspects that influence observed phenomena but are not directly observable.
Identifying these latent predicates is crucial for comprehensive understanding and accurate decision-
making. In our approach, the model learns rules with the template as Eq. (I) that include latent pred-
icates, treating them as placeholders for unknown relationships or factors. As the model identifies
and integrates these latent predicates into the rules, it uncovers hidden structures within the data.

Once the rules are established, we perform post-hoc labeling of the latent predicates by interpreting
their roles in the rule structure. This process allows us to assign meaningful labels to previously
unknown predicates based on their discovered relationships and functions.
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Figure 1: Rule Embedding

4 MODEL:RECURRENT NEURO-SYMBOLIC FORWARD CHAINING NETWORK

Consider a classification problem where the goal is to map input binary feature X to an output label
Y, with the label set Y consisting of L distinct labels. The model’s objective is to learn a set of log-
ical rules that explain how each label can be inferred based on evidence from X . Additionally, our
model accounts for latent variables—unobserved predicates that influence the classification decision.
These latent variables are inferred through the rule-learning process, allowing the model to uncover
hidden relationships in the data. This approach enables the induction of interpretable rules, linking
both observed and latent factors to the predicted label, enhancing the model’s predictive power and
interpretability.

4.1 MODEL PREPARATION: PRETRAINED PREDICATE EMBEDDINGS

As a preparation for our RNS-FCN model, we will introduce predicate embeddings for X, Y, and
latent variables. Note that these predicate embeddings will be frozen during the training.

Predicates Embedding for X Denote X = {X1,...,X,} as a set of predicate variables. Each
predicate X; € {1,0} is a Boolean random variable with a prespecified meaning. We associate each
of the True and False states of the predicate with two paired predicate embeddings, denoted as Ky,
and K x,, with Kx,, K_x, € R and Kx, = —K_x,,VX;. In this way, for each states of the pred-
icate, we can find their embedding from Kx = [Kx,,...,Kx,|and K_x = [K_x,,..., K-x,]-
These embeddings can be pretrained to capture the meaning and relationships between predicates.
They act like a lookup dictionary, providing a fixed representation for each state of the predicate.

Predicate Embeddings for Latent Variables Our model is designed to discover new predicates, a
crucial capability in scenarios where not all predicates are known a priori. Let U = {Uq,...,U,,}
represent a set of latent or yet-to-be-invented predicates with initially undefined meanings. The
number of these unlabeled predicates, m, is a hyperparameter that can be adjusted based on the
specific application or data complexity. Each latent predicate U; € {1,0}, and its True and False
states are also linked to a paired embedding vectors, denoted as Ky, K-y, € R? with Ky, =
—K_y,, VU;. These embeddings act as placeholders for these unlabeled predicates. We aim to
interpret these latent predicates in a posthoc way as our model uncovers logical rules.

Predicate Embeddings for Y In the classification problem, each label y € Y can be represented
as an embedding vector (for example, a one-hot vector).

We freeze the predicate embeddings during rule learning, and each rule is represented as a rule em-
bedding. All the rule embeddings are treated as model parameters and are constructed as conjunctive
combinations of predicate embeddings. Our model learn to select the best matching predicates to
fill the rule’s structure. The rule embeddings are optimized via gradient descent in a differentiable
manner, allowing efficient learning. This separation—fixed predicate embeddings and learnable rule
embeddings—enables the model to focus on discovering relevant logical rules
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Figure 2: Recurrent Unit: Backbone for Logical Reasoning

4.2 MODEL BACKBONE: RECURRENT UNIT

Our proposed RNS-FCN models rule embeddings as trainable parameters within a recurrent neural
network architecture. Unlike traditional RNNs that process sequences of data, each recurrent unit
in RNS-FCN is responsible for performing logical reasoning over predicates (symbolic variables).
At each step, the recurrent unit applies the learned rules to update the model’s understanding of the
logical relationships in the data. This process continues iteratively, refining inferences until a stable
state is reached. All rule embeddings are optimized end-to-end through backpropagation across the
recurrent units, enabling the model to learn complex logical patterns.
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Figure 3: Architecture of RNS-FCN with Examples

Architecture of RNS-FCN The architecture of RNS-FCN is similar to that of RNNs in that it uses
recurrent units, but the goal of each unit is to perform logical reasoning based on the current state
of the inferred facts given the learned rules.

+ Hidden state: Let v* € [—1,1]2("+™+L) represent the hidden state of the recurrent unit indexed
by t, where each element of v? is
[Xl,ﬁXh...,Ul,ﬁUl,...,Yl,ﬁyl,...] == [.7,‘1,1 — I ...,ul,l —ul...,yl,l —y17...]

with x1,...,2, € {0,1} denoting observable and grounded predicate facts, uy, ..., u,, repre-
senting the current inferred states of the latent predicate, and vy, ...,y indicating the current
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inferred states of the output label. For observed predicates, its value is 1 or 0. For unobserved
predicates and labels, we initialize their corresponding elements with a random guess, typically set
to % Importantly, all unlabeled predicates and the predictive labels can only be inferred through
the rule-learning process.

« Mask: Let M € {0,1}2("+™+L) be a binary mask that indicates which elements of v? need
to be inferred. Specifically, for the observed predicates, the corresponding elements of M are
set to 0, meaning these values will remain fixed during the inference process. Alternatively, the
corresponding elements of M are set to 1, indicating that these elements of v are unobserved and
must be inferred through the rule-learning process. In this way, the mask M serves as a guide,
ensuring that only the unknown facts are updated during the inference phase.

* Recurrent unit: At each step, the RNS-FCN applies the current logical rules to update its belief
about the state of predicates. The recurrent units operate similarly to RNNs, but instead of process-
ing raw data, they process logical inferences. The inference process is facilitated by employing an
RNN-type model

vt = Mog(v',0)+ (1 - M)ov'  t=0,1,... @

where, g (v, ©) is a mapping from R"*™ — R"™™ where © are the model parameters repre-
senting the learned logical rules, and v? is the state of the predicate vector at time step t. Note
that each recurrent layer indexed by ¢ shares the same set of model parameters ©. The operator
o denotes element-wise multiplication. We will recursively perform the updates until v* remains
unchanged or converges to a fixed point.

Specification of © in Eq. The parameter © = [O¢] sc 7 represents the set of logical rules we
aim to learn, denoted as F := {f}. Each matrix © encodes a logical rule that can either predict
potential labels in Y (in a classification task) or infer latent predicates. Based on the general rule
structure shown in Eq. , each rule is parameterized by a matrix O € R (h+1) where d is
the dimensionality of the predicate embeddings, and h is the number of predicates in the body of
the rule. The first column of © ¢ corresponds to the embedding of the head predicate (), while the
remaining h columns represent the embeddings of the body predicates Py, P, ..., Pp.

In our model, for classification tasks, each label Y has at least one corresponding rule ©; where
the first column (head predicate) is fixed to the embedding of that label. The goal is to learn the
embeddings of the body predicates that best explain how the label Y can be inferred from the input
data X.

Similarly, for latent predicates, each latent predicate is associated with at least one rule ©;, where
the head predicate column is fixed to the embedding of the latent predicate. The task here is to learn
the body predicate embeddings that allow the model to deduce the latent predicate from the observed
data.

In summary, the head predicate embeddings in © are fixed, representing either labels or latent
predicates. The learning task focuses on discovering the body predicate embeddings to complete
the logical rules, enabling the model to infer both labels and latent predicates from the observed
data. Increasing the size of © either by adding more rules or extending the length of each rule
affects the model’s complexity and expressiveness. The number of rules and the length of each rule
are hyperparameters that determine the model’s capacity to capture intricate patterns in the data.

Specification of g(-, ©) in Eq. (2) The mapping function g(-, ©) in Eq. (2) utilizes logical rules to
iteratively update beliefs about the state of latent predicates and labels until convergence is achieved.

For a general rule embedding ©; = [0y, ...,0,] € R¥>*("+D where the first column 6y € R?
represents the fixed embedding for the head predicate, the rule is used to infer a latent predicate or
label v. Each column 6;(j = 1,...,h) of the body predicates in the rule embedding is matched
with a corresponding predicate embedding. This matching is achieved by finding the predicate
embedding most similar to 6; using cosine similarity:

K7 = argmaxcos (K,0;), j=1,...,h 3)

KeK

where K = Kx U K_x U Ky U K_; represents the set of all available predicate embeddings.
The inverse mapping /(K) maps a predicate embedding K € R back to its corresponding index.
Specifically:
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 Foranindex i € {1,...,2n}, the index maps to the positive observed predicate embedding
K x and its corresponding negative observed predicate embedding K _ x.

» Foranindex i € {2n+1,...,2n+ 2m}, the index maps to the latent predicate embedding
K7y and its corresponding negated latent predicate embedding K _ ;.

Thus, indices 1, . .., 2(n+m) correspond to 2n + 2m predicate embeddings, capturing both positive
and negative signs.

Once the best matching predicates K for each 6; (j = 1,...,h) are determined, we update the

inferred states for the latent predicate or label v/} € v+ as follows:

Vi1 = H COS(K;’OJ) H vt(I(K;))

j=1,...,h j=1,...,h

To address the potential issue of diminishing values over iterations, we can use the min function
instead:

s = min foos (K7, 05) o' (1 ;)

However, to make this function differentiable, we approximate the min function using the softmin
function. For each j, there are two terms: cos (K 1, 0;) and v* (I (K #))-The softmin function can
be formulated as:

1 1 2h
softmin (.rl,...7x2h;®) = —710g7 Zefrj/T
T 2h =

where x; represents either cos (K 5 Gj) or vt (I (K J*)) and 7 is a temperature parameter control-
ling the smoothness of the approximation. As 7 approaches O , the softmin function approximates
the behavior of the hard min function.

If multiple rules can be used to infer vy, we apply the softmax function over the results of each
rule. This ensures that the most likely rule’s output is favored:

Vg1 = softmax (softmin (z1, ..., xep; ©) for all rules )

Here, softmax (x1, . . ., £ g) ensures that if any rule provides strong evidence for the latent predicate,
the inferred value v, will be high.

4.3 MODEL LEARNING: BACKPROPAGATION

In the RNS-FCN model, backpropagation is used to train the network by computing the gradient
of the loss function with respect to the rule embeddings ©. This allows the model to adjust its
embeddings and improve prediction accuracy.

The loss function quantifies the discrepancy between the predicted latent label probabilities and the
actual labels. For multiclass classification, we use the Cross-Entropy Loss. Given v’ as the final
output vector of the network (representing the predicted class probabilities for latent predicates)
after T" recurrent unit iterations and y as the true class labels, the loss function is formulated as:

N L
J==>"% yiilog(gi1)

i=1 [=1

where y; ; is a binary indicator (0 or 1) if class label [ is the correct classification for sample i, §; ; is
the predicted probability of class [ for sample i, and L is the number of classes. This loss function
measures how well the predicted probabilities vg align with the actual labels.

During backpropagation, the gradient of the loss function with respect to the rule embeddings © is
computed using the chain rule:

aJ  oJ 31)5

00 ovl 00
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Here, v represents the predicted latent label probabilities after 7" iterations of the recurrent units.
The rule embeddings © are updated in the direction opposite to the gradient, scaled by a learning
rate o : o7

0:=0—-a«a 70
In summary, in the RNS-FCN model, the Cross-Entropy Loss is used to train the network to infer
latent predicates or labels from the rule-based embeddings. The forward computation involves se-
lecting the most matching predicate embeddings based on cosine similarity, filling in the slots of the
rule embedding, and then updating the inferred states. After 7" recurrent unit iterations, the hidden
states converge to a stable representation, which is used for the final prediction. The loss function
is applied to the final predicted outputs, which are derived from the latent predicates. By using
backpropagation, we optimize the rule embeddings © to improve the accuracy of the latent label
predictions.

5 EXPERIMENTS

5.1 SYNTHETIC DATA EXPERIMENTS

We conducted simulation experiments using synthetic data with known ground truth rules to evaluate
the ability of our proposed method RNS-FCN in learning rules with latent variables. In this setting,
we generate a set of synthetic data using the following ground truth rules:

X3<—X1/\XQ,X4<—X()/\X1,Y(—X3/\X5,Y<—X2/\X4. (@)

In this case, X7, X5 and X5 are observed variables. X3 and X, are unobserved latent variables.
Further, Y is the observed label. All the variables and label Y are binary categorical variables. It can
use 1 to indicate affirmation and O to indicate negation. When we generate the synthetic dataset by
the following probability:

P{Xo=1}=06),P{X; =1} =0.8),P{X2 =1} =0.7),P{X5; =1} =0.7), (5
the rules learned by RNS-FCN are:
X4<—X0/\X1/\X2,X3<—X5/\X27Y(—X3,Y<—X2/\X4. (6)

Moreover, when we use 80% of the dataset as the training set and 20% as the test set, the predicting
accuracy in the test set is 0.77, and the F1 score in the test set is 0.81. This synthetic data experiment
demonstrates our proposed framework’s ability to recover ground truth rules from data with latent
variables and make accurate predictions at the same time.

5.2 REAL-WORLD DATA EXPERIMENTS

5.2.1 DATASETS DISCREPTION

To demonstrate the practical value of our method, we validated its effectiveness in learning complex
rules on two representative datasets.

* Heloc is a dataset collected from FICO. The fundamental task is to use the information
about the applicant in their credit report to predict whether they will repay their HELOC
account within two years. For each applicant, 154 factors are contained in the dataset.

e Adult, also known as the ”Census Income” dataset, is a famous dataset in social science.
The corresponding task for this dataset is predicting whether an individual’s annual income
exceeds $50,000 dollars a year based on census data.

5.2.2 DATA PREPROCESSING

To evaluate our proposed method RNS-FCN’s ability to learn under invisible content, we removed
certain variables to simulate a scenario with latent variables. Specifically, for dataset Heloc, we
delete 70 of all the 154 factors. The rule-based prediction model is fitted by the rest of the variables
in our experiment settings. The prediction accuracy in testing sets demonstrates model performance.
For dataset Adult, we delete 100 of all the 128 factors. The rule-based prediction model is fitted
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by the rest of the variables. Due to the severe class imbalance in the labels, with more than three-
quarters of the samples labeled as ”Bad,” we performed sampling on the dataset to construct a new
dataset with a 1:1 ratio of positive to negative samples. Moreover, in each setting, 80% of the data
is split into a training set, and the rest of 20 % is split into the testing set. The prediction accuracy
in testing sets demonstrates model performance.

5.2.3 BASELINE MODELS

* RIPPER (Cohen| [1993) is a rapid rule induction algorithm that constructs rules in an iter-
ative way, employing a separate-and-conquer approach.

* BRCG (Dash et al.,|2018) is an integer program, which is formulated to trade classification
accuracy for rule simplicity optimally. Column generation is used to efficiently search over
an exponential number of candidate clauses (conjunctions or disjunctions) without needing
heuristic rule mining.

* LEN (Barbiero et al.| [2022)) is a novel end-to-end differentiable approach enabling the
extraction of logic explanations from neural networks using the formalism of First-Order
Logic. The method relies on an entropy-based criterion that automatically identifies the
most relevant concepts.

* DR-NET (Qiao et al.| |2021) is a new paradigm for learning a set of independent logical
rules in disjunctive standard form as an interpretable model for classification. The prob-
lem of learning an interpretable decision rule set is considered training a two-layer neural
network.

* RRL (Wang et al., 2021) can automatically learn interpretable non-fuzzy rules for data
representation and classification. The non-differentiable RRL is projected to a continuous
space and optimized by a novel training method, called Gradient Grafting, that can directly
optimize the discrete model using gradient descent.

* Black-Box Model We use a neural network-based predictor as a black-box predictor. We
adopt a two-layer Multilayer perceptron (MLP) as the predictor in this setting (Taud & Mas|,
2018). Generally, neural networks based methods have excellent predictive performance
but are not as explainable as rule-based methods (Madsen et al., [2022).

Heloc Adult
Accuracy F1  Precision Fl
RNS-FCN 0.68 0.67 0.54 0.52

Method

RIPPER 0.52 0.00 0.50 0.00
BRCG 0.66 0.60 0.72 0.76
LEN 0.54 0.64 0.50 0.75
DR-NET 0.67 0.59 0.70 0.76
RRL 0.66 0.66 0.77 0.52

Black-Box 0.71 0.68 0.76 0.75

Table 1: Performance of seven methods on two datasets

5.2.4 NUMERICAL PERFORMANCE ANALYSIS

We use accuracy and F1 score of binary classification on the test set as the model’s evaluation
metrics. Experiment results in the deleted Heloc dataset demonstrate that our proposed method
RNS-FCN outperforms all the rule-based baselines on both preciting accuracy and F1 score. The
experimental results indicate that, among rule-based methods, our proposed approach achieves the
best predictive performance on datasets with missing variables. Further, our method’s performance
is close to that of the black-box model, indirectly confirming its effectiveness and practicality. This
also highlights the trade-off between interpretability and performance.
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Figure 5: Evaluation for Iteration Steps

5.2.5 SENSITIVE ANALYSIS FOR HYPER-PARAMETERS

The most critical hyper-parameters in our proposed framework are the number of iterations, the
number of rules for inference y and the number of latent variables. We conducted experiments on
the dataset Heloc to test our model’s sensitivity to hyperparameters and select the most suitable
ones. The model’s performance under different hyperparameter settings was also evaluated using
prediction accuracy and F1 score as the evaluation metrics. The result inj4(a)|shows that our method
achieve its best performance when Iterate six times. The result in hows that our method
performs best when there are four rules. Moreover, the result in demonstrates that our model
achieves the peak performance when setting four latent variables. This is because when there are
too few latent variables, the model fails to capture enough of the missing information, leading to
underfitting. Conversely, when there are too many latent variables, they introduce noise that can
disrupt the prediction, resulting in overfitting. Furthermore, Consequently, and the default literations
is six times, the default number of rules to infer y is four, and the default number of latent variables
is also four.

5.2.6 VISUALIZATION FOR ITERATIONS

In this setting, we set the number of iterations to 10 and the number of latent variables to 4[5 We
examined how the values corresponding to the latent variables change with the number of iterations.
We visualize the changes in the v-values of two sample points across the iterations. The experimental
results show that the v values of different samples tend to converge around the 6th or 7th iteration,
but as the iterations approach 10, they start to diverge. This indicates that the v-values are in an
optimal state around the 6th-7th iteration, and further iterations disrupt this balance. This aligns
with our experimental findings, where the model performs best after 6 iterations.

6 CONCLUSIONS

We addresses a fundamental limitation of traditional rule induction methods: the inability to infer
and discover latent predicates that are not directly observable by bridging the gap between explicit
rule induction and latent variable modeling, offering a powerful tool for uncovering hidden structures
and generating new concepts.
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