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Abstract

Isolated silos of scientific research and the growing challenge of information over-1

load limit awareness across the literature and hinder innovation. Algorithmic2

curation and recommendation, which often prioritize relevance, can further re-3

inforce these informational “filter bubbles.” In response, we describe Bridger, a4

system for facilitating discovery of scholars and their work, to explore design5

tradeoffs between relevant and novel recommendations. We construct a faceted6

representation of authors with information gleaned from their papers and inferred7

author personas, and use it to develop an approach that locates commonalities8

(“bridges”) and contrasts between scientists — retrieving partially similar authors9

rather than aiming for strict similarity. In studies with computer science researchers,10

this approach helps users discover authors considered useful for generating novel11

research directions, outperforming a state-of-art neural model. In addition to rec-12

ommending new content, we also demonstrate an approach for displaying it in13

a manner that boosts researchers’ ability to understand the work of authors with14

whom they are unfamiliar. Finally, our analysis reveals that Bridger connects15

authors who have different citation profiles, publish in different venues, and are16

more distant in social co-authorship networks, raising the prospect of bridging17

diverse communities and facilitating discovery.18

1 Introduction19

“Opinion and behavior are more homogeneous within than between groups. . .20

Brokerage across structural holes provides a vision of options otherwise unseen.”21

(Burt, 2004)22

The volume of papers in computer science continues to sky-rocket, with the DBLP computer science23

bibliography listing hundreds of thousands of publications in the year 2020 alone.1 In particular,24

the field of AI has seen a meteoric growth in recent years, with new authors entering the field every25

hour [27]. Researchers rely largely on search and recommendation services like Google Scholar and26

Semantic Scholar to keep pace with the growing literature and the authors who contribute to it. The27

literature retrieval services algorithmically decide what information to serve to scientists [1, 5], using28

information such as citations and textual content as well as behavioral traces such as clickthrough29

data, to inform machine learning models that output lists of ranked papers or authors.30

By relying on user behavior and queries, these services adapt and reflect human input and, in turn,31

influence subsequent search behavior. This cycle of input, updating, engagement, and response can32

lead to an amplification of biases around searchers’ prior awareness and knowledge [12]. Such biases33

include selective exposure [7], homophily [16], and the aversion to information from novel domains34

1https://dblp.org/statistics/publicationsperyear.html
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Figure 1: Bursting scientific bubbles with Bridger. The overarching goal is to (1) find commonalities
among authors working in different areas and unaware of one another, and (2) suggest novel and
valuable authors and their work, unlikely discovered otherwise due to their disparities.

that require more cognitive effort to consider [10, 13]. By reinforcing these tendencies, systems that35

filter and rank information run the risk of engendering so-called filter bubbles [21] that fail to show36

users novel content outside their narrower field of interest.37

These bubbles and silos of information can be costly to individual researchers and for the evolution38

of science as a whole. They may lead scientists to concentrate on narrower niches [14], reinforcing39

citation inequality and bias [20] and limiting cross-fertilization among different areas that could40

catalyze innovation [10, 13, 11]. Addressing filter bubbles in general, in domains such as social41

media and e-commerce recommendations, is a hard and unsolved problem [8, 4, 32]. The problem is42

especially difficult in the scientific domain. The scientific literature consists of complex models and43

theories, specialized language, and an endless diversity of continuously emerging concepts. Connect-44

ing blindly across these cultural boundaries requires significant cognitive effort [28], translating to45

time and resources most researchers are unlikely to have to enter unfamiliar research territory.246

Our vision in this paper is to develop an approach that boosts scientific innovation and builds47

bridges across scientific communities, by helping scientists discover authors that spark new48

ideas for research. Working toward this goal, we developed Bridger, illustrated in Figure 1. Our main49

contributions include:50

• A multidimensional author representation for matching authors along specific facets. Our51

novel representation includes information extracted automatically from papers, including tasks,52

methods and resources, and automatically inferred personas that reflect the different focus areas53

on which each scientist works. Each of these aspects is embedded in a vector space based on its54

content, allowing the system to identify authors with commonalities along specific dimensions and55

not others, such as authors working on similar tasks but not using similar methods.56

• Boosting discovery of useful authors and ideas from novel areas. We explore the utility of our57

author representation in experiments with computer science researchers interacting with Bridger.58

We find that this representation helps users discover authors considered novel and relevant, assisting59

users in finding potentially useful research directions. Bridger outperforms a strong neural model60

currently employed by a public scholarly search engine for search and recommendation3— despite61

Bridger’s focus on surfacing novel content and the built-in biases associated with this novelty.62

We conduct interviews with researchers, studying the tradeoffs between novelty and relevance in63

scientific content recommendations and discussing challenges for author discovery systems.64

• Exploring how to effectively depict recommended authors. In addition to assessing what au-65

thors to recommend to spark new research ideas, we also consider how to display authors in a66

way that enables users to rapidly understand what new authors work on. We employ Bridger as an67

experimental platform to explore which facets are displayed to users, investigating various design68

2The challenge of limited time to explore novel directions is also discussed in our interviews with researchers;
see §D.

3https://twitter.com/SemanticScholar/status/1267867735318355968.
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Figure 2: Bridger’s author representation, retrieval, and depiction. Users are represented in terms
of a matrix with rows corresponding to papers, and columns corresponding to facets. Bridger finds
suggested authors who match along “slices” of the user’s data – facets, subsets of papers, or both.

choices and tradeoffs. We obtain substantially better results in terms of user understanding of69

profiles of unknown authors, when displaying information taken from our author representation.70

• Evidence of bridging across research communities. Finally, we conduct in-depth analyses71

revealing that Bridger surfaces novel and valuable authors and their work that are unlikely to be72

discovered in the absence of Bridger due to publishing in different venues, citing and being cited73

by non-overlapping communities, and having greater distances in the social co-authorship network.74

Taken together, the ability to uncover novel and useful authors and ideas, and to serve this information75

to users in an effective and intuitive manner, suggests a future where automated systems are put to76

work to build bridges across communities, rather than blindly reinforcing existing filter bubbles.77

2 Bridger: Approach Overview78

In this section we present a brief overview of our novel faceted representation of authors, and methods79

for using this representation for author discovery by matching researchers along specific dimensions80

(Figure 2). See Appendix for full details.81

2.1 Author representations82

We represent an author,A, as a set of personas capturing the multiple themes an author can work on in83

different papers, in which each persona is encoded with facet-wide aggregations of term embeddings84

across a set of papers. Terms are spans of text referring to methods, tasks and resources automatically85

extracted from each paper i. Each term t is located in a “cell” in the matrix illustrated in Figure86

2, that depicts outlines of “slices” in bold — subsets of rows and columns in the illustrated matrix,87

corresponding to personas (subsets of rows) and facets (columns). We aggregate the terms into author-88

level facets that capture different aspects of A: VA = {m, t, r}, where m is an aggregate embedding89

of A’s method facets, t is an embedding capturing A’s tasks, and r represents A’s resources.90

2.2 Approaches for recommending authors91

For a given author A, we are interested in automatically suggesting new authors working on areas92

that are relevant to A but also likely to be interesting and spark new ideas.93

Commonalities and contrasts model We explore a formulation of the author discovery problem in94

terms of matching authors along specific dimensions that allow more fine-grained control – such as by95

using only a subset of views in VA, or only a subset ofA’s papers, or both — as in the row and column96

slices seen in Figure 2. This decomposition of authors also enables us to explore contrasts along97

specific author dimensions, e.g., finding authors who use similar tasks to A but use very different98

methods or resources.99

2.3 Depicting Recommended Authors100

Researchers, flooded with constant streams of papers, typically have a very limited attention span to101

consider whether some new author or piece of information is relevant to them. It is thus important102

that the information we display for each author (such as their main methods, tasks, resources, and103
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also papers) is ranked, and that we provide users with rankings explaining how the retrieved authors104

relate to them. In systems that help people find authors, such as Microsoft Academic Graph, Google105

Scholar, and AMiner [30], authors are often described in terms of a few high-level topics. We show106

that methods, tasks and resources, when ranked, can greatly help understand what authors work on.107

See experimental findings in Appendix §B. We now present our main findings on author discovery.108

3 Novel Author Discovery: Experiment Results109

Twenty computer-science researchers participated in our experiment. We showed them recommended110

authors using two author-ranking strategies (§A.3), one based on similar tasks alone (sT) and the111

other on similar tasks with contrasting (distant) methods (sTdM). We compare these strategies to the112

SPECTER (ss) baseline, a strong neural representation for scientific paper retrieval [5].113

We examine the proportion of users who preferred each of the sT and sTdM conditions in comparison114

to ss. The facet-based approaches lead to a boost despite comparing against an advanced baseline115

geared at relevance to which users are naturally primed. For the sT condition, 60 percent of116

participants preferred bridger author suggestions compared to 40 percent who preferred the specter117

author suggestions. For the sTdM condition, 78 percent preferred bridger. We also compare the results118

from sT and sTdM conditions based on personas P for user A, versus the user’s non-persona-based119

results presented above, finding them to further boost results.120

3.1 Evidence of Bursting Bubbles121

Figure 3: Bridger suggests authors that are more
likely to bridge gaps between communities in com-
parison to the baseline. Clockwise: (a, b) Jaccard
distance between suggested authors’ papers and
the user’s papers for incoming citations (a) and
outgoing citations (b); greater distance means that
suggested authors are less likely to be cited by or
cite the same work. (c) Jaccard distance for pub-
lication venues. (d) Shortest path length in the
coauthorship graph between author and user.

We empirically find that authors suggested by122

sT and sTdM tend to be very different than those123

suggested by ss, according to metrics measur-124

ing proximity to the user based on citation dis-125

tances to the user, as well as publication venue126

distances and the shortest path length between127

the user and the matched author in the coauthor-128

ship graph. Findings of this analysis, shown in129

Figure 3, suggest that Bridger surfaces novel130

authors from more diverse, distant fields and131

research communities than SPECTER.132

4 Conclusion133

We presented Bridger, a framework for facili-134

tating discovery of novel and valuable scholars135

and their work. Bridger consists of a faceted136

author representation, allowing users to see au-137

thors who match them along certain dimensions138

(e.g., tasks) but not others. Bridger also pro-139

vides “slices” of a user’s papers, enabling them140

to find authors who match the user only on a141

subset of their papers, and only on certain facets142

within those papers. Our experiments with com-143

puter science researchers show that the facet-144

based approach was able to help users discover145

authors with work that is considered more in-146

teresting and novel, substantially more than a147

relevance-focused baseline representing state-148

of-art retrieval of scientific papers. Importantly,149

we show that authors surfaced by Bridger are indeed from more distant communities in terms of150

publication venues, citation links and co-authorship social ties. These results suggest a new and151

potentially promising avenue for mitigating the problem of isolated silos in science.152
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A Appendix267

In this section we present our novel faceted representation of authors, and methods for using this268

representation for author discovery by matching researchers along specific dimensions (Figure 2).269

We also present methods for depicting the recommended authors when showing them to users.270

A.1 Paper representations271

Paper Information Each paper P contains rich, potentially useful information. This includes raw272

text such as in a paper’s abstract, incoming and out-going citations, publication date, venues, and273

more. One key representation we derive from each paper P is a vector representation P̃ , using a274

state-of-art scientific paper embedding model. This neural model captures overall coarse-grained275

topical information on papers, shown to be powerful in clustering and retrieving papers [5].276

Another key representation is based on fine-grained facets obtained from papers. Let TPi =277

{t1, t2, . . .} be a set of terms appearing in paper i. Each term is associated with a specific facet278

(category). We consider several categories of terms in this paper: coarse-grained paper topics inferred279

from the text [31], and fine-grained spans of text referring to methods, tasks and resources — core280

aspects of computer science papers [3] — automatically extracted from paper i with a scientific281

named entity recognition model [29]. Each term t is located in a “cell” in the matrix illustrated in282

Figure 2, with facets corresponding to the columns and papers to rows. Each term t ∈ TPi
is also283

embedded in a vector space using a neural language model (see §A.5), yielding a t̃ vector for each284

term.285

A.2 Author representations286

We represent an author, A, as a set of personas in which each persona is encoded with facet-wide287

aggregations of term embeddings across a set of papers. Figure 2 illustrates this with outlines of288

“slices” in bold — subsets of rows and columns in the illustrated matrix, corresponding to personas289

(subsets of rows) and facets (columns).290

Author personas Each author A can work in multiple areas. In our setting, this can be important291

for understanding the different interests of authors, enabling more control on author suggestions. We292

experiment with a clustering-based approach for constructing personas, PA, based on inferring for293

each set of author papers PA a segmentation into K subsets reflecting a common theme — illustrated294

as subsets of rows in the matrix in Figure 2. We also experiment with a clustering based on the295

network of co-authorship collaborations in which A takes part. See §A.5 for details on clustering. As296

discussed later (§B), we find that the former approach in which authors are represented with clusters297

of papers elicits considerably better feedback from scholars participating in our experiments.298

Co-authorship information Each paper P is in practice authored by multiple people, i.e., it can299

belong to multiple authors A. Each author assumes a position k for a given paper, potentially300

reflecting the strength of affinity to the paper. As discussed below (§A.5), we make use of this affinity301

in determining what weight to assign terms TPi
for a given paper and given author.302

Author-level facets Finally, using the above information on authors and their papers, we construct303

multiple author-level facets that capture different aggregate aspects ofA. More formally, in this paper304
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we focus our experiments on author facets VA = {m, t, r}, where m is an aggregate embedding of305

A’s method facets, t is an embedding capturingA’s tasks, and r representsA’s resources. In addition,306

we also construct these facets separately for each one of the author’s personas PA — corresponding307

to “slice embeddings” over subsets of rows and columns in the matrix illustrated in Figure 2. In308

analyses of our experimental results (§C), we also study other types of information such as citations309

and venues; we omit them from the formal notations to simplify presentation.310

A.3 Approaches for recommending authors311

For a given authorA using Bridger, we are interested in automatically suggesting new authors working312

on areas that are relevant to A but also likely to be interesting and spark new ideas. We are given a313

user A, their set of personas PA, and for each persona its faceted representation VA = {m, t, r}. We314

are also given a large pool of authors across computer science, {A1,A2, . . .}, from which we aim to315

retrieve author suggestions to show A.316

Baseline model We employ SPECTER [5], a strong neural model to which we compare, trained317

to capture overall topical similarity between papers based on text and citation signals (see Cohan318

et al. [5] for details) and used for serving recommendations as part of a large public academic search319

system. For each of author A’s papers P , we use this neural model to obtain an embedding P̃ .320

We then derive an aggregate author-level representation p̃ (e.g., by weighted averaging that takes321

author-term affinity into account, see §A.5). Similar authors are computed using a simple distance322

measure over the dense embedding space. As discussed in the introduction and §??, this approach323

focuses on retrieving authors with the most overall similar papers to A. Intuitively, the baseline324

can be thought of as “summing over” both the rows and columns of the author matrix in Figure 2.325

By aggregating across all of A’s papers, information on finer-grained sub-interests may be lost. In326

addition, by being trained on citation signals, it may be further biased and prone to favor highly-cited327

papers or authors.328

To address these issues, we explore a formulation of the author discovery problem in terms of329

matching authors along specific dimensions that allow more fine-grained control – such as by using330

only a subset of views in VA, or only a subset of A’s papers, or both — as in the row and column331

slices seen in Figure 2. This decomposition of authors also enables us to explore contrasts along332

specific author dimensions, e.g., finding authors who use similar tasks to A but use very different333

methods or resources.334

• Single-facet matches For each author Ai in the pool of authors {A1,A2, . . .}, we obtain their335

respective aggregate representations VAi
= {m, t, r}. We then retrieve authors with similar336

embeddings to A along one dimension (or matrix columns in Figure 2; e.g., r for resources),337

ignoring the others. Unlike the baseline model, which aggregates all information appearing in338

A’s papers – tasks, methods, resources, general topics, and any other textual information – this339

approach is able to disentangle specific aspects of an author, potentially enabling discovery of340

more novel, remote connections that can expose users to more diverse ideas and cross-fertilization341

opportunities.342

• Contrasts Finding matches along one dimension does not guarantee retrieving authors who are343

distant along the others. As an example, finding authors working on tasks related to scientific344

knowledge discovery and information extraction from texts, could be authors who use a diverse345

range of resources, such as scientific papers, clinical notes, etc. While the immense diversity in346

scientific literature makes it likely that focusing on similarity along one dimension only will still347

surface diverse results in terms of the other (see results in §C), we seek to further ensure this.348

To do so, we apply a simple approach inspired by recent work on retrieving inspirations [11]: We349

first retrieve the top K authors {A1,A2, . . . AK} that are most similar to A along one dimension350

(e.g., t), for some relatively large K (e.g., K = 1000). We then rank this narrower list inversely351

by another dimension (e.g., r), and show user A authors from the top of this list. Intuitively, this352

approach helps balance relevance and novelty by finding authors who are similar enough along one353

dimension, and within that subset find authors who are relatively distant along another.354

• Persona-based matching Finally, to account for the different focus areas authors may have, instead355

of aggregating over all of an author’s papers, we perform the same single-view and contrast-based356

retrieval using the author’s personas PA — or, in other words, row-and-column slices of the matrix357

in Figure 2.358
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A.4 Depicting Recommended Authors359

Our representation allows us to explore multiple design choices not only for which authors we show360

users, but also how we show them. In our experiments (§B, §C), we evaluate authors’ facets and361

personas in terms of their utility for helping researchers learn about new authors, and for controlling362

how authors are filtered.363

Term ranking algorithms to explain what authors work on Researchers, flooded with constant364

streams of papers, typically have a very limited attention span to consider whether some new author365

or piece of information is relevant to them. It is thus important that the information we display for366

each author (such as their main methods, tasks, resources, and also papers) is ranked, such that the367

most important or relevant terms appear first. We explore different approaches to rank the displayed368

terms, balancing between relevance (or centrality) of each term for a given author, and coverage369

over the various topics the author works on. We compare between several approaches, including a370

customized relevance metric we design, in a user study with researchers (§B). We discuss in more371

detail the ranking approaches we try in §A.5.372

Retrieval explanations In addition to term ranking approaches aimed at explaining to users of373

Bridger what a new suggested author works on, we also provide users with two rankings that are374

geared for explaining how the retrieved authors relate to them. First, we allow users to rank author375

terms T by how similar they are to their own list of terms (for each facet, separately). Second, users376

can also rank each author’s papers by how similar they are to their own — showing the most similar377

papers first. These explanations can be regarded as a kind of “anchor” for increasing trust, which378

could be especially important when suggesting novel, unfamiliar content.379

A.5 Implementation details380

A.5.1 Data381

We use data from the Microsoft Academic Graph (MAG) [25]. We use a snapshot of this dataset from382

March 1, 2021. We also link the papers in the dataset to those in an a large public academic search383

engine.4 We limit the papers and associated entities to those designated as Computer Science papers.384

We focus on authors’ recent work, limiting the papers to those published between 2015 and 2021,385

resulting in 4,650,474 papers from 6,433,064 authors. Despite using disambiguated MAG author386

data, we observe the challenge of author ambiguity still persists [26]. In our experiments, we thus387

exclude participants with very few papers (see §C), since disambiguation errors in their papers stand388

out prominently.389

A.5.2 Term Extraction390

We extract terms (spans of text) referring to tasks, methods, and resources mentioned in paper391

abstracts and titles, using the state-of-art DyGIE++ IE model [29] trained on SciERC [15]. We392

extracted 10,445,233 tasks, 20,705,854 methods, and 4,978,748 resources from 3,594,975 papers. We393

also use MAG topics, higher-level coarse-grained topics available for each paper in MAG. We expand394

abbreviations in the extracted terms using the algorithm in [24] implemented in ScispaCy [19].395

A.5.3 Scoring papers by relevance to an author396

The papers published by an author have varying levels of importance with regard to that author’s397

overall body of publications. To capture this, we use a simple heuristic that takes into account two398

factors: the author’s position in a paper as a measure of affinity (see §A.2), and the paper’s overall399

impact in terms of citations. More formally, for each author A, we assign a weight wA,P to each400

paper P in PA, wA,P = posA,P × RankP , where posA,P is 1.0 if A is first or last author on P and401

0.75 otherwise, and RankP is MAG’s assigned paper Rank (a citation-based measure of importance,402

see [31] for details), normalized by min-max scaling to a value between .5 and 1.403

4Redacted for anonymity.

9



A.5.4 Author similarity404

We explore several approaches for author similarity and retrieval, all based on paper-level aggregation405

as discussed in §A.3. For the document-level SPECTER baseline model discussed in §A.3, we obtain406

768-dimensional embeddings for all of the papers. To determine similarity between authors, we take407

the average embedding of each author’s papers, weighted by the paper relevance score described408

above. We then compute the cosine similarity between this author and the average embedding of409

every other author. For our faceted approach, we compute similarities along each authors’ facets,410

using embeddings we create for each term in each facet. The model used to create embeddings was411

CS-RoBERTa [9], which we fine-tuned for the task of semantic similarity using the Sentence-BERT412

framework [23]. For each author or persona, we calculate an aggregate representation along each413

facet by taking the average embedding of the terms in all of the papers, weighted by the relevance414

score of each associated paper.415

A.5.5 Identification of personas416

We infer author personas using two different approaches. For the first approach we cluster the co-417

authorship network using the ego-splitting framework in [6]. In a second approach, we cluster each418

authors’ papers by their SPECTER embeddings using agglomerative clustering with Ward linkage [18]419

on the Euclidean distances between embedding vectors.5 In our user studies, we show participants420

their personas and the details of each one (papers, facets, etc.).6 To make this manageable, we sort the421

clusters (personas) based on each cluster’s most highly ranked paper according to MAG’s assigned422

rank, and show participants only their top two personas.423

A.5.6 Term ranking for Author Depiction424

We evaluate several different strategies to rank terms (methods, tasks, resources) shown to users in425

Experiment I (§B):426

• TextRank: For each term t in an author’s set of papers, we create a graph GF = (V,E) with427

vertices V the terms and weighted edges E, where weight wij is the euclidean distance between the428

embedding vectors t̃i and t̃j . We score each term ti according to its PageRank value in GF [17].429

• TF-IDF For each t, we compute TF-IDF across all authors, considering each author as a “document”430

(bag of terms) in the IDF (inverse document frequency) term, counting each term once per paper.431

We calculate the TF-IDF score for each term for each author, and use this as the term’s score.432

• Author relevance score For each t, we calculate the sum of the term’s relevance scores (§ A.5.3)433

derived from their associated papers. If a term is used in multiple papers, the associated paper’s434

score is used for each summand.435

• Random Each term t is assigned a random rank.436

B Experiment I: Author Depiction437

In systems that help people find authors, such as Microsoft Academic Graph, Google Scholar, and438

AMiner [30], authors are often described in terms of a few high-level topics. In advance of exploring439

how we might leverage facets to engage researchers with a diverse set of authors, we performed a440

user study to gain a better understanding of what information might prove useful when depicting441

authors. We started from a base of Microsoft Academic Graph (MAG) topics, and then added their442

extracted facets (tasks, methods, resources). We investigated the following research questions:443

• RQ1: Do tasks, methods, and/or resources complement MAG topics in depicting an author’s444

research?445

• RQ2: Which term ranking best reflects an author’s interests?446

• RQ3: Do tasks, methods, and/or resources complement MAG topics in helping users gain a better447

picture of the research interests of unknown authors?448

• RQ4: Do personas well-reflect authors’ different focus areas?449

5Implemented in the scikit-learn Python library [22]. Distance threshold of 85.
6Some authors do not have detected personas; we observe this to often be the case with early-career

researchers.
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B.1 Experiment Design450

Thirteen computer-science researchers were recruited for the experiment through Slack channels and451

mailing lists. Participants were compensated $20 over PayPal for their time. Study sessions were452

one-hour, semi-structured interviews recorded over Zoom. The participants engaged in think-aloud453

throughout the study. They evaluated a depiction of a known author (e.g., research mentor) for454

accuracy in depicting their research, as well as depictions of five unknown authors for usefulness in455

learning about new authors.456

Throughout all parts of the experiment, the interviewer asked follow-up questions regarding the457

participant’s think-aloud and reactions.7 To address RQ1 and RQ2, the participants first evaluated458

the accuracy of a known author’s depiction.459

Step I. To begin, we presented the participant with only the top 10 MAG topics for the known author.460

We asked them to mark any topic that was unclear, too generic, or did not reflect the author’s research461

well. Next, we provided five more potential lists of terms. One of these lists consisted of the next462

10 top topics. The other four presented 10 tasks, each selected as the top-10 ranked terms using the463

strategies described in §A.5. We asked participants to rank the five lists (as a whole) in terms of how464

well they complemented the first list (with an option to select none).465

Step II. The process then repeated for five more potential lists to complement the original topics and466

the highest-ranked second list selected in Step I — this time, with methods instead of tasks. If the467

participant ranked a methods list highest, we then presented the participant with a resources list that468

used the same ranking strategy preferred by the participant for methods, and asked whether or not469

this list complemented those shown so far.470

Step III. To address RQ3, participants next evaluated the utility of author depictions for five unknown471

authors. To describe each unknown author, we provided topics, tasks, methods, and resources lists472

with 10 terms each. The non-topics lists were ranked using TF-IDF as a default. The participant473

noted whether or not each additional non-topics list complemented the preceding lists in helping474

them understand what kind of research the unknown author does.475

Step IV. Finally, for RQ4, we asked participants to evaluate the known author’s distinct personas476

presented in terms of tasks, which were ranked using TF-IDF. On a Likert-type scale of 1-5, partici-477

pants rated their agreement with the statement, “The personas reflect the author’s different research478

interests (since the year 2015) well.”479

B.2 Results480

B.2.1 Results for RQ1481

The majority of participants found that tasks, methods, and resources complemented topics482

to describe a known author’s research. For both tasks and methods, 11 of 13 participants felt483

that seeing information about that facet, more so than additional top MAG topics or no additional484

information, complemented the original top ten MAG topics. The prevailing grievance with the485

additional MAG topics was that they were too general. Furthermore, 7 of 9 participants who evaluated486

a resources list thought that it complemented the preceding lists.487

B.2.2 Results for RQ2488

Participants overall preferred the relevance score ranking strategy for tasks and methods. We489

compared the four ranking strategies and MAG topics baseline strategy for both tasks and methods.490

For each participant, we awarded points to each strategy based on its position in the participant’s491

ranking of the five strategies. We awarded the least favorite strategy one point and the most favorite492

strategy five points. Since there were 13 participants, a strategy could accumulate up to 65 points.493

Separately, we counted how many times each strategy was a participant’s favorite strategy (Figure 4c,494

d). With regards to tasks, TextRank and TF-IDF accrued the most points from participants, with495

the relevance score trailing close behind (Figure 4a). Meanwhile, the MAG topics baseline accrued496

the least points, even fewer than the random task ranking strategy. In addition, relevance score and497

TextRank were chosen most often as the favorite task ranking strategy (Figure 4c). With regards to498

7The script for Experiment I can be found in our supplementary materials.
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Figure 4: Points awarded to each ranking strategy for tasks (a) and methods (b), and percentage of
participants who favored each strategy most for tasks (c) and methods (d).

methods, the relevance score ranking strategy performed best in terms of both total points (Figure 4b)499

and favorite strategy (Figure 4d).500

B.2.3 Results for RQ3501

Participants generally found tasks, methods, and resources helpful to better understand what502

kind of research an unknown author does. To calculate how many participants were in favor of503

including tasks, methods, and resources to help them better understand an author, we determined the504

average of each participant’s binary response per facet. Adding up the 13 responses for each facet,505

we saw that the majority of participants thought each additional facet helped them understand the506

unknown author better. All 13 participants found the tasks helpful, eight found the methods helpful,507

and 12 found the resources helpful. As an example, P12 connected an unknown author’s topics, tasks,508

and methods to better understand them: “I wouldn’t have known they were an information retrieval509

person from the [topics] at all.... The previous things [in topics and tasks] that mentioned translation510

and information retrieval and kind of separately. . . This [methods section] connects the dots for me,511

which is nice.” Interestingly, methods were not viewed to be as useful as tasks or resources. The512

majority of participants cited unfamiliar terms as a key issue.513

B.2.4 Results for RQ4514

Participants indicate preference for personas selected based on papers rather than co-515

authorship. After the experiment, six participants were informally asked to compare the experiment’s516

personas selected based on co-authorship with the personas based on paper-based clustering (see517

§A.5). Four of them preferred the updated version. Furthermore, one of the users who preferred the518

old version still thought the updated version had better personas themselves and merely did not like519

the updated personas’ ordering. In addition, all six participants liked seeing the personas in terms of520

papers. In our experiment in §C, we observed much higher satisfaction with the updated personas in521

comparison to the original personas of this experiment.522

C Experiment II: Author Discovery523

We now turn to our main experiment, exploring whether facets can be employed in Bridger to spur524

users to discover valuable and novel authors and their work. We use our two author-ranking strategies525

(§A.3), one based on similar tasks alone (sT) and the other on similar tasks with contrasting (distant)526

methods (sTdM). We compare these strategies to the SPECTER (ss) baseline. More specifically, we527

investigated the following research questions:528

• RQ5: Do sT and sTdM, in comparison to SPECTER, surface suggestions of authors that are529

considered novel and valuable, coming from research communities more distant to the user?530
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Figure 5: Illustration of information shown to users in Experiment II, §C. When the user clicks on an
author card, an expanded view is displayed with 5 sections: papers, topics, and our extracted facets —
tasks, methods, and resources.

• RQ6: Does sorting based on personas help users find more novel and valuable author suggestions?531

C.1 Experiment Design532

Twenty computer-science researchers participated in the experiment after recruitment through Slack533

channels and mailing lists. Participants were compensated $50 over PayPal for their time.534

All participants were shown results based on their overall papers (without personas) consisting of 12535

author cards they evaluated one by one. Four cards were included for each of sT, sTdM, and ss. We536

only show cards for authors who are at least 2 hops away in the co-authorship graph from the user,537

filtering authors with whom they had previously worked.538

For participants who had at least two associated personas, we also presented them with authors539

suggested based on each separate persona: four author cards for each of their top two personas540

(two under sT and two under sTdM). Whether the participants saw the personas before or after the541

non-persona part was randomized.542

Each author card provides a detailed depiction of that author (see Figure 2). The author’s name and543

affiliation is hidden in this experiment to mitigate bias. As shown in Figure 5, cards showcase five544

sections of the author’s research: their papers, MAG topics, and our extracted facet terms. We also let545

users view the tasks and methods ranked by similarity to them, which could be helpful to explain546

why an author was selected and better understand commonalities.547

The cards showed up to five items for each section, with some sections having a second page,548

depending upon data availability. Papers could be sorted based on recency or similarity to a participant549

/ persona. To avoid biasing participants, the only information provided for each paper was its title,550

date, and the suggested author’s position on each paper (e.g., first, last).551

Each of these items (papers and terms) had a checkbox, which the user was instructed to check if it552

fulfilled two criteria: 1) potentially interesting and valuable for them to learn about or consider in553

terms of utility, and 2) not too similar to things they had worked on or used previously. Following a554

short tutorial,8 participants evaluated each author shown by checking the aforementioned checkboxes555

(see Figure 5, right). While evaluating the first and last author (randomized), the participant engaged556

in a protocol analysis methodology (sharing their thinking as they worked). Participants with personas557

were also asked, based on each persona’s top five associated papers, whether they each reflected a558

coherent focus area, and whether they seemed useful for filtering author suggestions.9559

8The tutorial slides are available in our supplementary materials.
9See supplementary materials for the source code used for generating the data for Experiment II, as well as

the code for the interactive application used in the evaluation, and the script used to direct the participants.
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Figure 6: More users prefer Bridger for suggesting novel, interesting authors. Percent of the
participants who preferred author suggestions surfaced by faceted conditions (sT and sTdM, blue
bars) compared to a baseline non-faceted paper embedding (ss, orange bars). On average, users
prefer the former suggestions, leading to more discovery of novel and valuable authors and their
work (a). When broken down further, we find users substantially preferred the facet items shown for
authors in our condition (b), and preferred the paper embedding baseline when evaluating papers (c).
See §C for discussion.

C.2 Quantitative Results560

For each author card evaluated by a user, we calculate the ratio of checked boxes to total boxes in561

that card. Then, for each user, we calculate the average of these ratios per condition (sT, sTdM, ss),562

and calculate a user-level preference S specifying which of the three conditions received the highest563

average ratio. Using this score, we find the proportion of users who preferred each of the sT and564

sTdM conditions in comparison to ss. This metric indicates the user’s preference between Bridger-565

and SPECTER-recommended authors in terms of novelty and value (RQ5).566

Figure 6(a), shows results by this metric. The facet-based approaches lead to a boost over the567

non-faceted ss approach, with users overall preferring suggestions coming from the facet-based568

conditions. This is despite comparing against an advanced baseline geared at relevance, to which569

users are naturally primed.570

We break down the results further by slightly modifying the metric to account for the different types of571

item types users could check off. In particular, we distinguish between the task/method/resource/topic572

checkboxes, and the paper checkboxes. For each of these two groups, we compute S in the same way,573

ignoring all checkboxes that are not of that type (e.g., counting only papers). This breakdown reveals574

a more nuanced picture. For the task, method, resource and topic facets, the gap in favor of sT grows575

considerably (Figure 6b). In terms of papers only, ss, which was trained on aggregate paper-level576

information, achieves a marginally better outcome compared to sT, with a slightly larger gap in577

comparison to sTdM (Figure 6c). Aside from being trained on paper-level information, SPECTER578

also benefits from the fact that biases towards filter bubbles can be particularly strong with regard579

to papers. Unlike with facets, users must tease apart aspects of papers that are new and interesting580

to them versus aspects that are relevant but familiar. See §D.1.3 for more discussion and concrete581

examples.582

Importantly, despite obtaining better results overall with the faceted approach, we stress that our583

goal in this paper is not to “outperform” SPECTER, but mostly to use it as a reference point — a584

non-faceted approach used in a real-world academic search and recommendation setting.585

Personas We also compare the results from sT and sTdM conditions based on personas P for user586

A, versus the user’s non-persona-based results presented above (RQ6). We compare the set of authors587

found using personas with authors retrieved without splitting into personas (equivalent to the union588

of all personas). Table 1 shows the number of users for which the average proportion of checked589

items was higher for the persona-matched authors than for the overall-matched authors (for at least590

one of the personas). For most participants, users signalled preference for persona-matched authors591

when looking at one or both of their personas. Interestingly, for papers we see a substantial boost in592

preference for both conditions, indicating that by focusing on more refined slices of the user’s papers,593

we are able to gain better quality along this dimension too.594
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Item type sT sTdM

All 58% 75%
Paper 83% 67%
Topic 58% 75%
Task 42% 50%
Method 67% 58%
Resource 50% 67%
Table 1: Percentage of users with personas (N=12), for which the average proportion of checked
items was higher for the persona-matched authors than for the overall-matched authors. Users saw
suggested authors based on two of their personas. The suggestions came from either the sT or sTdM
conditions. Reported here are counts of users who showed preference for one or both personas.

C.3 Evidence of Bursting Bubbles595

The matched authors displayed to users were identified based either on sT and sTdM or the baseline596

SPECTER-based approach (ss). These two groups differed from each other substantially according597

to several empirical measures of similarity. We explore the following measures, based on author598

dimensions in our data that we do not use as part of the experiment: (1) Citation distance: A measure599

of distance in terms of citations that the user has in common with the matched author (Jaccard distance:600

1 minus intersection-over-union). This is calculated both for incoming and outgoing citations. (2)601

Venue distance: The Jaccard distance between user and matched author for publication venues. (3)602

Coauthor shortest path: The shortest path length between the user and the matched author in the603

coauthorship graph. Findings of this analysis, shown in Figure 3, suggest that Bridger surfaces novel604

authors from more diverse, distant fields and research communities than SPECTER (RQ5).605

In the following section, we conclude by diving deeper into user interviews we conducted, revealing606

more evidence and insights into user preferences and surfacing potential issues and challenges for607

building author discovery systems.608

D User Interviews: Analysis & Discussion of Author Discovery609

D.1.1 Bridges Across Scientific Filter Bubbles610

Bridger authors encourage more diverse connections. Under the Bridger conditions, participants611

noted diverse potentially useful research directions that connected their work to other authors not only612

within their own subareas, but also other areas. This was especially true under the sTdM condition.613

For instance, P9, who works on gradient descent for convex problems, saw a sTdM author’s paper614

discussing gradient descent but for deep linear neural networks, which imply non-convex problems.615

They remarked, “This is a new setup. It’s very different, and it’s super important . . . definitely616

something I would like to read . . . ” Considering a paper under a sTdM author, P6 observed an617

interesting contrast with their work: “I think my work has been bottom-up, so top-down would618

be an interesting approach to look at.” As another example, P2 drew a connection between the619

mathematical area of graph theory and their area of human-AI decision-making under the sTdM620

condition: “This could be interesting mostly because . . . they’re using graph theory for decision621

making . . . something I have not considered in the past.” P19 remarked of an sTdM author’s paper,622

"This one actually seems quite interesting because it seems like explicitly about trying to bridge the623

gap between computational neuroscience models, understanding the neocortex, and computing. So624

that seems like it’s... going to actually chart the path for me between my work and the stuff I think625

about like artificial neural networks and machines."626

In reacting to sTdM authors, many participants were able to go further than simply state their interest627

in a connection and also describe how they would utilize the connection. Looking at a sTdM author,628

P6 explained how the author’s neuroscience work could motivate work in their area of natural629

language processing: “I might learn from that [paper] how people compose words, and that might630

be inspiring for work on learning compositional representation . . . ” P18 checked off a paper titled631

“Multidisciplinary Collaboration to Facilitate Hypothesis Generation in Huntington’s Disease” under632

a sTdM author “because new ways to think about generating hypotheses could be interesting.” Seeing633

the topic ‘spike-timing-dependent plasticity’ under a sTdM author, P19 mused, “I would like to634
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understand how spike-timing-dependent plasticity works and whether that could lead to a better635

learning rule for other types of neural nets, like the ones I work with on language, so that seems fun.”636

P12 described a sTdM author’s paper about knowledge-driven search applications as useful to them637

because “One of my primary research areas is knowledge base completion. However, that’s not an638

end application. An end application would be a search application which kind of uses my method639

to complete the knowledge base, and gives the user the end result. . . . ” Though the sTdM condition640

presented more of a risk in terms of surfacing authors with which the user could draw connections, it641

also surfaced the more far-reaching connections.642

The sT condition also helped participants ponder new connections, though perhaps not as distant.643

P8 said of a sT author’s work, “I’ve worked a bit on summarization, so I want to know whether the644

approaches that I’ve worked on are applicable to real-time event summarization, which is a task I645

don’t know about.” Also reflecting on a sT author, P1 explained, “I’ve done a lot of work with micro646

tasks and these seem more maybe larger scale, like physical tasks or like planning travel. . . . There647

are so many problems . . . that I could apply my techniques to.” Other times, participants would648

connect one facet of their work to a different facet of the suggested author’s work. In discussing a649

question-answering paper from a sT author, P8 explained, “I don’t have experience with [the method]650

adversarial neural networks [used in this paper], but question answering is a task that I’ve worked on,651

so I would want to check this.” Conversely, if participants found new connections with SPECTER, they652

tended to be more immediate connections to authors in their area. As an example, when checking off653

the paper “Efficient Symmetric Norm Regression via Linear Sketching” from a SPECTER-suggested654

author, P9 observed, “I have used sketching techniques and I have [also] used norm regression, but655

[on] this specific problem I have not.” P9 also identified some of the papers from the suggested656

author as co-authored by their advisor.657

D.1.2 Facets Help Elicit New Research Directions But Require More Context658

Describing an author’s work with short, digestible items in the form of tasks, methods, and659

resources helped participants find interesting new research directions. For instance, P14 ex-660

pressed that a sTdM author’s paper associated with medical image diagnosis would not be useful for661

them to consider because “breaking into that space for me would require a lot of work.” However,662

when they later saw ‘medical image diagnosis’ as a task, they commented, “As a task, I could see663

some usefulness there. There could be other approaches that might more quickly catch my interest.”664

Committing to interest in the task required much less effort. Moreover, participants were able to665

peruse more of an author’s interesting tasks and methods that they did not necessarily find in their666

top papers. Reacting to one sT author, P3 did not see any papers related to ‘biomedical question667

answering,’ but they did see ‘biomedical question answering system’ as a method. They then noted,668

“I’m going to click ‘biomedical question answering’ because that’s not what I have worked on before,669

but I’m interested in learning about it.”670

Tasks, methods and resource facets support discovery better than topics. While participants671

occasionally thought certain tasks, methods, or resources were too generic, participants were much672

more likely to complain that topics were too high-level to spark ideas for new, profitable research673

directions. P3 summarized, “I think many of them are quite generic, so I can say I already worked on674

it,” and P7 noted, “‘Artificial intelligence’ is too broad. I think everything comes under that.”675

Terms with unknown meaning often garner interest, but all facets and papers require more676

context. Participants commonly identified tasks, methods, and resources as interesting, even when677

they did not fully understand their meaning. When P4 saw the method ‘least-general generalization678

of editing examples’ from a sT author, they stated, “Don’t know what this means exactly, but it679

sounds interesting.” P13 marked their interest in the task “folksonomy-based recommender systems”680

under a sTdM author after having commented, “I’m curious [about folksonomy] simply because I’m681

ignorant.”682

sTdM also surfaced distant resources that sparked interest. In seeing the resource ‘synaptic resources’683

under a sTdM author, for example, P19 simply said, “I’d like to know what that is.” Nonetheless, many684

participants also struggled with indiscernible terms. For example, P20 said of the resource ‘NAIST685

text corpus’ under a sT author, “I’m not sure what this is, and I can’t guess from the name. And it686

wasn’t mentioned in the title of the papers.” P2 explained that a paper did not “seem that interesting,687

but mostly because I don’t understand all of these words.” Thus, providing term definitions may be688
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helpful. For additional context, multiple participants expressed interest in having abstracts available,689

and P15 suggested including automated summaries [2].690

D.1.3 Biases Toward Scientific Filter Bubbles691

Time constraints in the fast-moving world of research inhibit exploration beyond the filter692

bubble. Despite clear interest in an author’s distant research, a couple of participants were hesitant693

to make connections. In reacting to a sT author, P11 recognized, “There’s just a bunch of really694

interesting kind of theory application papers in this list that I’m not familiar with. . . . I would maybe695

scan a little bit of these, but it’s so far off that it’s harder to make room to read someone that far away,696

but still cool.”697

Unknown background knowledge can make it intimidating to consider new areas. Engaging698

with distant authors’ work requires a large cognitive load that can make uncovering connections699

difficult. P18 provided the following example: “Maybe there’s some theoretical computer science700

algorithm that if I knew to apply it to my problem would speed things up or something like that, but701

I wouldn’t know enough to recognize it as interesting.” Echoing findings in §D.1.2, this comment702

suggests that unfamiliar terms can especially hinder making interesting connections, and that high-703

lighting the most useful aspects of a distant author’s research may facilitate building far-reaching704

connections.705

Preconceived notions of an area hinder consideration of connections to that area. Because706

Bridger’s authors are selected to be more different from the user than SPECTER’s authors, they707

often met with hard-line resistance, without full consideration of potential links. Looking at a sTdM-708

suggested author, the natural language processing (NLP) researcher P20 said, “This is not really709

an NLP paper, so I would pass.” Similarly, P17 rejected sTdM suggestions, saying “I don’t know710

anything about neuroscience, and I’m not going to start now probably.”711

Difficulty teasing apart novel aspects from paper titles helps SPECTER. Although participants712

were asked to only check off interesting papers that suggested something new for them to explore,713

biases towards filter bubbles can be particularly strong with regard to papers because users must714

tease apart papers’ new and interesting aspects from their relevant but familiar aspects. Even if a715

paper is directly connected to a user’s research, they may be tempted to check off a paper because716

they have not seen that exact paper or because it has minute differences from their work. In contrast,717

when judging a particular facet item, participants need only contemplate the novelty of the term itself,718

without distraction or fixation on other terms [10, 13, 11]. As an example, P17 swiftly separated a719

task’s general relevance from its lack of novelty to know not to check it. They explained, “‘Scientific720

article summarization’- It is relevant, [but] I’m already familiar with it.” This bias helps explain the721

overall preference for SPECTER when considering only papers (Figure 6(c)).722

D.1.4 Personas723

All participants with personas stated at least one would be helpful. Upon first view of their724

personas, of the 12 participants who had them, seven described their two personas as distinct, coherent725

identities that would be useful for filtering author suggestions. As an example, P2 characterized their726

personas as related to “human-AI collaboration or decision-making” and “error analysis and machine727

learning debugging” respectively. The other 5 participants described one persona as coherent and728

seemingly useful for filtering authors. Concerns about their other personas were related to coherence,729

granularity, overlap with the other persona, and preference for the non-persona results after already730

looking through them and their first persona. Though the persona author suggestions performed731

relatively well in generating novel connections (Table 1), a few participants commented that they did732

not see the connection between suggested authors and their persona. For example, under a persona733

associated with lexical semantics, P6 commented on a sTdM paper, “‘Causality’ is not a topic I would734

work on in lexical semantics.” Diverse author suggestions may be more confusing under personas735

because users look for connections specific to that persona; indicating to users when these author736

suggestions are for exploratory purposes may be helpful.737
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