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Abstract

In this paper, we study personalized federated001
learning for text classification with Pretrained002
Language Models (PLMs). We identify two003
challenges in efficiently leveraging PLMs for004
personalized federated learning: 1) Communi-005
cation. PLMs are usually large in size, e.g.,006
with hundreds of millions of parameters, induc-007
ing huge communication cost in a federated008
setting. 2) Local Training. Training with PLMs009
generally requires back-propagation, during010
which memory consumption can be several011
times that of the forward-propagation. This012
may not be affordable when the PLMs are013
trained locally on the clients, since the clients014
may be resource constrained, e.g., mobile de-015
vices with limited access to memory resources.016
Additionally, the PLMs can be provided as con-017
cealed APIs, for which the back-propagation018
operations may not be available. For the first019
challenge, we adopt prompt tuning for PLMs020
that only train with the prompt parameters,021
while the pretrained parameters are frozen.022
We further propose a compression method for023
the learned prompts to reduce communication024
cost. For the second challenge, we propose025
a gradient-free approach based on discrete lo-026
cal search with natural language tokens, cir-027
cumventing gradient computation with back-028
propagation, while also reducing the communi-029
cation cost. Experiments on multiple datasets030
demonstrates the effectiveness of our method.031

1 Introduction032

Personalized federated learning (Fallah et al., 2020;033

Chen et al., 2018; Shamsian et al., 2021) involves034

collaborative training with non-shareable private035

data from multiple clients. For each client, we036

aim to train a personalized model that fits to its037

own local data, leveraging knowledge from other038

clients. Personalized federated learning has been at-039

tracting increasing attention in the federated learn-040

ing community due to its ability to account for041

data heterogeneity across clients (Li et al., 2021).042

On the other hand, the advent of Pretrained Lan- 043

guage Models (PLMs) (Liu et al., 2019; Kenton 044

and Toutanova, 2019) has yielded remarkable per- 045

formance for tasks involving natural language pro- 046

cessing, e.g., text classification. However, such 047

PLMs are usually large in size, e.g., with hundreds 048

of millions of parameters. There has been limited 049

works investigating how to efficiently train with 050

such large PLMs in the federated learning scenarios 051

(Guo et al., 2022; Zhao et al., 2022). In this paper, 052

we investigate on efficient training with PLMs in 053

personalized federated learning for the task of text 054

classification. 055

One challenge of training PLMs in a federated 056

learning scenario is how to reduce communication 057

cost. Federated learning generally requires com- 058

municating updated trainable model parameters 059

between a central server and all the clients (McMa- 060

han et al., 2017; Li et al., 2020). When training 061

with PLMs, their sheer size may introduce huge 062

communication cost between the server and clients, 063

thus reducing the training efficiency. To solve this 064

problem, recent works propose to leverage prompt 065

tuning (Guo et al., 2022; Zhao et al., 2022). Specif- 066

ically, prompt tuning learns with a sequence of 067

trainable prompt embeddings inserted into the in- 068

put layer of the PLMs. By only training and com- 069

municating the prompt embeddings and freeze the 070

pretrained parameters of the PLMs, the communi- 071

cation cost is largely reduced compared with train- 072

ing all the parameters of the PLMs. However, in 073

these works prompt tuning is not realistic for fed- 074

erated learning. The main reason is that the local 075

training, i.e., when the PLMs are trained locally 076

on each client, requires back-propagating through 077

the PLMs in order to calculate the gradient of the 078

prompt embeddings. The memory consumption 079

of back-propagating is several times higher (de- 080

pending on implementation) than that of forward- 081

propagation1(Baydin et al., 2022; Belouze, 2022). 082

1This is because back-propagation requires saving the in-
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Such memory consumption is proportional to the083

size of the PLM, e.g., with hundreds of millions084

of parameters. Therefore, back-propagating with085

the PLMs can be extremely memory consuming.086

Unfortunately, the clients in federated learning usu-087

ally have limited access to the resources (Rabbani088

et al., 2021; Deng, 2019), e.g., edge devices with089

limited memory. As a result, the memory footprint090

during the local training with back-propagation can091

exceed the memory capacity of the client devices,092

making the training infeasible. Further, the PLMs093

may be provided as concealed APIs, for which the094

back-propagation operation may not be available095

(Sun et al., 2022b).096

To address those issues, we propose a framework097

for personalized federated learning that tunes the098

prompts in the input layer with gradient-free train-099

ing that only requires forward-propagation. The100

propose framework consumes less memory making101

it suitable for federated learning and does not have102

the limitation from black-box API setting. Our103

framework follows the conventional two-step train-104

ing stages; 1) Joint training - A global model is105

trained with data from all the clients with federated106

learning, 2) Post tuning - Local training that fine107

tunes the global model from joint training with the108

local data of each client to learn its personalized109

model (Fallah et al., 2020; Chen et al., 2018), but110

in a novel way to enable gradient-free approaches.111

Specifically, for the joint training, we propose a112

gradient-free prompt tuning mechanism for the lo-113

cal training of federated learning, based on dis-114

crete local search with natural language tokens115

of the PLMs. By keeping the prompts from lo-116

cal training to be natural language tokens, each117

client only needs to upload the token indices of118

the learned prompts to the server, thus significantly119

reducing the upload communication cost relative to120

uploading the learned prompt embeddings. We121

further propose a compression mechanism that122

reduces the download communication cost. For123

post-tuning, we adopt black-box tuning (Sun et al.,124

2022b), which is also gradient-free without back-125

propagation. Our contributions are as follows:126

• We propose a gradient-free personalized feder-127

ated learning framework for text classification128

with PLMs. To the best of our knowledge, we129

are the first to consider gradient-free training130

in federated learning with PLMs.131

termediate results of a computational graph, while the forward-
propagation does not.

• We evaluate the proposed approach on vari- 132

ous datasets for text classification. Results 133

show that our approach can achieve superior 134

results for personalized federated learning, 135

along with substantially less communication 136

cost and memory consumption compared with 137

the baselines. 138

2 Related Work 139

Federated Learning with PLMs: As mentioned 140

above, the sheer size of the PLMs (Liu et al., 2019; 141

Kenton and Toutanova, 2019) poses challenges 142

when applying them to federated learning due to 143

both high communication cost and large memory 144

footprint during local training. Previous works 145

studying PLMs under the federated learning set- 146

ting only consider the training efficiency in terms 147

of the communication cost, but rarely account for 148

memory footprint. For instance, Lit et al. (2022) 149

propose to reduce the communication cost by only 150

communicating the lower layers of the PLMs be- 151

tween server and clients. Inspired by the supe- 152

rior performance and efficiency of prompt tuning 153

(Lester et al., 2021; Liu et al., 2022) over tuning pre- 154

trained parameters, (Guo et al., 2022; Zhao et al., 155

2022) propose to further reduce the communica- 156

tion cost via only training and communicating the 157

continuous prompt embeddings, trained with gra- 158

dient descent. The drawback of these works is 159

that they all require gradient computing with back- 160

propagation, which ignores the huge memory con- 161

sumption caused by back-propagation through the 162

PLMs. As mentioned before, this can be prob- 163

lematic for clients with constrained computation 164

resources, e.g., edge devices with limited memory 165

capacity. Additionally, the PLMs can be provided 166

as concealed APIs (Sun et al., 2022b), for which 167

the back-propagation operation may not be avail- 168

able. (Wang et al., 2020; Dong et al., 2022; Gao 169

et al., 2019) study metric learning and contrastive 170

learning for text representations, which are inspir- 171

ing for federated learning with text data. However, 172

these works are not targeting federated learning. 173

Gradient-Free Training with PLMs: Sun et al. 174

(2022b) assumes the PLMs are concealed in black- 175

box APIs and propose to train the input prompt 176

embeddings of the PLMs with CMA-ES (Hansen 177

and Ostermeier, 2001), a gradient-free method that 178

only requires forward-propagation. This setting 179

is termed Language-Model-as-a-Service (LMaaS), 180

where the client data is transferred to an external 181
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server with the API of PLMs. This violates the182

privacy-preserving principle of federated learning.183

Sun et al. (2022a) further considers gradient-free184

training with prompts inserted into the intermediate185

layer of the PLMs, which contradicts our assump-186

tion about black-box APIs. Deng et al. (2022);187

Diao et al. (2022) model the prompts of the in-188

puts layer of PLMs with a prompt generator, and189

trains them with reinforcement learning. In this190

way, the back-propagation is not with the PLMs in191

the API but with the prompt generator. This may192

not be suitable for federated learning, since adding193

and back-propagating with prompt generators (e.g.,194

implemented with another PLM) introduce addi-195

tional memory consumption for clients during local196

training. Hou et al. (2022); Prasad et al. (2022)197

also study gradient-free training of PLMs, but it198

is unclear how to apply their approach for feder-199

ated learning. Specifically, Hou et al. (2022) adopts200

boosting with prompts, requiring ten times the com-201

putation for model inference compared to with-202

out boosting, thus is not compatible with clients203

equipped with constrained computation resources.204

Importantly, none of the above works are studying205

federated learning.206

3 General Setup207

Let M be the number of clients in federate learning,208

and {D1, . . . ,DM} be the local datasets for all the209

clients. In personalized federated learning, these210

datasets are from different domains or tasks. We211

have Di = {Xn,Yn}Nn=1, for i = 1, . . . ,M with212

totally N training samples, where Xn is the nth213

text sequence and Yn is its label for text classifi-214

cation. Let fi(·) be the model for client i, with215

fi(Xn) being the predicted probability distribu-216

tion for Xn over all possible labels in client i. The217

model fi is implemented as prompt tuning. Specif-218

ically, let H be the pretrained encoder of the PLM219

and pi ∈ RT×D represent a sequence of T prompt220

token embeddings. In experiments, we follow (Sun221

et al., 2022b) that set T = 50. D is the dimension222

of the pretrained token embeddings. fi(Xn) can223

be written as,224

Temp=[pi; e(Xn); e(It is [MASK])] (1)225

fi(Xn) = softmax(H(Temp) · V T
l ), (2)226

where [; ] denotes row concatenation, pi is the learn-227

able prompt, e(·) is the embedding layer of the228

PLM that convert each token in Xn into a token229

embedding. H , and e are frozen during prompt230

tuning. (1) defines the template for the text clas- 231

sification input, which contains a [MASK] token. 232

The output from H on the position of [MASK] is 233

compared via inner product with the verbalizer Vl, 234

which contains embeddings of words that are repre- 235

sentative of each label. For instance, we can have 236

Vl = e([good, bad]) for sentiment classification. 237

We see that the only trainable parameter in fi(·) 238

is the prompt pi. The training loss for client i is, 239

L(pi;Di) =
1

N

N∑
n=1

cross_entropy(fi(Xn),Yn),

(3) 240

When training with personalized federated learning 241

for text classification, the general objective is to 242

find {pi}Ni=1 that minimizes, 243

1

M

M∑
i=1

L(pi;Di), (4) 244

while keeping {Di}Mi=1 locally for each client. We 245

follow Sun et al. (2022b) that assumes the pre- 246

trained encoder H is concealed in a black-box API 247

whose parameters are not accessible (no parameter 248

leakage) and cannot be backpropagated. 249

4 Our Framework 250

As mentioned in Section 1, our framework for per- 251

sonalized federated learning follows (Fallah et al., 252

2020; Chen et al., 2018), subjecting to a global 253

prompt that is first learned with federated learning 254

(Joint Training) and then fine tuned separately with 255

the local data of each client to encourage personal- 256

ization (Post Tuning) . One difference between our 257

approach and (Fallah et al., 2020; Chen et al., 2018) 258

is that our approach focuses on efficient training 259

with gradient-free methods, i.e., without gradient 260

computation using back-propagation. Alternatively, 261

Fallah et al. (2020); Chen et al. (2018) are gradient- 262

based and requires computing second-ordered gra- 263

dient during joint training with meta-learning, i.e., 264

via MAML (Finn et al., 2017). It remains an open 265

question of how to efficiently estimate the second- 266

ordered gradient without back-propagation, which 267

is out of the scope of our work. 268

Additionally, compared with previous works of 269

prompt tuning (Li and Liang, 2021; Sun et al., 270

2022b), our approach improves the training effi- 271

ciency of federated learning. Specifically, we pro- 272

pose a discrete local search mechanism (see Sec- 273

tion 4.1.2) that reduces the upload communication 274
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cost in federated learning, while considering per-275

sonalized federated learning. We also propose a276

compression method (see Section 4.1.3) that re-277

duces the download communication cost.278

4.1 Joint Training279

4.1.1 Federated Learning280

Below we introduce the general procedure of feder-281

ated learning with joint training. The goal is to train282

a global model f(·) with prompt p ∈ RT×D with283

data from all the clients. Unlike (4), p is expected284

to minimize the following objective,285

1

M

M∑
i=1

L(p;Di), (5)286

which can be optimized with federated learning287

(McMahan et al., 2017), as shown in Algorithm 1.288

The federated learning algorithm generally con-289

sists of three steps: 1) Client update; 2) Aggrega-290

tion; and 3) Download. Our proposed gradient-free291

client update is introduced in Section 4.1.2. For292

each round of federated learning, given the prompts293

{pi}Mi=1 from the client update, the server will ag-294

gregate these prompts to generate the global prompt295

p for the current round, i.e.,296

p =
1

M

M∑
i=1

pi, (6)297

where we adopt FedAvg (McMahan et al., 2017)298

and assume uniform weighting for each client. The299

resulting p should be downloaded to each client for300

the next round of federated learning. Section 4.1.3301

proposes a compression method that represents p302

with reduced memory footprint before download.303

Note that we assume the API of the PLM has been304

downloaded to each client before the start of feder-305

ated learning, so that we only need to communicate306

the prompts during federated learning. We claim307

that downloading the API to clients is a practical308

assumption. This is because it avoids the necessity309

of uploading client data to an external server (with310

API) for model inference, compared with the recent311

Language-Model-as-a-Service (Sun et al., 2022b)312

where the API is only store on an online server.313

This is especially important for federated learning314

where the privacy is of prime concern.315

4.1.2 Gradient-Free Client Update316

In updating each client i, its prompt pi is firstly317

initialized with the global prompt p (or p′ in Sec-318

tion 4.1.3) from the previous round of federated319

Algorithm 1 Algorithm for Joint Training.

Input: Datasets {Di}Mi=1, the PLM (API and its
pretrained embedding matrix e(V)).
Output: The resulting prompt p′.

Initialize p with natural token embeddings.
p = p′ = p′

−1

Download the PLM API and p′
−1 to each client.

% General procedures for federated learning.
for r = 1, · · · , n_round do

% Update pi with each client.
for i = 1, · · · ,M do

% Please refer to Alg. 3 and Section 4.1.2.
pi = Client_Update(p′, Di)

end for
% Aggregation.
Aggregate {pi}Mi=1 with (6), generating p.
% Please refer to Alg. 2 and Section 4.1.3.
p′ = Compress_Download(p, e(V))
p′
−1 = p′

end for

learning, then fine tuned on the local dataset Di. 320

As mentioned before, gradient-based fine tuning of 321

p with back-propagation can be extremely memory 322

consuming with PLMs. Additionally, the back- 323

propagation operation may not be available for 324

PLMs concealed behind APIs. So motivated, we 325

study gradient-free client update of the prompt p, 326

which does not need gradient computation with 327

back-propagation and is compatible with the APIs. 328

Specifically, we propose an update mechanism 329

based on discrete local search with natural language 330

tokens. Let V be the vocabulary of the PLM and 331

superscript t denote the tth row of a matrix. For 332

each iteration update, given a randomly sampled 333

position of the prompts t, t ∈ [1, T ], and a set of 334

candidate tokens C ⊂ V , we update pt
i via, 335

pt
i = argmin

w∈{pti}∪{e(c)|c∈C}
L(rep(pi,w, t),Di), (7) 336

Note that pt
i on the left side is the updated prompt 337

of the next iteration, while the one on the right is 338

that of the previous iteration. Further, rep(pi,w, t) 339

denotes replacing the tth row of pi with w. We 340

randomly choose one position t for each update 341

iteration. The candidate set C is selected with, 342

C = argmin
C⊂V,|C|=K

∑
c∈C

cos(e(c),pt
i), (8) 343

where cos(·) is the cosine distance. We only select 344

K candidate tokens in C with the most similar 345
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semantics as pt
i (low cosine distance), which avoids346

large change of pt
i in a single iteration. K is the347

number of local search for each step that controls348

the training efficiency and is discussed in Section 5.349

The general procedures are shown in Algorithm 3.350

Such a simple update mechanism has two ben-351

efits. Firstly, since w on the right side of (7) can352

take the value of pt
i, the value of L(pi,Di) should353

be non-increasing during client update. Secondly,354

by constraining the candidate embeddings to be355

from the natural language tokens, i.e., C ⊂ V , the356

updated positions of pi can be saved by only keep-357

ing its token index. This significantly reduces the358

communication cost when uploading prompts to359

the server, compared with previous works of con-360

tinuous prompt tuning Guo et al. (2022); Zhao et al.361

(2022) that upload all the prompt parameters. For362

instance, the vocabulary size of the Roberta-Large363

(Liu et al., 2019) model is 50,264 with D = 1024,364

which implies that each token index can be encoded365

with 16 bits. For positions of pi that are not mod-366

ified during client update, we can indicate it with367

a special index using a 16-bit integer, e.g., 50,265368

(not natural token indices). Thus, we only need to369

upload 16 Bits for each position of pi. Compara-370

tively, uploading the whole prompt vector to the371

server requires communicating 16 ∗ 1024 ≈ 16KB372

for each position, provided that the continuous pa-373

rameters are encoded into float16 during communi-374

cation. As the result, we reduce the communication375

cost by 1000 times (16 Bits vs 16 KB).376

Note that previous works (Li and Liang, 2021;377

Liu et al., 2021) claim that discrete tokens are378

less expressive than continuous tokens, thus the379

model capacity may be limited when trained with380

discrete tokens. However, as described in Sec-381

tion 5.1, datasets of different clients in personal-382

ized federated learning may represent different do-383

mains/tasks. For such cases, training with contin-384

uous prompts via joint training may result in the385

updated pi to overfit to the domain/task of client i,386

causing negative knowledge transfer to other clients387

when pi is aggregated with (6). In experiments, we388

will show that our approach can produce better389

accuracy compared with joint training with contin-390

uous prompt embeddings, while also reducing the391

communication cost.392

4.1.3 Embedding Compression393

After the client update, the uploaded pi, for i =394

1 . . . ,M , are aggregated with (6). We can observe395

that the results p after aggregation can no longer396

be represented with a single token index, thus can- 397

not be compressed as in Section 4.1.2 when be- 398

ing downloaded to clients. Below we propose to 399

compress p after aggregation with the pretrained 400

token embeddings of the PLM, i.e., estimating p 401

with the matrix of pretrained token embeddings 402

e(V) ∈ R|V|×D. 403

This draws from the intuition in previous works 404

on linear word analogies (Ethayarajh et al., 2018; 405

Nissim et al., 2020; Drozd et al., 2016), which 406

show interesting examples with linear operations 407

among the pretrained word/token embeddings, e.g., 408

e(king)− e(man) + e(woman) ≈ e(queen) or 409

e(doctor) − e(man) + e(woman) ≈ e(nurse). 410

These indicate that a pretrained token embedding 411

can be estimated by a few embeddings of tokens 412

with similar or relevant semantics. As for our p, 413

its prompt embeddings is assumed to be within 414

the convex hull of the natural token embeddings. 415

This can be observed from (6), i.e., even pi that is 416

not updated in client i should also be aggregated 417

from natural token embeddings that appeared as 418

updates in previous rounds. Therefore, it should 419

be viable to estimate p with a few or fixed number 420

of natural token embeddings. For each round of 421

federated learning with aggregated prompt p, let 422

p′ be the prompts received by the clients from the 423

server after compression in the current round. We 424

denote p′
−1 as the prompts received by the clients 425

after compression in the previous round. Below, 426

we elaborate on how to compress p into p′ for the 427

current update round, given p′
−1 and e(V). 428

We should note that different from p, the com- 429

pressed p′
−1 is accessible by both the server and 430

clients, since it was generated by the server and 431

received by the clients. Thus, instead of directly 432

compressing p, we only compress the increment 433

(residual) of p between the previous and current 434

rounds. Specifically, for each position t, we define 435

the residual as Rt = pt − pt′
−1. For each posi- 436

tion t, we want to find a sparse projection from 437

e(V) to Rt so it can be represented/estimated with 438

a limited number of pretrained embeddings. Let 439

I be a sequence of token indices, initialized as 440

I = [1 · · · , |V|]. We define e(V)I be the rows 441

in e(V) indexed by I . Formally, we optimize the 442

following, 443

x∗ = argminx ||e(V)TI · x−Rt||22 + α||x||1, (9) 444

Ix = argmax|Ix|=L

∑
j∈Ix

|x∗[j]|, I = I[Ix], (10) 445
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where I[Ix] is the value of I indexed by Ix. x ∈446

R|I|×1 is the learnt projection, || · ||1 and || · ||2 are447

the one and two norms, respectively, and |·| denotes448

the absolute value. We solve a sparse x∗ with449

LASSO regularization as in (9), with α being the450

regularization weight. We empirically set α = 0.2451

for all datasets and clients. x∗[j] is the jth element452

of x∗. Note that (10) takes the top L token indices453

with the largest absolute projection values in the454

resulting x∗. To minimize the error in estimating455

Rt, the final projection x∗
f ∈ RI×1 is,456

x∗
f = argminxf

||e(V)TI · xf −Rt||22. (11)457

We denote the cardinal of resulting I in (11) as458

Φ, the number of token embeddings used to ap-459

proximate Rt. Instead of downloading with the460

aggregated p, we download {I,x∗
f} to each client.461

As the result, we only need to download 16× 2Φ462

Bits for each prompt token, consider that both the463

token index in I and continuous variable in x∗
f are464

encoded with 16 Bits, as in Section 4.1.2.465

The client will reconstruct the residual R via466

R̂ = e(V)TI · xf Finally, the compressed prompt467

received by the clients for the current round is,468

pt′ = pt′
−1 + R̂t, (12)469

p′ = [p1′, · · · ,pT ′
] will be further saved as p′

−1470

for the next round of federated learning. In the471

experiments, I is selected with two iterations of (9)472

and (10), as in Algorithm 2.473

4.2 Post Tuning474

The goal of post tuning is to fine tune the re-475

sulting prompt p from the joint training with the476

local dataset of each client (no communication477

cost). The resulting pi should be adapted to the478

task/domain of client i. Therefore, during post tun-479

ing, we adopt the gradient-free method of BBT480

(Sun et al., 2022b) that allows the prompts being481

trained in the continuous embedding space. Specif-482

ically, for each position t, we follow BBT that483

reparameterizes pt
i as,484

pt
i = Az + pt, (13)485

where z ∈ Rd, d << D, and A ∈ RD×d is a486

randomly valued fixed matrix that project z into487

the space of pt. Further, z is the only learnable pa-488

rameter and is trained with CMA-ES (Hansen and489

Ostermeier, 2001), a gradient-free method with-490

out back-propagation. Please refer to (Sun et al.,491

2022b) for more details.492

5 Experiments 493

5.1 Experiment Setting 494

Training: As mentioned above, data from differ- 495

ent clients of personalized federated learning may 496

come from different domains/tasks. We experiment 497

with the datasets of FDU-MTL (Liu et al., 2017) 498

and Sentiment140 (Go et al., 2009). FDU-MTL is 499

a domain adaptation dataset for text classification 500

with 16 different domains/clients (each client with 501

a unique domain). We train and evaluate on all 502

the 16 domains. Sentiment140 is a dataset of 1.6 503

million tweets from 659775 users. We follow (Yan 504

et al., 2020) that treat each user as a client and only 505

keeps clients with more than 40 samples. In experi- 506

ments, 90% of the clients are sampled as training 507

clients and the rest as testing clients. Please refer 508

to Appendix C for more details. 509

Evaluation: In addition to the classification accu- 510

racy on testing clients, we also evaluate the train- 511

ing efficiency in federated learning. The training 512

efficiency is considered in two perspectives: 1) 513

Whether the method requires back-propagation, i.e., 514

does the model consumes a large memory footprint 515

for local training? 2) The communication cost, i.e., 516

the number of communicated Bits between server 517

and clients for each round of federated learning. In 518

calculating the Bits, we assume the token indices 519

are encoded with 16-bit and continuous parameters 520

are converted into float16 during communication, 521

as in Sections 4.1.2 and 4.1.3. Instead of computing 522

the total communicating cost for each round, we 523

calculate the upload and download cost separately, 524

due to the fact that the upload bandwidth is usually 525

smaller than the download bandwidth (Hegedűs 526

et al., 2021), i.e., upload is more expensive than 527

download with the same number of Bits. Another 528

metric for training efficiency for federated learning 529

is the number of floating-point operations, which 530

we discuss in Appendix D. 531

5.2 Baselines and Our Approaches 532

All of our baselines are trained with the same model 533

as used in (Sun et al., 2022b). We list the con- 534

sidered baselines are listed as follows: 1) Prompt 535

Tuning (Li and Liang, 2021), which is to train the 536

separated prompt parameters locally on each test- 537

ing client with back-propagation. We have learning 538

rate as 1e-2 and batch size 16. 2) Prompt Tuning 539

(Fed). The prompts are initially trained with Fe- 540

dAvg (McMahan et al., 2017) on all the clients, 541

then fine tuned on each testing client, as with our 542
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Method Upload Download BP? Sentiment140 FM(apparel) FM(mr) FM(baby) FM(books) FM(camera) FM(dvd) FM(electronics)

Prompt Tuning 0 0 Yes 73.22±14.19 83.42 81.75 79.95 86.38 80.05 86.52 84.18

Prompt Tuning (Fed) 819 KB 819 KB Yes 74.67±13.28 83.56 81.06 81.05 87.83 81.80 87.96 84.93

Meta Prompt Tuning (Fed) 819 KB 819 KB Yes 74.89±13.31 82.78 83.35 80.23 88.12 80.34 87.31 84.45

BBT 0 0 No 73.17±14.19 85.93 83.75 81.22 86.10 80.56 85.96 87.76

BBT (Fed) 8 KB 8 KB No 73.58±13.31 87.44 81.02 82.99 90.19 81.84 87.92 87.74

Ours (Φ = 3) 0.8 KB 4.8 KB No 74.94±13.46 87.44 80.07 85.53 90.74 82.33 88.48 88.03

Ours (Φ = 5) 0.8 KB 8 KB No 75.34±12.88 88.54 80.05 86.55 90.21 82.61 88.08 87.78

Ours (FullDownload) 0.8 KB 819 KB No 76.00±11.98 89.04 81.03 86.78 90.97 83.73 87.18 88.88

Table 1: Results with the Sentiment140 and FDUMLT datasets. For Sentiment140, we report the mean and
standard deviation of accuracies on testing clients. For the FDUMLT dataset, we report the accuracies for each
of the 16 domains/clients (denoted as FM(domain name)) and their average (denoted as FM(Avg)). Upload
and Download shows the Bits that is uploaded and downloaded per round of federated learning. BP? indicates
whether the method requires back-propagation.

Method FM(health) FM(imdb) FM(kitchen) FM(magazines) FM(music) FM(software) FM(sports) FM(toys) FM(video) FM(Avg)

Prompt Tuning 81.98 92.42 82.14 80.68 82.52 83.77 82.41 84.01 82.32 83.41

Prompt Tuning (Fed) 82.74 92.71 83.61 82.97 83.75 84.29 82.89 84.76 82.60 84.28

Meta Prompt Tuning (Fed) 82.34 92.41 84.53 83.25 83.56 83.48 83.58 85.26 82.21 84.20

BBT 84.01 92.13 81.38 81.46 82.28 85.08 82.40 85.53 83.86 84.34

BBT (Fed) 87.06 93.00 85.13 85.90 84.92 84.03 85.46 87.92 85.36 86.12

Ours (Φ = 3) 87.06 92.42 86.73 86.95 85.98 84.55 86.73 87.31 85.91 86.64

Ours (Φ = 5) 87.82 92.71 88.78 87.73 85.19 85.60 86.48 87.31 87.29 87.14

Ours (FullDownload) 89.57 94.27 88.75 87.44 86.34 85.44 87.86 89.31 86.86 87.71

Table 2: Results with the Sentiment140 and FDUMLT datasets (continue).

framework. 3) Meta Prompt Tuning (Fed). Same as543

Prompt Tuning (Fed), except that we follow (Fallah544

et al., 2020) that the prompts are trained using feder-545

ated meta learning with MAML (Finn et al., 2017).546

Both Prompt Tuning (Fed) and Meta Prompt Tun-547

ing (Fed) directly communicate all the prompted548

parameters between server and clients. 4) BBT549

(Sun et al., 2022b), train separated prompts locally550

on each testing client with the gradient-free method551

of CMA-ES (Hansen and Ostermeier, 2001), as in552

Section 4.2. This is like the post tuning stage of553

our approach. 5) BBT (Fed). Federated training of554

z in (13) with BBT on training clients and FedAvg555

on the server. The resulting z is further fine tuned556

with BBT on the local dataset of each client, i.e.,557

the same as Section 4.2.558

In addition, we also implement different varia-559

tions of our approach: 1) Ours (Φ=3 or 5). We560

experiment with different values of Φ, controlling561

the degree of the embedding compression in Sec-562

tion 4.1.3. 2) Ours (FullDownload). We directly563

download the aggregated p from (6), without em-564

bedding compression. We also discuss the ablation565

of α in Appendix A.566

5.3 Local Search with Different K Values.567

As discussed in Section 4.1.2, discrete prompt568

tokens might be less expressive than continuous569

prompt embeddings trained with gradients (Li and570

Liang, 2021; Liu et al., 2021). Thus, one may be571

concerned about the capability of discrete local572

search in minimizing the loss functions of different 573

tasks of different clients. From (7), we can observe 574

that such capability is large and determined by the 575

search number K for each step of local search. Ide- 576

ally, in maximizing the optimization ability of our 577

local search, we can set K = |V|, i.e., and try 578

with the whole vocabulary instead of searching lo- 579

cally. However, such a combinatorial optimization 580

is computationally expensive, thus not compatible 581

with resource constrained clients. There should be 582

a trade-off between the optimization ability and 583

training efficiency for discrete local search. 584

In this section, we investigate how the optimiza- 585

tion ability of our proposed local search is affected 586

by the search number K. In Figure 1, we plot the 587

averaged training loss (4) over all the clients in 588

FDUMTL when training Ours (Φ = 5) with dif- 589

ferent K values. We can observe that our local 590

search can effectively minimize the loss function 591

during training. Additionally, we find that the per- 592

formance gain, i.e., the difference in the optimized 593

loss value, is diminishing when switching from 594

K = 2 to K = 5 and from K = 5 to K = 8. 595

However, the introduced computation cost from 596

K = 2 to K = 5 is the same as that from K = 5 597

to K = 8. With such observation, we take K = 5 598

as a trade-off between the computation efficiency 599

and optimization ability, since 1) local search with 600

K = 5 is not very expensive, e.g., comparing the 601

implementation of BBT (Sun et al., 2022b) that 602

requires 20 searches each step. 2) The performance 603
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Figure 1: Averaged training loss during joint training of
Ours (Φ = 5) with different values of K.

gain from K = 5 to K = 8 is much smaller than604

that K = 2 to K = 5, thus increasing the value605

of K from 5 may not be cost-effective. Therefore,606

we keep K = 5 for all our experiments. Note that607

such a parameter selection of K only leverages the608

training data of clients, with no development or609

testing data involved.610

5.4 Results611

Table 1 and 2 show the results of personalized fed-612

erated learning with Sentiment140 and FDU-MTL.613

Our approaches can achieve highest accuracy, with614

comparable or much lower communication cost615

than baselines. This is especially obvious with616

the upload communication, i.e., the upload cost of617

our approaches is 10 times smaller than the clos-618

est baselines (BBT (Fed)), which thanks to our619

proposed discrete local search mechanism (Section620

4.1.2) that only requires uploading the pretrained to-621

ken indices to the server. As mentioned in Section622

4.2, BBT (Sun et al., 2022b) works by randomly623

projecting the prompt parameters (with a fixed ran-624

dom matrix A) into a small subspace, within which625

a low-dimensional vector z is trained. However,626

there is no guarantee that such a random projected627

subspace can cover directions that captures knowl-628

edge that is generalizable across clients. On the629

contrary, though our local search algorithm is con-630

strained with discrete natural language tokens, such631

tokens should capture rich semantics of natural lan-632

guage that are expressive enough to describe a pat-633

tern that is generalizable across clients. This might634

explain why our approach of discrete local search635

with natural language tokens can produce higher636

accuracy in training with data of different clients.637

Additionally, we can observe that compressing638

using Φ = 3 and Φ = 5 can maintain compa-639

rable performance for text classification as with 640

Ours (FullDownload), while substantially decrease 641

the download communication cost. Further, the 642

gradient-based baselines, i.e., those named with 643

prompt tuning, may produce results that is inferior 644

to gradient-free approaches. This may be counter- 645

intuitive since these gradient-based prompt tuning 646

approaches allow training in the whole parame- 647

ter space of prompt parameters, unlike gradient- 648

free approaches with which the search space for 649

the prompt parameters is usually constrained (Sun 650

et al., 2022b). Thus the learnt continuous prompt 651

embeddings should be more expressive than those 652

from gradient-free approaches, as discussed in Sec- 653

tion 4.1.2. However, previous works of gradient- 654

free training with PLMs (Sun et al., 2022b,a) also 655

show results that are better than gradient-free ap- 656

proaches, especially with the scenario of few-shot 657

training. Such a phenomenon may be explained 658

by the over-expressiveness of prompts trained with 659

gradients, i.e., subject to overfitting with limited 660

training data. For the case of federated learning, 661

the prompts trained with gradients may overfit to 662

the task/domain of the clients during local client up- 663

date, inducing negative knowledge transfer to other 664

clients when being aggregated with 6 in producing 665

model, which is also discussed in Section 4.1.2. 666

Moreover, our implementation of meta prompt 667

learning with MAML (Finn et al., 2017) yields 668

slightly worse results than without meta-learning, 669

i.e., with Prompt Tuning (Fed). We claim that this 670

may not indicate an implementation error, since 671

previous works of federated meta learning (Fal- 672

lah et al., 2020) also shows that MAML may not 673

always provide improvements compared to meta- 674

learning. For instance, in (Fallah et al., 2020), their 675

meta-learning based method (Per-FedAvg (FO)) 676

can produce inferior results than simple FedAvg 677

(McMahan et al., 2017) in certain scenarios. 678

6 Conclusion 679

In this paper, we propose a gradient-free framework 680

that trains with discrete local search on natural lan- 681

guage token during personalized federated learning. 682

The discrete local search saves the huge memory 683

consumption caused by back-propagation, while 684

significantly reducing the upload communication 685

cost. We additionally propose a compression mech- 686

anism that also reduces the download communica- 687

tion cost of federated learning. Experiments with 688

multiple datasets show that our approach produces 689

superior performance compared with baselines. 690
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Atılım Güneş Baydin, Barak A Pearlmutter, Don692
Syme, Frank Wood, and Philip Torr. 2022. Gra-693
dients without backpropagation. arXiv preprint694
arXiv:2202.08587.695

Gabriel Belouze. 2022. Optimization without backprop-696
agation. arXiv preprint arXiv:2209.06302.697

Xingyu Cai, Jiaji Huang, Yuchen Bian, and Kenneth698
Church. 2021. Isotropy in the contextual embedding699
space: Clusters and manifolds. In International Con-700
ference on Learning Representations.701

Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and702
Xiuqiang He. 2018. Federated meta-learning with703
fast convergence and efficient communication. arXiv704
preprint arXiv:1802.07876.705

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre706
David. 2015. Binaryconnect: Training deep neural707
networks with binary weights during propagations.708
Advances in neural information processing systems,709
28.710

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan711
Wang, Han Guo, Tianmin Shu, Meng Song, Eric P712
Xing, and Zhiting Hu. 2022. Rlprompt: Optimizing713
discrete text prompts with reinforcement learning.714
arXiv preprint arXiv:2205.12548.715

Yunbin Deng. 2019. Deep learning on mobile devices: a716
review. In Mobile Multimedia/Image Processing, Se-717
curity, and Applications 2019, volume 10993, pages718
52–66. SPIE.719

Shizhe Diao, Xuechun Li, Yong Lin, Zhichao Huang,720
and Tong Zhang. 2022. Black-box prompt learn-721
ing for pre-trained language models. arXiv preprint722
arXiv:2201.08531.723

Bo Dong, Yiyi Wang, Hanbo Sun, Yunji Wang, Alireza724
Hashemi, and Zheng Du. 2022. Cml: A contrastive725
meta learning method to estimate human label con-726
fidence scores and reduce data collection cost. In727
Proceedings of The Fifth Workshop on e-Commerce728
and NLP (ECNLP 5), pages 35–43.729

Aleksandr Drozd, Anna Gladkova, and Satoshi Mat-730
suoka. 2016. Word embeddings, analogies, and ma-731
chine learning: Beyond king-man+ woman= queen.732
In Proceedings of coling 2016, the 26th international733
conference on computational linguistics: Technical734
papers, pages 3519–3530.735

Kawin Ethayarajh, David Duvenaud, and Graeme Hirst.736
2018. Towards understanding linear word analogies.737
arXiv preprint arXiv:1810.04882.738

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar.739
2020. Personalized federated learning: A meta-740
learning approach. arXiv preprint arXiv:2002.07948.741

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.742
Model-agnostic meta-learning for fast adaptation of743
deep networks. In International conference on ma-744
chine learning, pages 1126–1135. PMLR.745

Karl Pearson F.R.S. 1901. Liii. on lines and planes of 746
closest fit to systems of points in space. The London, 747
Edinburgh, and Dublin Philosophical Magazine and 748
Journal of Science, 2(11):559–572. 749

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and 750
Tieyan Liu. Representation degeneration problem in 751
training natural language generation models. In In- 752
ternational Conference on Learning Representations. 753

Yang Gao, Yi-Fan Li, Bo Dong, Yu Lin, and Latifur 754
Khan. 2019. Sim: Open-world multi-task stream 755
classifier with integral similarity metrics. In 2019 756
IEEE International Conference on Big Data (Big 757
Data), pages 751–760. IEEE. 758

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit- 759
ter sentiment classification using distant supervision. 760
CS224N project report, Stanford, 1(12):2009. 761

Tao Guo, Song Guo, Junxiao Wang, and Wenchao Xu. 762
2022. Promptfl: Let federated participants cooper- 763
atively learn prompts instead of models–federated 764
learning in age of foundation model. arXiv preprint 765
arXiv:2208.11625. 766

Nikolaus Hansen and Andreas Ostermeier. 2001. Com- 767
pletely derandomized self-adaptation in evolution 768
strategies. Evolutionary computation, 9(2):159–195. 769
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A Ablation study with α 890

In this section, we conduct an ablation study for 891

the regularization parameter α (default to α = 0.2) 892

for the lasso loss in (9). In Table 3, we take Ours 893

(Φ = 5) as an example and report results with α = 894

0.2 (same as in the main paper) and α = 0. We can 895

find that the results with α = 0 is generally lower 896

than that with α = 0.2, indicating the importance 897

of encouraging sparsity with the lassso loss in (9). 898

B Comparing with PCA compression and 899

quantization 900

In Section 4.1.3, we present our proposed embed- 901

ding compression method to reduce the download 902

communication cost. To further validate the effec- 903

tiveness of the proposed embedding compression, 904
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Figure 2: (a) The ratio of variance (v/
∑

vi) captured by each principled component of the pretrained Roberta-Large
Token embeddings. (b) The training loss on Sentiment140 averaged over different clients in each communication
round of federated learning for different compression methods. We have the same random seeds and order of
training batches for all the methods.

we compare it with the two additionaly baselines:905

PCA compression and quantization.906

PCA Compression: Principled Component907

Analysis (PCA) (F.R.S., 1901) is a common way908

of dimensional reduction, i.e., compress the em-909

beddings via representing then with fewer dimen-910

sions. Previous works (Cai et al., 2021; Rabbani911

et al., 2021; Gao et al.) have shown that the learnt912

token embeddings (contextualized or not) of pre-913

trained models are distributed in a narrow cone of914

the embedding space. In another word, the embed-915

dings vectors are generally biased toward the top916

principled components of learnt embedding matrix.917

Specially, following the notation of Section 4.1.3,918

let e(V) ∈ R|V|×D be the matrix of pretrained to-919

ken embeddings. We can compute the principled920

components of e(V), denoted as,921

Ec = PCA(e(V)) (14)922

where each column of Ec ∈ RD×D is a princi-923

pled component of e(V). We have ET
c ·Ec = I ,924

with I ∈ RD×D is the identity matrix. The infor-925

mativeness of different principled component can926

be measured by the variance after projecting e(V)927

onto each of the components,928

v = Var(e(V) ·Ec) (15)929

where Var computes the variance for each row. As-930

sume the index of each component, i.e., the row931

index of Ec, has been ranked by v = [vi]
D
i=1932

(from high to low). We plot the ratio of vari-933

ance (v/
∑

vi) verse the index of each compo- 934

nent for Roberta-Large in Figure 2a. We can find 935

that the distribution of e(V) id highly an-isotropic, 936

with much larger variation being captured by the 937

top principled components. Thus, we can repre- 938

sent/compress the aggregated prompt p ∈ RT×D 939

from (6) with the top principled components2 be- 940

fore downloading it to clients. Specifically, we 941

compress p via, 942

p̂ = p ·Ec[: n, :]
T (16) 943

where p̂RT×n is the compressed prompt and Ec[: 944

n, :] denotes the top-n principled components. Af- 945

ter downloading, each client reconstruct p via, 946

p = p̂ ·Ec[: n, :] (17) 947

In this way, we only need to download n integers 948

(16 bits each) for each prompt token in p. The total 949

download bits per communication round is T ×n× 950

16 = 800n bits. In comparison with our approach, 951

we experiment with n = 10 (denoted as PCA10), 952

so that it has the same download communication 953

cost for each round (8KB) as Ours Φ = 5. We 954

additionally experiment with n = 300 (denoted as 955

PCA300), where the prompts are represented by 956

more principled components but also with much 957

larger download communication cost each round 958

(0.24MB). 959

2From Section 4.1.1, each token of p is a convex com-
bination of e(V), thus should also be biased toward (more
represented by) the top principled components.

11



Dataset Ours (Φ = 5, α = 0.2) Ours (Φ = 5, α = 0)

FM(apparel) 89.04 86.34

FM(mr) 81.03 80.32

FM(baby) 86.78 84.10

FM(books) 90.97 88.25

FM(camera) 83.73 81.33

FM(dvd) 87.18 87.36

FM(electronics) 88.88 87.24

FM(health) 89.57 86.8

FM(imdb) 94.27 93.51

FM(kitchen) 88.75 86.73

FM(magazines) 87.44 94.27

FM(music) 86.34 85.12

FM(software) 85.44 84.31

FM(sports) 87.86 84.44

FM(toys) 89.31 86.56

FM(video) 86.86 86.19

FM(Avg) 87.71 85.80

Sentiment140 75.34 ± 12.88 74.35 ± 13.84

Table 3: Ablation study with α.

Method Upload Download BP? Accuracies

PCA10 0.8KB 8KB No 73.26 ± 14.77

PCA300 0.8KB 0.24MB No 75.05 ± 12.69

Quant (b = 3) 0.8KB 0.15MB No 74.44 ± 12.11

Ours (Φ = 3) 0.8KB 4.8KB No 74.94 ± 13.46

Ours (Φ = 5) 0.8KB 8KB No 75.34 ± 12.88

Ours (FullDownload) 0.8KB 819KB No 76.00 ± 11.98

Table 4: Results on Sentiment140 with different com-
pression methods. We report the mean and standard
deviation of accuracies on all testing clients.

Quantization: We also compare our approach960

with quantizing each dimension of p from (6)961

before downloading. Following previous works962

(Courbariaux et al., 2015; Tao et al., 2022) of com-963

pressing pretrained language models, we quantize964

each element w of p via,965

wq = β ·Q(clip(w,−β, β)/β) (18)966

where Q is a quantization function that967

maps clip(w,−β, β) to its closest value in968

{−1,−k−1
k , · · · , 0, · · · , k−1

k , 1}, k = 2b−1 − 1.969

In this way, Q(clip(w,−β, β)/β) can be encoded970

with b bits. Following (Tao et al., 2022), the971

scaling factor for each element is shared within the972

same prompt token embedding. Let p[i, :] be the973

embedding of the ith prompt token, the scaling974

factor for each of its element is the maximum975

absolute value in p[i, :],976

β = max(|p[i, :]|) (19)977

Algorithm 2 Compress_Download.

Input: The prompt p without compression, the
pretrained embedding matrix e(V).
Output: The reconstructed p′.
I = [1, · · · , |V|]
for t = 1 · · · , T do

% Embedding compression.
for L = [100, 5] do

Compute I with (9) and (10).
end for
Solve x∗

f with (11).
% Download.
Download {I,x∗

f} to the clients.
Compute pt′ on both server and clients

end for
return p′ = [p1′, · · · ,pT ′

]

For each prompt token with dimension D, we have 978

to download the scaling factor β (16 bits) and b bits 979

for each dimensions, so that the clients can recon- 980

struct wq. We experiment with b = 3, denoted as 981

Quat (b = 3). The total download communication 982

cost for each round is (D×b+16)×T ≈ 0.15MB. 983

Compared with Quat (b = 3) that quantizes each di- 984

mension of each prompt, our proposed approaches 985

of embedding compression can be regarded as 986

quantizing on the token level, i.e., representing 987

each prompt with pretrained embeddings of dis- 988

crete tokens. 989

Results: We report the results with different 990

compress methods in Table 4. We can find that 991

PCA10 has much lower accuracies than Ours (Φ = 992

5), though sharing the same communication cost. 993

This is because the top 10 principled components 994

cannot capturing enough information about the to- 995

ken embeddings, although the distribution of token 996

embeddings are biased toward the top principled 997

components (Figure 2a). We need to increase the 998

value of n to hundreds in order to get compara- 999

ble results with our approaches ((i.e., PCA300)), 1000

which is at the expense of much higher communi- 1001

cation cost. Additionally, we can notice that Quant 1002

(b = 3) also induces higher download communica- 1003

tion cost than our approaches, but yeilding lower 1004

accuracies. These results validate the effectiveness 1005

of our proposed embedding compression. Addition- 1006

ally, Figure 2b shows the loss values averaged over 1007

training clients during federated learning. We can 1008

find that our approaches are effective in minimizing 1009

the loss function during training (also discussed in 1010
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Algorithm 3 Client_Update.

Input: Dataset Di for client i, p′ from the previ-
ous round of communication.
Output: pi after the client update.
pi = p′

% Training with discrete local search.
for s = 1 · · · , S do

Randomly sample position t.
Update pt

i using (7) and (8) with Di.
end for
return pi

Section 5.3). We can also find that the final loss1011

values are generally positively correlated with the1012

accuracies in Table 4.1013

C Additional Explanation1014

Our model architecture for prompt tuning is the1015

same as in (Sun et al., 2022b). Specifically, the1016

backbone of the PLM is the Roberta-Large model,1017

with T = 50 prompt tokens inserted into the in-1018

put layer. The model is trained with 50 rounds of1019

federated learning for FDUMTL, with each client1020

updated 40 steps for each round. For Sentiment140,1021

we train for 100 rounds and we only sample 501022

clients for training during each round (due to the1023

large number of clients in Sentiment140). The im-1024

plementation of BBT in the both our approaches1025

and the baselines follows (Sun et al., 2022b).1026

Following previous works of gradient-free learn-1027

ing (Sun et al., 2022b; Hou et al., 2022), we con-1028

sider the few-shot scenario for each testing client.1029

Specifically, we assume there are 16 samples for1030

each class in each testing client during post-tuning.1031

For FDUMTL, these datasets are sampled from1032

the development split in each domain. For senti-1033

ment140, these are sampled from the datasets of1034

each testing client, with the rest data of each client1035

used for testing after post tuning. We additionally1036

sample a development dataset (not overlapped with1037

data for training) from the development split for1038

each client for FDUMLT with the same size as the1039

training set, since development datasets are also1040

used in previous works of gradient-free training1041

(Sun et al., 2022b; Hou et al., 2022). We evaluate1042

the classification accuracy of the resulting models1043

on the test set of each client, averaged over four1044

random seeds. We do not sample development1045

datasets for Sentiment140 since no development1046

datasets are provided. Note that our experiments1047

are based only on English datasets and it would 1048

also be interesting for future works studying multi- 1049

lingual federated learning. We provide the algo- 1050

rithm for Client_Update and Compress_ownload 1051

in Algorithm 3 and 2, respectively. 1052

D The number of floating-point 1053

operations during federated learning 1054

From the previous work (Sun et al., 2022b) of 1055

gradient-free training for PLMs, the number of 1056

floating-point operations with gradient-free train- 1057

ing can be evaluated via the number of model 1058

queries (i.e., how many times a model is for- 1059

warded). For all the methods in the paper, we have 1060

the same number of communication rounds and 1061

same number of update steps for each client per 1062

round. Thus, the number of floating-point opera- 1063

tions is proportional to the number of model queries 1064

per step when training on each client. We keep all 1065

the discussed approaches with the proposed dis- 1066

crete local search method having 5 model queries 1067

per step (i.e., K = 5 as in Section 5.3), including 1068

the approaches denotes with "Ours" and those in 1069

Appendix B. Thus, all these approaches have the 1070

same number of model queries during federated 1071

learning. Comparably, our gradient-free federated 1072

learning baseline (i.e., BBT(Fed), there was no 1073

previous works on gradient-free federated learn- 1074

ing with pretrained models) have 20 model queries 1075

per step, following the original implementation of 1076

(Sun et al., 2022b). This implies that our methods 1077

(5 queries per step) only use 1/4 (5/20) times of 1078

floating-point operations during federated learning, 1079

while having better performance than BBT(Fed). 1080

Since we target the scenario that clients has lim- 1081

ited memory access, where back-propagation might 1082

not be viable (Section 1), we mostly compare the 1083

number of floating-point operations of our meth- 1084

ods with gradient-free federated learning baselines. 1085

Provided the number of floating-point operations 1086

during federated learning, the training efficiency 1087

can be further enhenced by system designs, e.g., 1088

the parallelism strategy (Narayanan et al., 2019) 1089

or communication scheduler (Peng et al., 2019), 1090

which are out of the scope of this paper. 1091

E Overhead 1092

Our way of converting the prompt token index of 1093

each position to 16 bits (Section 5.1) induces no 1094

computational overhead, if we save the 16 bits in- 1095

dex for each position during training (50 prompt 1096
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positions in total, i.e., T = 50). The uploading of1097

such bits is the same as uploading any model pa-1098

rameters in federated learning. There is not need of1099

additionaly designed software implementation. Ac-1100

tually, by only uploading 16 bits for each position,1101

we save the upload time compared with uploading1102

the prompy embedding (the gradient-based meth-1103

ods in Table 1 and 2).1104
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