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Abstract

In this paper, we study personalized federated
learning for text classification with Pretrained
Language Models (PLMs). We identify two
challenges in efficiently leveraging PLMs for
personalized federated learning: 1) Communi-
cation. PLMs are usually large in size, e.g.,
with hundreds of millions of parameters, induc-
ing huge communication cost in a federated
setting. 2) Local Training. Training with PLMs
generally requires back-propagation, during
which memory consumption can be several
times that of the forward-propagation. This
may not be affordable when the PLMs are
trained locally on the clients, since the clients
may be resource constrained, e.g., mobile de-
vices with limited access to memory resources.
Additionally, the PLMs can be provided as con-
cealed APIs, for which the back-propagation
operations may not be available. For the first
challenge, we adopt prompt tuning for PLMs
that only train with the prompt parameters,
while the pretrained parameters are frozen.
We further propose a compression method for
the learned prompts to reduce communication
cost. For the second challenge, we propose
a gradient-free approach based on discrete lo-
cal search with natural language tokens, cir-
cumventing gradient computation with back-
propagation, while also reducing the communi-
cation cost. Experiments on multiple datasets
demonstrates the effectiveness of our method.

1 Introduction

Personalized federated learning (Fallah et al., 2020;
Chen et al., 2018; Shamsian et al., 2021) involves
collaborative training with non-shareable private
data from multiple clients. For each client, we
aim to train a personalized model that fits to its
own local data, leveraging knowledge from other
clients. Personalized federated learning has been at-
tracting increasing attention in the federated learn-
ing community due to its ability to account for
data heterogeneity across clients (Li et al., 2021).

On the other hand, the advent of Pretrained Lan-
guage Models (PLMs) (Liu et al., 2019; Kenton
and Toutanova, 2019) has yielded remarkable per-
formance for tasks involving natural language pro-
cessing, e.g., text classification. However, such
PLMs are usually large in size, e.g., with hundreds
of millions of parameters. There has been limited
works investigating how to efficiently train with
such large PLMs in the federated learning scenarios
(Guo et al., 2022; Zhao et al., 2022). In this paper,
we investigate on efficient training with PLMs in
personalized federated learning for the task of text
classification.

One challenge of training PLMs in a federated
learning scenario is how to reduce communication
cost. Federated learning generally requires com-
municating updated trainable model parameters
between a central server and all the clients (McMa-
han et al., 2017; Li et al., 2020). When training
with PLMs, their sheer size may introduce huge
communication cost between the server and clients,
thus reducing the training efficiency. To solve this
problem, recent works propose to leverage prompt
tuning (Guo et al., 2022; Zhao et al., 2022). Specif-
ically, prompt tuning learns with a sequence of
trainable prompt embeddings inserted into the in-
put layer of the PLMs. By only training and com-
municating the prompt embeddings and freeze the
pretrained parameters of the PLMs, the communi-
cation cost is largely reduced compared with train-
ing all the parameters of the PLMs. However, in
these works prompt tuning is not realistic for fed-
erated learning. The main reason is that the local
training, i.e., when the PLMs are trained locally
on each client, requires back-propagating through
the PLMs in order to calculate the gradient of the
prompt embeddings. The memory consumption
of back-propagating is several times higher (de-
pending on implementation) than that of forward-
propagation' (Baydin et al., 2022; Belouze, 2022).

'This is because back-propagation requires saving the in-



Such memory consumption is proportional to the
size of the PLM, e.g., with hundreds of millions
of parameters. Therefore, back-propagating with
the PLMs can be extremely memory consuming.
Unfortunately, the clients in federated learning usu-
ally have limited access to the resources (Rabbani
et al., 2021; Deng, 2019), e.g., edge devices with
limited memory. As a result, the memory footprint
during the local training with back-propagation can
exceed the memory capacity of the client devices,
making the training infeasible. Further, the PLMs
may be provided as concealed APIs, for which the
back-propagation operation may not be available
(Sun et al., 2022b).

To address those issues, we propose a framework
for personalized federated learning that tunes the
prompts in the input layer with gradient-free train-
ing that only requires forward-propagation. The
propose framework consumes less memory making
it suitable for federated learning and does not have
the limitation from black-box API setting. Our
framework follows the conventional two-step train-
ing stages; /) Joint training - A global model is
trained with data from all the clients with federated
learning, 2) Post tuning - Local training that fine
tunes the global model from joint training with the
local data of each client to learn its personalized
model (Fallah et al., 2020; Chen et al., 2018), but
in a novel way to enable gradient-free approaches.
Specifically, for the joint training, we propose a
gradient-free prompt tuning mechanism for the lo-
cal training of federated learning, based on dis-
crete local search with natural language tokens
of the PLMs. By keeping the prompts from lo-
cal training to be natural language tokens, each
client only needs to upload the token indices of
the learned prompts to the server, thus significantly
reducing the upload communication cost relative to
uploading the learned prompt embeddings. We
further propose a compression mechanism that
reduces the download communication cost. For
post-tuning, we adopt black-box tuning (Sun et al.,
2022b), which is also gradient-free without back-
propagation. Our contributions are as follows:

* We propose a gradient-free personalized feder-
ated learning framework for text classification
with PLMs. To the best of our knowledge, we
are the first to consider gradient-free training
in federated learning with PLMs.

termediate results of a computational graph, while the forward-
propagation does not.

* We evaluate the proposed approach on vari-
ous datasets for text classification. Results
show that our approach can achieve superior
results for personalized federated learning,
along with substantially less communication
cost and memory consumption compared with
the baselines.

2 Related Work

Federated Learning with PLMs: As mentioned
above, the sheer size of the PLMs (Liu et al., 2019;
Kenton and Toutanova, 2019) poses challenges
when applying them to federated learning due to
both high communication cost and large memory
footprint during local training. Previous works
studying PLMs under the federated learning set-
ting only consider the training efficiency in terms
of the communication cost, but rarely account for
memory footprint. For instance, Lit et al. (2022)
propose to reduce the communication cost by only
communicating the lower layers of the PLMs be-
tween server and clients. Inspired by the supe-
rior performance and efficiency of prompt tuning
(Lester et al., 2021; Liu et al., 2022) over tuning pre-
trained parameters, (Guo et al., 2022; Zhao et al.,
2022) propose to further reduce the communica-
tion cost via only training and communicating the
continuous prompt embeddings, trained with gra-
dient descent. The drawback of these works is
that they all require gradient computing with back-
propagation, which ignores the huge memory con-
sumption caused by back-propagation through the
PLMs. As mentioned before, this can be prob-
lematic for clients with constrained computation
resources, e.g., edge devices with limited memory
capacity. Additionally, the PLMs can be provided
as concealed APIs (Sun et al., 2022b), for which
the back-propagation operation may not be avail-
able. (Wang et al., 2020; Dong et al., 2022; Gao
et al., 2019) study metric learning and contrastive
learning for text representations, which are inspir-
ing for federated learning with text data. However,
these works are not targeting federated learning.

Gradient-Free Training with PLMs: Sun et al.
(2022b) assumes the PLMs are concealed in black-
box APIs and propose to train the input prompt
embeddings of the PLMs with CMA-ES (Hansen
and Ostermeier, 2001), a gradient-free method that
only requires forward-propagation. This setting
is termed Language-Model-as-a-Service (LMaaS),
where the client data is transferred to an external



server with the API of PLMs. This violates the
privacy-preserving principle of federated learning.
Sun et al. (2022a) further considers gradient-free
training with prompts inserted into the intermediate
layer of the PLMs, which contradicts our assump-
tion about black-box APIs. Deng et al. (2022);
Diao et al. (2022) model the prompts of the in-
puts layer of PLMs with a prompt generator, and
trains them with reinforcement learning. In this
way, the back-propagation is not with the PLMs in
the API but with the prompt generator. This may
not be suitable for federated learning, since adding
and back-propagating with prompt generators (e.g.,
implemented with another PLM) introduce addi-
tional memory consumption for clients during local
training. Hou et al. (2022); Prasad et al. (2022)
also study gradient-free training of PLMs, but it
is unclear how to apply their approach for feder-
ated learning. Specifically, Hou et al. (2022) adopts
boosting with prompts, requiring ten times the com-
putation for model inference compared to with-
out boosting, thus is not compatible with clients
equipped with constrained computation resources.
Importantly, none of the above works are studying
federated learning.

3 General Setup

Let M be the number of clients in federate learning,
and {Dy, ..., Dy} be the local datasets for all the
clients. In personalized federated learning, these
datasets are from different domains or tasks. We
have D; = {X,,, Y, }_,, fori = 1,..., M with
totally N training samples, where X, is the nt"
text sequence and Y, is its label for text classifi-
cation. Let f;(-) be the model for client 7, with
fi(X,,) being the predicted probability distribu-
tion for X, over all possible labels in client . The
model f; is implemented as prompt tuning. Specif-
ically, let H be the pretrained encoder of the PLM
and p; € RT*P represent a sequence of 7" prompt
token embeddings. In experiments, we follow (Sun
et al., 2022b) that set 7' = 50. D is the dimension
of the pretrained token embeddings. f;(X,,) can
be written as,

Temp=[p;;e(X,);e(It is  MASK])] (1)
fi(X,) = softmax(H (Temp) - V;1), (2)
where [; ] denotes row concatenation, p; is the learn-
able prompt, e(-) is the embedding layer of the

PLM that convert each token in X, into a token
embedding. H, and e are frozen during prompt

tuning. (1) defines the template for the text clas-
sification input, which contains a [/MASK] token.
The output from H on the position of [MASK] is
compared via inner product with the verbalizer V;,
which contains embeddings of words that are repre-
sentative of each label. For instance, we can have
V; = e([good, bad)) for sentiment classification.
We see that the only trainable parameter in f;(-)
is the prompt p;. The training loss for client 1 is,

N
L(pi; D;) :% Zcross_entropy(fi(Xn),Yn),
n=1
3)

When training with personalized federated learning
for text classification, the general objective is to
find {p; }}¥, that minimizes,

| M
Vi Zﬁ(Pi;Di% “)
i=1

while keeping {D; fvil locally for each client. We
follow Sun et al. (2022b) that assumes the pre-
trained encoder H is concealed in a black-box API
whose parameters are not accessible (no parameter
leakage) and cannot be backpropagated.

4 Our Framework

As mentioned in Section 1, our framework for per-
sonalized federated learning follows (Fallah et al.,
2020; Chen et al., 2018), subjecting to a global
prompt that is first learned with federated learning
(Joint Training) and then fine tuned separately with
the local data of each client to encourage personal-
ization (Post Tuning) . One difference between our
approach and (Fallah et al., 2020; Chen et al., 2018)
is that our approach focuses on efficient training
with gradient-free methods, i.e., without gradient
computation using back-propagation. Alternatively,
Fallah et al. (2020); Chen et al. (2018) are gradient-
based and requires computing second-ordered gra-
dient during joint training with meta-learning, i.e.,
via MAML (Finn et al., 2017). It remains an open
question of how to efficiently estimate the second-
ordered gradient without back-propagation, which
is out of the scope of our work.

Additionally, compared with previous works of
prompt tuning (Li and Liang, 2021; Sun et al.,
2022b), our approach improves the training effi-
ciency of federated learning. Specifically, we pro-
pose a discrete local search mechanism (see Sec-
tion 4.1.2) that reduces the upload communication



cost in federated learning, while considering per-
sonalized federated learning. We also propose a
compression method (see Section 4.1.3) that re-
duces the download communication cost.

4.1 Joint Training
4.1.1 Federated Learning

Below we introduce the general procedure of feder-
ated learning with joint training. The goal is to train
a global model f(-) with prompt p € RT>*? with
data from all the clients. Unlike (4), p is expected
to minimize the following objective,

LM
i > L Dy), &)
i=1

which can be optimized with federated learning
(McMabhan et al., 2017), as shown in Algorithm 1.
The federated learning algorithm generally con-
sists of three steps: /) Client update; 2) Aggrega-
tion; and 3) Download. Our proposed gradient-free
client update is introduced in Section 4.1.2. For
each round of federated learning, given the prompts
{p;}1, from the client update, the server will ag-
gregate these prompts to generate the global prompt
p for the current round, i.e.,

1 M
p= MZ;pi, (6)
1=

where we adopt FedAvg (McMahan et al., 2017)
and assume uniform weighting for each client. The
resulting p should be downloaded to each client for
the next round of federated learning. Section 4.1.3
proposes a compression method that represents p
with reduced memory footprint before download.
Note that we assume the API of the PLM has been
downloaded to each client before the start of feder-
ated learning, so that we only need to communicate
the prompts during federated learning. We claim
that downloading the API to clients is a practical
assumption. This is because it avoids the necessity
of uploading client data to an external server (with
API) for model inference, compared with the recent
Language-Model-as-a-Service (Sun et al., 2022b)
where the API is only store on an online server.
This is especially important for federated learning
where the privacy is of prime concern.

4.1.2 Gradient-Free Client Update

In updating each client i, its prompt p; is firstly
initialized with the global prompt p (or p’ in Sec-
tion 4.1.3) from the previous round of federated

Algorithm 1 Algorithm for Joint Training.

Input: Datasets {D;}},, the PLM (API and its
pretrained embedding matrix e(V)).
Output: The resulting prompt p’.

Initialize p with natural token embeddings.
p=p =p,
Download the PLM API and p’ ; to each client.
% General procedures for federated learning.
forr=1,--- ,n_rounddo
% Update p; with each client.
fori=1,--- , M do
% Please refer to Alg. 3 and Section 4.1.2.
p; = Client_Update(p’, D;)
end for
% Aggregation.
Aggregate {p; }, with (6), generating p.
% Please refer to Alg. 2 and Section 4.1.3.
p’ = Compress_Download(p, e(V))
py=p
end for

learning, then fine tuned on the local dataset D;.
As mentioned before, gradient-based fine tuning of
p with back-propagation can be extremely memory
consuming with PLMs. Additionally, the back-
propagation operation may not be available for
PLMs concealed behind APIs. So motivated, we
study gradient-free client update of the prompt p,
which does not need gradient computation with
back-propagation and is compatible with the APIs.
Specifically, we propose an update mechanism
based on discrete local search with natural language
tokens. Let V be the vocabulary of the PLM and
superscript ¢ denote the t** row of a matrix. For
each iteration update, given a randomly sampled
position of the prompts ¢, ¢ € [1,7], and a set of
candidate tokens C' C V), we update p! via,

argmin L(rep(pi, w,t),D;), (7)

wefp;t{e(c)lceC}

pl =

Note that p! on the left side is the updated prompt
of the next iteration, while the one on the right is
that of the previous iteration. Further, rep(p;, w, t)
denotes replacing the t** row of p; with w. We
randomly choose one position ¢ for each update
iteration. The candidate set C' is selected with,

C = argmin Z cos(e(c),pl), (®)
covicl=k =%

where cos(-) is the cosine distance. We only select
K candidate tokens in C' with the most similar



semantics as pf (low cosine distance), which avoids
large change of p! in a single iteration. K is the
number of local search for each step that controls
the training efficiency and is discussed in Section 5.
The general procedures are shown in Algorithm 3.

Such a simple update mechanism has two ben-
efits. Firstly, since w on the right side of (7) can
take the value of pl, the value of £(p;, D;) should
be non-increasing during client update. Secondly,
by constraining the candidate embeddings to be
from the natural language tokens, i.e., C C V, the
updated positions of p; can be saved by only keep-
ing its token index. This significantly reduces the
communication cost when uploading prompts to
the server, compared with previous works of con-
tinuous prompt tuning Guo et al. (2022); Zhao et al.
(2022) that upload all the prompt parameters. For
instance, the vocabulary size of the Roberta-Large
(Liu et al., 2019) model is 50,264 with D = 1024,
which implies that each token index can be encoded
with 16 bits. For positions of p; that are not mod-
ified during client update, we can indicate it with
a special index using a 16-bit integer, e.g., 50,265
(not natural token indices). Thus, we only need to
upload 16 Bits for each position of p;. Compara-
tively, uploading the whole prompt vector to the
server requires communicating 16 * 1024 ~ 16KB
for each position, provided that the continuous pa-
rameters are encoded into float16 during communi-
cation. As the result, we reduce the communication
cost by 1000 times (16 Bits vs 16 KB).

Note that previous works (Li and Liang, 2021;
Liu et al., 2021) claim that discrete tokens are
less expressive than continuous tokens, thus the
model capacity may be limited when trained with
discrete tokens. However, as described in Sec-
tion 5.1, datasets of different clients in personal-
ized federated learning may represent different do-
mains/tasks. For such cases, training with contin-
uous prompts via joint training may result in the
updated p; to overfit to the domain/task of client ,
causing negative knowledge transfer to other clients
when p; is aggregated with (6). In experiments, we
will show that our approach can produce better
accuracy compared with joint training with contin-
uous prompt embeddings, while also reducing the
communication cost.

4.1.3 Embedding Compression

After the client update, the uploaded p;, for i =
1..., M, are aggregated with (6). We can observe
that the results p after aggregation can no longer

be represented with a single token index, thus can-
not be compressed as in Section 4.1.2 when be-
ing downloaded to clients. Below we propose to
compress p after aggregation with the pretrained
token embeddings of the PLM, i.e., estimating p
with the matrix of pretrained token embeddings
e(V) € RVIXD,

This draws from the intuition in previous works
on linear word analogies (Ethayarajh et al., 2018;
Nissim et al., 2020; Drozd et al., 2016), which
show interesting examples with linear operations
among the pretrained word/token embeddings, e.g.,
e(king) — e(man) + e(woman) ~ e(queen) or
e(doctor) — e(man) + e(woman) ~ e(nurse).
These indicate that a pretrained token embedding
can be estimated by a few embeddings of tokens
with similar or relevant semantics. As for our p,
its prompt embeddings is assumed to be within
the convex hull of the natural token embeddings.
This can be observed from (6), i.e., even p; that is
not updated in client 7 should also be aggregated
from natural token embeddings that appeared as
updates in previous rounds. Therefore, it should
be viable to estimate p with a few or fixed number
of natural token embeddings. For each round of
federated learning with aggregated prompt p, let
p’ be the prompts received by the clients from the
server after compression in the current round. We
denote p’_; as the prompts received by the clients
after compression in the previous round. Below,
we elaborate on how to compress p into p’ for the
current update round, given p’_; and e(V).

We should note that different from p, the com-
pressed p’ ; is accessible by both the server and
clients, since it was generated by the server and
received by the clients. Thus, instead of directly
compressing p, we only compress the increment
(residual) of p between the previous and current
rounds. Specifically, for each position ¢, we define
the residual as R! = p’ — ptl,l. For each posi-
tion ¢, we want to find a sparse projection from
e(V) to R! so it can be represented/estimated with
a limited number of pretrained embeddings. Let
I be a sequence of token indices, initialized as
I =[1---,|V|]]. We define e(V)s be the rows
in e(V) indexed by I. Formally, we optimize the
following,

" = argmin,, le(V)] -« — R'|3 +allz|li. ©)

I, = argmaxuﬂzLZ le*[j]|, I = I[I], (10)
Jelx



where I[I,] is the value of I indexed by I,,. = €
RIZI%1 is the learnt projection, || - ||; and || - ||2 are
the one and two norms, respectively, and || denotes
the absolute value. We solve a sparse «* with
LASSO regularization as in (9), with « being the
regularization weight. We empirically set o = 0.2
for all datasets and clients. *[j] is the j*" element
of *. Note that (10) takes the top L token indices
with the largest absolute projection values in the
resulting =*. To minimize the error in estimating
R, the final projection x} € RI*1 s,

(an

We denote the cardinal of resulting I in (11) as
®, the number of token embeddings used to ap-
proximate R'. Instead of downloading with the
aggregated p, we download {I, x} } to each client.
As the result, we only need to download 16 x 2¢
Bits for each prompt token, consider that both the
token index in I and continuous variable in a:} are
encoded with 16 Bits, as in Section 4.1.2.

The client will reconstruct the residual R via
R= e(V)T - x Finally, the compressed prompt
received by the clients for the current round is,

(12)

Ty = argmin, lleW)T -z — RY|3.

pt/ :ptl_l +Rt,

p = [pY,---,pT’] will be further saved as p’_,
for the next round of federated learning. In the
experiments, I is selected with two iterations of (9)
and (10), as in Algorithm 2.

4.2 Post Tuning

The goal of post tuning is to fine tune the re-
sulting prompt p from the joint training with the
local dataset of each client (no communication
cost). The resulting p; should be adapted to the
task/domain of client ¢. Therefore, during post tun-
ing, we adopt the gradient-free method of BBT
(Sun et al., 2022b) that allows the prompts being
trained in the continuous embedding space. Specif-
ically, for each position ¢, we follow BBT that
reparameterizes p} as,

p, = Az +p', (13)

where z € R% d << D, and A € RP*? s a
randomly valued fixed matrix that project z into
the space of p'. Further, z is the only learnable pa-
rameter and is trained with CMA-ES (Hansen and
Ostermeier, 2001), a gradient-free method with-
out back-propagation. Please refer to (Sun et al.,
2022b) for more details.

S Experiments

5.1 Experiment Setting

Training: As mentioned above, data from differ-
ent clients of personalized federated learning may
come from different domains/tasks. We experiment
with the datasets of FDU-MTL (Liu et al., 2017)
and Sentiment140 (Go et al., 2009). FDU-MTL is
a domain adaptation dataset for text classification
with 16 different domains/clients (each client with
a unique domain). We train and evaluate on all
the 16 domains. Sentiment140 is a dataset of 1.6
million tweets from 659775 users. We follow (Yan
et al., 2020) that treat each user as a client and only
keeps clients with more than 40 samples. In experi-
ments, 90% of the clients are sampled as training
clients and the rest as testing clients. Please refer
to Appendix C for more details.

Evaluation: In addition to the classification accu-
racy on testing clients, we also evaluate the train-
ing efficiency in federated learning. The training
efficiency is considered in two perspectives: /)
Whether the method requires back-propagation, i.e.,
does the model consumes a large memory footprint
for local training? 2) The communication cost, i.e.,
the number of communicated Bits between server
and clients for each round of federated learning. In
calculating the Bits, we assume the token indices
are encoded with 16-bit and continuous parameters
are converted into float16 during communication,
as in Sections 4.1.2 and 4.1.3. Instead of computing
the total communicating cost for each round, we
calculate the upload and download cost separately,
due to the fact that the upload bandwidth is usually
smaller than the download bandwidth (Hegedds
et al., 2021), i.e., upload is more expensive than
download with the same number of Bits. Another
metric for training efficiency for federated learning
is the number of floating-point operations, which
we discuss in Appendix D.

5.2 Baselines and Our Approaches

All of our baselines are trained with the same model
as used in (Sun et al., 2022b). We list the con-
sidered baselines are listed as follows: 1) Prompt
Tuning (Li and Liang, 2021), which is to train the
separated prompt parameters locally on each test-
ing client with back-propagation. We have learning
rate as le-2 and batch size 16. 2) Prompt Tuning
(Fed). The prompts are initially trained with Fe-
dAvg (McMahan et al., 2017) on all the clients,
then fine tuned on each testing client, as with our



Method

| Upload | Download | BP? || Sentiment140 || FM(apparel) | FM(nr) | FM(baby) | FM(books) | FM(camera) | FM(dvd) | FM(electronics)

Prompt Tuning 0 0 Yes 73.22+14.19 83.42 81.75 79.95 86.38 80.05 86.52 84.18
Prompt Tuning (Fed) 819 KB 819 KB Yes 74.67+13.28 83.56 81.06 81.05 87.83 81.80 87.96 84.93
Meta Prompt Tuning (Fed) | 819 KB 819 KB Yes 74.89+13.31 82.78 83.35 80.23 88.12 80.34 87.31 84.45
BBT 0 0 No 73.17£14.19 85.93 83.75 81.22 86.10 80.56 85.96 87.76

BBT (Fed) 8 KB 8 KB No 73.58+13.31 87.44 81.02 82.99 90.19 81.84 87.92 87.74

Ours (P = 3) 0.8 KB 4.8 KB No 74.94+13.46 87.44 80.07 85.53 90.74 82.33 88.48 88.03

Ours (P = 5) 0.8 KB 8 KB No 75.34+12.88 88.54 80.05 86.55 90.21 82.61 88.08 87.78

Ours (FullDownload) 0.8 KB 819 KB No 76.00+£11.98 89.04 81.03 86.78 90.97 83.73 87.18 88.88

Table 1: Results with the Sentiment140 and FDUMLT datasets. For Sentiment140, we report the mean and
standard deviation of accuracies on testing clients. For the FDUMLT dataset, we report the accuracies for each
of the 16 domains/clients (denoted as FM(domain name)) and their average (denoted as FM(Avg)). Upload
and Download shows the Bits that is uploaded and downloaded per round of federated learning. BP? indicates

whether the method requires back-propagation.

Method

| FM(health) | FM(imdb) | FM(kitchen) | FM(magazines) | FM(mnusic) | FM(software) | FM(sports) | FM(toys) | FM(video) | FM(Avg)

Prompt Tuning 81.98 92.42 82.14 80.68

82.52 83.77 82.41 84.01 82.32 83.41

Prompt Tuning (Fed) 82.74 92.71 83.61 82.97

83.75 84.29 82.89 84.76 82.60 84.28

Meta Prompt Tuning (Fed) 82.34 9241 84.53 83.25

83.56 83.48 83.58 85.26 82.21 84.20

BBT 84.01 92.13 81.38 81.46

82.28 85.08 82.40 85.53 83.86 84.34

BBT (Fed) 87.06 93.00 85.13 85.90

84.92 84.03 85.46 87.92 85.36 86.12

Ours (& = 3) 87.06 92.42 86.73 86.95

85.98 84.55 86.73 87.31 8591 86.64

Ours (& = 5) 87.82 92.71 88.78 87.73

85.19 85.60 86.48 87.31 87.29 87.14

Ours (FullDownload) 89.57 94.27 88.75 87.44

86.34 85.44 87.86 89.31 86.86 87.71

Table 2: Results with the Sentiment140 and FDUMLT datasets (continue).

framework. 3) Meta Prompt Tuning (Fed). Same as
Prompt Tuning (Fed), except that we follow (Fallah
et al., 2020) that the prompts are trained using feder-
ated meta learning with MAML (Finn et al., 2017).
Both Prompt Tuning (Fed) and Meta Prompt Tun-
ing (Fed) directly communicate all the prompted
parameters between server and clients. 4) BBT
(Sun et al., 2022b), train separated prompts locally
on each testing client with the gradient-free method
of CMA-ES (Hansen and Ostermeier, 2001), as in
Section 4.2. This is like the post tuning stage of
our approach. 5) BBT (Fed). Federated training of
z in (13) with BBT on training clients and FedAvg
on the server. The resulting z is further fine tuned
with BBT on the local dataset of each client, i.e.,
the same as Section 4.2.

In addition, we also implement different varia-
tions of our approach: 1) Ours (®=3 or 5). We
experiment with different values of ®, controlling
the degree of the embedding compression in Sec-
tion 4.1.3. 2) Ours (FullDownload). We directly
download the aggregated p from (6), without em-
bedding compression. We also discuss the ablation
of o in Appendix A.

5.3 Local Search with Different X Values.

As discussed in Section 4.1.2, discrete prompt
tokens might be less expressive than continuous
prompt embeddings trained with gradients (Li and
Liang, 2021; Liu et al., 2021). Thus, one may be
concerned about the capability of discrete local

search in minimizing the loss functions of different
tasks of different clients. From (7), we can observe
that such capability is large and determined by the
search number K for each step of local search. Ide-
ally, in maximizing the optimization ability of our
local search, we can set K = [V, i.e., and try
with the whole vocabulary instead of searching lo-
cally. However, such a combinatorial optimization
is computationally expensive, thus not compatible
with resource constrained clients. There should be
a trade-off between the optimization ability and
training efficiency for discrete local search.

In this section, we investigate how the optimiza-
tion ability of our proposed local search is affected
by the search number K. In Figure 1, we plot the
averaged training loss (4) over all the clients in
FDUMTL when training Ours (& = 5) with dif-
ferent K values. We can observe that our local
search can effectively minimize the loss function
during training. Additionally, we find that the per-
formance gain, i.e., the difference in the optimized
loss value, is diminishing when switching from
K =2to K =5and from K = 5to K = 8.
However, the introduced computation cost from
K = 2to K = 5 is the same as that from K = 5
to K = 8. With such observation, we take K = 5
as a trade-off between the computation efficiency
and optimization ability, since /) local search with
K = 5 is not very expensive, e.g., comparing the
implementation of BBT (Sun et al., 2022b) that
requires 20 searches each step. 2) The performance
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Figure 1: Averaged training loss during joint training of
Ours (® = 5) with different values of K.

gain from K = 5 to K = 8 is much smaller than
that K = 2 to K = 5, thus increasing the value
of K from 5 may not be cost-effective. Therefore,
we keep K = 5 for all our experiments. Note that
such a parameter selection of K only leverages the
training data of clients, with no development or
testing data involved.

5.4 Results
Table 1 and 2 show the results of personalized fed-
erated learning with Sentiment140 and FDU-MTL.
Our approaches can achieve highest accuracy, with
comparable or much lower communication cost
than baselines. This is especially obvious with
the upload communication, i.e., the upload cost of
our approaches is 10 times smaller than the clos-
est baselines (BBT (Fed)), which thanks to our
proposed discrete local search mechanism (Section
4.1.2) that only requires uploading the pretrained to-
ken indices to the server. As mentioned in Section
4.2, BBT (Sun et al., 2022b) works by randomly
projecting the prompt parameters (with a fixed ran-
dom matrix A) into a small subspace, within which
a low-dimensional vector z is trained. However,
there is no guarantee that such a random projected
subspace can cover directions that captures knowl-
edge that is generalizable across clients. On the
contrary, though our local search algorithm is con-
strained with discrete natural language tokens, such
tokens should capture rich semantics of natural lan-
guage that are expressive enough to describe a pat-
tern that is generalizable across clients. This might
explain why our approach of discrete local search
with natural language tokens can produce higher
accuracy in training with data of different clients.
Additionally, we can observe that compressing
using ® = 3 and ® = 5 can maintain compa-

rable performance for text classification as with
Ours (FullDownload), while substantially decrease
the download communication cost. Further, the
gradient-based baselines, i.e., those named with
prompt tuning, may produce results that is inferior
to gradient-free approaches. This may be counter-
intuitive since these gradient-based prompt tuning
approaches allow training in the whole parame-
ter space of prompt parameters, unlike gradient-
free approaches with which the search space for
the prompt parameters is usually constrained (Sun
et al., 2022b). Thus the learnt continuous prompt
embeddings should be more expressive than those
from gradient-free approaches, as discussed in Sec-
tion 4.1.2. However, previous works of gradient-
free training with PLMs (Sun et al., 2022b,a) also
show results that are better than gradient-free ap-
proaches, especially with the scenario of few-shot
training. Such a phenomenon may be explained
by the over-expressiveness of prompts trained with
gradients, i.e., subject to overfitting with limited
training data. For the case of federated learning,
the prompts trained with gradients may overfit to
the task/domain of the clients during local client up-
date, inducing negative knowledge transfer to other
clients when being aggregated with 6 in producing
model, which is also discussed in Section 4.1.2.
Moreover, our implementation of meta prompt
learning with MAML (Finn et al., 2017) yields
slightly worse results than without meta-learning,
i.e., with Prompt Tuning (Fed). We claim that this
may not indicate an implementation error, since
previous works of federated meta learning (Fal-
lah et al., 2020) also shows that MAML may not
always provide improvements compared to meta-
learning. For instance, in (Fallah et al., 2020), their
meta-learning based method (Per-FedAvg (FO))
can produce inferior results than simple FedAvg
(McMahan et al., 2017) in certain scenarios.

6 Conclusion

In this paper, we propose a gradient-free framework
that trains with discrete local search on natural lan-
guage token during personalized federated learning.
The discrete local search saves the huge memory
consumption caused by back-propagation, while
significantly reducing the upload communication
cost. We additionally propose a compression mech-
anism that also reduces the download communica-
tion cost of federated learning. Experiments with
multiple datasets show that our approach produces
superior performance compared with baselines.
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A Ablation study with «

In this section, we conduct an ablation study for
the regularization parameter « (default to = 0.2)
for the lasso loss in (9). In Table 3, we take Ours
(® = 5) as an example and report results with o =
0.2 (same as in the main paper) and o = 0. We can
find that the results with a = 0 is generally lower
than that with o = 0.2, indicating the importance
of encouraging sparsity with the lassso loss in (9).

B Comparing with PCA compression and
quantization

In Section 4.1.3, we present our proposed embed-
ding compression method to reduce the download
communication cost. To further validate the effec-
tiveness of the proposed embedding compression,
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Token embeddings. (b) The training loss on Sentiment140 averaged over different clients in each communication
round of federated learning for different compression methods. We have the same random seeds and order of

training batches for all the methods.

we compare it with the two additionaly baselines:
PCA compression and quantization.

PCA Compression: Principled Component
Analysis (PCA) (FR.S., 1901) is a common way
of dimensional reduction, i.e., compress the em-
beddings via representing then with fewer dimen-
sions. Previous works (Cai et al., 2021; Rabbani
et al., 2021; Gao et al.) have shown that the learnt
token embeddings (contextualized or not) of pre-
trained models are distributed in a narrow cone of
the embedding space. In another word, the embed-
dings vectors are generally biased toward the top
principled components of learnt embedding matrix.
Specially, following the notation of Section 4.1.3,
let e(V) € RVIXD be the matrix of pretrained to-
ken embeddings. We can compute the principled
components of e()), denoted as,

E.= PCA(e(V)) (14)
where each column of E. € RP*P is a princi-
pled component of e(V). We have EI - E. = I,
with I € RP*P is the identity matrix. The infor-
mativeness of different principled component can
be measured by the variance after projecting e())
onto each of the components,

v = Var(e(V) - E,) (15)
where Var computes the variance for each row. As-
sume the index of each component, i.e., the row
index of E,, has been ranked by v = [v;]2,
(from high to low). We plot the ratio of vari-
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ance (v/ ) v;) verse the index of each compo-
nent for Roberta-Large in Figure 2a. We can find
that the distribution of e()) id highly an-isotropic,
with much larger variation being captured by the
top principled components. Thus, we can repre-
sent/compress the aggregated prompt p € RT*P
from (6) with the top principled components” be-
fore downloading it to clients. Specifically, we
compress p via,

p=p Eln;]" (16)
where pRT*" is the compressed prompt and F,.[:
n, :] denotes the top-n principled components. Af-
ter downloading, each client reconstruct p via,

p=p Eln,: (7
In this way, we only need to download n integers
(16 bits each) for each prompt token in p. The total
download bits per communication round is 7" X n X
16 = 800n bits. In comparison with our approach,
we experiment with n = 10 (denoted as PCA10),
so that it has the same download communication
cost for each round (8KB) as Ours ® = 5. We
additionally experiment with n = 300 (denoted as
PCA300), where the prompts are represented by
more principled components but also with much
larger download communication cost each round
(0.24MB).

2From Section 4.1.1, each token of p is a convex com-
bination of e(V), thus should also be biased toward (more
represented by) the top principled components.



Dataset | Ours (& = 5,a = 0.2) | Ours (@ = 5, = 0) Algorithm 2 Compress_Download.
FM(apparel) | 89.04 | 8634 Input: The prompt p without compression, the
EMGn) | 81.03 | 80.32 pretrained embedding matrix e()).
FM(baby) | 86.78 | 84.10 Output: Th tructed o/
FM(books) 90.97 88.25 utput: 1he reconstructed pr.
FM(camera) 83.73 81.33 I=1[,--, [V
FM(dvd) §7.18 §7.36 fort=1---,Tdo
FM (electronics) 88.88 87.24 % Embedding compression.
FM (health) 89.57 86.8 for L = [1()0’ 5] do
FM(imdb) 94.27 9351 Compute I with (9) and (10).
FM (kitchen) 88.75 86.73
FM( ines) 87.44 94.27 end for
magazines B . * N
FM(music) | 86.34 \ 85.12 Solve z with (11).
FM(software) | 85.44 \ 34.31 % Download.
FM(sports) | 87.86 \ 84.44 Download {I, m’}} to the clients.
EM(ioys) | 89.31 | 80.56 Compute p*’ on both server and clients
FM(video) | 86.86 | 86.19
FM(Avg) | 87.71 | 85.80 end for
vg : : / 1/ T/
return = ce
Sentiment140 | 7534 £ 1288 |  74.35 £ 13.84 p=lp P ]

Table 3: Ablation study with a.

Method | Upload | Download | BP? | Accuracies
PCA10 | 0.8KB | 8KB | No | 73.26+ 14.77
PCA300 | 0.8KB | 0.24MB | No | 75.05+ 12.69
Quant (b=3) | 0.8KB | 0.I15MB | No | 7444 + 12.11
Ours (P =3) | 0.8KB | 48KB | No | 74.94 4 13.46
Ours(®=5) | 0.8KB | B8KB | No | 7534+ 1288
Ours (FullDownload) | 0.8KB | 819KB | No | 76.00 + 11.98

Table 4: Results on Sentiment140 with different com-
pression methods. We report the mean and standard
deviation of accuracies on all testing clients.

Quantization: We also compare our approach
with quantizing each dimension of p from (6)
before downloading. Following previous works
(Courbariaux et al., 2015; Tao et al., 2022) of com-
pressing pretrained language models, we quantize
each element w of p via,

wg = B - Q(clip(w, 5, 8)/5)

where () is a quantization function that
maps clip(w,—3,5) to its closest value in
(-1, 52 .0, B 1Y ko= 20 -1
In this way, Q(clip(w, —3, 3)//) can be encoded
with b bits. Following (Tao et al., 2022), the
scaling factor for each element is shared within the
same prompt token embedding. Let p[i, :] be the
embedding of the ith prompt token, the scaling
factor for each of its element is the maximum
absolute value in pli, :],

(18)

B = maz(|pli,:]]) (19)
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For each prompt token with dimension D, we have
to download the scaling factor 3 (16 bits) and b bits
for each dimensions, so that the clients can recon-
struct w,. We experiment with b = 3, denoted as
Quat (b = 3). The total download communication
cost for each round is (D x b+16) x T' ~ 0.15MB.
Compared with Quat (b = 3) that quantizes each di-
mension of each prompt, our proposed approaches
of embedding compression can be regarded as
quantizing on the token level, i.e., representing
each prompt with pretrained embeddings of dis-
crete tokens.

Results: We report the results with different
compress methods in Table 4. We can find that
PCA10 has much lower accuracies than Ours (® =
5), though sharing the same communication cost.
This is because the top 10 principled components
cannot capturing enough information about the to-
ken embeddings, although the distribution of token
embeddings are biased toward the top principled
components (Figure 2a). We need to increase the
value of n to hundreds in order to get compara-
ble results with our approaches ((i.e., PCA300)),
which is at the expense of much higher communi-
cation cost. Additionally, we can notice that Quant
(b = 3) also induces higher download communica-
tion cost than our approaches, but yeilding lower
accuracies. These results validate the effectiveness
of our proposed embedding compression. Addition-
ally, Figure 2b shows the loss values averaged over
training clients during federated learning. We can
find that our approaches are effective in minimizing
the loss function during training (also discussed in



Algorithm 3 Client_Update.

Input: Dataset D; for client i, p’ from the previ-
ous round of communication.
Output: p; after the client update.

/

b.=p
% Training with discrete local search.
fors=1---,5do
Randomly sample position .
Update pf using (7) and (8) with D;.
end for
return p;

Section 5.3). We can also find that the final loss
values are generally positively correlated with the
accuracies in Table 4.

C Additional Explanation

Our model architecture for prompt tuning is the
same as in (Sun et al., 2022b). Specifically, the
backbone of the PLM is the Roberta-Large model,
with T" = 50 prompt tokens inserted into the in-
put layer. The model is trained with 50 rounds of
federated learning for FDUMTL, with each client
updated 40 steps for each round. For Sentiment140,
we train for 100 rounds and we only sample 50
clients for training during each round (due to the
large number of clients in Sentiment140). The im-
plementation of BBT in the both our approaches
and the baselines follows (Sun et al., 2022b).
Following previous works of gradient-free learn-
ing (Sun et al., 2022b; Hou et al., 2022), we con-
sider the few-shot scenario for each testing client.
Specifically, we assume there are 16 samples for
each class in each testing client during post-tuning.
For FDUMTL, these datasets are sampled from
the development split in each domain. For senti-
ment140, these are sampled from the datasets of
each testing client, with the rest data of each client
used for testing after post tuning. We additionally
sample a development dataset (not overlapped with
data for training) from the development split for
each client for FDUMLT with the same size as the
training set, since development datasets are also
used in previous works of gradient-free training
(Sun et al., 2022b; Hou et al., 2022). We evaluate
the classification accuracy of the resulting models
on the test set of each client, averaged over four
random seeds. We do not sample development
datasets for Sentiment140 since no development
datasets are provided. Note that our experiments
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are based only on English datasets and it would
also be interesting for future works studying multi-
lingual federated learning. We provide the algo-
rithm for Client_Update and Compress_ownload
in Algorithm 3 and 2, respectively.

D The number of floating-point
operations during federated learning

From the previous work (Sun et al., 2022b) of
gradient-free training for PLMs, the number of
floating-point operations with gradient-free train-
ing can be evaluated via the number of model
queries (i.e., how many times a model is for-
warded). For all the methods in the paper, we have
the same number of communication rounds and
same number of update steps for each client per
round. Thus, the number of floating-point opera-
tions is proportional to the number of model queries
per step when training on each client. We keep all
the discussed approaches with the proposed dis-
crete local search method having 5 model queries
per step (i.e., ' = 5 as in Section 5.3), including
the approaches denotes with "Ours" and those in
Appendix B. Thus, all these approaches have the
same number of model queries during federated
learning. Comparably, our gradient-free federated
learning baseline (i.e., BBT(Fed), there was no
previous works on gradient-free federated learn-
ing with pretrained models) have 20 model queries
per step, following the original implementation of
(Sun et al., 2022b). This implies that our methods
(5 queries per step) only use 1/4 (5/20) times of
floating-point operations during federated learning,
while having better performance than BBT(Fed).
Since we target the scenario that clients has lim-
ited memory access, where back-propagation might
not be viable (Section 1), we mostly compare the
number of floating-point operations of our meth-
ods with gradient-free federated learning baselines.
Provided the number of floating-point operations
during federated learning, the training efficiency
can be further enhenced by system designs, e.g.,
the parallelism strategy (Narayanan et al., 2019)
or communication scheduler (Peng et al., 2019),
which are out of the scope of this paper.

E Overhead

Our way of converting the prompt token index of
each position to 16 bits (Section 5.1) induces no
computational overhead, if we save the 16 bits in-
dex for each position during training (50 prompt



positions in total, i.e., T' = 50). The uploading of
such bits is the same as uploading any model pa-
rameters in federated learning. There is not need of
additionaly designed software implementation. Ac-
tually, by only uploading 16 bits for each position,
we save the upload time compared with uploading
the prompy embedding (the gradient-based meth-
ods in Table 1 and 2).
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