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Abstract

We introduce LIFLOW, a generative acceleration
framework designed for efficiently simulating dif-
fusive dynamics in solids, particularly lithium-
based solid-state electrolytes (SSEs). LIFLOW
consists of two components: Propagator and Cor-
rector, which utilize a conditional flow matching
scheme to predict atomic displacements and per-
form denoising, respectively. Our model achieves
a Spearman’s rank correlation of approximately
0.7 for the lithium mean squared displacement
(MSD) on test set based on composition and tem-
perature splits and offers a substantial speedup
compared to reference molecular dynamics (MD)
simulations using machine learning interatomic
potentials (MLIPs). This framework facilitates
high-throughput virtual screening for electrolyte
materials and holds promise for the optimization
of the kinetic properties of crystalline solids.

1. Introduction

Solid-state electrolytes (SSEs) are an emerging class of ma-
terials for electrical energy storage, offering a safer and
more stable alternative to the liquid electrolytes commonly
used in lithium-ion batteries (Bachman et al., 2016). The
study and design of SSEs require fast and accurate atomistic
simulation techniques to model the intricate ionic diffusion
behaviors in such materials. The standard method, ab ini-
tio molecular dynamics (AIMD), involves costly density
functional theory (DFT) calculations for each propagation
step. Hence, their application is limited to small spatiotem-
poral scales and a few simulations, often insufficient for
characterizing diffusive dynamics or screening candidate
materials. Recently, universal machine learning interatomic
potentials (MLIPs), trained on large-scale DFT calculations,
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have emerged as a promising alternative (Friederich et al.,
2021; Ko & Ong, 2023). Still, even with MLIPs, dynamics
must be discretized at sufficiently small time steps to ensure
stable and accurate propagation (Fu et al., 2023a), limiting
the scalable analysis of large-scale materials databases.

In the context of general MD simulations, methods such as
Timewarp (Klein et al., 2024), Implicit Transfer Operator
Learning (Schreiner et al., 2024), and Score Dynamics (Hsu
et al., 2024) have been proposed to tackle the challenge
of accelerating the simulation. These methods leverage a
generative modeling framework to propagate the conforma-
tional distribution from time 7 to time 7 + A7, where A1
is much larger than the typical MD time steps. A similar
approach has been applied to temporally coarse-graining
polymer electrolyte simulations (Fu et al., 2023b).

Building upon these methods, this work aims to develop
a tailored generative modeling framework, specifically de-
signed for cost-effective simulation of diffusive dynamics
in SSEs. Our primary objective is to construct a model that
accurately reproduces relevant kinetic observables, such
as mean squared displacement (MSD) and diffusivity of
mobile ions, compared to long-time MD simulations utiliz-
ing MLIPs. Preferably, the model would exhibit chemical
(encompassing electrolytes with diverse elemental compo-
sitions) and thermal (spanning various simulation temper-
atures) transferability, thereby offering a generalizable en-
hancement in simulation efficiency.

2. Methods

2.1. Overview

The scheme for LIFLOW is depicted in Fig. 1. LIFLOW
models the distribution of atom positions in a system with a
periodic boundary at time 7+ A7 given the positions at time
7. Here, we fix the A7 to 1 ps, which is 103 times larger than
the MD time step 67 = 1 fs. Inspired by Fu et al. (2023b),
LIFLOW consist of two modules, Propagator and Corrector,
which are both flow matching generative models that gener-
ate a displacement vector for each atom in a system. Given
atom positions X, at time 7, Propagator samples a displace-
ment vector d¥’ = Xr4+Ar — X;. The displacement is then
added to x, to give a candidate atom positions X, A, at
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Figure 1. LIFLOW scheme. LIFLOW is a generative acceleration framework for SSE MD simulations, with Propagator and Corrector
components leveraging a conditional flow matching scheme for accurate prediction of atomic displacements during time propagation.

the next time step. Since the displacements generated by
Propagator model may not be accurate, we introduce an
additional generative model, Corrector, which samples a
displacement vector d¢ = Xr4Ar — Xr+Ar to “denoise”
or correct the atom positions. Similarly, the displacement is
added to X4 A to give a final prediction of the new atom
positions X Ar-

Notations We denote the physical time by 7 € Ry
and flow matching time by ¢ € [0, 1], which are associ-
ated with atomic positions x, € R*? and displacements
d?,df € RN*3 from the Propagator and Corrector, re-
spectively. To featurize the input graph and propagate the
dynamics, we additionally utilize lattice array L € R3*3
and atom types a € NV, atomic masses m € RY; and the
temperature 7' € R>(. At inference time, we discretize the
flow matching generation into Nyqy steps, and iterate the
LIFLOW inference Ny, times to generate the final atom
positions at time Nyep AT.

2.2. Conditional flow matching models for time
propagation and correction

Conditional flow matching. Flow matching (Lipman
et al., 2023; Tong et al., 2024) is a generative modeling
framework in which samples from the prior distribution
dy ~ po(d) is transported to samples from the data distri-
bution d; ~ p;1(d) by a time-dependent vector field u:(d).
Conditional flow matching render the vector field tractable
by conditioning the time-dependent probability path and
the vector field on the data, i.e., p;(d|d;) and u(d|d;),
respectively. The marginal vector field model v,(d; 0) is
parametrized by a neural network and learned by the follow-
ing regression objective:

Lepm(0) = Era,allve(d; 0) — we(d]dy)|>, (D)

where t ~ U[0,1], d; ~ p1(d), and d ~ p¢(d|d;). Fol-
lowing Jing et al. (2024), we choose the linear interpolation

between the prior sample and the data sample as a condi-
tional flow, i.e.,

uy(dldy) = (dy — d)/(1 —¢). 2)

Accordingly, we can alternatively predict d; instead of the
vector field v;. By defining a final displacement predictor
d;(d, ¢; 0), we parametrize the marginal vector field by

vi(d; 0) = (di(d, t;0) — d) /(1 —1). 3)

The Propagator and Corrector in our scheme are hence
defined as “d; predictors,” where we predict the desired dis-
placements for propagation and correction and interpolate
with the current displacement in each flow matching step.

Maxwell-Boltzmann prior. We design the LIFLOwW
model to be transferable over different temperatures by
introducing the temperature conditioning into the prior
distribution of flow matching schemes. We use a scaled
Maxwell-Boltzmann distribution as our prior, i.e., dg ~
N(0, (kgT/m)a?), where kg is the Boltzmann constant
and o is a hyperparameter for the model. This choice is mo-
tivated by the observation that atoms in the system diffuse
faster when the particle masses are lighter and the temper-
ature is higher. Note that the propagation time step AT
is much larger than the velocity decorrelation time, so the
direct physical relationship to the thermal velocities is not
retained.

2.3. Model architecture

The input to the Propagator and Corrector models are cur-
rent atomic positions x, (or X,), current displacements
d;, current flow matching time ¢, and atomic identities a.
Given these inputs, the models should predict the desired
displacement d. Since the atomic positions x, represent
their equivalent periodic images x, + kLT (k € ZN*3),
the output displacements should be invariant to the periodic



Generative acceleration of molecular dynamics simulations for solid-state electrolytes

translation of each atom. We represent the periodic atomic
system as a graph with a fixed edge cutoff distance, and
use PaiNN (Schiitt et al., 2021) architecture to predict the
displacements. The atomic identities a and flow matching
time ¢ are embedded as node scalar features, and current
displacements d; are given as node vector features. The
model output layer (gated equivariant block) is modified to
predict a single vector for each node, which correspond to
the final displacement prediction d;.

2.4. Training and inference

Propagator training. The Propagator model is trained
on the time-separated pairs of atom positions in a MD
trajectory, (X,,Xryar). We obtain df from the inter-
polation between a sampled prior displacement df’ and
the true displacement d’ = x,, A, — X,, according to
eq. 2. Then, the Ly loss between the model prediction
af = Propagator(x,,dl’, L a,t) and the true displace-
ment d; is minimized.

Corrector training. For atom position x, sampled in a
MD trajectory, we add a noise € ~ A(0,02) where o
is sampled from /[0, 0.75] (units in A) to obtain a noisy
position X, = x, + €. To address potential instabili-
ties at very short distances, we resolve collisions by sep-
arating atom pairs within a cutoff distance (0.3 A) along
their pairwise directions until all pairs exceed the cutoff
distance. Then, the Corrector model is trained similarly
to the Propagator, with the model prediction obtained as
d¢ = Corrector(%X,,dS, L, a, t) and the true displacement
df = —e.

LIFLOW inference. Given the initial atom positions X,
we alternate between the Propagator and Corrector infer-
ence for Nep steps to predict the final positions x, at time
T = NyepAT. The inference for two flow matching models
start with sampling a prior displacement d from Maxwell—
Boltzmann distribution, predicting final displacement di,
and interpolating with the current displacement to follow
the marginal vector field in eq. 3. The flow is discretized to
Npow = 10 steps at inference time. The detailed inference
algorithm is shown in Alg. 1.

3. Experiments
3.1. Datasets

To train a compositionally transferable generative model
for time-shifting conformational distributions, we require
long-time simulation trajectories that encompass diverse
compositional spaces of solid-state materials. We fetched
4,186 lithium-containing structures from Materials Project
(Jain et al., 2013) with the criteria of (1) more than 10% of
the atoms are lithium, (2) band gap > 2 eV, and (3) energy

Algorithm 1: LIFLOW Inference
Input: Initial position X, lattice L, atom types a,
atomic masses m, temperature 7'
Output: Predicted position x, at 7 = Ngep AT

for i; < 0 to Ny, — 1 do
T+ i;Arand 7’ + (i + 1)AT
Sample df’ ~ N(0, (kgT/m)o?%)
for i + 0 to Ngow — 1 do
t < i/Naow and t' < (i + 1)/Npow
&{’ < Propagator(x,,df’ L, a,t)
df') A df + (af - df)/(l — t)Nfow
(eq. 3)
X, < X, +df /x Propagated x x/
X, < ResolveCollision(X )
Sample d§ ~ N(0, (kgT/m)o?2,)
for ¢ < 0 to Nyow — 1 do
t < i/Npow and t' < (i + 1)/Npow
&10 + Corrector(X,,dS, L, a,t)
df « df + (df —df)/(1 — t) Naow
(eq. 3)
Xy — X+ d?

/* Corrected x x/
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Figure 2. Dataset statistics. (a) Elemental count distribution
across structures in the dataset. (b) Histogram of lithium MSD
values from 25-ps MD simulations at different temperatures.

over the convex hull < 0.1 eV/atom. These criteria are de-
signed to sample various modes of lithium ion dynamics
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across different compositions, while maintaining minimal
requirements for the solid-state electrolytes. After building
a supercell of the structure in order to ensure that each di-
mension is larger than 9 A and minimizing the structure, we
conducted NVT MD simulations with MACE-MP-0 small
model (Batatia et al., 2024) at 600, 800, 1000, and 1200
K for each structure. The initial velocities were assigned
according to the temperature, and the system was propa-
gated for 25 ps with the time step of 1 fs (25,000 steps)
using Nosé—Hoover dynamics (Nosé, 1984; Hoover, 1985)
as implemented in ASE (Larsen et al., 2017). We recorded
the atom positions every ten steps.

The element distribution of the structures are shown in
Fig. 2a, and it encompasses 77 elements over the periodic
table. The lithium MSD per structure over the 25 ps tra-
jectories are shown in Fig. 2b. The results indicate that the
dataset encompasses a wide range of atomic environments
and dynamics, including a sufficient amount of data points
containing diffusive lithium atoms.

3.2. Experiment settings

Dataset split. We divided the structures based on their
composition into training (90%) and testing (10%) sets. We
conducted experiments using three types of splits.

1. Composition split: Trained on 800 K MD trajectories of
training structures and compared the results with 800 K
MD trajectories of testing structures.

2. Temperature split: Trained on MD trajectories of test
structures at all temperatures except the one being tested
(e.g., trained on 800, 1000, 1200 K and tested on 600 K)
and compared with test MD trajectories at that 7.

3. Composition + temperature split: Trained on training
structures at all temperatures except the one being tested
and compared with test MD trajectories at that 7.

Inference setup. We conducted LIFLOW inference itera-
tively for Nyep = 25 steps to simulate dynamics over 25 ps
with a time step of A7 = 1 ps. Each inference step involves
Nipow = 10 flow matching iterations of both Propagator
and Corrector models, resulting in a total of 20 forward
passes of the PaiNN model per LIFLOW step. During each
inference process for a given structure, we terminated when
either the maximum number of steps (N.p) Was reached
or the model prediction diverged due to instabilities. We
then logged the number of stable propagation steps for each
inference.

Metrics. To quantify the prediction of kinetic observables,
we compared the MSD of lithium atoms over 25 ps to the tra-
jectories, calculated as MSDy; = (1/Nwi) 37, .y [[%i,r —
X; 0||? where Ni; is the number of lithium atoms. Since
the raw MSD values span wide orders of magnitude, we

compared the log MSD values to the reference trajectories.
We report the mean absolute error (MAE) and Spearman’s
rank correlation (p) for log MSD predictions, as well as the
number of stable propagation steps in LIFLOW inference.

Regression baseline. We additionally trained a regression
model for log MSD values with initial structure as inputs.
We used the same PaiNN architecture as the Propagator and
Corrector models, but switched the output layer to predict a
single scalar for each node, which are then averaged to give
a structure-level prediction.

3.3. Results

Reproducing kinetic observables. We report the test met-
rics on various splits in Table 1. Throughout our analy-
ses, we found a consistent Spearman correlation around
0.7 across various split scenarios, except for the final split,
which is a particularly challenging case. Given that the
baseline model receives identical input (initial atom posi-
tions) and is directly trained to predict the log MSD values,
it demonstrates better performance on composition splits
and predictions at higher temperatures. Note that the re-
gression baseline does not provide the dynamics of indi-
vidual atoms. However, LIFLOW model exhibits superior
performance in generalizing to lower temperature predic-
tions. This difference in generalizability across different
temperatures may stem from different magnitudes of prior
displacements, which introduces complexity to the gener-
ation process at higher temperatures. Lower temperature
predictions may be effectively learned from data collected
at elevated temperatures, as the prior distribution at lower
temperatures could potentially be encompassed within those
of higher temperatures. This suggests that the model could
leverage information from higher temperature data to inform
its predictions at lower temperatures, offering a potential
explanation for the observed performance disparity.

When trained on trajectories at identical temperatures, the
model mostly overestimate the MSD, resulting in errors
associated with identifying “false positive” fast lithium ion
conductors (also refer to Fig. 3). Given that the true MSD
values are relatively small in these cases (less than 1 A?), the
corresponding structures typically manifest dynamic behav-
ior wherein most lithium atoms remain within their original
crystallographic sites, undergoing vibrations around their
equilibrium positions. This outcome underscores the poten-
tial benefits of integrating pre-trained MLIP features into
the model inputs. These features are inherently informative
about the stability of the current configuration, suggesting
that their incorporation could significantly enhance the pre-
diction accuracy for low-MSD structures.

Effect of the corrector model. As evidenced by the aver-
age number of stable steps in Table 1 and illustrated in Fig. 3,
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Table 1. Prediction results. Mean Absolute Error (MAE) and Spearman rank correlation (p) for the log MSD values (MSD in units of
A?) are displayed for all models, while the average number of stable steps is reported for LIFLOW models. The best results for each split
are highlighted in bold, with the best among LIFLOW models underlined if not bolded.

Composition split

Temperature split

Comp. + temp. split

Model 800 K 600 K 1200 K 600 K 1200 K
REGRESSION PREDICTOR logMSD MAE ({) / logMSD Spearman p (1)
Structure input 0.33/0.77 0.77/0.76 0.55/70.87 0.88/0.66 0.69/0.75
LIFLoOwW logMSD MAE (]) / 1ogMSD Spearman p (1) / Average num. stable steps (1)
Propagator only 0.62/0.57/125 036/0.76/20.6 0.80/0.56/84 0.41/0.67/20.8 0.91/0.22/5.2
Propagator + Corrector ~ 0.70/0.69/243 0.34/0.77/23.8 0.55/0.68/21.1 0.36/0.72/24.4 0.78/0.48/19.2
25 . . .
— 2] Propagator only | Propagator + Corrector Y pletes in 1.8 seconds, resul.tlng in approximately a 300x
< : 208 speedup compared to MD simulation.
2 1 S ] °
o 153 .
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Figure 3. Effect of the corrector model. The scatter plot of the
true and predicted log MSD values from the composition split
experiment at 800 K, comparing the performance of the Propaga-
tor-only and Propagator + Corrector LIFLOW models.

we observed enhanced stability in propagation when utiliz-
ing the Corrector model. In contrast, the Propagator-only
model struggled to propagate atomic positions over signifi-
cant distances, resulting in log MSD values hovering below
1. The stochastic nature of the LIFLOW Propagator model
necessitates a substantial dataset size to adequately cover the
distribution of potential atomic movements over extended
time intervals. However, since the data collection relies on
MD simulations using MLIPs across diverse materials stuc-
tures, it is challenging to gather a sufficiently large amount
of data, as with the biomolecular simulations using classical
force fields (e.g., Klein et al. (2024) and Schreiner et al.
(2024)). Consequently, errors in Propagator predictions are
inevitable, compounded by the autoregressive nature of in-
ference, leading to divergence in propagation over time. The
Corrector model addresses this issue by mapping erroneous
atom positions after propagation to align with thermally
plausible distributions, thereby stabilizing propagation and
enabling longer simulation steps.

Prediction speed. Experiments were performed using a
single NVIDIA RTX A5000 GPU. For a 2 x 2 x 1 supercell
of LGPS (Li;0GeP,S 2, mp-696128) containing 200 atoms,
a 25,000-step NVT MD simulation requires 530 seconds.
In contrast, LIFLOW model inference with Ngep, = 25 com-

molecular dynamics (MD) simulations. The model is com-
posed of Propagator and Corrector components, which uti-
lizes a conditional flow matching scheme to predict atomic
displacements for time propagation and denoising, respec-
tively. Our model achieves Spearman’s rank correlation of
approximately 0.7 when reproducing mean squared displace-
ment (MSD) values on compositionally and thermally split
test structures. Remarkably, LIFLOW achieves a speedup
of about 300x compared to reference MD simulations with
machine learning interatomic potentials (MLIPs). While
our model exhibits a tendency to overestimate MSD values
for non-diffusing structures, we aim to address this issue
by incorporating features from pretrained MLIP models to
develop energy-aware propagation models, enhancing the
accuracy and robustness of our approach.

While the underlying assumption regarding the sufficient
accuracy of electronic structure calculations and MLIP ap-
proximations generally holds, recent reports (Deng et al.,
2024) indicate that MLIPs may smooth the potential energy
landscape and lead to an overestimation of kinetic proper-
ties. Therefore, it’s essential to consider the accuracy of the
reference dynamics. However, the methodology employed
in the current study is focused on rapidly screening poten-
tial electrolyte materials, prioritizing speed over absolute
accuracy in generating dynamics. Beyond facilitating high-
throughput virtual screening for electrolyte materials, we
envision that based on an efficient and differentiable descrip-
tion of ionic transport, future application of our framework
will enable inverse design and optimization of electrolyte
materials.
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