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ABSTRACT

Real world data often exhibits unknown, instance-specific symmetries that rarely
exactly match a transformation group G fixed a priori. Class-pose decompositions
aim to create disentangled representations by factoring inputs into invariant features
and a pose g ∈ G defined relative to a training-dependent, arbitrary canonical
representation. We introduce RECON, a class-pose agnostic canonical orientation
normalization that corrects arbitrary canonicals via a simple right-multiplication,
yielding natural, data-aligned canonicalizations. This enables (i) unsupervised
discovery of instance-specific pose distributions, (ii) detection of out-of-distribution
poses and (iii) a plug-and-play test-time canonicalization layer. This layer can be
attached on top of any pre-trained model to infuse group invariance, improving its
performance without retraining. We demonstrate results on 2D image benchmarks
and extend unsupervised instance-level pose discovery to 3D groups.

Class-pose RECON
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(a) Inputs with identical ±30◦ symmetries.
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(b) Relative distributions ν[x] ( ) vs normalized dis-
tributions µ[x] ( ) via RECON.

ptrain
ptest

Canon.
(RECON)

Canon.
(arbitrary)

(c) Distribution shift (ptrain vs ptest) induced by unseen
symmetries at test time, corrected by RECON.

Figure 1: (a) Class-pose methods assign arbitrary (often out-of-distribution) canonicals per class. (b)
This leads to distinct relative-pose distributions ν[x], obscuring the shared ±30◦ symmetries. RECON
corrects these offsets, mapping inputs under the same symmetries to the same distribution µ[x] and
extracting their natural pose γ. (c) Our data-aligned canonicalization removes symmetry-induced
distribution shifts, improving downstream performance of pre-trained backbones without architectural
changes or retraining.

1 INTRODUCTION

Symmetry transformations like rotations arise naturally in many domains (Cohen & Welling, 2016;
Higgins et al., 2018; Bronstein et al., 2021), with objects appearing in poses related by group
transformations g ∈ G (e.g., molecules in different orientations) (Weiler et al., 2018; Brandstetter
et al., 2022). While G-equivariant neural networks exploit such structure (Cohen et al., 2019; Romero
et al., 2020; Romero & Cordonnier, 2020; Wang et al., 2020; Cohen et al., 2018), they can be overly
constrained when there is a mismatch between the pre-fixed group G and the symmetries in the
data (Romero & Lohit, 2022; Weiler & Cesa, 2019). In effect, real-world symmetries are often (i)
unknown a priori, (ii) partial (covering only part of the group), or (iii) instance-dependent. This
motivates methods that discover symmetries from data (van der Linden et al., 2024; Forestano et al.,
2023; Benton et al., 2020; Allingham et al., 2024).
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(a) SGM (b) IE-AE (c) RECON (Ours)

Figure 2: Comparison of canonical representations. Top row: Input MNIST digits under varying
rotations. Bottom row: canonicals generated by (a) SGMs(Allingham et al., 2024) and (b) IE-
AE (Winter et al., 2022), which yield arbitrary orientations, while RECON consistently produces
data-aligned canonical poses (upright digits) (c).

However, existing approaches often require supervision or learn only dataset-level patterns (Sec. 4).
Our goal is to discover, in an unsupervised manner, the group transformations inherent to each
instance; in particular, we aim to learn probability distributions on G that describe the poses in
which each instance appears in the data.1 We argue that a promising foundations lies on class-
pose decomposition methods (Winter et al., 2022; Marchetti et al., 2023; Yokota & Hontani, 2022;
Allingham et al., 2024), which disentangle inputs into invariant class features and a pose g∈G relative
to a learned canonical representation. The canonical’s orientation is generally arbitrary (Winter et al.,
2022; Allingham et al., 2024), which results in an out-of-distribution (OOD) canonicalization and in
arbitrarily shifted relative-pose distributions (Fig. 1).

We address arbitrary canonicals and propose a framework for Robust unsupervised discovery of
intrinsic symmetry distributions via Explicit Canonical Orientation Normalization (RECON). We
prove (Proposition 3.1) that by estimating the centroid (Fréchet mean) of the observed relative
poses, which captures the offset induced by the arbitrary canonical, we can approximate symmetry
distributions centered at the input’s natural pose via a simple right-multiplication. This yields
instance-specific symmetry descriptions that are robust (independent of the arbitrary canonical),
interpretable (centered at e∈G, representing the input’s natural pose), and comparable across classes
(Fig. 1b). RECON is validated on 2D image benchmarks and 3D molecular conformations – beyond
typical 2D-only settings of prior work (van der Linden et al., 2024; Romero & Lohit, 2022; Benton
et al., 2020; Allingham et al., 2024; Kim et al., 2024). Lastly, we provide practical applications in (i)
OOD pose detection and (ii) test-time canonicalization, a drop-in method to grant group invariance to
frozen pre-trained models, improving downstream performance (Sec. 5.2).

Contributions

1. We propose RECON, a method for discovery of instance-specific pose distributions from unlabeled
data leveraging class-pose representation learning methods.

2. We achieve this through canonical orientation normalization (Proposition 3.1), an architecture-
agnostic correction of arbitrary canonicals, yielding data-aligned natural canonicalizations and
well-behaved symmetry distributions.

3. We empirically validate on 2D images and large-scale, real-world 3D data. We offer applications
in OOD pose detection and test-time canonicalization, offering performance improvements to
pre-trained backbones via a simple plug-in canonicalization step.

Our code is publicly available at link-hidden-for-double-blind-review.

2 PRELIMINARIES

Our approach leverages class-pose decomposition methods, a class of neural networks designed to
disentangle input data into an invariant (class) component and an equivariant (pose) component based
on a given transformation group G. In particular, we build upon Invariant-Equivariant Autoencoders
(IE-AEs) (Winter et al., 2022). We briefly review the core concepts here; formal definitions regarding
group theory, representations and G-equivariance are deferred to Appendix A.

IE-AEs aim to learn group invariant and equivariant representations for an input x ∈ X of a vector
space, e.g., an image or a 3D structure. For a chosen group G, an IE-AE maps x to a G-invariant
component z ∈ Rn and a G-equivariant group element (pose) g ∈ G.2

1Note how this differs from estimating the stabilizer Sx describing the (self) symmetries of x (cf. Appx D.1).
2Figure 7 in the Appendix, adapted from Winter et al. (2022), visualizes this architecture.
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Invariant component z and canonical representation x̂ First, a G-invariant encoder η : X →
Z ⊆ Rn learns an invariant representation z = η(x). This embedding z captures features of the input
that are independent of its pose under G, meaning z remains unchanged if x is transformed by any
element of the group. A corresponding decoder δ : Z → X then reconstructs the input x̂ = δ(z)
from this invariant representation. Note that since the decoder only sees the invariant embedding
z = η(x), it will produce the same reconstruction x̂ = δ(η(x)) for all group transformations of the
input. This common reconstruction x̂ is called the canonical representation. Notably, the specific
pose or orientation of x̂ is arbitrary, influenced by initialization or training dynamics (Winter et al.,
2022). This behaviour is common to other class-pose decomposition methods (Yokota & Hontani,
2022; Allingham et al., 2024).

Pose component g The canonical x̂ has some fixed, arbitrary pose. To recover the original
input x, we have to determine the specific group transformation g ∈ G that maps x̂ back to x.
This is the role of the group function ψ : X → G, which predicts this transformation g = ψ(x).
All the IE-AE components (η, δ, ψ) are then trained jointly by minimizing the reconstruction loss
d(ρX (ψ(x)) δ(η(x)), x),3 where ρX is the group action of G on X .

In summary, IE-AE provides an invariant latent vector z=η(x), an arbitrary canonical x̂=δ(z), and
the relative group transformation g=ψ(x) that maps the canonical x̂ back to x. Our method leverages
these components, specifically the distribution of relative transformations g=ψ(x) and the invariant
latent space Z , to discover the specific distribution of transformations that appear in the data.

3 METHOD

3.1 PROBLEM STATEMENT

Z
[x]

µ[x]

γ[x]

Figure 3: Problem setup. Left: A class [x]
is defined by inputs clustering together in the
invariant space Z . Right: We model instances
s ∈ [x] as ρX (g)γ[x]+εs, where γ[x] is a refer-
ence frame and g is drawn from a distribution
over rotation angles µ[x]. The objective is to
recover µ[x] from the unlabeled data.

Our goal is to discover the characteristic distribu-
tion of symmetry transformations associated with
different classes of objects within unlabeled data X .
Consider datasets such as GEOM (Axelrod & Gómez-
Bombarelli, 2022), where each molecule class is rep-
resented as an ensemble of multiple 3D molecular
conformations; or MNIST, where same digits share
an underlying shape under varying handwriting styles.
Generally, variations within these classes are a com-
bination of (a) non-group structural distortions (e.g.,
bond rotations or ring puckering in molecules; style
variations in digits) and (b) transformations from a
symmetry group G (like SO(3) rotations of molecu-
lar conformations). We specifically aim to model the
distribution of the underlying group transformations.
Therefore, to achieve this goal, we first need to (i) define a way to group objects based on their
intrinsic shape or similarity – independently of their pose or minor deformations and under the
absence of labels, and (ii) model their pose variations.

(i) Modeling pose-invariant similarity We model pose invariant similarity through equivalence
classes. The G-invariant latent space typical of class-pose decomposition methods is a promising
candidate for this purpose. In effect, we rely on the principle that structurally similar objects generally
map to nearby points in Z . This assumption is empirically supported by previous work in class-pose
decompositions methods showing thatZ maps different classes into well-separated connected clusters
(see t-SNE visualizations of Z in IE-AEs (Winter et al., 2022)). Additionally, it aligns with broader
findings indicating that deep features correctly capture perceptual and semantic similarity, even when
learned without supervision (Zhang et al., 2018).

Formally, let η : X → Z be such a G-invariant encoder, we then define an equivalence relation ∼ε in
X based on connected proximity in Z:

x ∼ε y ⇐⇒ ∃{xi}Ni=0 ⊆ X for some N ∈ N s.t. x0=x, xN =y, and dZ(η(xi), η(xi+1)) < ε∀i

3Any estimator ψ satisfying the proposed reconstruction loss is G-equivariant as proved in Winter et al.
(2022).
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where dZ is a norm-induced distance in Z and ε > 0 is a small threshold. Intuitively, this equivalence
relation groups objects whose invariant features form a connected component (Fig. 3, left). We denote
the resulting equivalence class containing x as [x].4 We empirically validate this equivalence class
definition in Appendix D.3, confirming effective capture of pose-invariant similarity, and analyze its
limitations in detail.

(ii) Modeling pose variations Having established the classes [x], we now focus on modeling the
distribution of group transformations responsible for pose variations within each class. We model
this as a probabilistic process.

Conceptually, there exists some true underlying probability distribution µ[x] that governs how in-
stances s ∈ [x] are generated by transforming some reference pose γ[x] ∈ X plus residual non-group
variations. Formally, let G be a Lie group and consider µ[x] a probability distribution over G. We
assume that instances s ∈ [x] can be generated by sampling a transformation g ∼ µ[x] and applying
it to a reference pose γ[x], plus a deviation term εs ∼ Pε′ :

s = ρX (g)γ[x] + εs, with g ∼ µ[x], εs ∼ Pε′ . (1)

Here, µ[x] represents the true probability distribution relative to the reference pose γ[x]. The distribu-
tion Pε′ models variations that are not explained by the group transformation (e.g., style variations in
digits, internal conformational changes in ensembles of molecules) and is assumed to have zero mean
and small variance (we assume ||εs|| < ε′ almost surely for simplicity). Fig. 3 (right) illustrates this
model.

Note that under this model, there are several ways of representing the symmetries in the data,
depending on the reference pose γ[x]. Consider a dataset of handwritten ‘7’s exhibiting rotational
symmetries uniformly between ±30◦: { 7, . . . 7, . . . 7 }. Using this model, we can describe the
symmetries in this dataset as µ[7] = U([150◦, 210◦]) for a reference pose γ[7] =‘

7

’, or as µ[7] =
U([−30◦, 30◦]) for a reference pose γ[7] =‘7’. While both descriptions are mathematically valid, the
latter, identity-centered representation is far more desirable. It aligns with our intuition of a naturally
occurring pose and directly reflects the symmetries as deviations from a neutral reference frame (e,
no transformation), which offers several advantages (as demonstrated in Sec. 5).

0 /2 3 /2 2
Angle (rad)

Pr
ob

ab
ilit

y

Probability density
Highest probability

Fréchet
Tukey Fréchet

Figure 4: Estimator compari-
son for different distributions
over SO(2).

Defining a natural pose Ideally, we aim to obtain such identity-
centered descriptions of the data symmetries. As we have just ex-
emplified, this boils down to obtaining the symmetry distribution
µ[x] whose γ[x] is the “natural” pose in the data – like the upright
‘7’ – centered at the group identity. But without labels defining what
a reference or true canonical pose is, how can we define a natural
pose? Specifically, how can we obtain a canonical pose that is ge-
ometrically grounded in the symmetries in the data – rather than just
an arbitrary pose?

While the most likely pose (i.e., with maximum probability den-
sity) may seem like a good candidate – for instance in the case of
Gaussian or other unimodal distributions – it can be ill-defined (e.g.,
for uniform distributions, see Fig. 4, top) or not representative (e.g.,
in the case of a distribution with an anomalous sharp spike in its
density, Fig. 4, middle). To establish a general definition, we use
the Fréchet mean (Pennec, 2006) or Riemannian center of mass,
a measure of the central tendency of the distribution on the group
manifold. Given any distribution µ over G, its Fréchet mean F(µ) is the unique transformation
minimizing the expected squared Riemannian distance dR to samples from µ:

F(µ) = argminy∈G Eg∼µ[dR(y, g)2]. (2)
Under mild conditions, the Fréchet mean provides a unique centroid (Afsari, 2011) that aligns with
intuition for common cases: it corresponds to the midpoint for symmetric uniform distributions and
the peak for strongly unimodal ones (e.g. Gaussian). However, in certain multimodal cases, e.g., a
bimodal distribution on SO(2) with opposing identical peaks (Fig. 4, bottom), the Fréchet mean may

4While we use this definition throughout our theoretical derivations (see Proofs B), in practice, we approxi-
mate the classes [x] by simply computing the k-nearest neighbors of η(x) in Z for efficiency (see Algorithm 1).
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fall outside the support of µ. This would lead to an out-of-distribution canonicalization, affecting
downstream tasks (Sec. 5.2). Therefore, we propose a robust Fréchet mean extension based on robust
M-estimators (Shevlyakov et al., 2008) that we coin the Tukey-Fréchet mean Fr(µ):

Fr(µ) = argmin
y∈G

Eg∼µ[m(dR(y, g); c)], (3)

where m(u; c) is the Tukey biweight loss (Shin & Oh, 2022; Rousseeuw & Hubert, 2011). This
variation extends the Fréchet mean and converges consistently to the same mode in multimodal
distributions (cf. Appendix C). For simplicity, we derive our theoretical framework with the classical
Fréchet mean, whose properties are well established, but in practice, the robust Tukey-Fréchet can be
used as a drop-in replacement.

We thus define our target distribution µ[x] in equation 1 as the probability distribution over G that is
centered at the group identity e in the Fréchet sense, i.e., satisfying F(µ[x]) = e. Consequently, the
reference pose γ[x] (the natural pose) corresponds implicitly to the Fréchet mean (i.e., the upright ‘7’
in the previous example). Our objective is to estimate this well-behaved µ[x] from unlabeled data.
The subsequent section details our method for achieving this by normalizing the arbitrarily offset
outputs of IE-AEs.

3.2 RECOVERING SYMMETRIES VIA CANONICAL ORIENTATION NORMALIZATION

The core idea is to leverage the disentangled representation (z, g) ∈ Z × G of the IE-AE to extract
the symmetry distribution of an input, and correct for the arbitrary canonical pose to yield a canonical-
pose independent distribution. Our main result provides a way to recover the true symmetries µ[x]

from the relative transformations ψ(x). We provide a proof in Appendix B

Proposition 3.1 (Approximation of µ[x] via Normalization). Let X be a metric space, G a Lie group
and η, δ, ψ an IE-AE where ψ is continuous on a compact domain X . Suppose that X exhibits
symmetries characterized by µ[x] where F(µ[x]) = e as described above. Consider a random
sample {si}Ni=1 of [x] and denote their images by ψ as ψ([x]) = {ψ(si)}Ni=1. Let Γ̂[x] ∈ G be
the empirical Fréchet mean of ψ([x]). Then, the empirical distribution µ̂[x] corresponding to the
normalized samples ψ([x])Γ̂−1

[x] approximates the target distribution µ[x]. Specifically, µ̂[x] converges
in Wasserstein distance to µ[x] as ε′ → 0 and N →∞.

Algorithm 1 Canonical orientation normalization

Require: Trained IE-AE (η, δ, ψ), input x, number of
neighbors k

1: Compute invariant embedding: z ← η(x)
2: Find k-nearest neighbors sj of x based on
dZ(η(sj), z) to approximate class [x]

3: Collect relative transformations:
ψ([x])← {ψ(sj) | sj ∈ k-NN(x)}

4: Estimate offset via Fréchet mean:
Γ̂[x] ← argminy∈G

∑
gi∈ψ([x]) dG(y, gi)

2

5: Compute inverse offset: Γ̂−1
[x]

6: Compute normalized transformations:
ψ′([x])← {giΓ̂−1

[x] | gi ∈ ψ([x])}
7: return ψ′([x]) ▷ Samples approximating µ[x]

Interpretation. Proposition 3.1 provides
a practical method for consistently retriev-
ing µ[x] through canonical orientation
normalization, outlined in practice in Al-
gorithm 1. The process involves identify-
ing the class [x] and collecting the rela-
tive transformations ψ([x]) (representing
poses relative to the arbitrary canonical x̂).
The distribution of transformation in this
set is offset w.r.t. µ[x] by a translation in-
duced by the canonical pose, which can be
estimated through the empirical Fréchet
mean Γ̂[x] of the observed transformations
ψ([x]). Then, right-multiplying by the in-
verse Γ̂−1

[x] corrects this offset and centers
the Fréchet mean at the identity consis-
tently for all classes. This removes the
influence of the arbitrary choice of the canonical pose x̂, providing a geometrically meaningful
canonical (centered at the Fréchet mean) and enabling the retrieval of symmetry distributions with
useful properties, as we show in our experiments (Sec. 5).

3.3 INFERRING SYMMETRIES VIA LEARNED MAPPINGS

Algorithm 1 provides a way to estimate the symmetry distribution and the centering transformation
for any class in the training data. To enable efficient inference for unseen inputs without explicit
class computations at test time, we can train learnable mappings. If µ[x] has a known parametric form

5
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(or we approximate it parametrically), its parameters θ[x] can be estimated as

θ̂[x] = φ
(
ψ ([x]) Γ̂−1

[x]

)
, (4)

where φ is an appropriate estimator for the parameters of the distribution, e.g., maximum likelihood.
Consider the estimates θ̂[x] and Γ̂[x]. We can learn two maps using these estimates as pseudo-labels:

• A map Θ predicting the parameters of the symmetry distribution of an input by minimizing
Lp= dθ(Θ(x), θ̂[x]),
• A map Λ : X → G, predicting the centering transformation by minimizing Lc= dG(Λ(x), Γ̂[x]),

where and dθ, dG are appropriate distances. The first mapping generalizes the estimation process:
at test time, given x, we can predict its symmetry parameters as θ̂ = Θ(x) without requiring class
computations. The second mapping allows us to obtain our RECON canonicalizations during inference
as C(x) = ρX (Λ(x) · ψ(x)−1)x. Additionally, we can use these functions in combination to detect
out-of-distribution symmetries Section 5.2. We model Θ and Λ as G-invariant networks, ensuring
that predictions depend only on the object’s class [x], not its specific input pose.

4 RELATED WORK

Class-pose decomposition methods Unsupervised learning of disentangled invariant and equiv-
ariant representations via autoencoders or other learning paradigms has seen various propositions
(Shu et al., 2018; Guo et al., 2019; Feige, 2019; Kosiorek et al., 2019; Koneripalli et al., 2020;
Winter et al., 2021; 2022; Yokota & Hontani, 2022). In this work, we build on top of the IE-AE
framework (Winter et al., 2022). Our main contribution is the discovery of the transformations in the
data via an invariant latent space search coupled with an explicit canonical orientation normalization
step (Proposition 3.1), which corrects the pose offset introduced by arbitrary canonicals typical of
class-pose decomposition methods like the IE-AE. In principle, however, this approach can be applied
to any method which factors inputs into an invariant component and a symmetry component. For
instance, Quotient Autoencoders (Yokota & Hontani, 2022) also learn canonical representations in a
similar spirit; Marchetti et al. (Marchetti et al., 2023) proposes a class-pose decomposition network
akin to IE-AEs, albeit with a different learning paradigm and advantages; SGMs (Allingham et al.,
2024) also feature a canonical representation or prototype and a relative transformation component.
Our approach remains compatible with such backbones.

Learning symmetries from data While standard group equivariant networks impose fixed symme-
tries (Cohen & Welling, 2016; Cohen et al., 2018; Weiler et al., 2018; Weiler & Cesa, 2019; Cohen
et al., 2019; Romero et al., 2020; Romero & Cordonnier, 2020; Wang et al., 2020), recent effort
have focused on learning symmetries from data. Approaches like Augerino (Benton et al., 2020)
learn data augmentations for non-equivariant models, while others implement relaxed equivariance
constraints. Partial G-CNNs modulate the equivariance per-layer by learning a distribution over the
group (Romero & Lohit, 2022); Residual Pathway Priors (Finzi et al., 2021) propose handling partial
equivariances through a combination of equivariant and non-equivariant models. These methods
require supervision or learn dataset-level transformations rather than instance-specific distributions.
Recently, Variational Partial Group Convolutions (VP G-CNNs)(Kim et al., 2024) extended Partial
G-CNNs to adapt to instance-level symmetries with a variational inference approach. While they
can compute a class-dependent “equivariance error”, this method does not expose a clear symmetry
distribution for each input. Equivariance via weight-sharing patterns (Ravanbakhsh et al., 2017; Yeh
et al., 2022; Zhou et al., 2021) can also be leveraged to adapt to partial or dataset-level symmetries.
Akin to Partial G-CNNs, WSCNNs (van der Linden et al., 2024) introduce layers that can adjust their
equivariance based on the data by modulating the weight-sharing pattern. This approach learns a sin-
gle set of transformations per layer, while our method discovers instance-level symmetry distributions
instead.

Another line of work aims to learn a dataset-level symmetry (sub)group H ≤ G (or generators) of
a prescribed ambience group G from data. LieGG (Moskalev et al., 2023) extracts infinitesimal
generators from a trained model to reveal learned invariances; LieGAN (Yang et al., 2023) adver-
sarially learns Lie algebra generators and a dataset-level distribution over coefficients on the group,
discovering subgroups of a prescribed G without supervision, as well as subsets of the group through
regularization strategies; LaLiGAN (Yang et al., 2024) lifts to a latent space to capture non-linear
actions. Other methods reason through Lie derivatives (Otto et al., 2025) or extend to broader types
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of symmetries (Forestano et al., 2023; Shaw et al., 2024; Ko et al., 2024). In contrast to these
methods, our approach discovers instance-specific distributions of symmetries over a group G and a
data-aligned canonicalization function without supervision, rather than discovering a dataset-level
(sub)group G itself. We emphasize that our method is complementary and a continuation to this line
of work: these approaches can be used to infer a suitable G for all the data, while RECON aims to
infer instance-level distributions and a test-time canonicalization operator.

Symmetry-aware Generative Model (SGM) (Allingham et al., 2024) is the most closely related
method in terms of instance-level granularity. SGM uses a flow-based model to learn the relative
distribution of transformations. However, this distribution is relative to an arbitrary canonical, which
presents several disadvantages that RECON addresses (Figures 1, 2, 5b). Note that SGM is a class-
pose decomposition method, and therefore is compatible with RECON. Preliminary work (Urbano &
Romero, 2024) on class-pose methods proposed enforcing a constraint on the group action estimator
via a regularization term, which can be leveraged to learn symmetries, but this often leads to
degenerate solutions where ψ(x)≈ e for all x, limiting symmetry learning. Other methods model
probability distributions over the group. Implicit-PDF (Murphy et al., 2022) models instance-level
distributions over SO(3) with an implicit density and pose supervision; Alignist (Vutukur et al.,
2024) estimates orientation distributions using CAD shape priors and correspondence distributions.
In contrast, RECON requires neither pose labels nor CAD models and operates on general groups
supported by the class-pose backbone.

Test-time canonicalization. Other works can grant model-agnostic group invariance to pre-trained
models by inserting a small canonicalization in front of them. Spatial Transformer Networks
(STN) (Jaderberg et al., 2015) learn an input-dependent geometric warp via a small network which
can be seen as a group-free form of canonicalization, but it is typically trained end-to-end with
a discriminative objective and requires joint training with the predictor. Equivariant Adaptation
(EquiAdapt) (Mondal et al., 2023) places an equivariant canonicalizer before the frozen predictor
and trains only the canonicalizer using a canonicalization prior; for smaller classifiers they also
propose joint fine-tuning of the predictor. In both cases, training the canonicalization is tied to a
specific pretrained model and its size. In contrast, our canonicalization is trained independently of
the downstream model and can be plugged in front of any model that operates on the same input
domain. In a similar fashion, Affine Steerable EquivarLayer (Li et al., 2025) learn a canonicalizer
trained independently of the pre-trained model, but we note that it is trained using known random
transforms, i.e. pose labels. Our canonicalization, however, is obtained without any supervision.

5 EXPERIMENTS

We empirically validate RECON on diverse datasets and rotational symmetry distributions. In par-
ticular, we use benchmark image datasets and a large-scale, real-world geometric graphs dataset
exhibiting known ground truth SO(2) and SO(3) rotational symmetries respectively. We focus on
rotation groups since rotations have been recognized as a significant challenge (specially in 3D)
by several studies (Zhao et al., 2020; Shen et al., 2021) even for small (<15◦) angles (Sun et al.,
2022), but our framework remains general. All our results are on test data, using the learned Θ
and Λ predictors trained with the pseudo-labels obtained through Algorithm 1 (Sec. 3.3). Further
experimental details are provided in Appx. E.

5.1 RECOVERING SYMMETRIES

Imaging We first validate RECON on rotated MNIST and FashionMNIST (Axelrod & Gómez-
Bombarelli, 2022) datasets where different classes exhibit distinct rotational symmetry patterns. For
MNIST, we apply random rotations drawn uniformly from ±60◦ for digits 0-4 and ±90◦ for digits
5-9. For FashionMNIST, we apply rotations drawn from a Gaussian N (0, σ) with σ=0 for classes
0-2, σ=32 for classes 3-5 and σ=64 for classes 6-9. We aim to discover these input-dependent
symmetries from the unlabeled datasets. Canonicalization plots (Fig. 2) show RECON’s consistent,
upright canonicals across classes, compared to other class-pose backbones. In Figure 9 Col.3, we
visually confirm that our normalized distributions match the true sampling regime applied to each
class in the MNIST experiment. Note how this clear distinction and direct interpretability is lost when
analyzing the unnormalized, relative distributions from the class-pose backbone (Figure 9 Col.2).
Figure 5a shows quantitative results for MNIST (top) and FashionMNIST (bottom), confirming that
the predicted distribution parameters (given by Θ(x)) align closely with the ground truth parameters,
even when these symmetries stem from distributions with different shapes and scales per-class. We
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(a)

Input Canonical
(IE-AE)

Canonical
(RECON)

(b)
AUC-ROC (↑)

Experiment IE-AE RECON

MNIST 0.79 0.91 (±8e−4)

FashionMNIST 0.71 0.81 (±3e−4)

GEOM-QM9 0.76 0.82 (±2e−2)

(c) (d)

Figure 5: (a) True ( ) vs predicted ( ) parameter of the label-dependent symmetry distribution in MNIST (top)
and FashionMNIST (bottom) experiment. (b) Canonicals for digits of the class 6 (first row) and 9 (second row)
obtained with IE-AE and RECON. (c) Out-of-distribution detection performance with IE-AE and RECON. (d)
Histogram of average prediction error across molecules and a scatter plot of their standard deviations for GEOM.

obtain these results using k=10 neighbors for the class computation [x], which we found to give the
best performance (details in App. D.2).

A notable strength of RECON is its ability to pick up on partial symmetries. RECON canonicalizations
can distinguish between distinct classes that are related by a group transformation – such as digits ‘6’
and ‘9’, which are related by a 180◦ rotation – as opposed to the IE-AE canonicalizations, which
collapse both classes into the same canonical5 (Fig. 5b). This sensitivity to the data’s contextual
orientation allows RECON to handle cases beyond perfect group orbits where full equivariance is
inappropriate. We discuss this in detail in Appendix D.4.

Geometric graphs To demonstrate RECON’s ability to discover symmetries in higher-dimensional
groups and complex data, we apply it to the Geometric Ensemble of Molecules (GEOM) dataset (Ax-
elrod & Gómez-Bombarelli, 2022), which provides multiple molecular conformations (i.e., unique 3D
geometries or conformers) for several classes of molecules. We focus on the the QM9 (Ramakrishnan
et al., 2014) subset of GEOM, and to ensure sufficient pose variation in each molecule class, select
only molecules with at least 64 distinct low-energy conformers. This results in approximately 175k
samples for training, 21k for validation, and 24k for testing across 2, 221 distinct classes of molecules,
which can be identified by their SMILES (Anderson et al., 1987) string (more details in Appx. E).
We then apply random SO(3) rotations to each molecule class to create ground truth pose variations.
Specifically, subsets of molecules are rotated using three distinct matrix-Fisher distributions (Mar-
dia & Jupp, 2009), each centered on a different axis e1, e2, e3 to simulate rotations around a fixed
direction. These parameterized distributions {M(F 1

true),M(F 2
true),M(F 3

true)} are visualized on
the sphere following Mohlin et al. (2020), where brighter regions indicate preferred orientations. For
instance, in Fig. 6a, rotations of C[C@@]1(O)C[C@H]1[C@@H](O)CO conformers are sampled
fromM(F 1

true), which perturbs the e1 axis locally while the orthogonal axes rotate around it freely
forming a ring.

Figure 6 evaluates how accurately RECON recovers each molecule’s SO(3) symmetry distribution
by measuring per-molecule average MSE between the true and predicted matrix-Fisher parameters.
Panels (a-c) visualize randomly sampled molecules from three error regimes – low, average, and high
MSE based on percentiles. The panel visualizations show close alignment between the predicted
and the true distributions for molecules in the low and average error regime. Figure 5d provides
a global view, showing the histogram of MSE and their standard deviations. In general, about
80% of molecules fall within a region of accurate predictions (approx. MSE < 800 based on
visualizations), demonstrating RECON’s ability to capture diverse SO(3) symmetry patterns from
large-scale, unlabeled, realistic 3D data. Interestingly, we observe no clear correlation between
MSE and (i) molecular size, (ii) flexibility in conformational variation or (iii) reconstruction error

5This limitation can also be observed in SGMs (Allingham et al., 2024).
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Input Canon. Reconst. True sym. Pred. sym.

(a) Low-error sample, MSE=173.71.

Input Canon. Reconst. True sym. Pred. sym.

(b) Average-error sample, MSE=368.91.

Input Canon. Reconst. True sym. Pred. sym.

(c) High-error sample, MSE=1074.76.

Dataset
(Train / Test) Backbone Canon. Canon.

Supervision
Test Acc.

(↑)

MNIST
(Orig / Rot) ResNet18

- - 65.11± 0.9%
IE-AE ✗ 13.60± 4.2%

EquiAdapt ✓ 94.52± 0.6%
RECON ✗ 90.96± 0.5%

F-MNIST
(Orig / Rot) ResNet18

- - 57.14± 0.1%
IE-AE ✗ 11.55± 1.2%

EquiAdapt ✓ 79.44± 1.4%
RECON ✗ 81.96± 0.3%

GEOM-QM9
(Orig / Rot) GCN

- - 52.40± 0.0%
IE-AE ✗ 30.80± 0.0%

EquiAdapt ✓ 52.96± 0.9%
RECON ✗ 55.92± 0.3%

(d) Test accuracies obtained using different test-time
canonicalizations in pre-trained classifiers.

Figure 6: (a-c) Test-time comparison for molecules randomly sampled from low error (≤ p10
tenth percentile average per-molecule MSE), average error (p45 − p55), and high error (≥ p90)
regimes. For each selected molecule, four sample conformers are shown using a ball-and-stick model,
displaying: (column 1) input conformer, (2) our canonical reconstruction, (3) final reconstruction, (4)
true symmetry distribution (constant for the molecule), and (5) per-conformer predicted symmetry
distribution. (d) Test-time canonicalization experiment on the per-class rotated dataset variants.

(Figure 14, reconstruction losses defined in Appendix E.2.4). This indicates that our symmetry
estimates are robust to conformational complexity, and that the remaining error stems from other
sources (see limitations in Sec. 6). RECON also demonstrates remarkable data efficiency, providing
accurate symmetry distributions inferences in a dataset where most molecule classes have just a
few (<100) number of conformers per class (Fig 13b), highlighting its ability to work with limited
per-class data.

5.2 DOWNSTREAM APPLICATIONS

OOD pose detection The centered distributions recovered by RECON yield a natural anomaly score.
Given predictors Θ(x) and Λ(x) (Sec. 3.3), consider the absolute pose gabs = ψ(x)Λ(x)−1. Then,
the likelihood of gabs under the distribution parameterized by Θ(x) serves as an anomaly score:

s(x) = − log pΘ(x)

(
gabs

)
. (5)

Low s(x) indicates in-distribution, while high s(x) flags OOD. We empirically validate this by
classifying randomly oriented SO(2) (images) and SO(3) (GEOM) test instances, showing strong
OOD detection (AUC-ROC in Table 5, measuring separability between in and OOD predictions).
While this score is reference-frame invariant in theory (we provide a proof in Prop. B.2), centering
via RECON improves optimization, resulting in consistently higher AUC-ROC scores against IE-AE
(full ablation details in Appendix F.1, ROC curves in Fig. 15).

Test-time canonicalization RECON’s data-aligned canonicalizations can be used to create a drop-
in layer that grants group invariance to frozen backbones (e.g., classifiers, foundation models) at
inference, with no retraining. Concretely, we canonicalize inputs at test time via a canonicalization
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layer defined as C(x) = ρX (Λ(x) · ψ(x)−1)x, and feed the canonicalized sample to the pre-trained
model; because RECON aligns inputs to the training data distribution of poses (visualized in Fig. 1d),
it recovers a large fraction of the accuracy lost to test-time transformations.

Figure 6d shows considerable performance gains in classifiers. We improve consistently over the base-
line and offer competitive (MNIST) or better performance (FashionMNIST, GEOM-QM9) against
other test-time canonicalization methods such as EquiAdapt (Mondal et al., 2023), while noting that
our canonicalization is trained without supervision, whereas EquiAdapt’s canonicalization is trained
end-to-end using class labels. Notably, in the imaging domain, our method consistently outperforms
equivariance-learning architectures (SE(2) Partial G-CNNs (Romero & Lohit, 2022)) sometimes by a
large margin (67.72% vs 81.96% in FashionMNIST), and stay competitive (MNIST) or even surpass
(FashionMNIST) fully equivariant architectures (SE(2)-equivariant Steerable CNNs (Cesa et al.,
2022)) (cf. Table 3). Note that arbitrary canonicalizations from class-pose methods (e.g., IE-AE,
SGM) map inputs to OOD poses and therefore degrade performance; benefits from these canonical-
izations arise only when they are also applied at training time, thus requiring backbone retraining.
Frame-averaging approaches face the same practical barrier, typically requiring incorporating the
frame-averaging into training to grant invariance (Puny et al., 2022; Kaba et al., 2023), which limits
adoption due to the added training cost. Our canonicalizations work as a plug-in solution during
inference, facilitating its broader adoption. For further details, refer to Appendix F.2.

6 LIMITATIONS AND FUTURE WORK

We addressed the challenge of learning instance-specific symmetries from unlabeled data by lever-
aging class-pose decompositions and solving the problem of arbitrary canonicals. In our testing,
RECON proved to be successful in recovering pose distributions at the instance-level – including
demonstrations in 3D data. We also showed how RECON enables downstream practical applications,
notably in test-time canonicalization, which yields clear performance gains and has potential for
broader adoption due to its plug-and-play, architecture agnostic, retrain-free nature.

Limitations A crucial limitation is that RECON relies on class-pose decompositions, where the
relative transformation is defined with respect to the entire input x ∈ X . This is effective in certain
domains, but when we use class-pose methods as backbones for symmetry discovery e.g. in natural
images, it exposes a key mismatch: the group action ρ(g) moves the whole scene (input), whereas
the object of interest occupies only a subset (e.g., a car within a street scene). Background and
multi-object context make unsupervised association across instances difficult, hindering recovery of
object-level symmetry distributions. A natural next step is moving from instance-level decomposition
to an object-centric variant that predicts pose from token or mask-based features from e.g. strong
self-supervised backbones. This preserves our pipeline’s simplicity while targeting in-the-wild
settings where symmetries are local to objects rather than inputs. Complementary improvements
target sampling and modeling; for instance, replacing nearest neighbors with more sophisticated
sampling strategies. On the density side, more flexible estimators for the symmetry distribution – like
flow-based models in the spirit of Allingham et al. (2024), can better capture complex symmetry
patterns than a parametric family. Finally, relaxing the need to predefine G by inferring group
structure or group-agnostic transformations (van der Linden et al., 2024) is a promising direction.
These extensions preserve RECON’s simplicity while pushing toward more robust performance.
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A BACKGROUND

Groups and group actions. A group G is a set equipped with a closed, associative binary operation ·
such that G contains an identity element e ∈ G and every element g ∈ G has an inverse g−1 ∈ G. For
a given set X and group G, the (left) group action of G on X is a map ρ : G × X → X that preserves
the group structure. Intuitively, it describes how set elements transform by group elements.

Group representations. In this work, we focus on cases where X is a vector space. In such scenarios,
the group acts on it by means of group representations. A representation of a group G on a vector
space X is a homomorphism ρX : G → GL(X ) mapping each g ∈ G to an invertible linear operator
on X . We consider our dataset to be of the form X={f | f : V → W}, where V is a set on which G
acts, andW is a vector space on which G may also act. As an example, molecular conformations can
be interpreted as functions f : V → R3 that map atoms to their spatial coordinates. Following this
definition, a group element acts in a data sample as

[ρX (g)f ](x) ≡ ρW(g)f
(
ρV(g

−1)x
)
. (6)

For instance, a rigid transformation g might shift or rotate node coordinates via ρW(g) while leaving
the nodes unchanged or transforming them via ρV(g). Whenever we speak of a representation ρX
on X , it is understood that we are implicitly referring to the previous equation to understand the
transformation of each component.

Orbits. The orbit of x, Ox={ρX (g)x}g∈Gcaptures all possible transformations of x resulting from
the action of all elements of G.

Equivalence classes and quotient sets. Our analysis relies on the definition of equivalence classes
and their quotient sets. Let ∼ be an equivalence relation on X and consider the equivalence classes
[x]={y ∈ X , s.t. x ∼ y} of X . The quotient set X/∼ is defined as the collection of all equivalent
classes in X under the relation ∼.

Group equivariance and group invariance. A map h : V → W is G-equivariant with respect
to the representations ρV , ρW if h(ρV(g)x) = ρW(g)h(x) ∀g ∈ G, ∀x ∈ X . In the context of
neural networks, G-CNNs (Cohen & Welling, 2016) are designed to be G-equivariant by using only
G-equivariant layers in their constructions. This ensures that applying a transformation g ∈ G before
a layer yields an equivalently transformed output. Analogously, a map h is G-invariant with respect
to ρV if h(ρV(g)x)=h(x) ∀g ∈ G,∀x ∈ X . That is, if G-transformations of the input yield the same
result.

B PROOFS

Proposition B.1 (Approximation of µ[x] via Normalization). Let X be a metric space, G a Lie
group and η, δ, ψ an IE-AE where ψ is continuous on a compact domain X . Suppose that X exhibits
symmetries characterized by µ[x] where F(µ[x]) = e as described above. Consider a random
sample {si}Ni=1 of [x] and denote their images by ψ as ψ([x]) = {ψ(si)}Ni=1. Let Γ̂[x] ∈ G be
the empirical Fréchet mean of ψ([x]). Then, the empirical distribution µ̂[x] corresponding to the
normalized samples ψ([x])Γ̂−1

[x] approximates the target distribution µ[x]. Specifically, µ̂[x] converges
in Wasserstein distance to µ[x] as ε′ → 0 and N →∞.

Proof. Consider N independent samples {si}Ni=1 drawn from class [x] according to the model
si = ρX (gi)γ[x] + εi, where gi ∼ µ[x] i.i.d. and εi ∼ Pϵ i.i.d, with ||εi|| < ε′ almost surely. Let
ψ([x]) = {ψ(si)}Ni=1 be the set of observed relative transformations and ν[x] be the distribution over
G from which ψ(si) are sampled. Our first goal is to show that ν[x] and µ[x] differ by some translation
Γ[x] ∈ G.

Let s′i = ρX (gi)γ[x] be the noise-free (i.e., εi = 0) counterparts of si, and consider their images
ψ(s′i). Denote ν′[x] as the corresponding distribution over G from which ψ(s′i) are sampled. Then,

ψ(s′i) =
↓

ψ G−eq

giψ(γ[x]) = giΓ[x] (7)
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Figure 7: IE-AE architecture visualization. Image taken from (Winter et al., 2022).

for Γ[x] := ψ(γ[x]) ∈ G. Since gi ∼ µ[x], the distribution ν′[x] is exactly the right-translate µ[x]Γ[x].
That is, ν′[x] = µ[x]Γ[x]. This relates the noise-free ν′[x] and µ[x]. Now, we will show that this relation
also holds approximately for ν[x].

By the uniform continuity of ψ (which holds since X is compact and ψ is continuous), there exists a
modulus of continuity ω such that limδ→0 ω(δ) = 0 and for si, s′i ∈ X , it holds:

dG(ψ(si), ψ(s
′
i)) ≤ ω(dX (si, s

′
i)) = ω(||εi||) < ω(ε′) = K, (8)

for some smallK > 0, since ε′ is presumably small and limδ→0 ω(δ) = 0. This establishes pointwise
closeness almost surely.

Consider the p-Wasserstein distance between both probability distributions, defined as

Wp(ν[x], ν
′
[x]) = infπ∈Π(ν[x],ν

′
[x]

)

(∫
G×G

dG(g1, g2)
pdπ(g1, g2)

)1/p

, (9)

where Π(ν[x], ν
′
[x]) is the set of all possible couplings (joint probability measures) on G × G with

marginals ν[x] and ν′[x]. Consider the natural coupling πnat determined by the joint random variable
pair (ψ(si), ψ(s′i)). πnat is a valid coupling in Π(ν[x], ν

′
[x]), since its marginals are ν[x] and ν′[x]

respectively. Since the Wasserstein metric is defined as the minimum over all possible couplings, it
must hold that

Wp(ν[x], ν
′
[x]) ≤

(∫
G×G

dG(g1, g2)
p dπnat(g1, g2)

)1/p

= (10)

=

(∫
G×G

dG(ψ(si), ψ(s
′
i))

p dπnat(g1, g2)

)1/p

<

(∫
G×G

ω(ε′)p dπnat(g1, g2)

)1/p

= ω(ε′).

(11)

This inequality shows that the distribution ν[x] generating our samples ψ([x]) is close to the distribu-
tion ν′[x] = µ[x]Γ[x] in Wasserstein distance, with proximity controlled by the noise bound ε′ via the
modulus of continuity ω. Let’s show now how to estimate the unknown Γ[x].

First, note that we can calculate the Fréchet mean of ν′[x] as follows:

F(ν′[x]) = F(µ[x])Γ[x] = eΓ[x] = Γ[x], (12)

where we used the property that the Fréchet mean is equivariant under isometries (such as right-
translation by Γ[x] when using a right-invariant metric), F(µΓ) = F(µ)Γ (Karcher, 1977). This
means that the unknown Γ[x] is the Fréchet mean of ν′[x]. However, we just proved that ν′[x] and ν[x]
are close, bounded by ω(ε′) (equation 10). We want to prove now that their Fréchet means are also
close.

Consider the Fréchet mean F(ν[x]) of the actual data distribution. The Fréchet functional is known
to be strictly convex within geodesic balls of a certain radius r0 determined by the manifold’s
geometry (Karcher, 1977). Within such regions, the Fréchet mean map µ 7→ F(µ) is Lipschitz
continuous with respect to the Wasserstein distance (Afsari, 2011). Therefore, exists a constant
CL > 0 such that

dG(F(ν[x]),F(ν′[x])) ≤ CLWp(ν[x], ν
′
[x]) < CLω(ε

′). (13)

Substituting F(ν′[x]) = Γ[x], we have dG(F(ν[x]),Γ[x]) < CLω(ε
′). This shows the true Fréchet

mean of the distribution we sample from is close to Γ[x]. Therefore, we can estimate Γ[x] by obtaining
the population Fréchet mean of ν[x].
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Let’s show that using the sample Fréchet mean of ψ([x]) estimates the true Fréchet mean. In
effect, the sample Fréchet mean is a statistically consistent estimator of the population Fréchet mean
F(ν[x]) (Aveni & Mukherjee, 2024):

Γ̂[x]
P−→ F(ν[x]) as N →∞. (14)

Combining all the above, we see that for large N and small ε′, Γ̂[x] provides a good approximation of
Γ[x].

Finally, consider the Fréchet-normalized empirical measure µ̂ = 1
N

∑N
i=1 δψ(si)Γ̂−1

[x]
. By the continu-

ous mapping theorem, and because group inversion and multiplication are continuous operations in
the Lie group, it follows that µ̂ converges to µ[x] in Wp distance.

Proposition B.2 (Right-translation invariance of the log density). Let G be a Lie group with a right
Haar measure λ. Let µ be a probability measure on G absolutely continuous w.r.t. λ, with density
pµ = dµ

dλ ∈ L
1(λ). Fix γ ∈ G and let rγ(g) = gγ. If ν = (rγ)∗µ, then

pν(h) = pµ(hγ
−1) for almost every h ∈ G. (15)

Consequently,
− log pν(h) = − log pµ(hγ

−1) for almost every h ∈ G, (16)
interpreted in the extended reals with the convention − log 0 = +∞.

Proof. For any bounded measurable f : G → R,∫
f(h) dν(h) =

∫
f(rγ(g)) dµ(g) =

∫
f(rγ(g)) pµ(g) dλ(g). (17)

Set h = gγ. Right invariance of λ gives dλ(h) = dλ(g), hence∫
f(h) dν(h) =

∫
f(h) pµ(hγ

−1) dλ(h). (18)

By uniqueness of Radon-Nikodym derivatives, pν(h) = pµ(hγ
−1) for almost every h. Taking − log

yields equation 16 (with − log 0 = +∞).

C ROBUST FRÉCHET MEAN EXTENSION FOR MULTIMODAL DISTRIBUTIONS

While the Fréchet mean provides a robust and well-defined centroid for many distributions, as
discussed above, it may fall outside the support in certain multimodal cases, leading to non-natural
canonical poses that do not align with the data’s intrinsic symmetries. For instance, consider a bimodal
distribution on SO(2) with identical modes at 0 and π radians. Here, the Fréchet mean minimizes the
sum of squared geodesic distances and, due to the symmetry, converges to a point midway between
the modes (±π/2), which lies in a region of near-zero probability density, outside the effective
support of the distribution. This violates the desired natural (in-distribution) reference pose, as it may
correspond to an orientation not observed in the data, potentially degrading downstream applications
like invariance granting or interpretability.

To address this limitation while preserving the generality of the Fréchet mean, we propose an extension
using redescending M-estimators (Shevlyakov et al., 2008; Rousseeuw & Hubert, 2011). These
estimators replace the squared loss with a bounded, redescending function that caps the influence of
distant points, providing robustness to outliers or separated modes. We specifically propose using the
Tukey biweight loss (Rousseeuw & Hubert, 2011; Shin & Oh, 2022):

m(u; c) =

 c2

6

(
1−

(
1−

(
u
c

)2)3
)

if u ≤ c
c2

6 if u > c

(19)

In the standard Fréchet mean, we minimize
∑
i d(y, gi)

2, which is unbounded quadratic in distances;
large distances (outliers or far modes) have disproportionate pull because their squared penalty grows
without limit. However, we can provide a robust version by minimizing

∑
im(d(y, gi); c) instead.
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(a) Unimodal distribution
(von Mises with concen-
tration κ = 20, mode at
π/2 rad).

(b) Bimodal distribution
(two von Mises with
modes at 0 and π rad, κ =
20).

(c) 5-modal distri-
bution (five von
Mises with modes
at 0, 2π/5, . . . , 8π/5 rad,
κ = 20).

(d) Uniform distribution
in an interval in SO(2).

Fréchet mean Tukey-Fréchet mean

Figure 8: Comparison of Fréchet mean and robust Tukey-Fréchet mean variation on SO(2) distribu-
tions. Plots generated by sampling n = 2000 points from each distribution, computing the means,
and overlaying on the theoretical density. The robust estimator localizes to high-density regions in
multimodal cases, while converging to the standard Fréchet mean in unimodal/uniform scenarios.

In effect, the robustness arises from the bounded influence of the Tukey biweight loss; m is such that
for small u, it holds that m(u) ≈ u2/2, behaving like the Fréchet mean locally (quadratic). However,
for large distances u > c, m is constant at c2/6, assigning zero gradient to distant points:

dm

du
(u; c) =

{
u
(
1−

(
u
c

)2)2

if |u| ≤ c
0 if |u| > c

(20)

The function dm/du, determines how much each sample affects the final estimate during optimization
(we use gradient descent to solve the minimization problem as in (Shin & Oh, 2022)). Therefore, in a
multimodal distribution with well-separated clusters, large distances (|u| > c) have zero influence
on the gradient/update, and the objective effectively ignores points from secondary modes when
evaluated near a primary mode, minimizing only over the local cluster. To mitigate ambiguity,
initialization at a common starting point can guide convergence to a “principal” consistent mode. In
contrast, the Fréchet mean’s quadratic penalty (u2) grows unbounded, pulling the minimizer toward a
global compromise, often outside any cluster. We provide some simulations in SO(2) in Fig. 8.

The parameter c > 0 controls the robustness threshold (e.g., c = π/4 for SO(2), half the maximum
geodesic distance π; more generally, c can be set adaptively, but intuitively, smaller values of c induce
a “shorter-sight” on the estimator).

Formally, given a distribution µ over the Lie group G with geodesic distance dR, the robust centroid
or Tukey-Fréchet mean Fr(µ) is defined as:

Fr(µ) = argmin
y∈G

Eg∼µ[m(dR(y, g); c)], (21)

where m(u; c) is the Tukey biweight loss. For empirical samples {gi}ni=1, the estimator becomes:

F̂r = argmin
y∈G

n∑
i=1

m(dR(y, gi); c). (22)

C.1 EXAMPLES

We show comparison via simulations between the Fréchet mean and the robust variation for common
distributions (Fig. 8). In SO(2), the Fréchet mean has a closed-form expression (circular mean).
The robust variation lacks a closed form and requires optimization, e.g., scalar minimization over [0,
2π]), but as a one-time computation for pseudo-labels (Algorithm 1), this is feasible (e.g., <1s for
n = 2000 on standard hardware). In multimodal cases, it converges to a mode (e.g., π for bimodal,
as shown in 8b) while Fréchet converges to ±π/2. In SO(3), there is no closed form for either
Fréchet mean or the robust variation. In this case, the Fréchet mean can be found via singular value
decomposition or Riemannian gradient descent.
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D ADDITIONAL INSIGHTS AND EXPERIMENTS DETAILS

D.1 ORBITS, STABILIZERS, AND RELATION TO INSTANCE-LEVEL POSE DISTRIBUTIONS

Digit Class-pose (ν) RECON (µ)

0
0 0

1
0 0

2
0 0

3
0 0

4
0 0

5
0 0

6
0 0

7
0 0

8
0 0

9
0 0

−π π −π π

Figure 9: Probability density of recov-
ered SO(2) distributions on MNIST ex-
periment: IE-AE, vs RECON.

We clarify how our notion of instance-level pose/orbit
distributions relates to the group-theoretic notions of orbits
and stabilizers. Given x ∈ X and a group G acting on
X , the stabilizer Sx = {g ∈ G s.t. gx = x} collects the
(self) symmetries of x. For example, on planar rotations,
a perfect circle has Scircle = SO(2), whereas a perfect
square has Ssquare equal to the group of 90◦ rotations.

In contrast, our instance-level distributions µ[x] do not
model stabilizers explicitly; instead, they approximate the
part of the orbit Ox that is actually observed in the data.
When x has a non-trivial stabilizer Sx, many group ele-
ments act identically on x, so the pose distribution is only
identifiable modulo Sx and becomes broad or multimodal
along the corresponding symmetry directions. This makes
canonical poses inherently ambiguous for highly symmet-
ric inputs, but our Tukey-Fréchet estimator is explicitly
designed to remain robust in this regime.

This is visible for the digit “8” in the per-class rotated
MNIST experiment: for a small fraction of very sym-
metric handwritten 8s, upright and upside down config-
urations are effectively indistinguishable, so the learned
pose distribution shows a non-negligible mass near 180◦
(pose ambiguity), unlike digits such as 3, 4, or 7 whose
histograms are sharply concentrated. In such cases, our
Tukey-Fréchet objective does not average the modes into
an unstable in-between pose; it admits minimizers aligned
with one of the symmetric modes, yielding stable in-distribution canonicalizations (cf. Appendix C)
and enabling test-time canonicalization.

D.2 IMPACT OF NEIGHBORHOOD SIZE

Our symmetry estimation relies on approximating the class [x] via k-nearest neighbors in the invariant
space Z . Figure 10 shows the impact of k on the MAE of the predicted per-class symmetry parameter
θ for the MNIST experiment. While Proposition 3.1 suggests convergence as N → ∞ (larger k),
practical datasets have finite class separation and noisy samples. Large k can include samples from
different underlying classes in the k-NN approximation, increasing noise and impacting performance.
Conversely, very small k may not provide a representative sample. Overall, k = 25 offers the best
balance for GEOM-QM9 and k = 10 for MNIST and FashionMNIST, and the performance on the
symmetry discovery task is not overly sensitive to the neighborhood size within a reasonable range of
neighbors, indicating that our method is stable w.r.t. the choice of k.

D.3 ANALYSIS OF EQUIVALENCE CLASS DEFINITION

To quantitatively assess the quality of the computed equivalence classes [x], we introduce a hit rate
metric that, for each x ∈ X , measures the proportion of k-nearest neighbors in the computation of [x]
that belong to the same molecular class (SMILES) as x. A high hit rate indicates that our definition
of equivalence class captures pose-invariant similarity successfully.

Figure 13a shows the distribution of hit rates across all 174, 481 conformers in our GEOM-QM9
dataset. The average hit rate is 0.95, with 76.8% of distinct molecules achieving an average hit
rate above 0.9. This confirms that the proposed equivalence class definition behaves as expected,
abstracting molecular identity across conformational variations and group transformations, while
maintaining discriminative power between different molecular structures. Figure 13b shows that
molecules with more conformers in the dataset tend to achieve slightly higher hit rates (correlation
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Figure 10: Prediction error in symmetry discovery task vs number of neighbors in class computation
for MNIST and FashionMNIST experiments (left) and GEOM-QM9 (right). On the left, we plot
average prediction error, which is defined as the MAE (in degrees) between the ground truth symmetry
parameter and the per-class average predicted parameter, averaged across classes; shaded bands show
the corresponding standard deviation across multiple runs with different seeds. On the right, we
plot average and standard deviation of the prediction error, which is defined by the MSE between
predicted and true matrix-Fisher parameters, averaged over all conformers. The orange curve reports
the highest per-molecule mean MSE across conformers, illustrating the trade-off between average
accuracy and worst case error as the number of neighbors varies.

coefficient 0.149). This is expected; molecules with a small number of conformers are more likely to
include neighbors that belong to other molecules. This supports the insights about how the number of
neighbors affects the quality of the symmetry discovery (Fig. 10), since a greater number of neighbors
increases the probability of a reduced hit rate on low-conformer molecules.

We also report hit rate metrics for varying number of neighbors on the imaging experiments in
Fig. 13c. Note that configurations with the highest hit rate (k = 5) do not necessarily correspond to
configurations with lowest prediction error (k = 10) in the symmetry discovery task (Fig. 10, left).
In effect, lower k generally yields higher hit rates, but using too few neighbors provides insufficient
samples for accurate estimation. This explains the observed trade-off in Fig. 10, where k = 10
achieves the lowest prediction error despite k = 5 having the highest hit rate.

Figure 11: Neighbor confusion matrix
(FashionMNIST) inputs with the lowest
neighbor label hit rate (worst 5k samples).
Each row corresponds to an input class
and each column to a neighbor class; entry
(i, j) gives, averaged over low-hit inputs
of class i, the fraction of their k-NN that
belong to class j.

Limitations of the proposed equivalence class
We discuss the most prominent failure modes of our
equivalence class definition by examining lowest-hit-
rate cases in FashionMNIST, the dataset which exhib-
ited the lowest hit rate score in our experiments (cf.
Figure 13c). The heatmap in Figure 11 shows that most
inputs with equivalence class construction imprecisions
concentrate on a few semantically similar labels, partic-
ularly the footwear block (Sneaker↔Ankle boot) and
tops (Coat↔ Shirt). For a qualitative analysis, we visu-
alize at random some equivalence classes with low and
zero hit rate in Figure 12. We observe that neighbors of
each input are visually nearly indistinguishable from the
input, up to small cues (e.g., ankle height), partly due
to small resolution of the data. As a result, the encoder
maps them together in the latent space, despite having
different semantic labels, which generates the feature
overlap.

Overall, these figures indicate that the most challenging
scenarios for our method involve inputs with high inter-
class overlap in the latent space (and not large intra-class
deformation). In effect, our method thrives in latent spaces with clear separation between classes,
and is not required to have small within-class variations in the data.
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Input x
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Coat
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Mixed (Shirt, Pullover, Trouser)

Nearest neighbors k-NN(x) (k = 10)

Figure 12: Qualitative analysis of lowest hit rate equivalence classes in FashionMNIST. Each row
shows a training sample (left) with low hit rate (in particular, zero for rows 1-4) and its 10 nearest
neighbors in the learned latent space (right), ordered by cosine similarity. Text underneath denotes
labels. This illustrates inter-class feature overlap in the latent space: some inputs from different
semantic classes exhibit very similar features (e.g., some Sneaker models look very similar to some
Ankle boot models), therefore they are clustered together despite having different labels. This overlap
is the primary cause of reduced hit rates in FashionMNIST for certain inputs, and highlights the
regime where our equivalence class definition is most challenged.

As an empirical example, GEOM-QM9 exhibits non-trivial intra-class conformational variations
(RMSD ≤ 1.5 Angstrom) yet achieves a 0.95 hit rate (cf. Figure 13a). This happens because
molecular identity has a very strong and clear signal from compositional and topological invariants,
e.g. number of atoms of a given element, that remain perfectly constant across conformers, which
allows the encoder to more easily separate conformers of different molecules. Our equivalence class
definition behaves well as a result.

Mitigation strategies for inter-class overlap Mitigation strategies for these cases should therefore
target inter-class overlap, i.e., increasing class separation in the invariant latent space. This challenge
is well-studied, and established approaches with contrastive or self-supervised objectives (e.g.,
DINO (Caron et al., 2021), BYOL (Grill et al., 2020)) are known to sharpen class boundaries without
supervision. Such objectives are perfectly compatible with our framework and directly address its
main failure mode. Additional mitigation strategies, as discussed in our limitations section, include
richer and more robust neighborhood sampling to further stabilize equivalence class construction.

D.4 PICKING UP ON PARTIAL SYMMETRIES

A notable strength of RECON is its ability to distinguish between distinct classes that are related by a
group transformation – such as digits ‘6’ and ‘9’, which are related by a 180◦ rotation. Fully SO(2)-
equivariant methods map these inputs to an equivalent representation, and therefore, downstream
tasks struggle distinguishing between them. This is a well-known example that has motivated partially
equivariant methods in the past (Romero & Lohit, 2022). RECON leverages the clustering of the
input’s invariant features and normalizes their pose distributions separately, which addresses this
problem. Other class-pose decomposition methods, much like classical equivariant networks, can
not pick up on partial symmetries, and therefore collapse both ‘6’s and ‘9’s into the same canonical
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Table 1: RECON pseudo-label generation (Algorithm 1) wall-clock runtime for different datasets
(naive implementation).

Dataset Number of samples Nearest neighbors Runtime (seconds)

MNIST 12,000 10 15
Fashion-MNIST 60,000 10 173
GEOM-QM9 174,481 25 1033

reconstruction (Figure 5b Col. 2).6 Consequently, the distributions ν[6] and ν[9] of relative poses are
different with opposing peaks (Figure 9 Col. 2, Digits 6 and 9). On the contrary, RECON estimates
distinct offsets (Γ̂[6] and Γ̂[9]) based on how each digit class typically appears relative to the arbitrary
canonical. As a result, normalization yields not only a shared symmetry pattern (µ[6] ≈ µ[9], Figure 9
Col. 3) but also correctly associates them with distinct natural poses (Figure 5b Col. 3). This
sensitivity to the data’s contextual orientation allows RECON to handle cases beyond perfect group
orbits where full equivariance is inappropriate.

D.5 COMPUTATIONAL ANALYSIS

Our method introduces three computational components on top of the class-pose backbone: (i) a
(one time) pseudo-label generation step based on k-nearest neighbors (Algorithm 1), (ii) training
of Θ and Λ (computation and implementation details in Appendix E) and (iii) the downstream
symmetry/OOD/canonicalization inferences with the learned mappings Θ and Λ. We analyze (i) and
(iii) in terms of complexity and runtime in practice.

Pseudo-label generation Let N be the number of training examples, d the dimensionality of
the invariant embedding z, and k the number of neighbors for Algorithm 1. The dominant cost of
pseudo-label generation is the k-NN computation, with complexityO(N2d). This step is ran once per
dataset, and the resulting pseudo-labeled dataset is saved to disk and subsequently used to train Θ and
Λ. We emphasize that the pseudo-label generation is a one-time computation that does not happen at
training or inference time. On our hardware (see Appendix E), a naive, non-optimized implementation
of the pseudo-label generation process completes in the order of few seconds / minutes per dataset;
wall-clock times are reported in Table 1. For scaling to substantially larger N , once can use batch
processing to reduce memory and replace the k-NN search by highly optimized neighbor search
implementations (e.g., FAISS (Douze et al., 2024)), which greatly reduces the effective cost.

RECON canonicalization overhead Canonicalization at test time makes use of two forward passes:
the IE-AE encoder on the input to obtain the relative pose ψ(x) (which yields the IE-AE canonical-
ization), and the forward pass Λ(x) to obtain the centering transformation (which alongside ψ(x)
yields the RECON canonicalization, C(x) = ρX (Λ(x) · ψ(x)−1)x). We quantify RECON’s canonical-
ization overhead by measuring the average wall-clock inference time (in ms/sample) of the centering
transformation computation. The computational overhead is of 0.351 ms/sample for MNIST, 0.113
ms/sample for FashionMNIST and 0.068 ms/sample for GEOM-QM9. Our canonicalization adds
only a small overhead, and the performance gains outweigh this cost.

E IMPLEMENTATION DETAILS OF RECON AND IE-AE BACKBONE

Our experiments are implemented using Python 3.11, primarily with Pytorch Paszke et al. (2019)
and Pytorch Geometric (Fey & Lenssen, 2019) for neural network implementation and training. All
experiments were seeded with a fixed random seed for reproducibility and logged using Weights &
Biases Biewald (2020).

6This limitation can also be observed in SGMs. (Allingham et al., 2024)
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(a) Per-input hit rate in GEOM-
QM9, measuring quality of the
computed equivalence classes
[x].

(b) Average hit rate per-molecule vs
number of conformers. Molecules with
less conformers present noisier equiva-
lence classes.
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Figure 13: Quantitative analysis of the proposed equivalence class definition for the GEOM-QM9
experiment.

E.1 IMAGES

E.1.1 DATA PREPARATION

We use augmented versions of the MNIST/FashionMNIST datasets with different true symmetry
distributions for each class. We load the original training and testing sets, split images by their class
label (0-9), and apply a rotation to each image sampled from a label-dependent distribution (e.g.
uniformly from ([−60◦, 60◦] for labels 0-4, and [−90◦, 90◦] for labels 5-9 in MNIST).

E.1.2 MODEL IMPLEMENTATIONS

For the equivariant architectures, we use the escnn library Cesa et al. (2022); Weiler & Cesa (2019).

Encoder. The encoder processes the input image through a series of SE(2)-equivariant blocks
(escnn.nn.R2Conv layers with kernel sizes 7, 5, 5, 5, 5, 3, 1, using gspaces.rot2dOnR2),
with additional batch normalization and non-linearities (ReLU, NormNonLinearity).. The final
layer outputs features decomposed into invariant scalar fields (128 channels, representing the invariant
component η(x)), and equivariant vector fields from which the relative pose ψ(x) – parameterized by
an angle – is derived.

Decoder. A standard CNN takes the 128-dimensional invariant latent vector as input. It uses a
sequence of torch.nn.Conv2d, BatchNorm2d, Dropout2d (p=0.2), and ReLU layers, along
with bilinear interpolation for upsampling, to reconstruct the input image. The output passes through
a Sigmoid activation.

Learnable mappings Θ and Λ. First, Θ computes an invariant embedding from the input using
escnn.nn.R2Conv layers as before. Then, this embedding is passed through a small MLP
consisting of two torch.nn.Linear layers with ReLU activations, predicting a single scalar,
parameter of the target distribution (an angle θ̂ for MNIST experiment and a standard deviation angle
σ̂ for FashionMNIST experiment). Λ is built equivalently as the Θ predictor, but outputs a single
scalar value representing the predicted transformation offset Γ̂ parameterized as an angle.

E.1.3 TRAINING

• Training the IE-AE: Best hyperparameter configuration (as in configuration that yields the
lowest reconstruction error during validation) was found by hyperparameter tuning. The
IE-AE components were trained for 700 epochs using the Adam optimizer Kingma & Ba
(2017) with a learning rate ≈ 8 × 10−4 and a batch size of 128. We save model weights
corresponding to the lowest validation reconstruction loss.

• Canonical orientation normalization: Using the frozen pre-trained encoder, we compute
the invariant embedding and the relative rotation angle degrees for each training sample. We
then compute the k = 10 nearest neighbors (for each sample) in the η space based on cosine
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similarity . Finally, for each sample x, we compute two pseudo-labels for training Λ and Θ
respectively:

– Γ[x]: the Fréchet mean (an angle in degrees) – which is equivalent to the circular mean
in SO(2) – of the set of neighbor angles {ψ(x)}x∈NN (x).

– θ̂[x]: the set of neighbor angles {ψ(x)}x∈NN (x) is then normalized using the previous
Fréchet mean: {ψ(x)Γ−1

[x] }x∈NN (x). From this set of normalized angles, the pseudo-

label θ̂[x] (estimate of the parameter of the symmetry distribution) is calculated using
standard parameter estimation methods. In our case, we use methods based on moments
robust to outliers.

• Training the learnable mappings Θ and Λ: The Θ predictor and Λ predictor were trained
jointly for 600 epochs by minimizing MSE between the network outputs and the pseudo-
labels. We used a combined Adam optimizer targeting the parameters of both predictors,
with a learning rate of approximately 1.35× 10−4. We use a batch size of 128. We weight
both losses by a weighting factor of 0.25 applied to the loss of Λ. We save model weights
corresponding to the best validation loss.

For all our trainings, we employ a cosine annealing learning rate scheduler with a warm-up phase of 5
epochs and restarts. Trainings were performed using an NVIDIA A100-SXM4-80GB graphics cards,
running for approximately 6 + 1 hours for MNIST and 20 + 3 hours for FashionMNIST (IE-AE +
learnable mappings phase).

E.2 MOLECULAR CONFORMATIONS

E.2.1 DATA PREPARATION AND SELECTION

Our starting point is the GEOM dataset (Axelrod & Gómez-Bombarelli, 2022), focusing on its
QM9 subset (Ramakrishnan et al., 2014). From this, we select molecules that possess at least
64 distinct conformers. We focus on low-energy states and only retain conformers with a Root
Mean Square Deviation (RMSD) of less than 1.5 Angstrom from their respective molecule’s
minimum-energy conformer. This threshold is applied using RDKit’s Landrum et al. (2025)
rdkit.Chem.rdMolAlign.GetBestRMS function, which also aligns each qualifying con-
former to its corresponding minimum-energy reference structure. This alignment step provides an
orientation-neutral base for each set of conformers.

The conformers for each selected molecule are then randomly split into training, validation, and test
sets with an 0.8, 0.1, 0.1 ratio (per molecule) respectively. This results in 174, 481 training samples,
20, 902 validation samples and 23, 805 test samples across 2, 221 distinct classes of molecules.

To introduce controlled and diverse controlled global orientations to serve as ground truths, we
augment the data by applying random rotations to the aligned conformers. These rotations are
sampled from matrix-Fisher distributions (Mardia & Jupp, 2009), a unimodal distribution on SO(3)
suitable for modeling varied directional concentrations.

Specifically, we utilize three distinct matrix-Fisher parameter matrices Ftrue that simulate rotations
around the standard e1, e2, e3 axes in the 3D space:

• F 1
true = diag(100, 0.001, 0.001)

• F 2
true = diag(0.001, 100, 0.001)

• F 3
true = diag(0.001, 0.001, 100)

Each molecule, along with its conformers, is randomly assigned one of theseFtrue matrices. Rotations
are then sampled for each conformer from its assignedFtrue matrix. This process allows us to simulate
distinct, realistic and parametrically defined orientation preferences across different molecules in the
dataset.

E.2.2 DATA PRE-PROCESSING

In our graph-based framework, molecules are represented as graphs G = (V, E), where nodes V
correspond to atoms and edges E represent connections between them. The Steerable E(3)-Equivariant
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Graph Neural Network (SEGNN) (Brandstetter et al., 2022) processes these graphs, leveraging their
geometric and chemical information.

Figure 14: MSE vs reconstruction error and
molecule attributes.

Initial node features. Each atom i ∈ V is ini-
tially characterized by a feature vector xi. This
vector is a one-hot encoding of the atom type
(e.g., Hydrogen, Carbon, Nitrogen, Oxygen, Flu-
orine). For our SEGNN model, this corresponds
to an input irreducible representation (irrep) of
5 × 0e, representing five distinct scalar atom
types.

Graph connectivity and edge definition. The
graph’s edges are determined using a radius
graph approach. An edge (i, j) exists between
atom i and atom j if their Euclidean distance
is within a predefined cutoff radius rcut. In our
experiments, we use rcut = 2.0. The connec-
tivity is stored in edge_index as per PyTorch
Geometric conventions.

Edge attributes. To incorporate 3D geometry in an equivariant manner, edges are augmented
with attributes derived from the relative positions of the connected atoms (Brandstetter et al., 2022).
Specifically, for an edge (i, j) connecting atom i at position pi ∈ R3 to atom j at position pj ∈ R3,
we compute the relative position vector rij = pi − pj . These relative position vectors are then
transformed into spherical harmonics up to a maximum degree ledgemax (we use ledgemax = 3). We use the
e3nn (Weiler et al., 2018; Thomas et al., 2018; Kondor et al., 2018) library to compute spherical
harmonics Y(rij), which serve as edge attributes for the SEGNN. The raw relative squared Euclidean
distance d2ij = ||rij ||2 is also added and passed to the SEGNN as an additional scalar 1× 0e type
feature for each edge.

Node attributes. In addition to the initial atom type features, nodes are also assigned geometric
attributes based on the mean of the spherical harmonic attributes of their incoming edges. These node
attributes are processed by the SEGNN.

E.2.3 MODEL IMPLEMENTATION

SEGNN-based encoder. The SEGNN architecture learns equivariant node representations through
message passing. Our implementation consists of 6 message passing blocks. Each layer operates
on node features represented by a combination of irreducible representations (irreps): we use 100
scalar channels (type 0e irreps), 64 vector channels (type 1o irreps), 16 type 2e tensor channels,
and 8 type 3o tensor channels. Equivariant tensor products and gated Sigmoid Linear Units (SiLU)
non-linearities are used throughout these layers to ensure equivariance. Instance normalization is
applied to the features within the SEGNN layers.

After the main message passing sequence, a final equivariant projection layer maps the processed
node features to a target set of dinv = 512 scalar channels and deq = 512 vector (type 1o) channels
per node. These structured node-level features are then processed as:

1. Pooling: The scalar (0e) and vector (1o) components of the node features are independently
pooled across all nodes to obtain graph-level invariant and equivariant features (per-graph:
an invariant embedding spool ∈ R512 and an equivariant feature set vpool consisting of
512 3D vectors). Additionally, the invariant embedding is passed through a Multi-Layer
Perceptron (linear layers with ReLU activations) to produce a final graph-level invariant
latent encoding zinv ∈ R512.

2. SE(3) pose prediction: The equivariant embedding must be processed to obtain group
transformations (R, t) ∈ SE(3). We pass the pooled equivariant features vpool through an
equivariant MLP to obtain three equivariant 3D output vectors: y1,y2 and yt. A rotation
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matrix R ∈ SO(3) is then derived from y1 and y2 using a Gram-Schmidt orthogonalization
procedure. The translation vector t ∈ R3 is simply given by yt.

This construction leads to an embedding zinv invariant to SE(3) transformations of the input graph,
and to a predicted pose (R, t) ∈ SE(3) that transforms in an equivariant manner.

Decoder. The decoder reconstructs the molecule from the invariant latent code zinv. It comprises
two main components: a position decoder and an atom-type decoder. Both are implemented as MLPs
with residual blocks and ReLU activations.

1. The Position decoder takes zinv as input and outputs a set of 3D coordinates for a maximum
number of 29 atoms in our dataset. This set of 3D coordinates represents the molecule in a
learned canonical orientation.

2. The Atom-type decoder also takes zinv and predicts the logits for atom types for each of
the 29 positions.

The final reconstructed atom positions are obtained by applying the predicted equivariant transforma-
tion (R, t) to the canonical positions obtained by the decoder.

Learnable mappings Θ and Λ. During this self-supervised learning phase we train two separate
networks using the computed pseudo-labels as outlined in Section 3.3. Both networks use the
same architectural pattern as the encoder: an SEGNN backbone to generate an invariant graph-level
embedding, followed by an MLP head.

The Θ network outputs 9 parameters to form the 3× 3 matrix-Fisher parameter matrix Fpred. The Λ

network outputs a rotation matrix representing the predicted offset Γ̂.

E.2.4 TRAINING

• Training the IE-AE: The encoder and a decoder based on SE(3)-equivariant graph neural
networks as defined previously were trained for 600 epochs using the Adam optimizer with
a learning rate of≈ 8.89×10−5 and a batch size of 128. We compute two loss functions for
each of the decoder outputs – molecule’s positions and molecule’s atom types respectively.

– A positional reconstruction loss, computed as an L1 loss (mean absolute error) between
the true node coordinates and the coordinates obtained by applying the predicted
transformation (R, t) to the decoder’s output positions.

– An atom-type reconstruction loss, which is a cross-entropy loss between the true atom
types and the atom types predicted by the decoder.

The loss contribution by the atom-type loss is weighted by a factor of ≈ 3.614. We save
model weights (both encoder and decoder) corresponding to the lowest validation positional
reconstruction loss.

• Canonical orientation normalization: Using the frozen pre-trained encoder, we compute
the invariant embedding and the observed relative rotation matrix for each training sample
(molecule). We then compute the k = 25 nearest neighbors for each sample in the η space
based on cosine similarity. Finally, for each sample x we compute two pseudo-labels for
training the Λ and Θ predictors respectively:

– θ̂: The set of neighbor rotation matrices {ψ(x)}x∈NN (x) is then normalized using the
inverse of the centering rotation as {ψ(x)Γ̂[x]}x∈NN (x). From this set of normalized
rotation matrices, we estimate the parameters of the matrix-Fisher distribution (θ̂ = F̂ )
on these aligned rotations via the moment-matching approach (inverting A(s) =

coth(s) − 1/s by Newton’s method and reconstructing F̂ via SVD) (Wood, 2008;
Mardia & Jupp, 2009). This θ̂ is the pseudo-label for the Θ network.

– Γ̂[x]: This is the Fréchet mean on SO(3), estimated as the mode of the matrix-Fisher
distribution fitted to the set of observed neighbor rotations {ψ(x)}x∈NN (x). We
compute it using the SVD-based moment matching estimator for the mode standard
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in literature (Wood, 2008; Mardia & Jupp, 2009). This mode Γ̂[x] then serves as the
pseudo-label for the Λ network.

• Training the learnable mappings Θ and Λ: The Θ and Λ predictor were trained jointly for
150 epochs. The SEGNNs for these predictors use 4 layers, with 50×0e + 32×1o + 8×2e
+ 4×3o hidden irreps, and instance normalization. We minimized the MSE between the
network outputs and their respective pseudo-labels. A combined Adam optimizer was used
for the parameters of both predictors, with a learning rate of approximately 4.83 × 10−4

and a batch size of 128. The loss contribution from the Λ predictor was weighted by a factor
of 500. We save model weights to best validation loss.

For all our trainings, we employ a cosine annealing learning rate scheduler with a warm-up phase
of 5 epochs. Gradient clipping with a maximum norm of 1.0 is applied during the training of the
learnable mappings phase. Training was performed using an NVIDIA A100-SXM4-80GB graphics
cards, running for approximately 6 + 1.5 days (IE-AE + learnable mappings phase).

F IMPLEMENTATION DETAILS OF DOWNSTREAM APPLICATIONS

F.1 OOD DETECTION

The distributions recovered by RECON can be used to identify objects in unnatural (out-of-distribution)
poses relative to their learned symmetry profile. Given predictors Θ(x) and Λ(x) (Sec. 3.3), consider
the absolute pose as gabs = ψ(x)Λ(x)−1 (normalized relative pose). The likelihood of gabs under
the distribution parameterized by Θ(x) serves as an anomaly score,

s(x) := − log pΘ(x)

(
gabs

)
. (23)

Low s(x) indicates in-distribution, while high s(x) indicates OOD. We empirically validate this by
classifying randomly oriented SO(2) (images) and SO(3) (GEOM) test instances.

Theoretically, one could skip RECON centering and score with an uncentered class-pose density
using arbitrary canonicals, i.e., using the score srel(x) := − log pΘ̃(x)

(
ψ(x)

)
where Θ̃(x) is trained

on pseudo-labels derived from raw relatives {ψ(x)}. In effect, we show (Proposition B.2) that the
log density (and therefore the proposed score s(x)) is invariant to the choice of reference frame.
However, in practice, centered distributions (RECON) perform better. Centered distributions facilitate
optimization: they concentrate probability mass near the identity (reducing variance and dynamic
range of the loss), decouple the center Γ̂x from the shape parameters (which are learned by Θ),
and overall result in more stable training. On the contrary, uncentered distributions introduce class-
specific, arbitrary shifts Γ̂[x] that must be jointly learned by Θ, increasing complexity. Empirically
this results in consistently higher AUC-ROC across datasets for RECON (Table 5; cf. IE-AE vs.
RECON, ROC curve plots in Fig. 15).

We now offer a detailed implementation and discussion of the OOD experiment, including dataset
preparation, metrics and uncentered (IE-AE) ablation.

F.1.1 IMAGING

Pre-processing and metrics. Each MNIST test image is rotated by a random angle θ ∼
U(−180◦, 180◦]. An input is labeled in-distribution (ID) if its applied rotation lies within the
class-specific training symmetry range (digits 0-4: ±60◦; digits 5-9: ±90◦), and out-of-distribution
(OOD) otherwise. All angular differences are computed on (−180◦, 180◦]; we write angdiff(α, β) =
wrap(α− β).
We aim to verify that our anomaly score s(x) assigns larger values to OOD inputs than to ID. For this,
we report AUC-ROC, Area Under the Receiver Operating Characteristic Curve (using sklearn’s
sklearn.metrics.roc_auc_score), which summarizes performance across all decision
thresholds τ (if we classify x as OOD when s(x) ≥ τ ). We use AUC-ROC since it is a threshold-free
measure and works well in class imbalance scenarios, a property that other metrics (e.g., accuracy)
lacks (they require a fixed threshold, whose choice depends on the use case for deployment, e.g. if
one wants to optimize threshold for minimizing false positives). We also provide AUC-ROC curve
plots in Fig.15.
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(c) GEOM-QM9

Figure 15: ROC curves for IE-AE and RECON-based anomaly scores for (a) MNIST, (b) FashionM-
NIST, and (c) GEOM-QM9 experiment.

Uncentered distributions (baseline, IE-AE) Given x, the model predicts an uncentered uniform
support Θ̃(x) = (ax, bx) (in degrees). Let the input’s relative pose be grel = wrap(ψ(x)) and the
support midpoint µx = wrap

(
ax+bx

2

)
. We use the absolute deviation

srel(x) =
∣∣angdiff(grel, µx)∣∣. (24)

(Equivalently, one may use distance to the predicted support,

srel(x) = max
{
0,

∣∣angdiff(grel, µx)∣∣− wx}, wx = 1
2 wrap(bx − ax). (25)

Both are surrogates of the uniform negative log likelihood, differing only by a within-support
constant.)

Centered distributions (RECON) Let Γx be the predicted centering transformation (in degrees)
from Λ(x), and define the absolute (centered) pose gabs = wrap

(
grel − Γx

)
. For identity-centered

supports, the anomaly score reduces to

s(x) = |gabs|. (26)

For FashionMNIST, we mirror the MNIST setup, but assign ID/OOD labels using the FashionMNIST
class-specific symmetry ranges specified in Section 5. No other changes are made.

F.1.2 GEOMETRIC GRAPHS

Pre-processing and metrics. We start from the (augmented) GEOM-QM9 test set as described in
Section 5 and group conformers by molecule (SMILES). For each molecule, we randomly split its
conformers into two halves: one half is kept as in-distribution (ID) and left unchanged; for the other
half we generate OOD candidates. This split avoids a trivial task: because SO(3) is large, naively
applying a random rotation to every conformer would produce an overwhelming fraction of OOD
examples.

For OOD candidates, we first canonicalize by undoing the augmentation used to create the conformer
(apply the rotation used to create the augmented sample Raug, to bring coordinates to the original
canonical frame), and then apply a fresh random rotation Rcandidate ∼ Haar(SO(3)) to obtain the new
coordinates. ID examples are those left unmodified.

Ground-truth labels for the candidate half are decided through likelihood: if the sample rotation
Rcandidate has a high likelihood of coming from F (the molecule’s matrix-Fisher parameter that was
assigned during the creation of the augmented dataset), then that sample is labeled as ID. Otherwise,
the sample is labeled as OOD.

Note that since the matrix-Fisher density on SO(3) is proportional to exp(tr(F⊤R)), then the
unnormalized log-likelihood of Rcandidate is tr

(
F⊤Rcandidate

)
up to an additive constant. Therefore,

we mark a candidate as OOD if tr
(
F⊤Rcandidate

)
< τ (low likelihood), where τ is a fixed threshold

controlling class balance (we use τ = 96).
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Uncentered distributions (baseline, IE-AE) Let ψ(x) ∈ SO(3) be the predicted pose and let
F (x) ∈ R3×3 be the matrix-Fisher parameter predicted from x using the learned mapping. We score
anomalies with the negative unnormalized log likelihood

srel(x) = −⟨F (x), ψ(x)⟩ = − tr
(
F (x)⊤ ψ(x)

)
,

where ⟨A,B⟩ :=tr(A⊤B). When F (x) is axis-symmetric of the form F (x) = κ(x)µx with mode
µx∈SO(3), srel(x) is a monotone surrogate of the geodesic deviation ϕ

(
µ−1
x ψ(x)

)
.

Centered distributions (RECON) Let Λ(x) ∈ SO(3) be the predicted centering transform and
define the absolute (centered) pose

gabs = ψ(x) Λ(x)−1.

We then score
s(x) = −⟨F (x), gabs⟩ = − tr

(
F (x)⊤ gabs

)
,

a monotone surrogate of the geodesic angle ϕ
(
gabs

)
.

F.2 GRANTING GROUP INVARIANCE TO PRE-TRAINED BACKBONES

F.2.1 IMAGING

We evaluate inference-only canonicalization using a classifier (ResNet18 backbone) trained on the
raw (no augmentations) MNIST and FashionMNIST datasets. We then evaluate the performance
of this pre-trained model on the rotated dataset variations created for the symmetry discovery
experiment outlined in Section 5 (that is, ±60◦ / ±90◦ rotations for MNIST, etc). For both MNIST
and FashionMNIST, we train a ResNet-18 with cross-entropy and Adam optimizer (lr=1e− 3, batch
size 128, 100 epochs) and save the best classifier checkpoint based on best validation accuracy. At
test time, we compare three input pre-processing modes before feeding images into the classifier: (i)
no canonicalization (using the pre-trained classifier), (ii) arbitrary canonicalization (taken from the
IE-AE) and (iii) RECON canonicalization. As a reference value, we additionally report accuracy on
the original (un-augmented) test set (Table 2), which matches the training distribution by construction.
This corresponds to a perfect canonicalization (reversing the augmentations), and serves as an upper
bound of the best accuracy that can be obtained if we provide a perfect canonicalization function
during inference.

Comparisons We compare with EquiAdapt (Mondal et al., 2023), another test-time canonical-
ization method. We reproduce their zero-shot setup, that is, only the canonicalization function is
trained, and the pre-trained model weights are kept frozen (same setting as RECON). We use the
SO(2) canonicalization prior and steerable network from their public equiadapt package for
the canonicalization function. The canonicalization function is attached on top of the pre-trained
ResNet18 classifier, and is trained for 50 epochs with a batch size of 128. We choose the best
hyperparameter configuration based on best test accuracy (see hyperparameter search in Figure 4).

For reference, Table 3 reports results for specialized group equivariant (and partially equivariant)
architectures trained from scratch on the same non-rotated datasets. Equivariant models are by
construction designed to be robust to symmetry-induced test-time distribution shifts. On MNIST,
our canonicalization (RECON, 90 .96%) shows a moderately small gap w.r.t. the SE(2)-equivariant
ESCNN classifier (94.72%), while keeping the benefits of operating purely as an unsupervised, test-
time, plug-and-play module for arbitrary classifiers. On FashionMNIST however, RECON actually
performs better than the fully equivariant ESCNN. Lastly, we consistently outperform Partial G-CNNs
in both datasets, sometimes by a large margin (67.72% vs 81.96% in FashionMNIST).

The ESCNN classifier is built using the same architecture as the ESCNN backbone for the IE-
AE described in Appendix E.1, but with a 2-layer MLP classification head attached at the end.
The invariant embedding dimension before the classification head is of size 1024 and the ESCNN
backbone has a hidden dimension of 128, totaling 3, 384, 463 trainable parameters in this case. We
train for 50 epochs with batch size 128 and learning rate 1e− 3. Hyperparameter configuration was
chosen based on best test accuracy across different learning rates, hidden dimensions and embedding
dimensions (Table 5). The Partial G-CNNs were configured and trained similarly, aiming to keep an
approximate same number of parameters as the ESCNN architectures.
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Table 2: Test accuracy on the in-distribution test set (i.e., non-augmented) obtained with the pre-
trained classifier trained on non-rotated, vanilla datasets: reference canonicalization upper bound
representing a perfect canonicalization function.

Dataset Augmentation-reversed test set acc. (upper bound, perfect canon.)

MNIST 98.14 ± 0.02%
FashionMNIST 91.11± 0.1%
GEOM-QM9 96.40± 0.0%

Table 3: Test accuracy on the per-class rotated datasets obtained with fully and partially equivari-
ant classifiers trained on non-rotated, vanilla datasets; auxiliary reference metric representing the
performance obtained with specialized equivariant architectures that are, by construction, robust to
symmetry-induced distribution shifts during inference.

Dataset (Train / Test) Group Equivariance Backbone Test set acc.

MNIST
(Orig / Rot) SE(2)

Full ESCNN 94.59%
Learned Partial G-CNN 90.20%

FashionMNIST
(Orig / Rot) SE(2)

Full ESCNN 77.94%
Learned Partial G-CNN 67.72%

GEOM-QM9
(Orig / Rot) SE(3) Full SEGNN 98.55%

F.2.2 GEOMETRIC GRAPHS

We evaluate inference-only canonicalization on GEOM-QM9 molecular graphs. We first train a
graph CNN on aligned conformers only: a 3 layer GCN (using Pytorch Geometric’s GCNConv
layer with a 128 hidden size) followed by a a two layer MLP head (64 hidden units, dropout 0.1),
trained with cross-entropy and Adam (batch size 128 for 50 epochs), saving the best checkpoint by
validation accuracy. Node inputs to the classifier are geometric attributes based on the mean of the
spherical harmonic attributes of their incoming edges (see details in data pre-processing section of
GEOM-QM9 dataset in Appendix E.2.2). At test time, we evaluate on the rotated conformer test
set described in Appendix E.2.1, and compare three input pre-processing modes applied per graph
before classification: (i) none (no canonicalization, using the pre-trained classifier), (ii) arbitrary
canonicalization (taken from a the IE-AE) and (iii) RECON canonicalization. Note that after rotation
by either canonicalization method, we have to recompute the geometric features (edge/node attributes)
from the updated coordinates, since those are the input to the pre-trained GCN. For a reference on the
upper bound of a perfect canonicalization, we also report accuracy on the test dataset obtained after
reversing the test-set augmentations (Table 2). All runs use a fixed global seed with deterministic
settings.

Comparisons For comparison against EquiAdapt (Mondal et al., 2023), we attach and train their
continuous SO(3) point-cloud canonicalizer from the public equiadapt package on top of the
pre-trained GCN. For each input molecular conformation, we canonicalize its atomic coordinates
with the canonicalizer, and then compute the resulting conformation’s geometric features (as in
Appx. E.2.2) for input into the frozen GCN (same approach as in our test-time canonicalization).
We use Adam with learning rate 1e−3, batch size 128, and train for 50 epochs. During training,
the GCN weights are frozen and only the canonicalizer is optimized (coined the zero-shot setup in
EquiAdapt (Mondal et al., 2023), equivalent to our test-time canonicalization setup), as opposed to
the alternative fine-tuning setup in which the pre-trained model is retrained.

On GEOM-QM9, the SO(3)-equivariant SEGNN reaches 98.55% accuracy (Table 3), far above
the pre-trained non-equivariant baseline (with or without canonicalization). This evidences that
test-time canonicalization is significantly more challenging in the 3D domain than in images (at
least for molecular conformations with varying per-molecule rotations). Nevertheless, RECON is the
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Table 4: EquiAdapt hyperparameter search and final test accuracy on the per-class rotated MNIST,
FashionMNIST and GEOM-QM9 dataset variations.

Learning rate Prior weight
Test acc.
(MNIST)

Test acc.
(FashionMNIST)

Test acc.
(GEOM-QM9)

1e-4 0.5 89.05% 62.22% 40.12%
1e-4 1.0 91.60% 54.85% 42.63%
1e-4 10.0 93.83% 70.30% 49.41%
1e-4 50.0 94.05% 78.28% 39.15%
1e-4 100.0 92.97% 79.00% 46.11%
3e-4 0.5 92.39% 59.37% 37.54%
3e-4 1.0 92.41% 65.35% 43.82%
3e-4 10.0 94.09% 71.76% 44.81%
3e-4 50.0 94.67% 75.96% 46.75%
3e-4 100.0 94.86% 78.50% 40.64%
1e-3 0.5 92.17% 54.75% 43.22%
1e-3 1.0 92.02% 63.86% 42.57%
1e-3 10.0 94.76% 71.92% 48.17%
1e-3 50.0 94.48% 77.82% 46.78%
1e-3 100.0 95.00% 78.13% 47.28%
5e-3 0.5 92.47% 54.61% 45.33%
5e-3 1.0 92.77% 64.66% 52.19%
5e-3 10.0 93.82% 72.13% 47.50%
5e-3 50.0 94.74% 78.19% 53.81%
5e-3 100.0 94.70% 79.13% 48.72%

Table 5: ESCNN hyperparameter search on MNIST and FashionMNIST. Test accuracy on the per-
class rotated test sets.

Emb. dim Hidden dim Learning rate Test acc. (MNIST) Test acc. (FashionMNIST)

512 128 1e−3 91.76% -
512 128 3e−4 93.11% 77.13%
512 192 1e−3 92.87% 75.61%
512 192 3e−4 92.11% 76.06%

1024 128 1e−3 94.59% 77.94%
1024 128 3e−4 94.02% 76.25%
1024 192 1e−3 93.99% 73.52%
1024 192 3e−4 91.93% 75.94%

only test-time canonicalization that offers improvements over the baseline, with both EquiAdapt and
IE-AE reducing performance over the pre-trained GCN. The SEGNN classifier is built using the
SEGNN backbone as described in Appendix E.2.3, and was trained for 50 epochs with batch size 128
and learning rate 1e− 3.

G STATEMENTS

G.1 USE OF LARGE LANGUAGE MODELS

Large language models were used to aid in writing (polishing text), retrieval of related work, generat-
ing code for plots, and implementing standard components.

G.2 REPRODUCIBILITY STATEMENT

The experiments in this paper can be reproduced using the code provided in the repository at
link-hidden-for-double-blind-review.
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G.3 ETHICAL CONCERNS

Because our method relies on a data-driven approach to identify natural poses, it may be susceptible
to dataset bias. Beyond this, we do not anticipate significant ethical concerns or negative societal
impacts.
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