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Abstract—Peg-in-hole assembly of tightly fitting parts often
requires multiple attempts. Parts need to be put together by
performing a wiggling motion of undetermined length and can
get stuck, requiring a restart. Recognizing unsuccessful insertion
attempts early can help in reducing the makespan of the assembly.
This can be achieved by analyzing time-series data from force and
torque measurements. We describe a transformer neural network
model that is three times faster, i.e. requiring much shorter time
series, for predicting failure than a dilated fully convolutional
neural network. Albeit the transformer provides predictions with
higher confidence, it does so at reduced accuracy. Yet, being able
to call unsuccessful attempts early, makespan can be reduced by
almost 40% which we show using a dataset with force-torque
data from 241 peg-in-hole assembly runs with known outcomes.

I. INTRODUCTION

Many manipulation tasks often require multiple attempts for
robots and humans alike. Here, a new “attempt” might begin
with a re-grasp action to get a better handle on an object,
finding the correct pose for the object, such as when inserting
a screwdriver into a screw, or restarting an activity as its
initial conditions have been misjudged, such as during parallel
parking. Crossman [4] posits that trial-and-error is a means
that allows humans to acquire speed-skill during manipulation,
and Watson and Correll [9] argue that the trial-and-error
approach will remain a persistent feature of autonomy, as
one-shot accuracy requires not only perfect perception and
information of the environment but also perfect prediction of
the dynamics of the physical world, which are intrinsically
uncertain. They propose a deep-learning approach to the early
detection of failure of a robotic system performing a peg-
in-hole task with tight tolerances (Figure 1). This approach
is based on dilated Fully Convolutional Networks (FCN) [5],
which are trained to perform a binary classification task: given
the Force-Torque data of the previous N time steps, make a
prediction of the probability of failure (pf ) or success (ps),
i.e. classify if the robotic system is going to either fail or
succeed at the task. A Markov Decision Process (MDP) is
then used to make a prediction on the outcome using the
computed probabilities of failure and success. By preempting
trials that are likely to fail early, the overall makespan is
reduced. The makespan is related to both the confusion matrix
of the classifier and the amount of data it takes to make
a classification. If the predictor is often wrong, tasks get
preempted unnecessarily, thereby increasing the makespan.
Similarly, the earlier a predictor is able to provide its judgment,
the shorter the makespan can be.

Fig. 1: A complete peg-in-hole assembly sequence: A The
bearing is presented in a 3D- printed jig, B The bearing is
picked up by the robot and transported to the assembly plate C.
Force and torque measurements are used to D locate the hole E
and complete insertion. Insertion failure due to misalignment
F. Friction with the edge of the hole has caused the twisting
action to pull the bearing further from the hole center.

This paper evaluates Transformer neural networks [8] that
use attention models to learn salient information in time series
data and studies their impact on makespan. Using machine
learning has a long history in predicting robotic failure. Terra
and Tinós [7] compare different artificial neural networks
(ANN) for fault detection in manipulation. Cho et al. [3]
propose an ANN to detect failure in a 2-degrees of freedom
(DOF) manipulator. Due to the temporal nature of the task,
Recurrent Neural Networks (RNNs) became the go-to archi-
tecture for time series analysis, which makes them suitable
for failure detection using the stream of data generated by
a robot’s sensors [6]. With the success of the Transformer
architecture for the analysis of natural language, Transformers
have also successfully been used for time series analysis [10].

In this paper, we are using a vanilla transformer imple-
mentation and show by drawing from a set of 241 real robot
experiments using a Universal Robot UR5, a Robotic Materials
smart hand, and an Optoforce 6-axis force/torque (F/T) sensor
that a transformer architecture is able to make predictions
significantly faster, thereby reducing the makespan by up to
40%.



II. ASSEMBLY MAKESPAN

As assembly is a task that requires a series of physical in-
teractions with undetermined length and probabilistic outcome
(“trial-and-error”), the makespan, i.e. the time a task needs
to complete is an important metric. Watson and Correll [9]
propose and experimentally validate an analytical expression
for the makespan trun that is based on task timing statistics,
failure rates, as well as the confusion matrix of a predictor
that can be used for preempting a trial that is likely to fail:

tRun =
1 + MTF(PFP + PNCF) + MTS(PTP + PNCS) + MTN(PFP + PTN)

1− PFN − PFP − PTN
(1)

Mean Time to Failure/Success (MTF/MTS) are measured
during the experiment and represent the average time length
of failing episodes and average time length of succeed-
ing episodes, respectively. Mean Time to Negative/Positive
(MTN/MTP) represent the average times it takes the model to
generate a negative (failing) or positive (succeeding) predic-
tion. The probabilities PFP (false positive), PTP (true positive),
PFN (false negative), and PTN (true negative) are obtained from
the confusion matrix of the predictor. Finally, PNCF and PNCS
represent the probabilities of non-classified failure and non-
classified success respectively, i.e. the probability that, given
the model prediction is a no-classification (NC), the episode
is a failure or success. Eq. 1 shows that trun is proportional
to the time needed for classification (MTN/MTP) and the
probabilities of false negatives and positives. We are therefore
interested in early failure detectors that provide a favorable
combination of these parameters that further reduce makespan.

III. DILATED FCN AND TRANSFORMER MODELS

We compare the transformer network to the dilated FCN,
which has outperformed other RNN architectures in [9]. In
order to provide a fair comparison, both architectures have a
similar number of parameters.

a) Dilated FCN: The dilated FCN from [9] consists of
two dilated convolutional layers followed by a max-pooling,
flattening, and dense layers. The input layer is a 350 × 6
matrix which represents a window with 6 features (Fx,y,z and
Tx,y,z) and 350 time-steps (a window of 7 seconds, at 20ms
intervals). The model consists of two convolutional layers with
16 filters, kernel size 4 and ReLU activation. The first layer
uses a dilation rate of 4, the second layer a dilation rate of 8.
Convolution is followed by max-pooling with size 4, and two
dense layers with 50, and 2 units, respectively. The network
has 63992 trainable parameters.

b) Transformer: The Transformer architecture used for
this study consists of the encoder tower from the vanilla
Transformer proposed in [8] and is shown in Figure 2 with
parameters in Table I. The input to this model is the same
as for the FCN, windows of 350 time-steps with 6 features
at each step. We use a fixed positional encoding based on
sinusoidal waves:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)
(2)

Multi-Head
Attention

head_size 128
num_heads 4
dropout 0.2

Feed Forward

Convolutional
layer 1

filters 256
kernel_size 1
activation ReLU

Convolutional
layer 2

filters 6 (dmodel)
kernel_size 1
activation None

dropout 0.4

Linear out

Dense layer 1
units 128

activation ReLU

Dense layer 2
units 2

activation Softmax
dropout 0.4

Parameters 68808

TABLE I: Layer parameters of each Transformer block

where pos is the position of the token and i is the dimension
(i.e. a different wave will be used to encode each dimension).
We also use the standard Multi-Head Attention mechanism
described in [8] defined by

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (3)

IV. ASSEMBLY DATA

a) Dataset: We are using experimental data from [9],
which is available online. Data was obtained using 241 real-
robot experiments (“trials”) as shown in Figure 1. Each
trial has a varying number of timesteps and consists of the
following data

• Time stamp
• Force in X, Y, Z axis: numerical variables recording the

force in Newtons (Fx, Fy, Fz)
• Torque in X, Y, Z axis: numerical variables recording

the torque in Newton-meters (Tx, Ty, Tz)
• Ground truth: binary variable with the true outcome of

the trial (1 = success and 0 = failure)
In the data set 49.79% of the trials represent successes while
the remaining 50.21% represent failures.

b) Preprocessing: We perform a series of pre-processing
steps, including standardization, truncation, window creation
and class balancing. First, we take the full raw episodes and
scale the Force-Torque variables with a Robust Scaler. We
do this in order to prevent outliers from adding noise to the
distribution of the data and therefore generating an incorrectly
scaled dataset. The scaling is performed variable-wise, i.e.
for each axis x, y, z we take the corresponding Force-Torque
values and scale only that variable (which means that for each
episode, we scale Fx, Fy, Fz, Tx, Ty, Tz individually).

Once data is scaled properly, we truncate the episodes by
finding what we will call the Episode beginning. This is the



Fig. 2: Transformer architecture

Fig. 3: Training progression of the FCN

first step in the trial in which the value of Fz exceeds a certain
threshold and we do this to find the first point in time in
which the robotic arm is exerting downward force (i.e. the
robotic arm started inserting the bearing into the hole). We do
this because data prior to the Episode beginning, i.e. before
contact is made, will not really be useful for the prediction of
the success/failure of the episode.

Instead of feeding the full episodes to the model, we take a
rolling window approach This introduces a class imbalance
with only 27.49% successful windows and the remaining
72.51% failing windows.

Class imbalance is a well-known issue in Machine Learning
classification tasks [1]. We counter this problem with the
Synthetic Minority Oversampling Technique [2], which allows
us to generate a perfectly balanced dataset using an under-
sample policy (i.e. we discard data points from the majority
class until we have the same amount of negative and positive
samples).

V. RESULTS

We train both models for a maximum of 200 epochs. To
prevent over-fitting, training is stopped early when we see no
improvement in the validation loss metric within a span of
10 epochs. The FCN runs for about 45 epochs before being
stopped, reaching a training accuracy of around 85% and a
validation accuracy of around 80%. The Transformer runs for
around 35 epochs. It reaches a training accuracy of over 95%
while the validation accuracy peaks at 84% (Figures 3 and 4).

We can now use the trained models to predict failure
window by window on the testing samples until we get a

Fig. 4: Training progression of the Transformer

prediction or the episode ends, and compare the output with
the ground truth of the episode. Results are shown in Table II.

NC Negative Positive NC Negative Positive

False 37.5% 0.82 0.0 0.0% 0.76 0.29
True 0.18 1 0.24 0.71

TABLE II: Confusion matrices for FCN (left) and Transformer
(right). Albeit the FCN has higher accuracy, it is unable to
reach a conclusion (NC) in 37.5% of the cases.

We observe that the FCN has a higher rate of both True
Positives (TP) and True Negatives (TN), but it is worth noting
that it is unable to classify 37.5% of the episodes in the testing
sample, while the Transformer has a no classification (NC) rate
of 0%.

In order to further validate the models, we simulate assem-
bly sequences by drawing from labeled episodes following
the MDP shown in Figure 5. For this, we keep drawing
time series at random from our dataset. Each time series
is classified using a rolling window approach while keeping
track of the makespan. A time series is preempted if the
classifier predicts failure. The simulation ends once we draw
a successful assembly sequence that is not preempted due
to a false-negative. Figure 6 shows a histogram with the
run-times of each iteration for a non-preempted approach
(“reactive”) as a baseline, as well as preemption policies using
the FCN and Transformer models for N = 150 complete
assembly sequences. The distribution of the makespan for
the Transformer has a significantly lower mean. It achieves
a decrease of around 38% when compared to the FCN and a
decrease of around 60% when compared to the Reactive policy
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Fig. 5: Markov Decision Process for the Preemptive Scenario.
Green, long-dashed paths represent time cost MTS. Red, short-
dashed paths represent time cost MTF. Orange, dot-dash paths
represent time cost MTN.

Fig. 6: Histogram showing the run-time distribution by each
model through a simulation with N = 150

(Mann-Whitney U test with 5% significance level, p-value of
6.4× 10−8).

VI. DISCUSSION AND CONCLUSION

The transformer models are significantly faster in predicting
a negative outcome, while having a much higher confidence
than the dilated FCN classifier, expressed by their low no-
classification rate. These properties lead to a reduction of
makespan compared to previous methods by around 38% in
the assembly simulation, which we predict by sampling from
real robot assembly experiments for which the outcome is
known and using both predictors to cut failing trials short.
High confidence is traded with lesser accuracy, in particular
for “false positives”. This should not be confused with the false
positive rate of the actual assembly experiment. It is simply
the predictor who will not preempt a failing attempt, which
is then treated by the robot as if no predictor and preemption
mechanism were in place.

Due to the promising nature of transformers for time series
analysis, we are interested to extend this framework by addi-

tional dimensions, including image and range data, in future
work.

While industrial assembly will strive for one-shot reliable
automation, trial-and-error and speed-skill acquisition will per-
sist in dynamic manufacturing environments in which robots
need to be deployed for new solutions quickly and which will
rely to a greater extent on autonomy.
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