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ABSTRACT

Scaling laws play a central role in the success of Large Language Models (LLMs),
enabling the prediction of model performance relative to compute budgets prior to
training. While Transformers have been the dominant architecture, recent alterna-
tives such as xLSTM offer linear complexity with respect to context length while
remaining competitive in the billion-parameter regime. We conduct a comparative
investigation on the scaling behavior of Transformers and xLSTM along the follow-
ing lines, providing insights to guide future model design and deployment. First,
we study the scaling behavior for xLSTM in compute-optimal and over-training
regimes using both IsoFLOP and parametric fit approaches on a wide range of
model sizes (80M-7B) and number of training tokens (2B-2T). Second, we examine
the dependence of optimal model sizes on context length, a pivotal aspect that was
largely ignored in previous work. Finally, we analyze inference-time scaling char-
acteristics. Our findings reveal that in typical LLM training and inference scenarios,
xLSTM scales favorably compared to Transformers. Notably, xLSTM models
consistently Pareto-dominate Transformer models, delivering lower cross-entropy
loss for the same compute budget.

1 INTRODUCTION

Scaling up models sizes and training data sets enables the recently observed rapidly advancing
capabilities of Large Language Models (LLMs). As a result the computational expenses associated
to training and inference of state-of-the-art LLMs results are dramatically growing. The goal of
predicting the achievable performance with a specified architecture and computational resources
resulted in the recent exploration in LLM scaling laws, i.e. the quantitative relationships between
LLM performance metrics and the corresponding computational resources. The works of Kaplan
et al. (2020); Hoffmann et al. (2022) showed that these scaling laws take the form of power laws
which hold over several orders of magnitude in terms of model sizes and the number of pre-training
tokens. These insights provided practical guidance in the design of recent frontier models (Achiam
et al., 2023; Grattafiori et al., 2024; DeepSeek-AI, 2024a).

Recent works (Sardana et al., 2024; Gadre et al., 2024) rightfully argue that these scaling laws
are nevertheless limited by their neglect of inference costs. Consequently, these works focus on
performance investigations on models that are trained in the so-called over-training regime, i.e. on
more tokens than would be optimal in terms of pre-taining compute. Importantly, these works and
subsequent ones focus on Transformer architectures (Vaswani et al., 2017). In these architectures,
the attention mechanism inflicts computational costs during training and inference that are quadratic
in terms of context length. Besides the associated economic and ecological costs, this quadratic
scaling is prohibitive for a large range of application areas in which models are deployed on de-
vices with limitations on available memory, energy, or allowable TFTT. Even on GPUs that are
dedicated to LLMs this scaling property of Transformers represents a limitation in task that require
very long contexts, like reasoning (Muennighoff et al., 2025). Consequently, the development of
LLM architectures that mitigate the attention mechanism is an active area of research (Gu & Dao,
2024; Beck et al., 2024; Lieber et al., 2024). While these architectures were demonstrated to be
scalable into the billion-parameter regime (Zuo et al., 2024; Beck et al., 2025b), there is so far no
systematic comparison between linear complexity LLM architectures, i.e. LLMs that scale linearly
in computational costs with respect to context lengths, and transformer-based LLMs with quadratic
complexity.
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Figure 1: xLSTM scaling laws: Validation loss over training compute. Left: xLSTM is pareto-
dominant over dense multi-head Transformers in terms of loss. For a fixed FLOP budget, xLSTM
models are better. For a fixed validation loss, xLSTM models require less FLOPs. Right: Parametric
fit of the loss surface L(N,D) as a function of model size N and dataset size D.

This work presents a systematic comparison of the scaling laws of performance-optimized xLSTM
architectures (Beck et al., 2025b;a) and dense multi-head self-attention Transformer architectures
(Touvron et al., 2023). Our investigations of xLSTM and Transformer models are guided by the
following research questions:

• Training: Which architecture can be trained more efficiently in terms of computational resources
and how do they scale in the practically relevant overtaining regime?

• Context length: How does the striking difference between xLSTM and Transformers—linear
versus quadratic context length dependency—impact scaling laws and the resulting pre-training
and inference performances?

• Inference: How does the inference speed in terms of time to first token (prefill) and step time
(generation) scale for xLSTM and Transformer under different context lengths and model sizes?

Our investigation shows, that xLSTM models Pareto-dominate Transformer models in the com-
pute–loss trade-off (Fig. 1), enabling models that are both better and cheaper. We find that, for a
given training compute budget, compute-optimal xLSTM models are larger (Fig. 4), i.e. have more
parameters, than compute-optimal Transformer models. During inference, xLSTMs are faster than
same-sized Transformers (Fig. 6), and their performance advantage grows with context length due to
Transformers’ quadratic time complexity.

2 PRELIMINARIES

We begin with a background on scaling laws and a definition of the training regimes considered in
this work (Sec. 2.1). We next present approaches for scaling law fitting used in this study (Sec. 2.2).

2.1 BACKGROUND ON SCALING LAWS

Scaling laws for large language models predict the cross-entropy loss L as a function of the compute C
used for model training in FLOPs. The compute C for training increases with larger model size
measured in number of model parameters N and larger dataset size in number of training tokens D.
Hence, we assume C is a function of N and D. Depending on how the total compute budget
is distributed between increasing the model size and enlarging the dataset, training is typically
characterized as either being in a compute-optimal or in an over-training regime.

Compute-optimal training. Hoffmann et al. (2022) establish the notion of compute-optimal training,
which refers to the optimal choice of N and D for a given compute budget H according to the
constrained optimization problem:

N∗(H), D∗(H) = argmin
N,D s.t. C(N,D)=H

L(N,D). (1)

The optimal N∗ and D∗ can be obtained by sweeping over N , D for each compute budget. Hoffmann
et al. (2022) find that for increasing computation budgets, N∗ and D∗ scale roughly proportionally.
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Assuming this proportionality, there exists a compute-optimal token per parameter ratio M∗ =
D∗/N∗ for a fixed model class and training distribution.

Over-training. The compute-optimal allocation D∗, N∗ only accounts for compute costs during
training. However, during inference larger models incur a higher inference compute cost. Taking
this into account, Sardana et al. (2024) argue that, once inference costs are considered, it can be
preferable to train smaller models on larger datasets. The resulting values for D and N , with a higher
than compute-optimal token per parameter ratios M > M∗ is generally referred to as over-training
regime (Gadre et al., 2024).

Calculating compute costs. Previous works on transformer scaling laws commonly approximate
compute costs with C(N,D) = 6ND FLOPs (Kaplan et al., 2020; Hoffmann et al., 2022; Gadre
et al., 2024; Sardana et al., 2024). This approximation ignores the FLOPs associated to the atten-
tion mechanism and covers only the feed-forward network contributions. Recently, several works
(DeepSeek-AI, 2024a; Busbridge et al., 2025; Li et al., 2025) pointed out that this approximation is
not justified for sufficiently large context lengths and models. For the purpose of this work, this ap-
proximation is even less suitable since it neglects entirely the difference between linear and quadratic
time-complexity models. Hence, we adopt a more precise calculation of C(N,D) as provided in
Appendix C.3 that accurately captures the differences in computational complexity between model
classes.

2.2 FITTING SCALING LAWS

Scaling laws are obtained by fitting the dependence of the model’s training or validation loss on the
model size and the number of training tokens with power laws. Two commonly used procedures for
extracting parametric scaling laws for the loss L, depending on N and/or D are the parametric fit
approach and the IsoFLOP approach, which are introduced in Hoffmann et al. (2022) as the third
and second approach, respectively.

Parametric fit approach. Assuming that the loss L follows a power law in model parameters N and
training tokens D, the parametric fit approach estimates the observed cross-entropy loss as:

L̂(N,D) = E + (A N−α +B D−β)γ , (2)
where E,A,B, α, β, and γ are task-specific positive parameters. The constant term E accounts
for an irreducible loss component, while the second term captures the model-specific predictive
performance. While Hoffmann et al. (2022) set γ = 1, we follow the practice from Busbridge et al.
(2025) and treat γ as fit parameter.

A robust estimation of the scaling parameters for (2) requires data from diverse training strategies,
including non-compute optimal token-to-parameter ratios. Therefore, Hoffmann et al. (2022) include
data from two training strategies: (i) The number of training tokens is varied for a fixed set of models.
(ii) Model size and training tokens are both varied subject to a total compute constraint.

IsoFLOP approach. For the IsoFLOP approach a set of compute budgets H is defined and for each
budget the values of N and D are varied such that the constraint C(N,D) = H is fulfilled. Following
Hoffmann et al. (2022), a second-order polynomial is fitted to each of the resulting IsoFLOP profiles.
The minimum of each fit corresponds to the loss-optimal number of model parameters N∗(H) and
training tokens D∗(H) for the given compute budget H . In order to predict these quantities, we use
individual power laws of the forms

N̂∗(H) = A′ ·Ha and D̂∗(H) = B′ ·Hb , (3)
where we fit the exponents a, b and coefficients A′, B′ from the data.

3 TRAINING SCALING BEHAVIOR

In this section, we conduct a comparative study of the scaling behavior of xLSTM and Transformer
models along multiple axes. First, we explore the pareto frontier of performance in terms of loss
and training compute in Section 3.2. Second, we study the scaling in the over-training regime with
large token to parameter ratios in Section 3.3. Finally, we determine the compute-optimal model and
dataset sizes in Section 3.4 and their dependence on the context length in Section 3.5. We begin with
the introduction of our experimental setup in Section 3.1.
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Figure 2: Dataset of training runs for our scaling law study. The dataset contains training runs for the
xLSTM and the Transformer architecture, with two configurations each: IsoFLOP and Token/Param.

3.1 EXPERIMENTAL SETUP

To systematically study scaling behavior, we collect a large dataset of training runs across two model
classes (Transformer and xLSTM) and multiple training configurations. The following describes the
architectures, training recipe, and dataset of training runs used in our scaling law study.

Model architectures: Transformer and xLSTM. Following previous scaling law studies (Porian
et al., 2024; Gadre et al., 2024), we use the dense multi-head attention decoder-only Llama-2
architecture (Touvron et al., 2023) for our Transformer models. For the xLSTM models, we consider
the architecture of the recently proposed xLSTM 7B model (Beck et al., 2025b). The xLSTM-7B
architecture is built entirely on mLSTM cells with parallel training mode applied within the model’s
embedding dimension. Similar to the Transformer, it alternates mLSTM layers with position-wise
feedforward MLP layers. The crucial distinction between the two architectures lies in the sequence-
mixing mechanism: self-attention with quadratic time-complexity in Transformer versus recurrent
mLSTM dynamics with linear time-complexity in xLSTM.

Training recipe and data. For both model classes we use the same training recipe derived from the
xLSTM 7B training recipe (Beck et al., 2025b). The recipe uses the AdamW optimizer (β1 = 0.99,
β2 = 0.95, ϵ = 10−8), weight decay 0.1 and gradient clipping norm 0.5. The learning rate scheduler
has three stages, linear warm-up, cosine decay to 10% of the peak learning rate, and linear cool-down.
For varying compute budgets, we scale the steps in the second stage while the first and third remain
fixed. Further details are given in Appendix B.1. The overall number of training steps is determined
by the FLOP budget or token-to-parameter ratio of the specific experiment. As training dataset,
we use DCLM-BASELINE, a collection of high-quality filtered web documents (Li et al., 2024),
tokenized with the GPT-NeoX tokenizer (Black et al., 2022) into sequences of length 8192, unless
specified otherwise. We use grain1 to prepare batches with sequence packing, particularly first-fit
packing, which avoids splitting, but adds padding tokens.

Dataset of training runs. Using the above defined architecture and training recipe, we produce a
large dataset of training runs for our scaling law study totaling 672 individual runs (292 for Llama,
380 for xLSTM). The dataset contains model sizes ranging from 80M to 7B parameters trained with
compute budgets ranging from 2.8× 1018 to 8.5× 1022 FLOPs on 2B to 2T tokens. This amounts
to a total compute budget spent for this dataset of 3.2 × 1023 FLOPs. Our dataset is divided in
into runs from two different training configurations: IsoFLOP and Token/Param. For the IsoFLOP
configuration, we vary model parameters and training tokens subject to fixed compute budgets for
three different context lengths. In the Token/Param configuration, we vary the number of training
tokens for a set of fixed model sizes. We show our dataset as {N,D,C} points in Figure 2. xLSTM’s
linear scaling preserves training tokens with longer contexts (overlapping IsoFLOP points), whereas
Transformer’s quadratic scaling reduces them.

3.2 LOSS VS. COMPUTE: XLSTM IS PARETO-DOMINANT

We begin our study with the question: Given a fixed training compute budget, which
model architecture performs better (in terms of cross-entropy loss)? To answer this ques-
tion, we define a grid of model and dataset sizes with pre-defined token-to-parameter ratios of

1https://google-grain.readthedocs.io ( FirstFitPackIterDataset)
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Figure 3: Power law fits to loss over training compute with increasing token-to-parameter
(Token/Param) ratios M . We fit power laws of the form in L̂(C) = λ · C−η and observe that—
similar to Transformer—the exponents η of xLSTM remain constant even for large M , indicated by
the parallel lines in the log-log plot.

[22, 44, 110, 220, 550, 1100, 2200] and train Transformer and xLSTM models for each point in the
grid. This forms the Token/Param subset in our dataset of training runs (see Sec. 3.1). We then use
our FLOP calculations in Appendix C.3 and plot validation loss over FLOPs in a log-log plot in
Figure 1.

Pareto-frontier. In Figure 1 (left), we visualize the Pareto frontier by connecting the data points for
xLSTM and Transformer. We find that xLSTM is strictly dominant over Transformers across the
almost five orders of magnitude of compute encompassed by our data. In other words, for a fixed
FLOP budget, xLSTM models are better and for a fixed validation loss, they require less FLOPs.

Parametric loss surface fit. In Figure 1 (right), we fit a parametric loss surface L̂(N,D) to
our Token/Param data. We find that our fit of the loss surface provides a reliable description of
performance of Transformer and xLSTM models for a given size even far in the over-training
regime, i.e. far right to the pareto front. Following the practice of Busbridge et al. (2025), we find
that including the parameter γ in the model of L̂(N,D) improves the fit quality (see Fig. 8 in the
Appendix). We provide additional details on our parametric fits in Appendix B.2.

3.3 XLSTM IN THE OVERTRAINING REGIME: CONSISTENT POWER LAW EXPONENTS

Our parametric L̂(N,D) fit predicts, that model quality in terms of loss improves when N or D is
increased. Hoffmann et al. (2022) have found that for Transformers, the optimal token-to-parameter
ratio M∗ = D∗/N∗ that yields the minimal loss under a compute constraint is approximately 22.
However, training runs with this ratio yield rather large models that are expensive and slow during
inference (Sardana et al., 2024). Consequently, it is common practice to train smaller models in an
overtraining regime, i.e., with token-to-parameter ratios far exceeding the compute-optimal M∗. It
is thus of practical importance to demonstrate that the loss of new model architectures continues to
improve with increasing amounts of data.

Power-law exponents in over-training. Gadre et al. (2024) have found that Transformers scale
reliably in this over-training regime, indicated by constant exponents η, when fitting a power law of
the form L̂(C) = λ · C−η for different fixed token-per-parameter ratios M . Therefore, we perform a
similar analysis and fit power laws L̂(C) to our Token/Param training runs. In Figure 3 and Tab. 3
we find that — similar to Transformer — the exponents η of xLSTM remain constant even for large
M , indicated by the parallel lines in the log-log plot. This observation is relevant because it implies
that small, inference-optimized xLSTM models can be trained on large datasets while still achieving
consistent improvements in loss.

3.4 COMPUTE-OPTIMAL XLSTM MODELS ARE LARGER

In this section, we aim to determine the compute-optimal model size N∗ and dataset size D∗ for
the xLSTM and Transformer models. However, so far, we have performed our scaling analyses on
training configurations with preset model sizes and a set of token-per-parameter ratios M , which
do not allow us to determine N∗ and D∗ directly. Therefore, for this analysis, we use the IsoFLOP
training configuration, where we vary the number of model parameters and training tokens subject
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Figure 4: Varying model size and tokens with a fixed compute budget (IsoFLOP). Left: IsoFLOP
profiles for varying number of model parameters with a marker at the minimum N∗ of the fitted
polynomial. Right: Power-law fit N∗(H) = A′ · Ha for the compute optimal number of model
parameters. Our setup reproduces the power-law exponent a for Transformers established in Porian
et al. (2024). The compute-optimal model size of xLSTMs is larger than for Transformers.

to a set of fixed compute budgets H . For each compute budget, we plot the loss over the model
parameters N and number of training tokens D and fit second-order polynomials to determine the
optimal N∗(H) and D∗(H) for each compute budget H . Using these optima, we then fit power laws
as described in Section 2.2 to obtain the functional forms for N̂∗(H) and D̂∗(H) (see Eq. (3)).

Compute-optimal model size. In Figure 4 (left) we show the IsoFLOP profiles for variable model size
and (right) the corresponding power-law fits for the optimal model size for xLSTM and Transformer.
Our results show that for a given compute budget, xLSTM consistently attains a lower validation loss
than Transformer, which is in line with the findings in Section 3.2. Moreover, we find that for a given
compute budget, the corresponding compute-optimal xLSTM models have more parameters than the
corresponding Transformer models; see Figure 4 (left and right). Note that our power-law exponent a
for the Transformer matches the one found by Porian et al. (2024); see App. B.4 for details.

Compute-optimal dataset size. Analogous results are shown in Figure 9 in the appendix for the
number of training tokens of compute-optimal models. We find that compute-optimal xLSTM and
Transformer models are trained on a similar number of training tokens D̂∗(H).

Universality of the relation between compute-optimal performance and model size. The compute-
optimal models in Figure 4 (left) fall close to a single shared line for the Transformer and xLSTM
models. This suggests that for compute-optimal models, there is a universal relationship between
performance and model size for xLSTM and Transformer models. From this perspective, the fact
that compute-optimal xLSTM models are larger for a given compute budget can be regarded as a
heuristic explanation for the superior performance of xLSTM. The reason why xLSTMs can be larger
is the reduced computational complexity of their recurrent sequence-mixing operation compared to
the self-attention operation in Transformers. As this main operation is cheaper, more compute can be
allocated to the rest of the model, e.g. increased number of layers or embedding dimension.

3.5 COMPUTE-OPTIMAL XLSTM MODEL SIZE REMAINS STABLE ACROSS CONTEXT LENGTHS

The main difference between the model architectures in this study is their scaling in FLOPs with
context length: Transformers scale quadratically, due to the self-attention, while xLSTMs scale
linearly. This implies that, in Transformers, an increasing fraction of compute is devoted to attention
as sequence length grows, whereas in xLSTMs the recurrent updates consume only a modest portion
of the total compute. In this section, we investigate, therefore, the impact of the context length
on compute-optimal model and dataset sizes. We add experiments with context lengths 2048 and
16384 in the IsoFLOP training configuration and then fit the power-laws to each context length for
both models, analogously to Section 3.4. We note that the losses are not directly comparable across
different context lengths since we use sequence packing for the construction of our training and
validation datasets. Hence, for larger context lengths, longer documents can be packed into a batch,
effectively changing the data distribution.
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Figure 5: Left: IsoFLOP curves as a function of model parameters at 3 different context lengths.
Right: Plot of the power-law fits for the compute optimal number of parameters dependent on the
compute budget N∗(H). Colors indicate compute budget and marker types indicate the model types.
The compute optimal model size for Transformers gets smaller for larger context lengths, while the
compute optimal model size for xLSTM remains similar across context lengths.

Context length & compute-optimality. In Figure 5 we show the IsoFLOP profiles for varying model
sizes and three different context lengths and compute budgets, including their power-law fits N̂∗(H)
in the rightmost plot. We observe that with increasing context lengths the compute-optimal model
size of Transformers drops significantly, while for xLSTM it drops only mildly. These results suggest
that for Transformers, a growing fraction of compute is consumed by attention operations as sequence
length increases, whereas in xLSTMs most FLOPs remain allocated to depth and hidden dimensions.
In Figure 10 in Appendix B.5 we show the corresponding IsoFLOP profiles and power-law fits
D̂∗(H) for the optimal number of training tokens. We observe similar trends as for the model size:
The compute-optimal number of training tokens decreases markedly with larger context length for
Transformer models and for xLSTM it slightly increases.

4 INFERENCE SCALING BEHAVIOR

The scaling laws analysis in Section 3 is motivated by the goal of the optimal design of pre-training
runs for LLMs. However, these considerations neglect inference efficiency. When deploying LLMs at
large scale, inference costs and performance are critical aspects. Hence Pope et al. (2023) investigate
the inference efficiency of transformer-based LLMs in terms of three criteria: compute, latency, and
throughput. More recently Sardana et al. (2024) provided a scaling law analysis of Transformers
that extend the pre-training compute optimality consideration (Eq. (1)) to also account for inference
compute. This work presents an even more comprehensive analysis in terms of the attainable latency,
i.e., time to first token, and the step time during generation. We complement our empirical findings
with a quantitative model of a lower bound on time to first token and step time, using the detailed
calculation of FLOPs (App. C.3) and MemOps (App. C.4) for both model architectures.

Inference stages. Typically, large-scale LLM inference is split into the prefill and the generation
stage (Austin et al., 2025; Pope et al., 2023; DeepSeek-AI, 2024b). In the prefill stage the LLMs
process the prompt, compute the logits for the first token to be generated, and store the intermediate
internal representations of the prompt, i.e. the KV cache for Transformer models or the mLSTM cell
states for xLSTM. In the generation stage a token is sampled according to the logits and then the
internal representations of the previous tokens in the context window are updated to account for the
new token. The generation procedure is repeated for a certain budget or until the end-of-sequence
token is sampled. In the following, we investigate the prefill and generation performances separately.

Inference runtime metrics. For the prefill stage, the key performance metric is the time to first
token (TTFT). Prefill speed is primarily determined by how well the model can maintain a low
TTFT while handling large batch sizes and long input sequences. During the generation stage, the
key performance metric is the step time, i.e. how long it takes to obtain the next token given the
current (potentially batched) sequence. For Transformers, the quadratic complexity of the attention
mechanism with respect to the prefill length (App. C.3.3) implies that TTFT is expected to scale
quadratically in terms of the prefill length. In terms of step time we expect linear scaling with respect
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Figure 6: Scaling of TTFT (left) and step time (right) as a function of prefill length (1-16k) for
different model sizes, with a batchsize of one.

to the prefill length, as each decoding step involves attention over the entire KV cache. For xLSTMs,
in contrast, we expect linear scaling of TTFT and step time that is independent of the prefill length.

4.1 EMPIRICAL INFERENCE RUNTIMES

We consider the same model architectures as in the Token/Param configuration (see Tab. 19 and
20). We utilize the implementation of xLSTM and Transformers models available through the
transformers library (Wolf et al., 2020) and optimize runtimes using torch.compile and
torch.cuda.graph. The TTFT is measured as the time needed for generating a single token
under a given batch size and prefill length (i.e., the context length). The step time is measured by
generating a sequence of 100 tokens, subtracting the TTFT and dividing by the sequence length. We
measure the average TTFT and step time over four repetitions after two warm-up iterations.

Figure 6 presents TTFT (left) and step time (right) measurements for both architectures at matched
model sizes as a function of prefill length (1-16k). At short prefills, the two model classes exhibit
comparable TTFTs, while at longer prefills xLSTMs consistently achieve lower values. For 16k
prefill, xLSTM has 30-50% lower TTFT for the same model size. This difference reflects the expected
scaling: quadratically for Transformers and linearly for xLSTMs. A similar trend is observed for the
step time. At small prefills, both architectures perform comparably. As the prefill length increases,
the Transformer step time degrades due to the rising cost of attention over longer KV caches. In
contrast, xLSTM step time is independent of prefill length, resulting in consistently higher throughput
across all evaluated model sizes and prefill lengths. For 16k prefill, the largest xLSTM has a lower
step time than the smallest Transformer we considered. In summary, when matched in model size,
xLSTMs outperform Transformer models on all inference speed metrics considered.

4.2 MODELING INFERENCE RUNTIMES

In our analysis, the inference processes are characterized by the associated number of floating point
operations FLOPsalgo and the number of memory operations Bytesmem,algo measured in bytes that are
read or written. We provide calculations of these two quantities for xLSTM and for Transformers in
Appendix C. Importantly, these calculations capture the difference between xLSTM and Transformers
in the dependence of FLOPsalgo and Bytesmem,algo on the context length T . Based on these calculated
quantities, we model the runtimes associated with the floating point and memory operations as:

τ FLOPs,algo =
FLOPsalgo

α eff
+ ϵ, τ mem,algo =

Bytesmem,algo

β eff
+ ϵ, (4)

where α eff is the effective rate of FLOPs/s, β eff is the effective rate of Bytes/s, and ϵ is a constant
overhead when running the inference processes on the GPU. Depending on the model type, model
size, prefill length, batch size and inference stage (prefill or generate), either τ FLOPs,algo or τ mem,algo is
the dominant contributor to the runtime. We outline in Appendix D.1 how this is determined based
on the roofline model. Using empirical runtime measurements, we then fit one of the two models
depending on which one is expected to yield the dominant runtime contribution. Each fit corresponds
to a specific model type, size, and inference stage, and is evaluated over varying batch sizes and
prefill lengths. As evidenced by the fits to empirical TTFT (App. D.2) and step time measurements
(App. D.3), our model provides an accurate description of the observed inference runtimes for both
architectures and explains the empirically observed runtimes in Figure 6.
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5 RELATED WORK

Modeling scaling behavior with parameters and data. The empirical scaling behavior of Deep
Learning models w.r.t the size of their model parameters and training data has been actively researched
(Hestness et al., 2017; Rosenfeld et al., 2020; Henighan et al., 2020; Alabdulmohsin et al., 2022;
Caballero et al., 2023). Such scaling laws have been demonstrated across many tasks and data
modalities (Tan & Le, 2019; Ghorbani et al., 2022; Zhai et al., 2022; Abnar et al., 2022; Ardalani
et al., 2022; Gao et al., 2023) However, beginning with Kaplan et al. (2020) and Hoffmann et al.
(2022), the main objective has been guidance on how to optimally scale Large Language Models
with Transformers. Follow-up work investigated the data constrained setting (Muennighoff et al.,
2023), the effect of data pruning (Sorscher et al., 2022), extreme token per parameter ratios (Gadre
et al., 2024). Furthermore, replication efforts regarding the scaling laws established in Kaplan et al.
(2020) and Hoffmann et al. (2022) have been performed in order to reconcile their findings (Besiroglu
et al., 2024; Pearce & Song, 2024; Porian et al., 2024). Critical practical considerations such as
specific architectures and hyperparameters on the resulting scaling laws have been investigated
(McLeish et al., 2025). The recent survey Li et al. (2025) gives a comprehensive overview and
give practical guidelines in establishing scaling laws. Scaling laws have also been investigated
theoretically, providing justification for the functional forms used in practice (Amari et al., 1992;
Amari, 1993; Seung et al., 1992; Amari & Murata, 1993; Cortes et al., 1993; Yarotsky, 2018; Liang
et al., 2020; Sharma & Kaplan, 2022; Hutter, 2021; Bahri et al., 2024). For further related work on
scaling behavior beyond model parameters and training data, we refer to Appendix A.

Incorporating inference characteristics into scaling laws. Multiple studies seek to include infer-
ence characteristics such as the time-to-first-token (latency) and the time-per-token (throughput) into
their considerations on model scaling. Sardana et al. (2024) propose to incorporate inference costs
into scaling laws for an expected inference compute demand. Gadre et al. (2024) investigate scaling
laws in training regimes with high token/parameter ratios, much higher than “Chinchilla-optimal”,
which incurs higher inference speeds due to smaller models. Bian et al. (2025) devise inference-aware
scaling laws, focusing on obtaining the most inference efficient model for a certain performance.
Paliotta et al. (2025) show, that under fixed time budget during inference, distilling Transformers into
linear time-complexity Mamba models leads to higher performance on reasoning tasks, as their faster
inference speeds allow for better scaling with inference compute.

Closest to our work are Shen et al. (2024) and Poli et al. (2024). Shen et al. (2024) demonstrate scaling
behavior of their considered linear time-complexity architectures that is on par with Transformers.
Poli et al. (2024) shows, that hybrids between linear time-complexity and transformer models can
improve upon Transformers. Contrary, our work shows that the xLSTM linear time-complexity
architecture outscales Transformers for language modeling.

6 LIMITATIONS AND FUTURE WORK

The main focus of this work is a comparative study of the training scaling behavior of Transformer
and xLSTM architectures in terms of cross-entropy loss. We do not consider the impact of different
training data distributions, nor do we investigate scaling behavior on other downstream tasks; instead,
we build on the findings of related work on these aspects (Sardana et al., 2024; Gadre et al., 2024;
Porian et al., 2024). Similarly, our empirical inference runtime scaling is designed to capture the
fundamental differences in computational complexity with respect to sequence length between
Transformers and xLSTM. Therefore, we adopt a fair and controlled comparative setup, focusing on
single-GPU experiments rather than exhaustive inference optimizations.

Future work could extend the scaling comparisons to Mixture-of-Expert or hybrid architectures
combining attention and xLSTM, explore diverse data distributions, include additional downstream
and long-context tasks, and investigate inference runtimes in production scale multi-GPU regimes to
provide further insights into efficient sequence modeling.

7 CONCLUSION

Our study provides a systematic comparison of scaling behaviors between xLSTM and Transformer
architectures. We show that xLSTMs are Pareto-dominant in training loss versus compute, maintain
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consistent power-law exponents in the overtraining regime, and scale more efficiently with context
length due to their linear complexity. While our results suggest a universal relationship between
performance and model size that applies to both compute-optimal Transformers and xLSTM models,
we find that compute-optimal xLSTM models are larger than their Transformer counterparts and that
the compute-optimal model size of xLSTMs is robust to variations in context length. During inference,
xLSTM models achieve lower time to first tokens and generation step times than Transformer models
of the same size. These results are well explained by our runtime model, which is grounded in
theoretical FLOP and memory operation calculations and shows close agreement with the empirical
data. Throughout all experiments, we find that the advantages of xLSTM grow with context length,
both for training and inference characteristics, positioning xLSTM as a promising and scalable
architecture for future language models.

REPRODUCIBILITY STATEMENT

We release the code to reproduce our experiments, the datasets of training runs as well as results
for inference publicly upon acceptance to facilitate future research in this direction. The datasets of
training runs have been obtained using the publicly available xLSTM 7B training repository (https:
//github.com/NX-AI/xlstm-jax) using the model configurations stated in Appendix E.
Inference results have been obtained using the publicly available benchmarking pipeline for efficient
xLSTM kernels (https://github.com/NX-AI/mlstm_kernels), more specifically, the
model benchmarks, not those for individual kernels.
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A EXTENDED RELATED WORK

Other scaling behaviors. Beyond scaling behavior with model parameters and training data, other
scaling behaviors have been investigated. Hernandez et al. (2021) considers scaling laws for transfer
learning. Clark et al. (2022) and Abnar et al. (2025) investigate scaling laws for routed language
models, such as the widely considered Mixture-of-Experts method (Shazeer et al., 2017). Scaling
inference compute is a major consideration for LLM reasoning models (OpenAI, 2024). For example
Snell et al. (2025); Brown et al. (2024); Muennighoff et al. (2025) demonstrated such scaling
behavior with additional inference tokens. Kumar et al. (2025) devise precision-aware scaling laws,
investigating the tradeoffs between precision, parameters and data. Tao et al. (2024) suggest the
vocabulary size as additional parameter when scaling language models. Busbridge et al. (2025)
investigate scaling laws for distilled models based on the compute budget allocation between teacher
and student. Zhao et al. (2025) reconcile the smooth improvements predicted by scaling laws with
the reported sudden emergent capabilities of LLMs at scale through distributional scaling laws. Chen
et al. (2025) introduce parallel scaling laws, where compute is scaled by using a single set of model
parameters in parallel with different learnable input transformations and output aggregation. Related
to our work, Xiong et al. (2024) and Shi et al. (2025) investigate the scaling behavior of transformer
models w.r.t. their context length. Springer et al. (2025) show that overtrained models are harder to
fine-tune.

B EXTENDED TRAINING SCALING BEHAVIOR

B.1 DETAILS ON THE EXPERIMENTAL SETUP

We provide additional details on our experiments, that we conducted on a cluster of NVIDIA H100
GPUs.

Model Configurations. In Appendix E we provide a list of model architecture configurations for
all Transformer and xLSTM models used in our scaling law study in Token/Param (App. E.1) and
IsoFLOP (App. E.2) training setups.

General Hyperparameters. We use the AdamW optimizer with β1 = 0.99, β2 = 0.95, ϵ = 10−8,
weight decay 0.1 and gradient clipping norm 0.5. Our learning rate schedule comprises three stages:
A linear warm-up of 750 training steps, a cosine decay to 10% of the peak learning rate and a
final linear cool-down of 1000 training steps. While we keep the steps for warm-up and cool-down
constant, we match length of our learning rate decay to the token budget, which is either determined
by a specific token-to-parameter ratio or a compute budget for a given model size (see Sec. 3.1).
Unless specified otherwise, we use a context length of 8192 for our scaling law study.

Hyperparameters for Token/Param setup. We specify our batch sizes and learning rates for
our experiments in the overtraining regime with large token-to-parameter ratios for xLSTM and
Transformer models in Tab. 19 and 20, respectively. For larger models we decrease the learning rate
and use larger batch sizes. We find that for very large token-to-parameter ratios the performance in
terms of validation loss becomes less sensitive to the choice of learning rate.

Hyperparameters for IsoFLOP setup. For our IsoFLOP experiments we use a batch size of 1M
tokens for all but the largest compute budget of 6e+20 FLOPs, where we double the batch size to
2M tokens, as the training runs would become prohibitively long (see Tab. 1). In contrast to the
Token/Param experiments, we do not increase the batch size with model size, since we found that this
leads to loss offsets in the isoflop profiles (see Fig. 7, left). Instead, we keep the batch size constant
for each compute budget, regardless of the model size. We validate this choice by repeating the
experiments for the isoflop profile with compute budget 1e+20 with a batch size of 1M and 2M tokens.
We find that the larger batch size yields a higher validation loss due to fewer training steps, but does
not have a major impact on the optimal number of parameters N∗ for this compute budget (see Fig. 7,
right). Starting from the Token/Param learning rates, we tune the learning rates for selected model
sizes, and use the best learning rates for models of similar size.
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Table 1: Batch sizes used for the IsoFLOP training setup at context length T = 8192. For the other
context lengths T we adjust B such that batch size in number of tokens B × T remains constant.

IsoFLOP B (seqs) B × T (tokens)

6e+18 128 1,048,576
1e+19 128 1,048,576
3e+19 128 1,048,576
1e+20 128 1,048,576
6e+20 256 2,097,152
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Figure 7: Impact of the batch size on IsoFLOP profiles. Left: IsoFLOP curves with large batch size
and different learning rates for large models. Varying the batch size for different model sizes, leads
to offsets in the IsoFLOP profile, which are more pronounced for smaller compute budgets. Right:
IsoFLOP profile for compute budget 1e+20 with different batch sizes. The larger batch size leads to
larger loss, but similar optimal model size.

B.2 DETAILS ON THE PARAMETRIC LOSS SURFACE FIT

For the parametric loss surface fit L̂(N,D) in Figure 1 we follow the procedure outlined in Bus-
bridge et al. (2025, App. F.1). We fit the coefficients {E,A,B, α, β, γ} for the parametric func-
tion of the loss surface L̂(N,D) in (2) with different values for the Huber δ. Similar to Bus-
bridge et al. (2025), we observe that including γ, significantly improves the quality of our fits
(see Fig. 8. We use the the Token/Param training configurations for Transformer (31 samples)
and xLSTM (35 samples) from our dataset of training runs and fit over a grid of L-BFGS-B
initializations given by: logA ∈ {0.0, 5.0, 10.0, 15.0, 20.0}, logB ∈ {0.0, 5.0, 10.0, 15.0, 20.0},
logE ∈ {−1.0,−0.5, 0.0, 0.5, 1.0}, α ∈ {0.0, 0.2, 0.5, 1.0}, β ∈ {0.0, 0.2, 0.5, 1.0} and γ ∈
{0.0, 0.5, 1.0, 1.5}.

In Tab. 2, we report the coefficients that achieve the lowest MSE on the fit data out of all initializations
for different Huber δ. We find that the optimal fit parameters are sensitive to the choice of δ. For
δ ⩾ 0.1 the optimal values for the fit parameters did not change in the digits shown in Tab. 2.

Table 2: Optimal fit parameters for the loss surface L̂(N,D) model from equation (2) for Transformer
and xLSTM models for different Huber δ. In Figure 1 we plot the fit for δ = 10−3.

Huber δ logA logB logE α β γ

Transformer
10−5 12.96 14.35 0.05 0.58 0.55 0.28
10−3 11.99 13.35 0.01 0.53 0.51 0.29

⩾ 10−1 14.45 16.33 0.09 0.64 0.63 0.25

xLSTM
10−5 16.13 17.10 0.07 0.71 0.66 0.24
10−3 16.22 17.31 0.11 0.73 0.67 0.24

⩾ 10−1 15.46 16.53 0.18 0.71 0.65 0.26
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Figure 8: Comparison between the parametric fit with γ = 1 (Hoffmann et al., 2022) and γ as free
parameter (Busbridge et al., 2025). Including γ as fit parameter improves the fit quality.

B.3 POWER-LAW EXPONENTS IN OVER-TRAINING

In Tab. 3 we report the power-law exponents for different token-to-parameter ratios.

Table 3: Power-law exponents η for increasing token-to-parameter ratios M .

M Transformer xLSTM

22 0.050 0.047
44 0.048 0.046
110 0.047 0.046
220 0.048 0.047
550 0.049 0.047
1100 - 0.047

B.4 ADDITIONAL RESULTS: ISOFLOP APPROACH

Comparison of our scaling law to Porian et al. (2024). In order to validate our scaling law
framework, we compare our power-law fits for the optimal model size from Fig. 4 with the results
from Porian et al. (2024). Porian et al. (2024) investigate and resolve the discrepancies in scaling laws
between the influential works by Kaplan et al. (2020) and Hoffmann et al. (2022). We find that our
power-law coefficient aours = 0.575 is very close to the coefficient reported in Figure 1d) from Porian
et al. (2024) with aPorian,d = 0.571 and even falls well into their confidence interval of (0.56, 0.59),
despite the well-documented reproducibility challenges in scaling laws (Porian et al., 2024; Li et al.,
2025; McLeish et al., 2025). Porian et al. (2024) report that for their aPorian,d they match their learning
rate cosine decay schedule to each token budget – a practice that we follow in our experimental setup
(see App. B.1. This agreement validates our framework and affirms its credibility. As the final step,
to fully match the coefficients reported by Hoffmann et al. (2022), Porian et al. (2024) report that it is
necessary to tune learning rate, batch size and AdamW β2 parameter individually for each model
size. However, in our case this would require considerably more compute resources due to our much
larger compute budgets (6e+18 - 6e+20), and hence larger model sizes used for our scaling law study.

Compute-optimal dataset size. In the main paper (Sec. 3.4, Fig 4), we presented results for the
compute-optimal model size. In Fig. 9 we present results w.r.t. the number of training tokens. We
observe that compute-optimal xLSTMs and Transformers are trained on a similar number of tokens.
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Figure 9: Left: IsoFLOP curves for varying number of training tokens with a marker at the minimum
of the fit. Right: Plot of the power-law fit for the compute optimal number of training tokens D∗(C).
Colors indicate compute budget and marker types indicate the model types.

B.5 ADDITIONAL RESULTS: ISOFLOP APPROACH FOR DIFFERENT CONTEXT LENGTHS

Complementary to the IsoFLOP results in Sec 3.5, where we showed scaling behavior w.r.t. the model
parameters, we also show the scaling behavior w.r.t. the dataset size. The results are provided in
Figure 10, showing that for xLSTM it slightly increases with context length, whereas for Transformer
it substantially decreases. This is caused by the quadratic cost of the attention mechanism that
becomes dominant at larger context lenghts, causing substantial compute that shifts compute-optimal
models towards smaller models that are trained on less tokens. For all considered context lenghts, it
is favorable to train an xLSTM model compared to a Transformer model under the same compute
budget. The longer the training context length, the more favorable it is to train an xLSTM compared
to a Transformer.
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Figure 10: IsoFLOP curves for xLSTM and Transformer for different context lengts and varying
number of training tokens.

By rearranging the data obtained from the IsoFLOP approach under different context lengths, one
can also fit scaling laws for the context length. This is done equivalently to scaling laws for the
model parameters and number of training tokens (Eq. (3)). Figure 11 shows the results w.r.t. the
number of model parameters and Figure 12 shows the results w.r.t. the number of training tokens. The
obtained scaling laws mirror the findings from before. Compute-optimal xLSTM models have more
or less constant model size and use slightly more tokens w.r.t. the context length. Compute-optimal
Transformer models are becoming smaller and use less training tokens w.r.t. the context length.
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Figure 11: Left: IsoFLOP curves for xLSTM and Llama as a function of model parameters at 3
different compute budgets. Right: Plot of the power-law fits for the compute optimal number of
parameters dependent on the context length N∗(T ). Colors indicate context length and marker types
indicate the model types.

2B 4B 10B 20B 40B
Training Tokens

3.1
3.2
3.2
3.3
3.3
3.4
3.4
3.5

Va
lid

at
io

n 
Lo

ss
*

Compute 6e+18

2B 4B 10B 20B 40B
Training Tokens

3.0

3.1

3.2

3.3

3.4

3.5

Va
lid

at
io

n 
Lo

ss
*

Compute 1e+19

2B 4B 10B 20B 40B
Training Tokens

2.8
2.9
3.0
3.1
3.2
3.3
3.4

Va
lid

at
io

n 
Lo

ss
*

Compute 3e+19

103 104

Context Length

4B

6B

10B

20B

Op
tim

al
 Tr

ai
ni

ng
 To

ke
ns

Transformer (6e+18) b=-0.148, B ′=2.0e+10
Transformer (1e+19) b=-0.165, B ′=2.9e+10
Transformer (3e+19) b=-0.145, B ′=3.8e+10

xLSTM (6e+18) b=0.047, B ′=3.6e+9
xLSTM (1e+19) b=0.033, B ′=5.0e+9
xLSTM (3e+19) b=0.037, B ′=7.6e+9

Context Length Training Runs FLOP Optima                 
2048
8192
16384

                 
Transformer
xLSTM

                 
Transformer
xLSTM

Figure 12: Left: IsoFLOP curves for xLSTM and Llama as a function of training token at 3 different
compute budgets. Right: Plot of the power-law fits for the compute optimal number of parameters
dependent on the context length N∗(T ). Colors indicate context length and marker types indicate the
model types.
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C ACCOUNTING: PARAMETERS, CACHE SIZES, FLOPS, MEMORY
OPERATIONS

In this section, we count number of parameters (App. C.1), memory state or KV cache size C.2,
FLOPs (App. C.3), and memory operations (App. C.4) for mLSTM models based on the architecture
of xLSTM 7B (Beck et al., 2025b) and Transformer models with Self-Attention based on the Llama
3 architecture (Grattafiori et al., 2024).

We use the notation defined in Tab. 4.

We start with counting the number of memory operations and FLOPs for matrix multiplication, which
is a very common operation in neural networks. A linear layer with input X and output Y and weight
matrix W can be written as

Y
(B×dout)

= X
(B×din)

W⊤
(din×dout)

. (5)

This linear layer has 2Bdindout FLOPs:

FLOPslinear = 2Bdindout (6)

In order to compute the output Y , we need to read the input X and the weights W and write the
output Y . This yields

Byteslinear = B(din + dout)× bytesXY + dindout × bytesW (7)

memory operations in loaded and stored bytes. We will use these counts throughout the remainder of
this section.

Table 4: Notation for FLOP and Memory Operation Counts.

Symbol Description

B Batch size
T , (Tp, Tg) Sequence length, (prefill length, generation length)
S Query sequence length (only for Self-Attention)
L Chunk size
dhv Head dimension for values and hidden states
dqk Head dimension for queries and keys
dmodel Model / Embedding dimension
dff Feedforward dimension
pff Feedforward projection factor
pqk Query key projection factor
nhead(,q) Number of (query) heads
nhead,kv Number of key and value heads
nchunk Number of chunks
nvocab Vocabulary size
nlayer Number of layers

FOP FLOPs for the operation OP (e.g. exp)
Fcausal Factor that accounts for causality, typically 0.5
bytesX Number of bytes used for each element in tensor X
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C.1 PARAMETER COUNTS

We count the number of parameters of mLSTM models (C.1.1) and Transformer models (C.1.2). We
include embedding and normalization layer parameters in our parameter counts.

C.1.1 MLSTM PARAMS

For the mLSTM models, we use the optmized xLSTM architecture from Beck et al. (2025b) and
count the parameters in Tab. 5.

Table 5: Parameter counts for the mLSTM Model.

Parameters

Embeddings: nvocabdmodel

mLSTM (single layer)
PreNorm: dmodel
QKV: dmodelnhead(2dqk + dhv)
Inpute & Forget Gates: 2dmodelnhead + 2nhead
Output Gate: dmodelnheaddhv
Output Norm: nheaddhv
Output Projection: dmodelnheaddhv

Total mLSTM layer NmLSTM,layer: dmodelnhead(2dqk + dhv + 2) + 2d2model + 2nhead + 2dmodel

Feedforward (single layer)
PreNorm: dmodel
MLPs: 3dmodeldff

Total Feedforward Nff,layer: 3dmodeldff + dmodel

Output Norm: dmodel
Unembedding: dmodelnvocab

Total mLSTM model NmLSTM: nlayer(NmLSTM,layer +Nff,layer) + 2dmodelnvocab + dmodel

C.1.2 TRANSFORMER PARAMS

For the Transformer models, we assume the Llama architecture with Grouped-Query Attention
from Grattafiori et al. (2024) and count the parameters in Tab. 6.

C.2 MEMORY STATE AND KV-CACHE SIZE

In Tab. 7 we list the memory state and KV cache sizes for the mLSTM and Transformer model archi-
tectures. We compare the mLSTM with standard Multi-Head Attention (MHA) (Vaswani et al., 2017),
Grouped-Query Attention (GQA) (Ainslie et al., 2023) and Multi-Head Latent Attention (DeepSeek-
AI, 2024a).

In contrast to the KV caches of the attention variants, the mLSTM has a fixed size memory state that
does not depend on the sequence length T .

We compare the size of the memory state and KV cache sizes in number of elements. To obtain the
number of bytes, we multiply by number of bytes per element bytesX.
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Table 6: Parameter counts for the Transformer Self-Attention Model.

Parameters

Embeddings: nvocabdmodel

Self-Attention (single layer)
PreNorm: dmodel
QKV: dmodel

(
dqknhead,q + (dqk + dhv)nhead,kv

)
Output Projection: dmodelnhead,qdhv

Total Attention layer NAtt,layer: dmodel(dqknhead,q + dqknhead,kv + dhvnhead,kv) + d2model + dmodel

Feedforward (single layer)
PreNorm: dmodel
MLPs: 3dmodeldff

Total Feedforward Nff,layer: 3dmodeldff + dmodel

Output Norm: dmodel
Unembedding: dmodelnvocab

Total Transformer model NAtt: nlayer(NAtt,layer +Nff,layer) + 2dmodelnvocab + dmodel

Table 7: Memory State and KV-Cache Sizes for different Sequence-Mix operations. All terms
denote the number of elements.

Sequence Mix Operation Memory Size in #Elements

Multi-Head Attention (MHA): 2nhead,qdhvT
Grouped-Query Attention (GQA): 2nhead,kvdhvT
Multi-Head Latend Attention (MLA): 9

2dhvT

mLSTM: nhead,q(dhvdqk + dqk + 1)

C.3 FLOP COUNTS

In this section, we count the FLOPs for the mLSTM and the Transformer model architecture. For
each model architecture we count the sequence length dependent FLOPs for the sequence mix layer
first, i.e. the mLSTM cell (C.3.1) and the Self-Attention layer (C.3.3), and then combine them with
the FLOPs of the other layers in the model architecture to obtain the total FLOPs for the mLSTM
(C.3.2) and the Transformer model (C.3.4).

We do not drop subleading terms and set also count FLOPs for all operations equally, i.e. FOP = 1.
We also count the FLOPs for the normalization layers with Fnorm = 3 (we assume the factor of 3
because we have mean, variance and division operations). The skip connection FLOPs are counted
with Fskip = 1, or if neglected with Fskip = 0. Following our training configuration, we use the
chunkwise-parallel formulation with chunk size L = 64 and Fcausal = 0.5 for the FLOP counts and
scaling laws in the main text.

C.3.1 MLSTM CELL FLOPS

The mLSTM is a linear RNN with gating and can be computed either with a recurrent, a fully parallel
or a chunkwise-parallel formulation (Beck et al., 2025a). Each of these formulations has a different
FLOP and memory operation count. For training and for prefill in inference the mLSTM relies
on the chunkwise-parallel formulation, which parallelizes the computation over the input sequence
and can therefore fully utilize modern hardware. For generation, the mLSTM uses the recurrent
formulation, which uses constant compute and memory per generation step (i.e. compute and memory
requirements are independent of the sequence length).

In this section, we count the number of FLOPs for both the chunkwise-parallel and the recurrent
formulation of the mLSTM cell.
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Chunkwise-Parallel Formulation (Tab. 8, Eq. 8). We list the FLOP counts for the individual terms
of the chunkwise-parallel mLSTM formulation for a single head and a single chunk in Tab. 8.

To obtain the total FLOPs for a full sequence of length T , we multiply these counts by the number of
(query) heads nhead and chunks nchunk = T/L. This yields

FLOPsmLSTM,cwp = nhead×
(
TLFcausal (2(dqk + dhv) + 8) + TL

+ 2TFcausal + T (4dqkdhv + 6dqk + 4dhv + 13)

+
T

L
(2dqkdhv + 2dqk + 5)

)
.

(8)

Table 8: FLOP counts for the chunkwise-parallel mLSTM formulation for mLSTM. All terms
denote the FLOP count per head and chunk.

FLOPs Exact Simplified (FOP = 1)

Recurrent computation of the inter chunk states

Gates: 2L+ 1
2
L(L+ 1)

+L(1 + Fexp + Flog + Fsig) + 3 + Fmax + Fexp
0.5L2 + 6.5L+ 5

Numerator: 2dqkdhv + 2Ldqkdhv + Ldqk 2dqkdhv + 2Ldqkdhv + Ldqk
Denominator: 2dqk + 2Ldqk 2dqk + 2Ldqk

Parallel computation of the intra chunk outputs
Cumulative Forget Gates: 1

2L(L+ 1) + L(Flog + Fsig) 0.5L2 + 2.5L
Gate Matrix: Fcausal ×

(
L2(3 + Fexp + Fmax) + L(1 + Fmax)

)
Fcausal ×

(
5L2 + 2L

)
Intra Outputs: Fcausal ×

(
2L2(dqk + dhv) + 3L2

)
Fcausal ×

(
2L2(dqk + dhv) + 3L2

)
Parallel computation of the inter chunk outputs
Inter Outputs: 2Ldqkdhv + 3Ldqk 2Ldqkdhv + 3Ldqk

Combination of inter and intra chunk outputs
Output Combination: 2Ldhv + L(1 + Fmax + Fabs + Fexp) 2Ldhv + 4L

Total: —
L2Fcausal (2(dqk + dhv) + 8) + L2 + 2LFcausal

+L (4dqkdhv + 6dqk + 4dhv + 13)
+ (2dqkdhv + 2dqk + 5)

Recurrent Formulation (Tab. 9, Eq. 9). We list the FLOP counts for the individual terms of the
recurrent mLSTM formulation for a single head and a single time step in Tab. 9.

To obtain the total counts for one generation step, we multiply by the number of heads nhead. This
yields

FLOPsmLSTM,rec = nhead×
(
6dqkdhv + 7dqk + dhv + 12

)
. (9)

Table 9: FLOP counts for the recurrent mLSTM formulation for mLSTM. All terms denote the
FLOP count for a single timestep per head.

FLOPs Exact Simplified (FOP = 1)

Gates: 4 + 2Fexp + Flog + Fsig + Fmax 9
Memory Cell Update: 4dqkdhv 4dqkdhv
Denominator & Scale: 6dqk + dhv + 1 + Fabs + Fmax 6dqk + dhv + 3
Output: 2dhvdqk + dqk 2dhvdqk + dqk

Total: — 6dqkdhv + 7dqk + dhv + 12

C.3.2 MLSTM MODEL FLOPS

The number of FLOPs for the backbone is identical for training, prefill and generation as the operations
(embeddings, linear layers and layernorms) do not depend on the sequence length. Therefore, we
count the FLOPs per token for the mLSTM backbone. To obtain the total FLOPs for the specific
setting we have to use the respective expression for the mLSTM cell FLOPs from Appendix C.3.1.

mLSTM Backbone (Tab. 10). We count the FLOPs for the mLSTM backbone for a single token
in Tab. 10 and leave the mLSTM cell FLOPs unspecified. The number of tokens for one batch of
sequences is BT .

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 10: FLOP counts for the mLSTM backbone. All terms denote the FLOP count per token, i.e.
to obtain the FLOPs for one batch we multiply by BT tokens.

FLOPs

Embeddings: —

mLSTM (single layer)
PreNorm & Skip: dmodel(Fskip + Fnorm)
QKV: 2dmodelnhead(2dqk + dhv)
Inpute & Forget Gates: 2dmodelnhead + 2nhead
mLSTM Cell: FLOPsmLSTM
Output Gate: 2dmodelnheaddhv + nheaddhvFsig
Output Norm: nheaddhvFnorm
Output Projection: 2dmodelnheaddhv

Total mLSTM layer FLOPsmLSTM,layer: —

Feedforward (single layer)
PreNorm & Skip: dmodel(Fskip + Fnorm)
MLPs: 6dmodeldff
Activations: dff(1 + Fswish)

Total Feedforward FLOPsff,layer: —

Output Norm: dmodelFnorm
Unembedding: 2dmodelnvocab

Total mLSTM model FLOPsmLSTM,model: —

C.3.3 SELF-ATTENTION FLOPS

We count the FLOPs for a single Self-Attention head during training or prefill and generation in
Tab. 11. We denote the number of keys and values in the sequence as T , and the number of queries
as S. During prefill we have S = T , since the input sequence is processed in parallel and during
autoregressive generation we have S = 1, since we generate one token at a time. We typically use
Fsoftmax = 5 and Fcausal = 0.5 following Busbridge et al. (2025) as FLOP factor for softmax (sm).

Table 11: FLOP counts for Self-Attention. All terms denote the FLOP count per (query) head.

FLOPs Generic Prefill (S = T ) Generate (S = 1)

Attention computation
Logits: 2STdqk × Fcausal 2T 2dqk × Fcausal 2Tdqk × Fcausal
Attention: STFsoftmax × Fcausal T 2Fsoftmax × Fcausal TFsoftmax × Fcausal
Hiddens/Outputs: 2STdhv × Fcausal 2T 2dhv × Fcausal 2Tdhv × Fcausal

Total: 2STFcausal
(
dqk + dhv + 0.5Fsm

)
2T 2Fcausal

(
dqk + dhv + 0.5Fsm

)
2TFcausal

(
dqk + dhv + 0.5Fsm

)

Self-Attention in Training (forward only) and Prefill (Eq. 10). To obtain the FLOPs for all
Self-Attention heads for a full sequence T or Tp, we multiply by the number of (query) heads nhead,q
and the number of tokens T . This yields

FLOPsAtt,train-pref = 2FcausalT
2nhead,q

(
dqk + dhv + 0.5Fsm

)
. (10)

Self-Attention FLOPs in Generation (Eq. 16). During generation the number of FLOPs per token
is dependent on the number of previous tokens T = Tp + tg, where Tp is the number of prefill tokens
and tg is the number of generated tokens so far. We denote the number of total tokens to be generated
as Tg. To obtain the FLOP counts for the tg-th generated token, we need to multiply the FLOPs for
the Self-Attention layer by the number of (query) heads nhead,q. We obtain the FLOPs for the tg-th
generated token as

FLOPsAtt,gen-step(tg) = 2Fcausalnhead,q
(
dqk + dhv + 0.5Fsm

)(
Tp + tg

)
. (11)
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With a = 2Fcausalnhead,q
(
dqk + dhv + 0.5Fsm

)
we can compute the total FLOPs for Tg generated

tokens as the sum of FLOPs for each generated token as

FLOPsAtt,gen-seq =

Tg∑
tg=1

FLOPsAtt,gen-step(tg) (12)

=

Tg∑
tg=1

(aTp + atg) (13)

= aTpTg + a

Tg∑
tg=1

tg (14)

= aTpTg +
1

2
aTg(Tg + 1). (15)

As a result we obtain the total FLOPs with a prefill or prompt length Tp and a total number of
generated tokens Tg as

FLOPsAtt,gen-seq = 2Fcausalnhead,q
(
dqk + dhv + 0.5Fsm

)(
TpTg +

1

2
Tg(Tg + 1)

)
. (16)

C.3.4 TRANSFORMER MODEL FLOPS

Similar to the mLSTM backbone in Appendix C.3.2, the number of FLOPs for the Transformer
backbone is identical for training, prefill and generation as the operations (embeddings, linear layers
and layernorms) do not depend on the sequence length. Therefore, we count the FLOPs per token
for the Transformer backbone. To obtain the total FLOPs for the specific setting we have to use the
respective expression for the Self-Attention layer FLOPs from Appendix C.3.3.

Transformer Backbone (Tab. 12). We count the FLOPs for the Transformer backbone for a single
token in Tab. 12 and leave the Self-Attention FLOPs unspecified. The number of tokens for one batch
of sequences is BT .

Table 12: FLOP counts for the Transformer backbone. All terms denote the FLOP count per
token, i.e. to obtain the FLOPs for one batch we multiply by BT tokens.

FLOPs

Embeddings: —

Attention (single layer)
PreNorm & Skip: dmodel(Fskip + Fnorm)
QKV: 2dmodel(dqknhead,q + dqknhead,kv + dhvnhead,kv)
Attention: FLOPsAtt
Output Projection: 2dmodelnhead,qdhv

Total Attention layer FLOPsAtt,layer: —

Feedforward (single layer)
PreNorm & Skip: dmodel(Fskip + Fnorm)
MLPs: 6dmodeldff
Activations: dff(1 + Fswish)

Total Feedforward FLOPsff,layer: —

Output Norm: dmodelFnorm
Unembedding: 2dmodelnvocab

Total Transformer model FLOPsAtt,model: —
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C.4 MEMORY OPERATION COUNTS

In this section, we count the memory operations for the mLSTM and the Transformer model architec-
ture. We follow the same outline as for the FLOP counts in Appendix C.3 and first count the memory
operations for the mLSTM cell (C.4.1) and the Self-Attention layer (C.4.3), and then combine them
with the memory operations of the other layers in the model backbone to obtain the total memory
operations for the mLSTM (C.4.2) and the Transformer model (C.4.4). We model weight MemOps
as a one-time streaming cost (perfect on-chip reuse), i.e., independent of the number of token in the
batch BT . This is reasonable with persistent/fused kernels and per-rank weight matrices that fit in
on-chip cache. Depending on the exact experimental configuration, this assumption might not hold as
we observe when modeling the step time through MemOps in Section D.3.

We include the memory operation count for the normalization layers, but can neglect them by setting
bytesnorm = 0 and bytesact,norm = 0.

C.4.1 MLSTM CELL MEMOPS

Similar to the FLOP counts in Appendix C.3.1, we count the memory operations for the mLSTM cell
for both the chunkwise-parallel and the recurrent formulation.

Chunkwise-Parallel Formulation (Tab. 13, Eq. 17). The implementation of the chunkwise-parallel
mLSTM formulation consists of two kernels (Beck et al., 2025a). We count the memory operations
for the loading and storing of the inputs and outputs of each kernel for a single chunk and head in
Tab. 13.

By multiplying with the number of heads nhead and the number of chunks nchunk = T/L, we obtain
the total memory operation counts for the chunkwise-parallel mLSTM formulation as

BytesmLSTM,cwp = nhead
T

L

(
4L× bytesif + 3L (dhv + dqk)× bytesqkv

+ 2nhead (L+ dhvdqk + dqk + 1)× bytesCmn

)
.

(17)

Table 13: Memory operation counts for the chunkwise-parallel mLSTM formulation. All terms
denote the memory operation count per head and chunk.

Bytes

Inter-chunk Recurrent Kernel
Load: L(dqk + dhv)× bytesqkv + 2L× bytesif
Store: (dqkdhv + dqk + 1)× bytesCnm

Intra-chunk Parallel Kernel

Load: L(2dqk + dhv)× bytesqkv + 2L× bytesif
+(dqkdhv + dqk + 1)× bytesCnm

Store: Ldhv × bytesqkv + 2L× bytesCnm

Total:
4L× bytesif

+3L (dhv + dqk)× bytesqkv
+2 (L+ dhvdqk + dqk + 1)× bytesCmn

Recurrent Formulation (Tab. 14, Eq. 18). During text generation we use the recurrent formulation,
which loads the previous memory state and the current input and stores the output and the next
memory state. We obtain the total memory operation counts for the recurrent mLSTM formulation
by multiplying the counts in Tab. 14 with the number of heads nhead:

BytesmLSTM,rec = nhead×
(
2× bytesif + 2(dhv + dqk)× bytesqkv + 2dhvdqk × bytesCmn

)
. (18)

C.4.2 MLSTM MODEL MEMOPS

The memory operations of each layer of the backone (excluding the mLSTM cell) consist of the input
and output activations as well as the parameters. The inputs and outputs depend on the number of
tokens BT in the batch, whereas the parameters are independent of the number of tokens.
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Table 14: Memory operation counts for the recurrent mLSTM formulation. All terms denote
the memory operation count for a single timestep per head. We assume the states are materialized at
every timestep.

Bytes

Load: (2dqk + dhv)× bytesqkv + 2× bytesif
+(dqkdhv + dqk + 1)× bytesCmn

Store: dhv × bytesqkv + (dqkdhv + dqk + 1)× bytesCmn

Total: 2× bytesif + 2(dhv + dqk)× bytesqkv
+2dhvdqk × bytesCmn

The total memory operations for each layer are the sum of the memory operations for the input and
output activations and the parameters and are given in Tab. 15. By default, we assume that all weights
are stored in the same precision and use the same number of bytes bytesW for all weights.

Table 15: Memory Operation counts for the mLSTM Model.

Memory Ops in bytes Input & Output Activations Weights

Embeddings: BTnvocabdmodel × bytesWemb

mLSTM (single layer)
PreNorm: BTdmodel × bytesact,norm dmodel × bytesWnorm

QKV: BT
(
dmodel + nhead(2dqk + dhv)

)
× bytesqkv dmodelnhead(2dqk + dhv)× bytesWqkv

Inpute & Forget Gates: 2BT (dmodel + nhead)× bytesif (2dmodelnhead + 2nhead)× bytesWif

mLSTM Cell: BytesmLSTM —
Output Gate: BT (dmodel + nheaddhv)× bytesact dmodelnheaddhv × bytesWo

Output Norm: BTnheaddhv × bytesact,norm nheaddhv × bytesWnorm

Output Projection: BT (dmodel + nheaddhv)× bytesact dmodelnheaddhv × bytesWout

Total mLSTM layer BytesmLSTM,layer: —

Feedforward (single layer)
PreNorm: BTdmodel × bytesact,norm dmodel × bytesWnorm

MLPs: 3BT (dmodel + dff)× bytesact,ff 3dmodeldffbytesWff

Total Feedforward Bytesff,layer: —

Output Norm: BTdmodel × bytesact,norm dmodel × bytesWnorm

Unembedding: BT (dmodel + nvocab)× bytesact dmodelnvocab × bytesWemb

Total mLSTM model NmLSTM: —

C.4.3 SELF-ATTENTION MEMOPS

Similar to the FLOP counts in Appendix C.3.3, we count the memory operations for a single
Self-Attention head during training or prefill and generation.

These two cases have very different memory operation counts, as during training and prefill we need
to load the full sequence of tokens only once, whereas during autoregressive generation we have to
load all previous tokens Tp + tg (i.e. the whole KV cace) for each generated token.

We consider FlashAttention implementations for the Self-Attention operation (Dao, 2024), where the
Attention logits are not materialized in HBM. Therefore, we only count the memory operations for
loading the query, key and value inputs and the output of Self-Attention in Tab. 16.

Self-Attention in Training and Prefill (Eq. 19). During training and prefill we need to load the full
sequence of T or Tp tokens only once. The total memory operation counts are given by

BytesAtt,train-pref =
(
T (dqk + dhv)(nhead,q + nhead,kv)

)
× bytesqkv. (19)

Self-Attention in Generation (Eq. 21). Similar to the FLOP counts in Appendix C.3.3, also the
memory operation counts for the Self-Attention layer during generation depend on the number of
previous tokens T = Tp + tg, where Tp is the number of prefill tokens and tg is the number of
generated tokens so far.
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Table 16: Memory operation counts for FlashAttention. For training and prefill T = S, while for
generation S = 1.

Bytes Generic

Load:
(
Sdqknhead,q + T (dqk + dhv)nhead,kv

)
× bytesqkv

Store: Sdhvnhead,q × bytesqkv

Total:
(
S(dqk + dhv)nhead,q + T (dqk + dhv)nhead,kv

)
× bytesqkv

The number of memory operations for the tg-th generated token is given by

BytesAtt,gen-step(tg) =
(
(dqk + dhv)nhead,q + (Tp + tg)(dqk + dhv)nhead,kv

)
× bytesqkv (20)

Similar to equations (12)-(15), we can compute the total number of memory operations for Tg
generated tokens by summing up the per-step memory operations

BytesAtt,gen-seq = bytesqkv×
(
Tg(dqk + dhv)nhead,q

+
(
TpTg +

1

2
Tg(Tg + 1)

)
(dqk + dhv)nhead,kv

) (21)

C.4.4 TRANSFORMER MODEL MEMOPS

Similar to the mLSTM backbone in Appendix C.4.2, the number of memory operations for the
Transformer backbone (excluding the Self-Attention layer) consist of the input and output activations
as well as the parameters. The memory operations for input and output activations depend on the
number of tokens BT in the batch, whereas the parameters are independent of the number of tokens.

The total memory operations for each layer are the sum of the memory operations for the input and
output activations and the parameters and are given in Tab. 17. By default, we assume that all weights
are stored in the same precision and use the same number of bytes bytesW for all weights.

Table 17: Memory Operation counts for the Transformer Model.

Memory Ops in bytes Input & Output Activations Weights

Embeddings: BTnvocabdmodel × bytesWemb

Attention (single layer)
PreNorm: BTdmodel × bytesact,norm dmodel × bytesWnorm

QKV: BT
(
dmodel + nhead(2dqk + dhv)

)
× bytesqkv dmodel

(
dqknhead,q + (dqk + dhv)nhead,kv

)
× bytesWqkv

Attention: BytesAtt —
Output Projection: BT (dmodel + nhead,qdhv)× bytesact dmodelnhead,qdhv × bytesWout

Total Attention layer BytesAtt,layer: —

Feedforward (single layer)
PreNorm: BTdmodel × bytesact,norm dmodel × bytesWnorm

MLPs: 3BT (dmodel + dff)× bytesact,ff 3dmodeldffbytesWff

Total Feedforward Bytesff,layer: —

Output Norm: BTdmodel × bytesact,norm dmodel × bytesWnorm

Unembedding: BT (dmodel + nvocab)× bytesact dmodelnvocab × bytesWemb

Total Transformer model NAtt: —
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D MODELING INFERENCE CHARACTERISTICS

In this section, we create a model of the theoretical runtimes of operations in the xLSTM and
Transformer model architectures to model their inference characteristics (TTFT and step time). This
theoretical model is based on the FLOP and the memory operation counts in Appendix C.

This theoretical model of inference characteristics has two purposes: First, it allows to investigate the
theoretical differences in maximal inference speed between xLSTM and Transformer architectures
and explain the empirically observed behavior. Second, based on TTFT and step time measurements
for specific architecture configurations, it allows to predict the theoretical inference speed for other
(possibly larger) configurations and take this into account for selecting the optimal architecture
configuration based on our scaling laws. This is important if there are certain requirements on
maximal TTFTs or step times for a particular use-case. With this theoretical model, it is easily
possible to determine model configurations which satisfy those conditions.

D.1 BACKGROUND: THEORETICAL RUNTIME

In order to estimate the total theoretical runtime of workloads on GPUs or TPUs, we can break down
the runtime into three components (Austin et al., 2025, Part 1):

• Compute time τ FLOPs: The time it takes to perform the FLOPs of the workload on the
GPU(s).

• Memory time τ mem: The time for memory loads and stores from and to GPU memory
during a workload.

• Communication time τ comm: The time for communicating or transferring data (e.g. inter-
mediate results) between multiple GPUs taking part in a workload.

Given the number of floating point operations FLOPsalgo, the number of bytes Bytesmem,algo that must
be loaded and stored, and the number of bytes Bytescomm,algo that must be communicated between
GPUs, we can compute the individual runtimes as

τ FLOPs,algo =
FLOPsalgo

α acc
, τ mem,algo =

Bytesmem,algo

β acc
and τ comm,algo =

Bytescomm,algo

γ Bytes
, (22)

where α acc, β acc and γ Bytes are the accelerator specific compute speed in FLOPs/s, the accelerator
memory bandwidth in Bytes/s and the accelerator communication bandwidth in Bytes/s, respectively.

For accelerator speed α acc, accelerator memory bandwidth β acc, and accelerator communication
bandwidth γ Bytes, we use the hardware specifications of NVIDIA V1002, A1003, H1004 and B2005

GPUs, which we summarize in Tab. 18.

Table 18: Hardware Accelerator Specification for NVIDIA GPUs used in this analysis. Values
without sparsity. If only the value with sparsity is known, we divide by 2.

GPU Year bfloat16
[FLOPs/s]

Memory Bandwidth
[Byte/s]

Arithmetic Intensity
[FLOPs/byte]

Communication
Bandwidth

[Byte/s]

V100 SXM2 2017 120e12 0.9e12 133 0.3e12
A100 SXM 2020 312e12 2.039e12 161 0.6e12
H100 SXM 2022 989e12 3.35e12 295 0.9e12
B200 HGX 2025 2250e12 7.7e12 292 1.8e12

If there is no overlap between computation and memory or communication operations, or in other
words if we cannot load, store or communicate data while the GPU is doing FLOPs, the total runtime

2https://www.nvidia.com/en-au/data-center/v100/
3https://www.nvidia.com/en-us/data-center/a100/
4https://www.nvidia.com/en-au/data-center/h100/
5https://resources.nvidia.com/en-us-blackwell-architecture/datasheet
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is the sum of the two, i.e.
τalgo,upper = τ FLOPs,algo + τmem/comm,algo. (23)

If the computation and memory or communication operations can be overlapped (i.e. happen in
parallel), the total runtime is the maximum of the two, i.e.

τalgo,lower = max (τ FLOPs,algo, τmem/comm,algo) . (24)

This means the runtime is lower bounded by the maximum of the two and upper bounded by their
sum (Austin et al., 2025, Part 1).

Roofline model. A helpful model for determining whether runtime is bounded by computation
(compute-bound) or by memory/bandwidth (memory-bound) is the roofline model (Williams et al.,
2009), see Figure 13 for an illustration. The roofline relates the attainable FLOPs/s with the arithmetic
intensity Ialgo of the operation performed on the GPU which is given by

Ialgo =
FLOPsalgo

Bytesalgo
. (25)

Thus, the arithmetic intensity is the FLOPs per byte for a given operation. When the arithmetic
intensity of operations increases, the attainable FLOPs/s increase linearly - operations are essentially
memory-bound; the GPU has to wait for bytes to arrive to perform calculations. In this setting, the
runtime is effectively given by τmem/comm,algo.

Arithmetic Intensity (FLOPs/Byte)

Re
al

ize
d 

FL
OP

s/
s

Memory Bound
Compute Bound

Figure 13: Roofline model.

Upon reaching the arithmetic intensity of the accelerator Iacc (see
Tab. 18 for specifications for common GPU types), the “roofline”
is reached and operations are essentially compute bound; the
GPU still performs calculations while the next inputs are ready.
In this setting, the runtime is effectively given by τFLOPs,algo.

Inference stages. As outlined in Section 4, inference with LLMs
is typically split into two stages, prefill and generation.

For the prefill stage, the TTFT is the key performance metric
which is the runtime of the LLM in processing an input sequence
if a certain prefill length, building up caches (Transformer) /
memory cells (xLSTM) and generating the first token. Following
Austin et al. (2025, Part 7), we assume that even at relatively low prefill lengths of 256, inference is
dominated by large matrix multiplications for both Transformers and xLSTM and therefore consider
the prefill stage the be compute bound. While this might not perfectly model very small prefill lengths,
those are generally dominated by constant overheads.

For the generation stage, step time is the key performance metric which is the runtime of the LLM
in generating a new token after having processed the the whole input sequence up to the last token.
This means that during a forward pass, only a tiny amount of compute is necessary to account for this
new token. However, for Transformers it is necessary to load from the KV cache, which is a very
bandwidth-intensive operations, followed by streaming weights and storing and loading activations
for both architectures. Consequently, arithmetic intensities during generation are generally rather
low (see also Austin et al., 2025, Part 7). We thus assume that during the generation stage, both
Transformers and xLSTM are memory bound.

D.2 PREFILL STAGE: TIME TO FIRST TOKEN

As we assume to be compute bound during prefill, we model the runtime of the prefill stage which
corresponds to the TTFT as (c.f. Eq. (4)):

τ FLOPs,algo =
FLOPsalgo

α eff
+ ϵ . (26)

FLOPsalgo can be calculated analytically given the FLOPs calculations provided in Appendix C.3,
α eff and ϵ need to be fitted using the measured data. Exemplarily, we show the runtimes fitted for the
measured TTFT in Figure 14 (Transfomer) and Figure 15 (xLSTM) for different model sizes. We fit
α eff and ϵ per model configuration on TTFTs obtained under various combinations of batch sizes
and prefill lengths. Our fits show excellent agreement between the predictions from our quantitative
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Figure 14: Time to first token, measured and fitted, for a 7B Transformer model as a function of
prefill for different batch sizes.
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Figure 15: Time to first token, measured and fitted, for a 400M xLSTM model as a function of prefill
for different batch sizes.

runtime model and the measured data. In Figure 16 we further show the quotient of the fitted α eff
and the hardware parameter α acc for all model sizes. If α eff/α acc = 1, the hardware would be
perfectly utilized according to our model. We see that for both Transformers and xLSTM, the quotient
increases, thus larger models utilize the hardware better. Furthermore, both models show relatively
similar trends and magnitudes, indicating that the empirical measurement setup allowed for a fair
comparison.

D.3 GENERATION STAGE: STEP TIME

As we assume to be memory-bound during generation stage, we model the runtime of the generation
stage which corresponds to the step time as (c.f. Eq. 4):

τ mem,algo =
Bytesmem,algo

β eff
+ ϵ . (27)

Bytesmem,algo can be calculated analytically given the MemOps calculations provided in Appendix C.4,
β eff and ϵ need to be fitted using the measured data. Furthermore, we found that the fit quality for
Transformer further improved by fitting another constant that scales with the batch size. Exemplarily,
we show the runtimes fitted for the measured step times in Figure 17 (Transformer) and Figure 18
(xLSTM) for different model sizes. Again, we find a very good agreement between the predictions
from our quantitative runtime model and the measured data.
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Figure 16: Comparing the fitted αeff to the accelerator αacc (989e12 for a H100 see Tab. 18). With
our experimental setup, we attain similar effective FLOPs for both the Transformer and xLSTM. As
expected, the accelerator is better utilized by larger models.
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Figure 17: Step time, measured and fitted, for a 7B Transformer model as a function of prefill for
different batch sizes.
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Figure 18: Step time, measured and fitted, for a 400M xLSTM model as a function of prefill for
different batch sizes.
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E MODEL CONFIGURATIONS

In this section, we list the model hyperparameters and sizes of all training runs in Token/Param
(Sec. E.1) and IsoFLOP (Sec. E.2) of the dataset for our scaling law study.

E.1 MODEL SIZES AND HYPERPARAMETERS IN TOKEN/PARAM CONFIGURATION

Table 19: List of hyperparameters for xLSTM models trained with the Token/Param configuration
with context length T = 8192.

#Params (M) dmodel dff dqk dhv nheads nlayer B (seqs) LR

164 768 2112 64 128 6 12 128 3e-3
406 1024 2752 128 256 4 24 128 3e-3, 1e-3
841 1536 4160 192 384 4 24 256 1e-3, 8e-4

1420 2048 5504 256 512 4 24 256 8e-4, 7e-4
2780 2560 6848 256 512 5 32 512 7e-4
6865 4096 10944 256 512 8 32 256, 512 5e-4, 4e-4

Table 20: List of hyperparameters for Transformer models trained with the Token/Param
configuration with context length T = 8192.

#Params (M) dmodel dff dhv nheads nlayer B (seqs) LR

162 768 2048 64 12 12 128 3e-3, 1e-3
406 1024 2752 64 16 24 128 3e-3, 1e-3
834 1536 4096 96 16 24 256 1e-3

1420 2048 5504 128 16 24 256 8e-4
2779 2560 6848 80 32 32 512 7e-4
6863 4096 10944 128 32 32 256, 512 5e-4
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E.2 MODEL SIZES AND HYPERPARAMETERS IN ISOFLOP CONFIGURATION

Table 21: List of hyperparameters for xLSTM models trained with the IsoFLOP configuration.

#Params (M) dmodel dff dqk dhv nheads nlayer

83 512 1408 64 128 4 10
90 512 1408 64 128 4 12
96 512 1408 64 128 4 14

102 512 1408 64 128 4 16
114 640 1728 64 128 5 10
123 640 1728 64 128 5 12
128 640 1728 64 128 5 13
133 640 1728 64 128 5 14
143 640 1728 64 128 5 16
164 768 2112 64 128 6 12
185 768 2112 64 128 6 15
207 896 2432 64 128 7 12
207 768 2112 64 128 6 18
236 896 2432 64 128 7 15
265 896 2432 64 128 7 18
295 896 2432 64 128 7 21
324 896 2432 64 128 7 24
330 1024 2752 128 256 4 18
353 896 2432 64 128 7 27
368 1024 2752 128 256 4 21
406 1024 2752 128 256 4 24
444 1024 2752 128 256 4 27
482 1024 2752 128 256 4 30
503 1152 3136 64 128 9 24
552 1152 3136 64 128 9 27
601 1152 3136 64 128 9 30
604 1280 3456 128 256 5 24
664 1280 3456 128 256 5 27
715 1408 3776 64 128 11 24
724 1280 3456 128 256 5 30
787 1408 3776 64 128 11 27
841 1536 4160 128 256 6 24
859 1408 3776 64 128 11 30
927 1536 4160 128 256 6 27

1013 1536 4160 128 256 6 30
1108 1792 4800 128 256 7 24
1224 1792 4800 128 256 7 27
1340 1792 4800 128 256 7 30
1421 2048 5504 128 256 8 24
1573 2048 5504 128 256 8 27
1772 2304 6208 128 256 9 24
1876 2048 5504 128 256 8 33
1964 2304 6208 128 256 9 27
2028 2048 5504 128 256 8 36
2157 2304 6208 128 256 9 30
2350 2304 6208 128 256 9 33
2781 2560 6848 128 256 10 32
3017 2560 6848 128 256 10 35
3150 2816 7552 128 256 11 30
3254 2560 6848 128 256 10 38
3342 2816 7552 128 256 11 32
3533 2816 7552 128 256 11 34
3724 2816 7552 128 256 11 36
3726 3072 8256 128 256 12 30
3954 3072 8256 128 256 12 32
4410 3072 8256 128 256 12 36
4597 3328 8896 128 256 13 32
5130 3328 8896 128 256 13 36
5311 3584 9600 128 256 14 32
5930 3584 9600 128 256 14 36
6464 4096 10944 128 256 16 30
6867 4096 10944 128 256 16 32

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Table 22: List of hyperparameters for Transformer models trained with the IsoFLOP configura-
tion.

#Params (M) dmodel dff dv nheads nlayer

83 512 1408 64 8 10
90 512 1408 64 8 12
96 512 1408 64 8 14

102 512 1408 64 8 16
113 640 1728 64 10 10
128 640 1728 64 10 13
133 640 1728 64 10 14
143 640 1728 64 10 16
162 768 2048 64 12 12
183 768 2048 64 12 15
204 768 2048 64 12 18
207 896 2432 64 14 12
236 896 2432 64 14 15
265 896 2432 64 14 18
294 896 2432 64 14 21
324 896 2432 64 14 24
330 1024 2752 64 16 18
368 1024 2752 64 16 21
406 1024 2752 64 16 24
444 1024 2752 64 16 27
482 1024 2752 64 16 30
498 1152 3072 128 9 24
545 1152 3072 128 9 27
593 1152 3072 128 9 30
604 1280 3456 128 10 24
664 1280 3456 128 10 27
714 1408 3776 128 11 24
723 1280 3456 128 10 30
786 1408 3776 128 11 27
834 1536 4096 128 12 24
858 1408 3776 128 11 30
919 1536 4096 128 12 27

1003 1536 4096 128 12 30
1107 1792 4800 128 14 24
1223 1792 4800 128 14 27
1339 1792 4800 128 14 30
1420 2048 5504 128 16 24
1572 2048 5504 128 16 27
1723 2048 5504 128 16 30
1760 2304 6144 128 18 24
1951 2304 6144 128 18 27
2142 2304 6144 128 18 30
2334 2304 6144 128 18 33
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