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ABSTRACT

Text-based explanation is a particularly promising approach in explainable AI, but
the evaluation of text explanations is method-dependent. We argue that placing the
explanations on an information-theoretic framework could unify the evaluations of
two popular text explanation methods: rationale and natural language explanations
(NLE). This framework considers the post-hoc text pipeline as a series of com-
munication channels, which we refer to as “explanation channels”. We quantify
the information flow through these channels, thereby facilitating the assessment
of explanation characteristics. We set up tools for quantifying two information
scores: relevance and informativeness. We illustrate what our proposed information
scores measure by comparing them against some traditional evaluation metrics.
Our information-theoretic scores reveal some unique observations about the un-
derlying mechanisms of two representative text explanations. For example, the
NLEs trade-off slightly between transmitting the input-related information and the
target-related information, whereas the rationales do not exhibit such a trade-off
mechanism. Our work contributes to the ongoing efforts in establishing rigorous
and standardized evaluation criteria in the rapidly evolving field of explainable AI.

1 INTRODUCTION

Figure 1: An example of rationale and
natural language explanation (NLE).

As deep neural network (DNN) systems show superior per-
formance on a wide variety of tasks, the explainability of
DNNs has attracted increasing attention. The explainable
AI (XAI) literature provides abundant methods for im-
proving the transparency of a DNN. Among the methods
that produce explanations about the decision mechanisms,
text-based explanation appears particularly interesting due
to its flexibility.

Text explanations mostly appear in two forms: rationale
and NLE. A rationale is a subset of the input text, and an
NLE is an explanation in natural language that describes
the rationales (i.e., “free-text rationales”). Figure 1 shows
an example.

The evaluation criteria of rationale and NLE have been proposed from different routes. The approaches
to evaluate the rationales include computing token-level statistics or computing the change in model
performance when masking the rationales (DeYoung et al., 2020; Carton et al., 2020). Those about
NLE include simulating using a proxy model and computing the utilities (Hase et al., 2020; Wiegreffe
et al., 2021), computing the performance gain of student models (Pruthi et al., 2022) or computing
the informativeness relative to baseline rationales (Chen et al., 2022).

We argue that the evaluations of rationale and NLE can be placed on a common ground since both text
explanation approaches involve communicating the decision rationales to the readers. We abstract
the two text explanation methods within a single framework based on information theory. This
framework, which we call explanation channels, consists of three random variables: the input, the
label (of the problem to be explained), and the explanan (the product of the explanation procedure,
following the terminology of Hempel and Oppenheim (1948)). The explanation channels framework
allows us to formulate two terms based on information theory:

• Input-explanan mutual information, which describes the relevance of the explanation.
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• Target-explanan mutual information, which describes the explanation’s informativeness.

These terms are deceptively hard to quantify because the input and the explanan random variables
are rooted in complex distributed defined by high-dimensional data. While information theory and
machine learning literature provide many tools to estimate similar terms, it is still unknown whether
these tools can be used to estimate these information scores. We make it possible to estimate these
MI terms. We examine the suitability of a battery of methods for this purpose and find the two most
appropriate methods: InfoNCE (Oord et al., 2018) and V-information (Xu et al., 2020).

We illustrate the validity of the MI terms with a collection of “silver labels” that are commonly
used in NLP. We find that the estimated input-explanan mutual information correlates to traditional
evaluation scores that measure explanations’ lexical and semantic relevance. On the other hand, the
estimated target-explanan mutual information describes more than just the reasoning characteristics
of the explanans.

The information scores provide novel insights into the mechanisms of the explanation methods. NLEs
trade-off slightly between carrying the input-related information and the target-related information,
whereas the rationale explanations do not exhibit such a trade-off mechanism. Furthermore, the
two MI scores reveal idiosyncratic patterns of several of the most popular contextualized language
models.

In summary, we propose explanation channels, a framework that provides a common ground to
evaluate two text-based post-hoc explanations: rationale and NLE. Our communication channel
framework uncovers unique findings and contributes to the rigorous study of explanation quality, an
emerging research direction that deserves more attention.

2 RELATED WORK

Unified views for explanation methods Lundberg and Lee (2017) proposed a unified framework
for several additive feature attribution methods. Ancona et al. (2018) proposed one for gradient-based
feature attribution methods. Liu et al. (2021) used synthetic datasets to benchmark XAI methods
and Agarwal et al. (2022) set up a public leaderboard evaluating 22 metrics. Each of those projects
focused on explaining feature-based prediction systems, whereas we focus on text-based prediction
systems, which do not have nominal features.

Han et al. (2022) proposed a local function approximation perspective to describe post-hoc explanation
methods in a unified view, leading to a “no-free-lunch” argument for explanation methods: a locally
faithful explanation may not be faithful for a distinct data distribution. Similarly, Bilodeau et al.
(2022) proposed “Impossibility Theorems”, stating that linear explanations may not be sufficient. We
consider text-based explanations that are hard to include in unified frameworks due to the flexibility
and high-dimensional nature of language.

Information theory in NLP and XAI Approaches derived from information theory have been
widely used in NLP. For example, surprisal, the negative log-likelihood of a new item following a
sequence, has been used to train auto-regressive models (Radford et al., 2019). Surprisal is used to
analyze patterns of texts (Meister et al., 2021) and the patterns of humans reading articles sequentially
(Meister et al., 2022). Metrics derived from entropy can be used to select examples to construct
prompts that maximize informativeness (Lu et al., 2022). Along these lines, we also derive scores
following information-theoretic motivations.

Information theory is useful in XAI. For example, mutual information and minimum description
length are used to study the informativeness of (i.e., “probe”) DNN representations about some
diagnostic targets (Pimentel et al., 2020; Hou and Sachan, 2021; Voita and Titov, 2020). Conditional
mutual information is used to model the effects of explanation for users with different knowledge
backgrounds (Jung and Nardelli, 2020).

The closest work to our paper is perhaps REV (Chen et al., 2022), which estimates the target-explanan
V-information in free-text rationales (i.e., NLEs) relative to vacuous rationales. We consider the
evaluation problem from a communication channel perspective, and we measure information terms
relative to null inputs (here random Gaussian vectors). Our framework additionally computes the
input-explanan information, and can apply to text highlights (we refer to them as “rationales” in
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this paper). Treviso and Martins (2020) formulated explanation as a sparse communication problem,
where the explainer transmits information to the audience. Our framework, in contrast, considers
post-hoc explanations, where the explainer is independent of the prediction model.

3 AN INFORMATION-THEORETIC VIEW OF XAI

3.1 PRELIMINARIES FOR COMMUNICATION CHANNELS

The communication channel is ubiquitous wherever information is transmitted from a source to a
target. A signal is encoded at the source, transmitted through the channel, and decoded at the target.
During the transmission, external signals might pollute the channel, making it a noisy channel.

Let S ∈ Rds be the source and T ∈ Rdt be the target. When the source variable is observed, the
uncertainty of the target variable is reduced. The reduction in uncertainty is the mutual information
between the two variables, I(S ; T) = H(T)−H(T |S), where H(T) is the entropy (uncertainty)
and H(T |S) is the conditional entropy. The mutual information characterizes this communication
channel’s informativeness.

The mutual information of the communication channel is symmetric: I(S ; T) = I(T ; S). The
reduction of uncertainty in T by knowing S exactly equals the reduction of uncertainty in S by
knowing T. Communication channels have many properties, including data processing inequality
(Cover et al., 1991).

3.2 AN ABSTRACTION FOR THE XAI PROCESS

Figure 2: An illustration of the
explanation channels.

Here, we describe an abstraction for the procedure to explain an
AI model. The model f is a prediction machine that takes in the
input X ∈ Rdx and predicts the target Y ∈ R. To understand
the prediction procedures, the XAI literature has proposed various
methods. Each method computes an artifact, explanan, that explains
the AI model.

A popular example trains a linear model g, which serves as a proxy
for f (Ribeiro et al., 2016). Here, the explanan is the linear model
g. Another method, rationale, selects a subset of the most relevant
inputs to the prediction target (DeYoung et al., 2020). Here, the
explanan is one or more subsets of the input. NLE, in contrast,
appears to be more flexible. Large language models (LLMs) like
GPT-4 can be prompted as explainer models to generate texts with many attributes on par with
human-written explanations (Wiegreffe et al., 2022). Here, the explanan is the generated text.

As shown in Figure 2, f : X → Y is the “black-box” model to be explained (i.e., the explanandum),
and E is the explanan. Usually, E is referred to as the explanation, but the term “explanation” is also
used to refer to the process (Achinstein, 1983). To avoid overloading the terminologies, we refer to
the product, E, as the “explanan” throughout this paper and reserve “explanation” for the process.

Without loss of generality, we consider the explanan to be a fixed-dimensional variable: E ∈ Rde .
In scenarios where explanans take other forms (e.g., text), one can always embed them into fixed-
dimensional vectors.

3.3 EXPLANATION CHANNELS

The explanation of a decision-making system constitutes multiple communication channels. Two of
them transmit bits of information about the system – one from the input X and the other from the
target Y – to the explanan E. The information transmitted through the two communication channels
can describe quantities that are widely concerned by the stakeholders of the decision-making system.

Relevance The input-explanan mutual information I(X ; E) quantifies the amount of information
transmitted from the input to the explanan. Given the input X, a larger I(X ; E) indicates a larger
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reduction of uncertainty in the explanan. This is correlated to reduced hallucination in explanation,
so we term I(X ; E) the relevance of this explanation.

Predictive informativeness The target-explanan mutual information I(Y |E) quantifies the amount
of information about the result of the model to be explained. A higher I(Y |E) indicates that the
explanan removes more uncertainty about the prediction target Y . A higher I(Y |E) indicates that
the explanation is more informative.

3.4 ESTIMATING THE RELEVANCE SCORE I(X ; E)

I(X ; E) involves modeling two high-dimensional random variables. One method particularly
suitable for such an estimation is InfoNCE (Oord et al., 2018). Given a batch of N samples
{xi, ei}Ni=1, the InfoNCE estimation is:

Î(X ; E) = logN − LN , (1)

where LN is the cross-entropy loss for picking the correct ei among the batch, for each xi:

LN =
1

N

N∑
i=1

log
g(xi, ei)∑

xj∈X g(xj , ei)
(2)

Equation 2 implicitly defines a point-wise estimation for InfoNCE, which we apply in this paper. As
elsewhere (Oord et al., 2018), g is a log-bilinear model parameterized by trainable parameters W :

g(x, e) = exp
(
xTWe

)
(3)

Taking the average estimate Î(X ; E) across all batches yields the InfoNCE estimation of the dataset.
The InfoNCE estimation is a lower bound for mutual information. As the batch size N increases, the
lower bound becomes tighter. Please refer to Oord et al. (2018) for derivations.

Note that many alternative estimators, both parameteric (Poole et al., 2019; Cheng et al., 2020;
McAllester and Stratos, 2020; Song and Ermon, 2020; Belghazi et al., 2018; Nguyen et al., 2010;
Pichler et al., 2022) and nonparametric (Kandasamy et al., 2015; Kraskov et al., 2004), can estimate
mutual information. On complex data distributions, parametric information estimators are usually
more accurate than nonparametric ones, and this advantage improves as the data dimension further
increases. Among ablation experiments on these parametric estimators, InfoNCE shows lower
variances than the alternatives. We elaborate further in Appendix A.2, and defer to the recent work of
Czyż et al. (2023) as a more comprehensive evaluation.

3.5 ESTIMATING THE PREDICTIVE INFORMATIVENESS SCORE I(Y ; E)

The estimation of I(Y ; E) involves modeling a scalar random variable and a high-dimensional
one. Compared to I(X ; E), this scenario is more suitably estimated with another tool: predictive
V-information (Xu et al., 2020). Let E and Y denote random variables with sample spaces E ,Y ,
respectively. Let ∅ denote a null input without information about Y . Given a predictive family
V ⊆ Ω = {h : E ∪∅}, the predictive V-entropy is:

HV(Y ) = infh∈VE[−logh[∅](Y )], (4)

and the conditional V-entropy is:

HV(Y |E) = infh∈VE[−logh[E](Y )] (5)

The goals of the two infimum operations are to find the predictor h ∈ V that maximizes the log-
likelihood of the label data with (Eq. 4) and without (Eq. 5) the explanan E, respectively.

We use the natural logarithm (base e) throughout this paper. We consider E ∈ Rde , and the null input
∅ to be a de-dimensional vector drawn from a Gaussian noise ∅ ∼ N (0, 0.01).

The predictive V-information is defined as:

IV(E → Y ) = HV(Y )−HV(Y |E) (6)
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Similar to InfoNCE, the predictive V-information allows a point-wise estimation. Please refer to
Ethayarajh et al. (2022) for the details. The predictive V-information is neither a lower bound nor
an upper bound for the mutual information, and IV(E → Y ) approximates I(Y ; E) more precisely
when the predictors h are more high-performing (Pimentel et al., 2020; Pimentel and Cotterell, 2021).

The V-information (also termed Bayesian mutual information (Pimentel and Cotterell, 2021) and task-
specific information (Zhu et al., 2021)) has been used to study the difficulty of datasets (Ethayarajh
et al., 2022), describe properties of free-text rationales (Chen et al., 2022), and characterize the
informativeness of neural network representations (Pimentel et al., 2020; Hewitt et al., 2021).

4 DATA AND MATERIALS

4.1 DATA

We use the e-SNLI dataset (Camburu et al., 2018) in the ERASER benchmark (DeYoung et al.,
2020). This dataset augments the SNLI natural language inference task (Bowman et al., 2015). Each
instance of the language inference task presents two sentences, the premise S1 and the hypothesis
S2, with one label L describing the inference relations between them. L is one of “contradiction”,
“entailment”, and “neutral”. The e-SNLI dataset covers a broad range of topics and has been a
challenging evaluation for machine understanding of languages.

4.2 EXPLANANS

Rationale The human-annotated rationales of the ERASER benchmark (DeYoung et al., 2020)
specify the tokens important for decisions, while the remaining tokens are replaced with spaces.

NLE We prompt ChatGPT (gpt-3.5-turbo) configured with the default generation hyperpa-
rameters to generate NLEs using the template:

{S1}{S2} The label is {L} because (7)

4.3 SILVER LABELS FOR EVALUATING THE EXPLANS

We compute a collection of “silver labels” that describe a diverse collection of aspects of texts.1

Lexical-semantic scores The lexical-semantic scores don’t specifically evaluate the qualities of the
explanations.

• Type overlap ratio, the portion of the word types in the text input (S1 and S2 concatenated)
that are present in the explanan E. Type overlap ratio quantifies the lexical overlapping,
a heuristic that many neural network NLP models rely on when learning representations
(McCoy et al., 2019).

• Edit distance ratio, the minimum number of steps to edit the text input to acquire E,
normalized by the text input length. This number simulates the effort in producing the
explanation.

• Cosine similarity, the cosine similarity between the embedded input and the embedded
explanan. This quantifies how the explanan is semantically similar to the explanandum.

GPTScore labels Recent papers show that LLMs can evaluate text properties resembling human
annotators (Zhang et al., 2020; Fu et al., 2023). We specify nine aspects in three categories: reasoning
(informational support, causal support, convincingness, coherence), clarity (clarity for student, clarity
for graduate), and relevance (label relevance, input relevance, importance), by stating each aspect
with a sentence (as listed in Table 1). We use the following template to prompt the “evaluator” LLM

1Many other scores have been used to evaluate the quality of either the rationale or the NLE. The token-level
F1/precision/recall scores (DeYoung et al., 2020) are suitable for rationale but not for NLE, since NLE contains
too much flexibility. Additionally, these are aggregate scores, but we only consider instance-level scores.
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Category Item Statement

Reasoning

info_support The explanation provides sufficient information to support how the two sentences are associated to the label.
causal_support The explanation explains why these two sentences are associated to the label.
convincingness The explanation is persuasive and convinces me to believe that the question is associated to the label.
coherence The explanation bridges the gap between the two sentences and the label in a coherent and unsurprising

manner.

Clarity clarity4student The explanation is easy to understand for a high school student.
clarity4graduate The explanation is easy to understand for a university graduate.

Relevance
label_relevance Given the two sentences and the label, the explanation is relevant.
input_relevance Given the two sentences, the explanation is relevant.
importance Ths explanation highlights the most important parts in the two sentences that associate to the label.

Table 1: Statements describing the GPTScore evaluation items.

to score the explanan E regarding a statement A:

Following are two sentences, a label and an explanation.
The two sentences are: {S1}{S2}
The label is: {L}
The explanation is {E}
Please use one of ‘strongly disagree’, ‘somewhat disagree’, ‘somewhat agree’ and
‘strongly agree’ to describe your attitude towards the following statement:{A}
Do not add additional words.

(8)

The model we use is InstructGPT text-davinci-003 (Ouyang et al., 2022), which currently2

stands in the top place at the knowledge and reasoning categories of the HELM leaderboard (Liang
et al., 2022). Compared to its predecessors, text-davinci-003 benefits from RLHF and is
better at following the instructions in natural languages. It is able to follow the instructions to choose
among the provided choices: only around 1 out of every 1000 results require postprocessing (e.g.,
stripping some additional parentheses or newline characters). Empirically, we find that the addendum
to the prompt, “Do not add additional words” is helpful for encouraging it to follow the instruction.

After collecting the GPTScore labels, we map them from a categorical scale to a numerical scale.
Namely: −2 for ‘strongly disagree’, −1 for ‘somewhat disagree’, 1 for ‘somewhat agree’, and 2 for
‘strongly agree’. An exploratory analysis for inter-score correlation is included in Appendix A.5.

GPTScore is related to simulatability. Simulatability uses either humans or an LM as a proxy to
predict the label from both the input and rationale (explanation), and derive criteria to measure the
qualities of explanations. Simulatability measures the correlations between the rationale and the label
(Chan et al., 2022). Some scores in this category include LAS (Hase et al., 2020) and its variant, RQ
(Wiegreffe et al., 2021). Despite increasingly frequent anthropomorphizing claims about the LLM’s
capabilities, the LLMs still have significant limitations in their reasoning and explanation abilities
(Dziri et al., 2023). Therefore, GPTScore labels or other scores likewise computed by LLM proxies
should not be considered ground truths (“gold labels”).

5 EXPERIMENTS

5.1 WHAT ASPECTS ARE THE INFORMATION SCORES MEASURING?

To query what the information scores entail, we compute the correlation of the two information scores
with each of the silver labels. The correlations are plotted on Figure 3.

Additionally, we run ANOVA, which computes the portion of variance in each of the information
scores that can be explained by the silver labels. The detailed procedure and results are in Appendix
A.3. The following summarizes some findings.

I(X ; E) is largely about lexical and semantic relevance On NLE, these lexical-semantic scores
can explain 46% and 43% of the total variance in I(X ; E), for Cohere and OpenAI respectively.

2As of May 1, 2023.
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Figure 3: Correlations between relevance (left) and informativeness (right) and the silver labels.

The portions of explained variance are 31% and 17% on rationales. Other scores do not explain more
than 5% of the total variance, but there is some evidence of correlations. As Figure 3 shows, the score
I(X ; E) shows strong correlations to the lexical and the semantic overlaps. I(X ; E) positively
correlates to the embedding similarity and the type overlap ratio, while negatively correlates to
the edit distance ratio. On NLEs, I(X ; E) show correlate mildly to the convincingness, causal
support, coherence and importance scores and weak correlations to other GPTScore labels. On
rationales, I(X ; E) does not show correlations to the GPTScore labels. Note that the I(X ; E) of
the RoBERTa-embedded explanations do not show similar levels of correlations with the silver labels
— we elaborate the differences between the embeddings in Section 5.3.

I(Y ; E) is not just about the reasoning What the informativeness score I(Y ; E) involves varies
by the explanation method and the embedding choices. The reasoning category scores can explain
16% and 21% of the variance in the estimated I(Y ; E) for OpenAI and RoBERTa on NLE (18%
and 19% for rationale), and no more than 17% for any other categories. On rationales, I(Y ; E) is
negatively correlated to the relevance and reasoning quality scores but is mildly correlated to the
clarity scores. On NLEs, I(Y ; E) is positively correlated to the coherence, clarity, and importance
scores for the RoBERTa embedding, uncorrelated for the Cohere embedding but negatively correlated
for the OpenAI embedding.

5.2 THERE IS RELEVANCE–INFORMATIVENESS TRADEOFF FOR NLE BUT NOT RATIONALES

To further understand the phenomena described by the information scores, we compute the correlations
between the relevance and the informativeness scores. The results are shown in Figure 4, and Figures
5 – 6 in Appendix.

The relevance score I(X ; E) and the informativeness score I(Y ; E) show weak negative correla-
tions for NLE. The evidence indicates that the (ChatGPT-generated) NLEs slightly trade-off between
encoding the input-related information and encoding the label-related information. On rationales,
the signs of such correlations differ by embeddings: negative for OpenAI, positive for Cohere, and
insignificant for RoBERTa. The lack of evidence for relevance–informativeness tradeoff on rationales
is likely a result of a lack of “degree of freedom”, since the annotators can only select a subset of
input texts to acquire the rationales.

5.3 ABLATION ON THE EMBEDDING METHOD

As defined in 3, we consider both the input X and the explanan E to be vectors. When the input and
the explanans are both texts, there needs to be an embedding step that converts them into vectors.
Embedding is the crucial component that allows multiple types of explanations to be comparable
on the same ground. An embedding is already present in the f : X → Y model, but sometimes this
embedding is unavailable, what would be the effects if we use other embeddings to compute the
information scores? We run ablation studies and query how the relevance and the informativeness
scores differ.
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Figure 4: The relevance–informativeness scatter plots for rationale (left) and NLE (right), for the
OpenAI embeddings. Spearman correlation between relevance and informativeness is −0.0585(p =
0.0089) for rationale and −0.0564(p = 0.0117) for NLE.

We consider three embeddings: RoBERTa (roberta-large) (Liu et al., 2019), OpenAI
(text-embedding-ada-002) (Brown et al., 2020), and Cohere (small) (Co:here, 2023). The
OpenAI embedding has de = 1536 dimensions, and the other two embeddings have de = 1024.

The Cohere and OpenAI embeddings have significantly larger relevance scores I(X ; E) from the
RoBERTa embedding,3 but the difference is not significant between Cohere and OpenAI embeddings.4
This trend holds for both the rationale and the NLE explanations.

The informativeness score I(Y ; E) score show a different pattern. For NLE, OpenAI embedding has
a higher informativeness score than either Cohere or RoBERTa, which do not significantly differ.5
For rationale, RoBERTa embedding has a significantly higher informativeness score than the other
two embeddings, which do not significantly differ.6

We also observe that the embeddings demonstrate distinct patterns when we plot them onto a
relevance–informativeness map. Figure 4 shows a relevance–informativeness scatter plot of the
OpenAI embeddings. The data samples with different labels show some weak trends of clustering,
but the Silhouette coefficients are weak (−0.1088 and −0.0561, for rationale and NLE, respectively).
The plots of the other two embeddings are included in Figures 5 and 6 in Appendix. Cohere
shows similar clustering trends as OpenAI (Silhouette coefficients −0.0139 and 0.0166) embedding,
but much less than the RoBERTa embedding (with Silhouette coefficients 0.1708 and 0.7853). A
possible hypothesis to explain the inter-embedding difference is that RoBERTa strives to preserve
the predictive information, embedding the texts from different classes into subspaces that are easy
to separate linearly. On the other hand, OpenAI and Cohere embeddings relax this separability
requirement, preserving more contextual information about the semantics.

6 DISCUSSIONS

On the capacities of explanation channels Table 2 summarizes the relevance and the informative-
ness across rationale and NLE. It is perhaps surprising that the information numbers are very small,
compared to the amount of information the explanation channels can potentially transmit — Two
1024-dimensional binary random variables could potentially have 1024× log2 = 618 nats of mutual
information, and the floating point variables can support an even larger channel capacity. Besides the
impact of variance from the estimators, are there other factors that could explain the observations that
there is so little input-explanan information I(X ; E) and the target-explnan information I(Y ; E)?
A possible explanation is that the dimensions in the LLM’s embedding vectors are highly correlated

3p < 0.01. All tests in this subsection are two-tailed t-tests. dof = 1999, Bonferroni corrected.
4p = 0.0552 and p = 0.0809 for rationale and NLE, respectively.
5p = 0.0219. After Bonferroni correction, this result is not significant.
6p = 0.0674.
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Î(X ; E) Î(Y ; E)
Cohere OpenAI RoBERTa Cohere OpenAI RoBERTa

Rationale 3.33 3.41 0.0609 0.208 0.00291 0.0105
NLE 2.78 2.88 0.000 0.0826 −0.00179 0.0321

Table 2: Estimated relevance and informativeness (in nats), on the e-SNLI test set.

(an effect observed in many language models (Aghajanyan et al., 2021; Wang et al., 2020; Ethayarajh,
2019)) which reduces the overall channel capacities.

Amount vs type of information Researchers have realized that the information spreading across
long contexts could be “crammed” into fixed-length embedding vectors (Conneau et al., 2018).
Considering the experiment findings, we could further argue that explanation does not need the full
bandwidth of information of the language semantics. Providing the right type of information might
be as important as providing the sufficient amount. Depending on the actual problems to explain,
not all types of relevant information are appropriate — some bits of information may be disparaging,
unwelcoming, and biased. The specification of, and even automatic evaluation of these attributes,
however, is subject to further research. Identifying and elaborating on the types of information and
their societal impacts would be crucial for understanding the explanation quality. Additionally, the
explanation effect given the same amount of information describes the quality of the explanation, a
term deserving more attention when developing automated approaches to explain complex decisions.

Towards multimodal explanation channels Can explanation channels generalize to multimodal
problems? We believe they have the potential, as long as multimodal embeddings are sufficiently
informative. Recent text-to-image models like DALL-E (Ramesh et al., 2021) and image-to-text
models like CLIP (Radford et al., 2021) and BLIP2 (Li et al., 2023) indicate an affirmative answer,
but empirical evidence will be necessary.

7 CONCLUSION

We propose an information-theoretic framework, explanation channels, as a unified testbed for
two text-based post-hoc explainable AI methods: rationale and NLE. With this framework, we can
estimate the input-explanan mutual information as the “relevance score” and the target-explanan
mutual information as the “informativeness score”. We set up tools to compute the two scores on
the explanation of natural language inference problems, which involve complex, high-dimensional
distributions. By comparing to silver labels, we find that the relevance scores describe the lexical and
semantic relevance scores, while the informativeness scores describe more than the reasoning qualities
of the explanations. The scores reveal interesting properties of the language model embeddings and,
more importantly, describe the mechanisms of multiple types of explanations. Information-theoretic
frameworks have the potential to be a unified evaluation of explainable AI, empowering principled
developments of trustworthy AIs.

8 LIMITATION

In this paper, we focus on the objective aspects and only use fully automatic evaluations to compute
silver labels. Human annotators could be introduced in future studies. For the utility towards humans,
we defer to the tutorial of Boyd-Graber et al. (2022). We also defer to Lombrozo (2012) for a review
of the psychological aspects of explanations.

The coverage of experiments could be expanded. For example, we consider three embeddings
(OpenAI, Cohere, RoBERTa-large) instead of many popular language models like LLaMA (Touvron
et al., 2023) and GPT-J (Wang and Komatsuzaki, 2021). In addition to the e-SNLI, more datasets
could also be experimented on. The range of text explanations can be expanded. We focus on
rationale and NLE, and believe that the explanation channels framework can also be generalized to
additional text-based XAI methods including contrastive explanations (Yin and Neubig, 2022), and
causal explanations (Kıcıman et al., 2023).
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A APPENDIX

A.1 ADDITIONAL DETAILS ABOUT THE EXPERIMENTS

Data We randomly sample 12k data samples, and split the dataset into 8k-2k-2k portions for train-
validation-test splitting. This preserves a portion of the data that allows rigorous tests for statistical
significance and keeps the various costs (mostly the costs to run API calls) reasonable.

Runtime and computation resource The runtimes for the MI estimators and the V-information
estimators are mostly under one minute for each pass on a T4 GPU card. The estimators running on
larger batch sizes (64) take longer times to finish, but the time per pass is still under ten minutes. The
short runtimes allow us to tune the hyperparameters by sweeping through a large combination.

A.2 ADDITIONAL DETAILS ABOUT THE ESTIMATORS

Procedure of finding the suitable estimator For I(X ; E), we use the estimators based on the
repository of Pichler et al. (2022). We select among several popular variational information estimators:
CLUB (Cheng et al., 2020), DoE (McAllester and Stratos, 2020), SMILE (Song and Ermon, 2020),
MINE (Belghazi et al., 2018), NWJ (Nguyen et al., 2010) and InfoNCE (Oord et al., 2018). First, we
run hyperparameter tuning using Optuna (Akiba et al., 2019) through a widely applied evaluation
benchmark, correlated Gaussian (Belghazi et al., 2018), and use the structural hyperparameters
for each estimator based on the lowest mean squared error averaged across five scenarios.7 These
include the number of layers and whether to use layer norms and residual connections in the neural
networks that parameterize each variational estimator. Then, we train the selected estimator-specific
hyperparameters on the embedded e-SNLI data and select the optimal procedural hyperparameters
(batch size, learning rate, and optimization epochs) based on the lowest validation loss. We refactor
the scripts to output pointwise mutual information, compute on the test set and export them.

For I(Y ; E), we implement V-information estimators using two fully-connected predictors. The
structural and procedural hyperparameters are both tuned on the validation set of the embedded
e-SNLI data. The following paragraphs list more details, including the optimal configurations of the
hyperparameters:

Structural hyperparameters for variational information estimators The search spaces for the
structural hyperparameters of the information estimators are:

• CLUB: w/wo residual connections. 1-3 layers. w/wo layer norm.
• DoE: w/wo residual connections. 1-3 layers. w/wo layer norm.
• InfoNCE: without residual connections. 1-3 layers. with layer norm.
• MINE: without residual connections. 1-3 layers. w/wo layer norm.
• NWJ: choose between [GAN, JSD, X2, KL, RKL, DV, H2, W1] for the possible NWJ

measures. without residual connections. 1-3 layers. w/wo layer norm.
• SMILE: choose between [None, 0.1, 1, 10] for clipping. without residual connections. 1-3

layers. w/wo layer norm.

The best structural hyperparameters are:

• CLUB: residual connection. 2 layers. layer norm.
• DoE: residual connection. 2 layers. without layer norm.
• InfoNCE: 1 layer.
• MINE: with layer norm. 2 layers.
• NWJ: NWJ measure choice W1. 1 layer. without layer norm.
• SMILE: clip choice None. 1 layer. with layer norm.

and the results are listed in Table 3.

Among the estimators, InfoNCE shows a significantly lower variance than others.

Training-related hyperparameters The search spaces are:

7The five scenarios are: I = 2, 4, 6, 8, 10, on the data dimension d = 1024.
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Estimator Correlated Gaussian e-SNLI
Minimum MSE Variance on validation set Î(X ; E) on test set

CLUB 7.82 820 119
DoE 42795.25 5.41e3 -197
InfoNCE 41.08 0.03 2.06
MINE 43.88 1.35e3 2.01
NWJ 36.48 3.00e10 1.42e6
SMILE 41.53 3.79e5 105

Table 3: Comparisons across variational estimators with the best structural hyperparameters. On
Correlated Gaussian, the MSE is the mean of five trials (against the ground truth 2,4,6,8,10). On
e-SNLI, the validation set variance and the test set I(X ; E) are the averages across all batches over
six scenarios ({rationale,nle}×{cohere,openai,roberta}).

• Learning rate (lr): 1e-3, 3e-4, 1e-4, 3e-5, 1e-5.
• Batch size: 8, 16, 32, 64.
• Max epochs: 10.

The optimal group of training-related hyperparameter is listed in Table 4.

Method Embedding Steps Batch size lr

NLE cohere 1250 64 1e-4
NLE openai 1250 64 1e-4
NLE roberta 2250 32 3e-4
Rationale cohere 1250 64 1e-4
Rationale openai 1125 64 3e-4
Rationale roberta 1250 64 1e-3

Table 4: Optimal hyperparameters for InfoNCE.

Optimal hyperparameters for I(Y ; E) The search space for both the h[∅](Y ) and h[E](Y ) are
the same:

• Batch sizes: 4, 8, 16.
• Learning rate: Between 1e-6 and 1e-2, recommended by Optuna with log scale.
• Max epochs: 10.
• Model structure: Just a linear layer that projects the d-dimensional input to the number of

classes.

Table 5 lists the optimal sets of hyperparameters recommended by Optuna from 50 trials.

Method Embedding h[∅](Y ) h[E](Y )
Batch size lr Batch size lr

NLE cohere 16 0.000002 8 0.000026
NLE openai 8 0.000005 16 0.000008
NLE roberta 4 0.000001 8 0.000009
Rationale cohere 8 0.000139 16 0.000918
Rationale openai 16 0.001514 16 0.000005
Rationale roberta 4 0.001761 8 0.000902

Table 5: The optimal hyperparameters for estimating I(Y ; E) using V-information.
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A.3 DETAILS FOR ANOVA ANALYSIS

For each target, we run four ANOVA studies: lexical-semantic, reasoning, discourse and relevance.
They are type 2 ANOVA models that can be described by the following equations, respectively:

Target ∼ type_overlap_ratio + edit_distance_ratio + cosine_similarity, (9)
Target ∼ info_support + causal_support + convincingness + coherence, (10)
Target ∼ clarity4student + clarity4graduate, (11)
Target ∼ label_relevance + input_relevance + importance, (12)

where Target is either of Î(X ; E) and Î(Y ; E). We use an off-the-shelf tool, statsmodel’s ols, to
run the ANOVA. The results are listed in Tables 6 and 7, as follows:

Category
Explanation Embedding lexical_semantics reasoning clarity relevance

NLE
Cohere 46 5.2 2.0 2.9
OpenAI 43 5.4 2.4 2.9
RoBERTa 2.4 0.42 0.03 0.07

Rationale
Cohere 31 1.0 0.2 0.5
OpenAI 17 0.4 0.04 0.17
RoBERTa 1.9 0.3 0.23 0.15

Table 6: Percentage of variance in Î(X ; E) explained by the features in the categories.

Category
Explanation Embedding lexical_semantics reasoning clarity relevance

NLE
Cohere 1.9 3.9 0.66 0.35
OpenAI 3.7 16 3.8 7.1
RoBERTa 17 21 6.9 5.4

Rationale
Cohere 0.19 4.2 0.89 1.7
OpenAI 1.9 18 0.1 14
RoBERTa 2.6 19 1.1 8.4

Table 7: Percentage of variance in Î(Y ; E) explained by the features in the categories.

A.4 RELEVANCE–INFORMATIVENESS TRADEOFF, AND THE EMBEDDING UNIQUENESS

The scatter plots of Cohere and RoBERTa are included in Figures 5 and 6.

A.5 EXPLORATORY ANALYSIS OF THE SILVER LABEL SCORES

Table 8 summarizes some exploratory statistics for the silver label scores. Figure 7 shows the
inter-score correlations for each of the silver labels.

On NLE, most scores show low inter-score correlations with each other, indicating that these scores
measure a diverse collection of aspects. On the rationale explanations, however, some inter-score
correlations are higher (for example, the causal support and the input/label relevance are highly
correlated) because the variability of the rationale (subsets of the input texts) is lower. Regardless,
the clarity and lexical overlapping scores do not correlate to most of the GPTScore results.

A.6 EXAMPLES WITH HIGH AND LOW I(X ; E) AND I(Y ; E) SCORES

Tables 9 to 12 list several examples with high and low relevance and informativeness scores (computed
using Cohere embeddings), as well as some brief descriptions of the patterns of the explanations.
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Figure 5: The relevance–informativeness scatter plots for rationale (left) and NLE (right), for Cohere
embeddings. The Spearman correlations are 0.0441(p = 0.0488) for rationale and −0.1416(p <
10−3) for NLE.

Figure 6: The relevance–informativeness scatter plots for rationale (left) and NLE (right), for
RoBERTa embeddings. The Spearman correlations are −0.0417(p = 0.0623) for rationale and
−0.0498(p = 0.0261) for NLE. Note that the Silhouette coefficients are 0.1708 (left) and 0.7853
(right), showing moderate and strong cluster effects, respectively.

Item Mean (Stdev) for Rationale Mean (Stdev) for NLE

Edit distance ratio 0.80 (0.14) 1.03 (0.33)
Type overlap ratio 0.22 (0.15) 0.22 (0.18)

Informational support 0.12 (1.18) 0.57 (1.19)
Causal support 0.39 (1.30) 1.26 (0.93)
Convincingness 0.11 (1.34) 0.71 (1.40)
Coherence 1.47 (0.83) 1.65 (0.52)

Clarity for student 1.34 (0.72) 1.69 (0.48)
Clarity for graduates 1.28 (0.70) 1.62 (0.50)

Label relevance 0.49 (1.35) 1.36 (1.00)
Input relevance 0.52 (1.32) 1.39 (1.04)
Importance 0.65 (1.12) 1.20 (0.76)

Table 8: Exploratory statistics for silver labels on the e-SNLI test sets. The GPTScore items are
mapped to a numerical range between -2 (‘strongly disagree’) and 2 (‘strongly agree’).
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Figure 7: Inter-feature correlation heatmaps, for rationale (up) and NLE (down).
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Sentence 1 Sentence 2 Label Explanation I(X ; E) I(Y ; E)

Using NLE

A person riding a bike
on a snowy road.

A person rides a bike
in winter.

entailment the person is actively
riding a bike and
the weather condi-
tions are snowy.

4.1589 0.9697

A man wearing a
reflective vest sits
on the sidewalk and
holds up pamphlets
with bicycles on the
cover.

A man is showing
pamphlets outside.

entailment the man is show-
ing the pamphlets to
passersby, displaying
that he is giving out
pamphlets with bicy-
cles on the cover.

4.1589 0.7262

Four women in a
living room, three
of which are clearly
playing a musical in-
strument.

Four women play mu-
sic together.

neutral it does not specify
what type of mu-
sic or instruments the
women are playing.

4.1588 1.5816

Using rationale

A gymnast perform-
ing on the balance
beam in front of an
audience.

A person is balanc-
ing.

entailment gymnast performing
on balance beam bal-
ancing

4.1589 0.8728

A woman is resting
against a cross shaped
pole while looking to-
wards a large body of
water.

The woman is in a
desert.

contradiction woman is resting
against cross shaped
pole while looking
towards a large body
of water. in a desert.

4.1589 1.7789

people at beach look-
ing for things in sand

Two people are on a
sandy beach using a
metal detector.

neutral sandy beach using
metal detector.

4.1586 0.2028

Table 9: Examples of some data samples with high I(X ; E). Usually, the NLE and rationale that
receive high I(X ; E) scores are those that attend to both the premise and the hypothesis.
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Sentence 1 Sentence 2 Label Explanation I(X ; E) I(Y ; E)

Using NLE

An African woman
with piercings, lots of
necklaces and corn on
her head.

A woman is carrying
corn to her family.

neutral there is no indication
of any particular race,
gender, or culture in
the picture.

0.0029 1.1132

A man is bowling
at an alley with cos-
mic imagery includ-
ing bowling balls and
pins above the lanes.

The man is a profes-
sional bowler.

neutral it does not indicate
any opinion about the
man or the activity.

0.0075 1.7032

A black dog runs
along the beach and
jumps over a wood
barrior.

a dog jumping over
wood at the beach

entailment the sentence is sug-
gesting that it is a
scene described by
the sentence.

0.0093 0.4059

Using rationale

The small bird is
clinging to a finger of
the hand holding the
seeds.

A small blue bird
clings to a finger.

neutral A 0.0993 0.3024

An old weathered,
bearded man wearing
all black, riding a
beautiful white don-
key on white rocks.

A man is leading
a donkey through a
field.

contradiction riding leading 0.1047 -0.5416

a young boy skate-
boarder jumping on a
platform on a skate-
board.

A boy is on a skate-
board.

entailment young boy boy 0.2127 1.0775

Table 10: Examples of some data samples with low I(X ; E). Many NLEs receiving low I(X ; E)
scores follow a “meta-description” pattern: instead of describing the contents of the premise and
the hypothesis, the NLEs describe the contexts of the contents. On the other hand, many rationales
receiving low I(X ; E) scores are succinct.
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Sentence 1 Sentence 2 Label Explanation I(X ; E) I(Y ; E)

Using NLE

Someone sleeping on
bench on city street.

That person has his
eyes open

contradiction sleeping usually re-
quires the individual
to have their eyes
closed.

3.2941 3.1781

A small child grips
onto the red ropes at
the playground.

A small child eats a
picnic lunch at the
park.

contradiction the image shows a
child holding onto
ropes but the descrip-
ton talks about the
child eating.

3.5325 3.1289

An elderly man
with facial hair and
glasses, standing
in his living room
holding a hutch
cabinet with glass
doors.

The man has bought a
new cabinet.

neutral this man could fit
into any age range,
have any occupation
and any cultural back-
ground.

3.6478 2.6760

Using rationale

A blond man wear-
ing glasses is sitting
in the train looking
down at something.

A blond woman wear-
ing glasses is sitting
in the train looking
down at something.

contradiction man woman 3.4440 3.5600

A man in a light green
suit is operating ma-
chinery in a factory.

The man is outdoors. contradiction in a factory. outdoors. 4.0892 3.5591

A man in red on a
bicycle rides past a
glass structure.

A man is riding his bi-
cycle.

entailment man on a bicycle
rides man is riding his
bicycle.

4.0187 2.9888

Table 11: Examples of some data samples with high I(Y ; E).
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Sentence 1 Sentence 2 Label Explanation I(X ; E) I(Y ; E)

Using NLE

Black and white bird
standing on hand of
someone holding sun-
flower seeds

Two yellow birds
waited on the ground
for seeds to drop
from a hand.

contradiction it doesn’t match the
description

-2.3099 0.0029

Little girl holding a
karate trophy.

A girl won a karate
tournament.

neutral while there is likely
an implication of gen-
der, it does not explic-
itly state that the girl
is female.

1.5759 0.0093

The biker is riding
around a curve in the
road.

The person is on a
bike.

entailment it implies that some-
one is riding a bicycle
around a curve in the
road.

4.1466 0.0126

Using rationales

A dog jumps to catch
a toy.

A dog is fetching a
toy to earn a reward.

neutral fetching earn a re-
ward.

3.8458 0.0009

A man in an or-
ange hard hat and
vest looks at an ob-
ject in his hand while
the man next to him
stands on a ladder in
order to reach the ceil-
ing.

Two men are working
construction.

neutral working construction 3.9032 0.0037

Man on four wheeler
in the air.

Man is racing in the
Nascar race.

contradiction air. race. 3.7801 0.0070

Table 12: Examples of some data samples with low I(Y ; E). The examples with low I(Y ; E)
usually involve NLEs that are off-topic (the first two) or purely repeating the premise or the hypothesis
(the third example). The rationales attending to only one of the two sentences are also given low
I(Y ;E) scores, but some valid rationales (e.g., the last one) are given low I(Y ;E) scores too.
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