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Abstract

Current AI research mainly treats explanations as a means for model inspection. Yet,
this neglects findings from human psychology that describe the benefit of self-explanations
in an agent’s learning process. Motivated by this, we introduce a novel approach in the
context of image classification, termed Learning by Self-Explaining (LSX). LSX utilizes
aspects of self-refining AI and human-guided explanatory machine learning. The underlying
idea is that a learner model, in addition to optimizing for the original predictive task, is
further optimized based on explanatory feedback from an internal critic model. Intuitively,
a learner’s explanations are considered “useful” if the internal critic can perform the same
task given these explanations. We provide an overview of important components of LSX
and, based on this, perform extensive experimental evaluations via three different example
instantiations. Our results indicate improvements via Learning by Self-Explaining on several
levels: in terms of model generalization, reducing the influence of confounding factors, and
providing more task-relevant and faithful model explanations. Overall, our work provides
evidence for the potential of self-explaining within the learning phase of an AI model.

1 Introduction

Self-reflection is considered an important building block of human intelligence and a crucial component
in the learning process of humans (Gläser-Zikuda, 2012; Ellis et al., 2014). In fact, one aspect of self-
reflection—self-explaining—has been identified in several psychological studies as greatly beneficial for the
overall learning, problem-solving and comprehension abilities of human subjects (Chi, 2018; Chi et al., 1981;
1994; Chamberland & Mamede, 2015; Belobrovy, 2018; Larsen et al., 2013; Kwon & Jonassen, 2011; Bisra
et al., 2018). Accordingly, self-explanations have been suggested to act as a means of making initially implicit
knowledge explicit and therefore to represent an important component for critical self-refinement.

Indeed, recent works in machine learning (ML) research have picked up on the idea of self-refining. While
some are directly inspired by findings from human studies (Madaan et al., 2023), others utilize the potential
of pre-trained large language models (LLMs), e.g., on the topics of self-debiasing (Schick et al., 2021), self-
instructing (Wang et al., 2023) and self-rewarding (Yuan et al., 2024). Although these works are quite specific
in their form of self-refinement (cf. survey by Pan et al. (2023)) and far from the general idea of self-reflection
from human psychology, they do provide valuable first steps for more reflective AI models. However, none
of these focus on the value and potential of explanations as the basis and means of such reflective processes.

On the other hand, research on interactive machine learning (Teso et al., 2023; Gao et al., 2022), such as
the explanatory interactive learning framework (XIL) (Teso & Kersting, 2019; Schramowski et al., 2020),
has long identified the value of explanations as a means of communication between human users and AI
models, particularly, as a very successful means for model refinement. However, hereby explanations are
only leveraged for refinement through human guidance.

In this work, we introduce the Learning by Self-Explaining (LSX) framework, which combines the ideas
of self-refining ML and XIL (cf. Fig. 1 (left)) by leveraging explanations in the learning process of an AI
model prior to any form of human explanatory feedback. In LSX (cf. Fig. 1 (right)) an AI model consists
of two submodels, a learner and an internal critic, and undergoes four distinct learning modules (Fit,
Explain, Reflect, Revise). In Fit, the learner is trained on a base task (e.g., image classification) upon
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Figure 1: (left) Current (self-)refinement machine learning utilizes (I.) forms of self-supervised model refinement
(e.g., self-rewarding). On the other hand, it also relies on (II.) explanatory interactive learning (XIL) which uti-
lizes human feedback via explanations for model refinement. (right) In contrast, we introduce Learning by Self-
Explaining which integrates ideas from both research fields into one approach as explanation-based self -refinement
(I + II.). A model in LSX consists of two submodels, a learner and (internal) critic, and performs refinement via four
modules (Fit, Explain, Reflect, Revise, cf. Alg. 1). The learner is optimized for a base task in Fit (e.g., image
classification), after which it provides explanations to its decisions in Explain. In the Reflect module, the critic
assesses how useful the explanations are for performing the base task. The resulting feedback from the critic is used
to Revise the learner.

which it provides explanations for its predictions (Explain). The critic next assesses the quality of these
explanations for performing the base task (Reflect). Intuitively, a “useful” explanation should thereby
provide important information for the task at hand. Finally, the critic’s feedback is used to revise the
learner (Revise) and the Explain, Reflect and Revise loop is repeated, if needed. Overall, we consider
the two submodels to constitute a collective model, whereby both work jointly to improve on the same base
task. However, at inference time, only the learner provides the final task predictions (cf. Fig. 1 (right)).

We introduce LSX in the context of image classification and provide experimental evaluations via multiple
datasets and evaluation metrics to investigate the benefits of learning by self-explaining. Specifically, these
evalautions focus on the generalization performances of a learner, mitigating confounding behavior, consol-
idating explanations and explanation faithfulness. We perform these evaluations on three diverse example
instantiations where the learner is based on a convolutional neural network (CNN), and a neuro-symbolic
(NeSy), and a vision-language model (VLM), respectively.

Overall, our contributions are the following: (i) We introduce LSX, a novel learning approach for ML models
in which a model self-refines itself by assessing its explanations. (ii) In the context of image classification,
we introduce several example instantiations for LSX thereby illustrating different model and learning con-
figurations. (iii) We provide extensive experimental evidence on various datasets and evaluation metrics,
illustrating the potential of LSX for model refinement.

We proceed as follows. In section 2, we formally introduce the LSX framework. For our experimental
evaluations in section 3, we introduce several example instantiations for LSX and provide results for multiple
datasets, metrics, and ablations. We wrap up our work with an extensive discussion of our results as well as
related work and leave the reader with a final conclusion.

2 Learning by Self-Explaining (LSX)

In the following, we introduce Learning by Self-Explaining in the context of image classification and present
an overview of its important components and modules. Let us first provide some background notations.

In LSX, a model is comprised of two submodels: the learner submodel, denoted as f , and the internal critic,
denoted as c (cf. Fig. 1 (right)). Further, let x ∈ X be an image, with X := {xi}N

i=1, and with corresponding
class label y ∈ Y with Y ⊆ NN

≤K for K classes. Hereby, N ∈ N denotes the number of samples. We denote
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Algorithm 1 Learning by Self-Explaining in pseudocode. Given: the two submodels, a learner model,
f , and internal critic model, c, dataset X̄ = (X, Y ) (i.e., input images and corresponding class labels),
X̄c ⊆ X̄, iteration budget T and base task, i.e., image classification.

f ← Fit(f, X̄) {Learner optimized for base task}
repeat

explanations← Explain(f, X̄c) {Obtain explanations from learner for examples X̄c}
feedback← Reflect(c, X̄c, explanations) {Critic provides feedback on quality of explanations}
f ← Revise(f, X̄, feedback) {Learner is updated given feedback from critic}

until budget T is exhausted or f converged
return f

X̄ := (X, Y ) as the joint set of images and corresponding labels and X̄c ⊆ X̄ as a subset of this that is
specifically provided to the critic (details below).

While the learner performs an underlying base task, e.g., image classification, the critic’s role is to provide
feedback on the learner’s explanations within the task. Overall, the learner represents a trainable predictive
model (e.g., a CNN). The critic also represents a predictive model which, however, must not necessarily be
learnable. Its specific model type should be chosen depending on constraints such as the type of explanation
that the learner provides (will be discussed below). At inference, the learner provides the overall model’s
final predictions (cf. Fig. 1 (right)).

The general procedure of LSX can be described via four modules (inspired by Friedrich et al. (2023a)): Fit,
Explain, Reflect, and Revise, where the last three modules are the core modules of LSX (cf. Fig. 1).
Let us now describe these four modules in more detail based on Alg. 1.

Optimize for the base task (Fit). The Fit module describes the underlying, base learning task in which
the learner is optimized to solve a particular problem, e.g., supervised image classification. Ultimately, Fit
returns a model that has been optimized for the base task, i.e., f ← Fit(f, X̄) (cf. Alg. 1). In general,
this module represents the vanilla learning approach for the underlying task. The details of this are thus
independent of LSX. E.g., for the task of supervised image classification a CNN-based learner might be
optimized via a standard cross-entropy loss. More formally, f is provided with a sample from the training
dataset, (x, y) ∈ X̄, and makes predictions ŷ = f(x). Its latent representations are optimized given a
corresponding loss function, lB (e.g., cross-entropy: lB = lCE(ŷ, y)). Generally, within Fit, one can employ
any bells and whistles of modern machine learning setups (e.g., hyperparameter optimization via cross-
validation, learning rate schedulers, etc.) and optimize it until it has reached satisfactory performances.

Provide explanations (Explain). Explain represents the first of three core modules of LSX. In
this module, f provides explanations to its predictions for a set of data samples1, X̄c ⊆ X̄. This
is achieved via a pre-selected explanation method that returns an explanation for each sample in X̄c,
i.e., explanations ← Explain(f, X̄c) (cf. Alg. 1). The learner’s explanation method can be selected
from one of the vast collection of post-hoc or inherent eXplainable AI (XAI) approaches (cf. Guidotti
et al. (2018); Ras et al. (2022b); Liao & Varshney (2021); Carvalho et al. (2019)). Given the architectural
constraints of the learner a suitable method can, e.g., represent an input attribution method (that indi-
cates how important a specific image pixel was for a model’s prediction), a concept-level, logical statement
(e.g., bluebird(X):- in(Obj,X),wingcolor(Obj,blue),size(Obj,small)), or a generated natural lan-
guage explanation (e.g., “The person is playing tennis, because they are holding a tennis racket.”). Lastly,
we note that in certain cases it may be beneficial for X̄c to represent a separate set that is with-held during
the initial optimization of f , i.e., X̄c ∩ X̄ = ∅ (will be discussed in following sections).

Provide feedback on quality of explanations (Reflect). In the second core module, and arguably
the most distinctive module of LSX, the high-level role of the internal critic is to “reflect” on the quality of
the learner’s explanations. This is an abstract measure and in LSX is quantified by the ability of the critic
to perform the base task given the learner’s explanations. This quantification is obtained in the Reflect

1It may be sufficient and more computationally feasible for the critic to only assess a subset of all data.
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module of LSX, i.e., feedback ← Reflect(c, X̄c, explanations) (cf. Alg. 1). feedback hereby contains
the critic’s assessment (quantification) of the explanation’s quality and represents a form of feedback for the
learner (further discussed in the Revise module below). This can, e.g., represent a probabilistic ranking over
all explanations (how likely they are given the original data), but also a gradient signal from a classification
loss function. The specific form of this feedback varies and depends on the model type of the critic, but
also the type of provided explanations. We provide some concrete examples of this in our experimental
evaluations. In any case, feedback must contain some form of information that can be utilized to revise the
learner’s representations based on the quality of its provided explanations.

By evaluating the quality of explanations based on their benefit in solving a task, the Reflect module
represents one of the core aspects of LSX and is related to works concerning the evaluation and utility of AI
model explanations (e.g., Pruthi et al. (2022) and Fok & Weld (2023)). Moreover, in contrast to XIL where
the corresponding “Obtain” module receives human explanatory feedback (cf. Friedrich et al. (2023a)) in
LSX’s Reflect module feedback is provided by a non-human model, i.e., the critic, a second, internal AI
model. In summary, Reflect returns a feedback signal that contains the critic’s quality assessment of the
learner’s explanations.

Integrate feedback on explanations (Revise). In the last module of LSX, Revise, the feedback is
utilized to refine, i.e., finetune, the learner based on the quality of its explanations. Its goal is to ensure
that the learner makes predictions based on “good” explanations. Therefore, the learner jointly optimizes
its explanations based on the critic’s feedback, but also based on its predictive performance for the original
task. This prevents the learner from learning to provide useful explanations that are not actually used in its
own decision processes.

The exact procedure of how to integrate the critic’s feedback depends on the submodel types, but more
importantly, on the form of the critic’s feedback. It can be realized via one of the many ways provided in
interactive learning settings (Teso & Kersting, 2019; Friedrich et al., 2023a), e.g., loss-based methods (Ross
et al., 2017; Selvaraju et al., 2019), but also non-differentiable revision approaches, e.g., data augmentation
approaches (Teso & Kersting, 2019) or retrieval-based setups (Friedrich et al., 2023b; Tandon et al., 2022).
In the first case (i.e., loss-based) an explanation loss, lexpl, is added to the base loss: L = lB + λlexpl (where
λ ∈ R represents a scaling factor). E.g., lexpl can represent a HINT-like loss (Selvaraju et al., 2019) that
aligns the learner’s explanation with the explanation that the critic has identified as “best”. In the second
case (i.e., non-differentiable), the information stemming from feedback gets integrated into the overall
learning setup, e.g., by adding augmented training data samples or storing the revisory feedback in an
explicit revision corpus. Overall, the result of the Revise module (cf. Alg. 1) is a finetuned learner model:
f ← Revise(f, X̄, feedback).

The last three modules (Explain, Reflect, Revise) can be repeated, e.g., until an iteration budget
T ∈ N is reached (cf. Alg. 1). Overall, the above typology presents the basic building blocks that an LSX
instantiation should contain. As mentioned above, the choices of some components influences the choices of
others. We further illustrate this via example instantiations in the context of our experimental evaluations.

3 Experimental Evaluations

In the following, we investigate the effects of Learning by Self-Explaining across various metrics, datasets
and base models. To provide thorough examinations, we employ three different base models in LSX: a
convolutional neural network (CNN), a neuro-symbolic model (NeSy), and a vision-language model (VLM).
Based on these, we investigate the potential benefits of LSX concerning test-set generalization, explanation
consolidation, explanation faithfulness and shortcut learning mitigation. We further provide extensive abla-
tion evaluations, discussing the potential limits of LSX. Let us first specify our research questions followed
by the model and experimental setup2. The investigated research questions are:

2Code available at: https://anonymous.4open.science/r/learning-by-self-explaining-DC36
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Table 1: A tabular overview of the different example LSX instantiations of our evaluations. The differentiation is
based on different learner and critic models and the introduced LSX typology (Fit, Explain, Reflect, Revise).

Instance Learner Critic Input Fit Explain Reflect Revise

CNN-LSX CNN CNN Image Image
Classification

Input
Attribution

Explanation
Classification

CE-loss on
Input Attr.

NeSy-LSX NeSy Concept
Learner

Differentiable
Reasoner Image Image

Classification
Logical

Statement
Explanation

Ranking
MSE-loss on

Concepts

VLM-LSX VLM LM Image
+ Text

Language
Generation

Textual
Explanation

Explanation
Ranking

CE-loss on
Textual Expl.

(Q1) Can training via LSX lead to competitive predictors? (Q2) Can training via LSX lead to improved
generalization? (Q3) Can training via LSX help mitigate shortcut behavior? (Q4) Can training via LSX
lead to more task-relevant explanations? (Q5) Can LSX lead to more faithful model explanations? (Q6)
Can we observe predictive improvements via LSX in settings that go beyond one modality?

3.1 Example LSX Instantiations

We here provide a brief overview of the three investigated LSX instantiations. These represent examples
of how to integrate a base model into LSX. Tab. 1 provides an overview of the instantiations based on our
introduced typology. We briefly summarize these in the following and refer to Sec. A.1, Sec. A.2 and Sec. A.3,
respectively, for full details.

CNN-LSX. For the CNN-based instantiation, both the learner and critic correspond to a CNN. This
instantiation is evaluated in the context of supervised image classification wherefore in Fit the learner is
optimized via a standard cross-entropy loss (CE-loss). The explanation method of the learner is an input
attribution approach. Thus, the attribution-based explanation indicates the importance of each input pixel
for a final class prediction. In the Reflect module the critic attempts to classify the learner’s explanations,
i.e., predict the image class of an explanation’s underlying input sample. The quality of this explanation
classification is measured via a second cross-entropy loss for the critic. Finally, in the Revise module, the
learner is finetuned based on a training signal from the learner classifying the original input images and the
critic’s (cross-entropy) classification loss over the provided explanations.

NeSy-LSX. In the NeSy-LSX example instantiation, the learner corresponds to a neuro-symbolic concept
learner (Stammer et al., 2021; Koh et al., 2020) which extracts concept representations from raw images
(e.g., a bird’s wing color) and makes final predictions based on the activations of these concepts for a given
input image (e.g., an image portrays a bluebird). The critic corresponds to a differentiable reasoner (Shindo
et al., 2023; Rocktäschel & Riedel, 2017) which encodes explicit reasoning (in contrast to a CNN) thereby
allowing to evaluate the likeliness of logic statements of a corresponding image. We evaluate NeSy-LSX
in the context of image classification and optimize the learner via cross-entropy loss. The learner provides
explanations for its class predictions in the form of logical statements, e.g., image X corresponds to class
bluebird, because it contains an object with a blue wingcolor and is of small size3. Hereby, the learner
provides a set of candidate explanations per image class. In the Reflect module, the critic performs a
form of explanation ranking, where it estimates entailment probabilities for each candidate explanation via
forward-chaining inference and given the corresponding input images. Based on these probabilities, the best
explanation is selected per image class. Finally, in Revise the learner is optimized for the original image
classification task and for predicting the selected best explanation (via a mean-squared error (MSE) loss on
the learner’s concept-level representations).

VLM-LSX. For the VLM-based example instantiation, the learner corresponds to a pre-trained vision-
language model (VLM). The critic, on the other hand, represents a pre-trained language model (LM). In
contrast to previous instantiations, the input here consists of image and text. This way, we can evaluate

3In logical form, e.g., bluebird(X):- in(Obj,X),wingcolor(Obj,blue),size(Obj,small)

5



Under review as submission to TMLR

LSX for visual question answering (VQA). To this end, the learner is optimized to generate textual answers
to image-question pairs in line with ground truth answer texts via next-token prediction. The explanations
in Explain are obtained by prompting the learner again with the image, question, its generated answer,
and a query for generating an explanation. In more detail, the input prompt is e.g., “{image}, the answer to
{question} is {generated_answer}, because ...”. The generated text corresponds to the model’s explanation.
As the language generation is auto-regressive and probabilistic, we sample a set of explanation candidates
per input. Within the Reflect module, the critic thus provides a preference (i.e., explanation ranking)
to each of these possible explanations. The ranking is based on the critic’s (pretrained) knowledge and the
corresponding input. Given these scores, the best explanation is selected. Finally, within Revise, the learner
is optimized jointly for generating an answer as well as generating the best explanation. In both cases this
is done via a cross-entropy loss for next token prediction.

3.2 Experimental Setup

Data. To provide evidence for the benefits of LSX, we examine each instantiation via several suited datasets.
Particularly, we examine i) CNN-LSX on the MNIST (LeCun et al., 1989) and ChestMNIST (Yang et al.,
2023; Wang et al., 2017) datasets, ii) NeSy-LSX on the concept-based datasets CLEVR-Hans3 (Stammer
et al., 2021) and a variant of Caltech-UCSD Birds-200-2011 dataset (Wah et al., 2011), CUB-10, and iii)
VLM-LSX on the VQA-X dataset (Park et al., 2018). Furthermore, for investigating the effect of confounding
factors (Q3), we also use the decoy version of CLEVR-Hans3, as well as DecoyMNIST (Ross et al., 2017)
and ColorMNIST (Kim et al., 2019; Rieger et al., 2020). These three datasets contain confounded training
and validation sets and non-confounded test sets. We note that in all CLEVR-Hans3 evaluations that do not
target shortcut learning, the confounded validation set was used as held-out test set. We refer to Suppl. B
for details on all datasets.

Metrics. We provide evaluations for LSX based on five metrics and briefly describe these here. (1) The first
metric is the standard classification accuracy on a held-out test set. This is particularly used in the context
of (Q1-3). (2) For investigating the revised explanations via LSX (Q4), we provide the classification accuracy
of a linear, ridge regression model. This linear model is optimized to classify a set of explanations (given
corresponding ground-truth class labels) and finally evaluated on a held-out set of explanations. The higher
this model’s accuracy, the more separable and distinct a learner’s explanations. (3) For (Q4), we further
provide a cluster analysis based metric over all explanations, similar to the Dunn index (Dunn, 1973; 1974).
This metric, which we denote as Inter- vs. Intraclass Explanation Similarity (IIES), quantifies how similar
explanations are within one class, but dissimilar between classes (lower values indicate better separability).
For investigating whether the learner in fact makes a decision based on the reported explanations (Q5),
we analyze the faithfulness (Hooker et al., 2019; Chan et al., 2022) of the learner’s explanations via two
metrics as introduced by DeYoung et al. (2020), namely (4) sufficiency and (5) comprehensiveness. Both
metrics measure the impact of removing specific parts of the input (based on the model’s explanations) on
the model’s predictive performance. Comprehensiveness measures the impact of important input features
(as indicated by the model’s explanations) on the model’s performance. Sufficiency measures the impact of
unimportant features. Both metrics provide a relative measure, whereby high comprehensiveness and low
sufficiency score is better. We refer to Suppl. C for details of all described metrics.

Setup. In all evaluations, we compare the performances of each base model (CNN, NeSy and VLM),
i.e., when trained in its vanilla training setup, with the corresponding LSX-trained versions. When comparing
these different training configurations, we use the same setup, i.e., training steps, datasets, hyperparameters
etc. We provide results as mean values with standard deviations over five runs with random seeds. For
VLM-LSX we revert to one seed due to the resource demand of large-scale VLMs. We evaluate (Q1-5) in
the context of CNN-LSX and NeSy-LSX and (Q6) in the context of VLM-LSX.

3.3 Experimental Results

Improved (few-shot) generalisation (Q1-2). We start by investigating LSX for improved generalization.
To this end, we measure the held-out test set accuracy of CNN-LSX on the MNIST and ChestMNIST
datasets and of NeSy-LSX on the CLEVR-Hans3 and CUB-10 datasets. Further, to evaluate for few-shot
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Table 2: Improved (few-shot) generalization via LSX on
various datasets and models. We here present the accuracy
in % on a held-out test set across varying training set sizes.

– MNIST –
1.2k 3k full (60k)

CNN 89.83±0.2 93.83±0.08 98.70±0.1
CNN-LSX 91.59±0.91 94.31±0.43 98.03±0.2

– ChestMNIST –
1.6k 4k full (78k)

CNN 58.68±0.15 58.49±0.31 60.86±0.08
CNN-LSX 61.16±0.54 61.77±0.75 63.41±1.3

– CLEVR-Hans3 –
180 450 full (9k)

NeSy 91.40±1.80 96.81±0.94 99.00±0.28
NeSy-LSX 94.51±1.94 97.34±0.44 99.08±0.17

– CUB-10 –
100 150 full (300)

NeSy 83.57±1.67 87.14±0.4 93.13±0.4
NeSy-LSX 84.49±1.18 93.05±1.72 96.33±0.31

avg. improvement 2.07 2.55 1.29

Table 3: Mitigating confounders via LSX: Test set
performances on confounded datasets with only con-
founded samples (conf.) and a subset of decon-
founded samples during training (deconf.).

– DecoyMNIST –
conf. deconf.

CNN 63.52±1.39 86.88±0.68
CNN-LSX 78.99±2.71 88.43±2.34

– CLEVR-Hans3 –
conf. deconf.

NeSy 85.96±4.20 91.23±1.2
NeSy-LSX 90.90±4.38 95.64±2.21

generalization, we use different-sized subsets of the original training set. The rightmost column of Tab. 2
shows test set accuracies when trained on the full training size of each dataset. We observe that on average
(last row) there is a substantial improvement in accuracy —particularly for ChestMNIST and CUB-10. Thus,
our results indicate that integrating explanations in a self-refining approach via LSX can lead to competitive,
even improved performance. We therefore answer (Q1) affirmatively.

In the remaining columns of Tab. 2, we present the test-set accuracy in smaller-data regimes, i.e., when the
models were trained on different-sized subsets of the original training set. We observe large performance
gains with LSX over all model configurations and datasets. Particularly, these improvements are greater
than those observed on the full training set sizes. We provide important analyses and a discussion on the
potential limits of this effect in the ablation evaluations of Sec. 3.4. Altogether, these results suggest that
learning via self-explaining leads to improved test-set generalization performances and we therefore answer
(Q2) affirmatively.

Self-unconfounding (Q3). In the second set of evaluations, we are interested in how LSX-trained models
perform in the context of shortcut behavior (Geirhos et al., 2020). We particularly focus on confounded
behavior as a form of shortcut learning in which a learner picks up on spurious correlations within the
training dataset that are not present in the test set (Schramowski et al., 2020). We investigate two settings.
(i) In the first setting, denoted as deconf., X̄c represents an explicitly deconfounded dataset that is with-held
from training the learner (i.e., X̄c∩ X̄ = ∅). Thus, the spurious correlation present in X̄ is not present in X̄c

(cf. Suppl. B for details). (ii) In the second setting, denoted as conf., we investigate the performance of LSX
under the influence of confounding factors. In this case X̄c ⊆ X̄ where X̄ and X̄c both contain confounded
data samples. We note that the baseline models are trained on {X̄, X̄c}. We focus on the Decoy-MNIST
dataset for CNN-LSX and the original, confounded CLEVR-Hans3 version for NeSy-LSX.

In Tab. 3, we present the held-out test set accuracies of all configurations. We observe a strong improvement
in test set performances when training via LSX on the deconfounded critic sets (deconf.). This suggests
that reflecting on the explanations of an explicitly deconfounded critic set can lead to reduced confounding
behavior over just adding these to the normal training set (as done in the baseline setup). Even more
interesting, we observe that the LSX trained models in the conf. setting show greatly reduced confounding
behavior in comparison to the baselines, despite both models having only ever seen confounded and never
deconfounded data. We refer to Sec. 3.4 for ablations and a more detailed discussion on the observed effects.
We additionally provide example explanations from both instantiations in Sec. C.3 which further support
the findings of Tab. 3. Overall, our results show a remarkable beneficial effect of Learning by Self-Explaining
in mitigating the issue of shortcut learning and we answer (Q3) positively.
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Table 4: Explanation consolidation via LSX. The metrics
here are Inter- vs. Intraclass Explanation Similarity (IIES)
of a learner’s explanations (left) and the classification ac-
curacy of a ridge regression model (RR. Acc., in %) on the
learner’s explanations (right). Both metrics are proxies for
the explanation similarity within a class, yet separability
between classes.

IIES (↓) RR Acc. (↑)

– MNIST –
CNN 2.7±0.07 12.32±0.35
CNN-LSX 0.7±0.01 99.91±0.06

– ChestMNIST –
CNN 3.89±0.13 74.87±0.24
CNN-LSX 0.75±0.05 99.92±0.03

– CLEVR-Hans3 –
NeSy 0.65±0.07 93.48±2.41
NeSy-LSX 0.2±0.06 100±0.0

– CUB-10 –
NeSy 0.0266±0.0005 100±0.0
NeSy-LSX 0.0024±0.0001 100±0.0
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Figure 2: Exemplary explanations on MNIST from
CNN baseline vs. CNN-LSX. Four random explana-
tions are shown per image class (class ids on sides).

Table 5: Explanation faithfulness via LSX: Comprehensiveness and sufficiency results of explanations for models
trained on all training samples.

Comp. (↑) Suff. (↓)

– MNIST –
CNN −1.34±0.39 23.11±1.18
CNN-LSX 16.49±2.79 -0.21±4.18

– ChestMNIST –
CNN 13.98±0.43 −4.2±1.84
CNN-LSX 18.84±0.38 -8.55±1.92

Comp. (↑) Suff. (↓)

– CLEVR-Hans3 –
NeSy 59.3±3.6 21.67±4.55
NeSy-LSX 63.26±2.57 7.73±1.28

– CUB-10 –
NeSy 64.54±0.2 10.44±0.45
NeSy-LSX 64.59±0.23 6.3±0.34

Consolidation of explanations (Q4). In this evaluation, we wish to analyze how the critic’s feedback
signal influences the learner’s representations, specifically its explanations. Based on the intuition behind the
Reflect module concerning “good” explanations, we hypothesize that the explanations of an LSX-trained
model highlight distinct information which is more relevant for the underlying task, e.g., wing color for
distinguishing between bird species. We refer to such an effect as explanation consolidation. We base these
evaluations on the Inter- vs. Intraclass Explanation Similarity4 (IIES) and the accuracy of a ridge regression
model that was trained to classify a set of explanations and evaluated on a second, held-out set. Both of
these metrics measure the class-based separability of a model’s explanations. Tab. 4 shows that training
via LSX leads to much more separable and distinct explanations for both metrics. This effect appears less
pronounced for the NeSy datasets, which is likely due to the sparseness and low dimensionality of their
concept-level data and therefore also of the explanations. In Fig. 2, we also provide qualitative results of the
explanation consolidation for MNIST, where explanations from four randomly sampled input samples are
presented for each digit class. These visualizations support the quantitative results of Tab. 4 and particularly
illustrate the distinctness of the explanations from an LSX-trained model. Overall, our results suggest that
training via LSX results in more consistent explanations within a class and yet more distinct explanations
across classes. Conclusively, we answer (Q4) positively.

Explanation faithfulness (Q5). In the next evaluations we investigate whether LSX-trained models
produce explanations which are more faithful (Hooker et al., 2019; DeYoung et al., 2020; Schramowski
et al., 2020). In other words, do the learners in fact use their explanations in their decisions. This is

4Note, that IIES is not normalized, thus only relative differences are important.
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Table 6: Visual question answering accuracy (%) of a vision-language-based LSX instantiation (VLM-LSX) on the
VQA dataset. VLM0 represents the pretrained VLM and VLM (ft.) the VLM finetuned on the VQA dataset for
question answering only and VLM-LSX the VLM finetuned via LSX.

VLM0 VLM (ft.) VLM-LSX

– VQAv2 –
VQA-Acc. (%) 80.66 85.05 85.73

a relevant question as models that produce unfaithful explanations are detrimental e.g., to building trust
between human users and machines and at the same time make potential revisions via these explanations
difficult (Schramowski et al., 2020; Friedrich et al., 2022; Teso et al., 2023).

We investigate the faithfulness of LSX-learned explanations with well-established metrics: sufficiency and
comprehensiveness (DeYoung et al. (2020); cf. Suppl. C for details). In Tab. 5, we present the results of
these metrics over the CNN and NeSy-based instantiations and the MNIST, ChestMNIST, CLEVR-Hans3
and CUB-10 datasets. One can observe a strong improvement via LSX in both metrics across all models and
datasets. Specifically, the results show improved comprehensiveness for LSX-trained models. This indicates
a higher dependency on important features of the explanation. At the same time, the LSX-trained models
show improved sufficiency. Thus, unimportant information based on the explanations has a low impact
on the learner’s decisions. Overall, these results suggest that training via LSX also leads to more faithful
explanations and we answer (Q5) affirmatively.

Going beyond one modality (Q6). Lastly, we provide results where we move beyond one input modality,
but also beyond the task of supervised image classification. For this reason, we train a vision-language
model (VLM) via LSX for the challenging task of visual question answering (VQA). Significantly, in this
instantiation the model self-refines its vision-language representations only via language explanations. In
Tab. 6, we provide test-set accuracies on the VQA dataset (Park et al., 2018; Lin et al., 2014) for three
different training configurations. VLM0 represents the off-the-shelf, pre-trained VLM (i.e., zero-shot) and
VLM (ft.) its VQA finetuned version, i.e., finetuned only via Fit. Lastly, VLM-LSX is finetuned on the
VQA task and via explanatory feedback from its language-model based critic. We observe that VLM-
LSX leads to VQA performance improvements over the standard finetuned model. This depicts a ∼15%
larger improvement over the zero-shot performance (cf. VLM0) compared to the finetuned model. These
preliminary results indicate that LSX potentially represents a beneficial learning framework outside of the
realm of image classification. Yet, future investigations will be necessary to explore these findings in depth.
Overall, we answer (Q6) positively.

3.4 Ablations

Our main results indicate promising benefits via LSX, however, wrong choices of individual components can,
in general, lead to poor overall behavior. In the following, we therefore wish to investigate and discuss the
limits and potential failure cases of LSX. We investigate three distinct cases that influence the performance
of models trained via LSX. Notably, these investigations are not all-inclusive, but provide an important
assessment for future endeavors. The first case focuses on the issue of too small data. The second case
focuses on the issue of the critic’s capacity and its influence on the learner’s performance. Lastly, we
investigate what happens when the explanation method is inadequate in describing discriminative features
of the data in the context of confounding factors.

Too small data. With the first set of evaluations we wish to investigate the learner’s performance in the
case of more extreme data set sizes, particularly very small data sets. For this we provide further experiments
with the example CNN-LSX and NeSy-LSX instantiations. We provide CNN-LSX with only 300 MNIST
samples and NeSy-LSX with only 30 samples of CUB-10. The results are presented in Tab. 7 (test set
prediction accuracies in %) and indeed suggest that the smaller the data set the less pronounced the effect
becomes that we had originally observed in Tab. 2. Although we still observe improvements in the small
data set regime with CNN-LSX, the results on CUB-10 in Tab. 7 even appear to suggest that given a very
small data set LSX can have a negative impact on the learner’s predictive performance. This difference is
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Table 7: Additional small
data evaluations with 300
samples for MNIST and 30
for CUB-10.

– MNIST (300) –
CNN 81.46±0.31
CNN-LSX 81.80±0.13

– CUB-10 (30) –
NeSy 66.02±1.78
NeSy-LSX 63.82±3.96

Table 8: LSX via random critic feedback
(w/ rand. c) on 3k MNIST and 150 CUB-
10 training samples.

– MNIST (3k) –
CNN 93.83±0.08
CNN-LSX 94.31±0.43
CNN-LSX (rand. c.) 93.06±0.14

– CUB-10 (150) –
NeSy 87.14±0.4
NeSy-LSX 93.05±1.72
NeSy-LSX (rand. c.) 87.24±2.93

Table 9: Investigating confounded behav-
ior on ColorMNIST.

– ColorMNIST –
conf. deconf.

CNN 59.34±0.49 87.24±1.52
CNN-LSX 57.62±0.49 46.01±3.21

likely due to explanation selection in NeSy-LSX, i.e., choosing the maximally probable explanation. If a bad
explanation is chosen by the critic and enforced on the learner the learner’s predictive performance will likely
be negatively influenced by this (cf. Friedrich et al. (2023a)). Though it is difficult to adequately compare the
two data set sizes (300 MNIST vs 30 CUB-10 samples) given the individual nature and complexity of them
(grayscale images vs. concept-tagged images). Interestingly, the point on potentially “bad feedback” from the
critic also hints at a form of overfitting that is quite specific to LSX (and other forms of explanation-guided
learning): overfitted explanatory feedback can lead to poor predictive performances.

Low capacity models. In the second set of evaluations, we investigate the potential issues that arise from
a critic submodel that performs poorly due to too low capacity, ultimately leading to random feedback. We
evaluate CNN-LSX and NeSy-LSX where we have replaced their original critic submodels with simulated
critic models that only perform random guessing on the base task. We denote this setting as “rand. c”. In
Tab. 8, we present the test set prediction accuracies of these training configurations on 3000 MNIST training
samples for CNN-LSX and 150 CUB-10 samples for NeSy-LSX. Generally, we observe that indeed given a
too-low capacity of the critic the learner falls back to its base predictive performance for both instantiations.
These results seem to suggest a lower bound for LSX due to random explanatory feedback.

Interplay between explanation method and confounders. The inductive bias of the explanation
method in combination with the nature of the confounding factor likely plays an important role in our
observed effects on confounding mitigation in Tab. 3. Hence, we here investigate the influence of an “insuf-
ficient” explanation method. We adhere to investigating CNN-LSX’s behavior on a third confounded data
set, ColorMNIST (Kim et al., 2019; Rieger et al., 2020). Briefly, this data set represents another confounded
version of MNIST. In contrast to DecoyMNIST, the confounding factor here is not spatially separate from
the relevant features. In ColorMNIST, the pixels of each digit of a specific class are correlated with a specific
color within the training set, but uncorrelated at test time. For example, all nines in the training set will
possess a purple color, but random colors at test time (cf. Suppl. B). Thus, if a model has learned to focus
only on the color of the digits it will incorrectly predict the class of a purple zero at test time to be the class
“nine”.

We consider an explanation method “insufficient” in the context of confounders if an explanation from a
model that focuses on the relevant features (e.g., the digit shape) is not distinguishable from an explanation
from a model that focuses on the confounding features (i.e., the digit color in ColorMNIST). Specifically,
the explanation method utilized in CNN-LSX provides spatial input attribution maps that indicate which
pixel of an input image is important for a prediction. However, a digit pixel could be important due to its
color or position (i.e., digit shape). In other words, in the context of ColorMNIST, such a type of (spatial)
explanation is too ambiguous to distinguish relevant from confounding features. In this case, the explanation
method of CNN-LSX is insufficient.

Tab. 9 presents the prediction accuracies on the non-confounded test set both of the vanilla trained CNN
and the LSX-trained CNN for the two configurations conf. and deconf.. We observe quite different results
from those of Tab. 3 (i.e., those based on DecoyMNIST). Specifically, we observe confounding mitigation
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behavior neither for conf. nor for deconf.. On the contrary, we observe minor drops in accuracy for conf. and
even larger drops in accuracy particularly in the deconf. condition. This suggests that when the explanation
method does not adequately depict the right dimension that is needed for the data and task, learning via such
insufficient explanations can even lead to a disadvantage for the overall model performance. We hypothesize
that modifying the explanation method, e.g., from an input-based to a concept-based explanation method,
will likely undo this behavior. We hope future works will examine this.

4 Discussion & Limitations.

Overall, our evaluations provide evidence for the benefits of training via LSX on a variety of important tasks
and metrics that go beyond standard evaluations of ML research. In the following, we wish to give a general
perspective on LSX and provide a discussion of our findings and potential limitations.

Limitations. Although the results of Tab. 2 suggest benefits of LSX in terms of generalization, particularly
in the context of small data, it is unlikely that this holds in all cases and instantiations. Particularly, if
either of the submodel’s capacities are too low or the amount of data is too low (in contrast to the task
and data complexity) it may not be possible for a learner to improve its overall predictive performance
(cf. evaluations in Sec. 3.4). Moreover, if a learner’s predictive performance after the initial Fit phase lies
around random guessing this can greatly influence the quality of the explanations: as the model has not
identified important features within the data it will not provide distinct explanations that reveal these. In the
worst case, a resulting explanation can represent a distribution similar to uniform noise. Consequently, if the
explanations are too bad and indistinguishable for the critic, it will likely not surpass random guessing such
that the feedback to the learner will be uninformative. Furthermore, considering the additional evaluations
of Tab. 9 it is important to conclude that LSX by no means allows us to mitigate confounded behavior in
all cases. Rather, it represents one potential tool in a toolbox of several mitigation strategies. In general,
combating the diversity and complexity of different shortcut factors (Geirhos et al., 2020) most likely does
not allow for a “one-size-fits-all” approach. Lastly, the embedded processing steps of the Reflect module
can lead to high computational costs for an LSX instantiation. Future work should therefore investigate more
(computationally) optimal forms of reflecting and revising than, e.g., introduced in CNN-LSX (cf. Sec. A.1).
Overall, the multitude of our analyses and evaluations (particularly our ablation evaluations) indicate that
it remains necessary for AI engineers to develop and assess the specifics of their LSX instantiations on a
use-case basis. Thus, the notion of the no-free lunch theorem (Wolpert & Macready, 1997; Adam et al.,
2019) also holds in the context of LSX.

Configuration choices. LSX can be instantiated in various ways, each with its own specific module
and configuration choices. The example instantiations introduced in this work, however, already portray
some interesting characteristics and differences which we wish to highlight here. For example, an important
difference between CNN-LSX, NeSy-LSX and VLM-LSX lies within their Reflect modules, specifically
how the feedback of the learner’s explanations is computed. In CNN-LSX, the feedback represents
a differentiable signal, whereas in NeSy-LSX and VLM-LSX this represents a (probabilistic) ranking of
a set of explanations. This second form of critiquing allows the model to weight the explanations and
identify the most “useful” explanation. The first form of critiquing, on the other hand, allows the model
to perform loss-based explanation fine-tuning. Related to this, but concerning Explain, where CNN-LSX
utilizes continuous input-level explanations, the logical explanations in NeSy-LSX and the natural language
explanations in VLM-LSX are discrete. As an effect of this, the form of revision in the Revise module
differs. In CNN-LSX one can simply pass the feedback from the critic to the learner via a backpropagated
classification signal (cf. Tab. 1). In NeSy-LSX and VLM-LSX, however, we enforce the identified, most-
likely explanation. Lastly, but also importantly, where in CNN-LSX and NeSy-LSX the critic evaluates the
learner’s explanations based only on the task information, the critic in VLM-LSX represents a pre-trained
model that also utilizes its previously acquired knowledge (Zheng et al., 2023; Zhu et al., 2023; Li et al.,
2023; Koo et al., 2023).

LSX as explanation-based regularization. Finally, let us take a different yet intuitive perspective on
the effect of LSX. As previously stated, LSX combines ideas from self-refining AI and explanatory interactive
learning (XIL). For XIL, several works (Ross et al., 2017; Selvaraju et al., 2019) have provided evidence that
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(human) explanations act as a regularizer during model refinement. We argue that this explanation-based
regularization plays a similar role in LSX, i.e. in the explanation-based, self-refining processes. Particularly,
as our results on explanation consolidation show (cf. Tab. 4 in the context of Q3), the explanatory feedback
from the internal critic leads to more task-relevant explanations. Furthermore, as our results on explanation
faithfulness suggest (cf. Tab. 5 in the context of Q4) these explanations are consequently integrated into the
model. We hypothesize that these guide the learner towards more distinct, task-relevant features which, in
turn, benefits the model in terms of generalization (cf. Tab. 2 and Tab. 6).

5 Related Works

Explanations and Leveraging Explanations in ML. Receiving explanations to an ML model’s de-
cision has become a heavily advocated and investigated topic in recent years, culminating in the field of
explainable AI (XAI) (cf. (Guidotti et al., 2019; Ras et al., 2022a; Roy et al., 2022; Saeed & Omlin, 2023))
and interpretable AI (Räuker et al., 2023; Li et al., 2018; Rudin et al., 2022; Rudin, 2019) with the later
focusing on explicitly, inherent model explanations. Closely related to these fields are self-explaining mod-
els (Alvarez-Melis & Jaakkola, 2018; Lee et al., 2022; Roy et al., 2022; Camburu et al., 2018; Bastings et al.,
2019; Majumder et al., 2022). Explanations from any of these approaches are used to evaluate the reasons
for a model’s decision. From backpropagation-based (Sundararajan et al., 2017; Ancona et al., 2018), to
model distillation (Ribeiro et al., 2016) or prototype-based (Li et al., 2018) methods, the explanations often
highlight important input elements (e.g., pixels) for a model’s prediction. However, several studies have also
investigated multi-modal explanations (Rajani et al., 2020), logic-based explanations (Aditya et al., 2018;
Rabold et al., 2019), and concept-based explanations (Stammer et al., 2021; Zhou et al., 2018; Ghorbani
et al., 2019; Poeta et al., 2023). In all of these approaches explanations are only provided in a one-way
communication as a means of model inspection.

The idea of leveraging explanations in a model’s training process has only recently been picked up by parts
of the ML community. E.g., in explanatory interactive learning (XIL) (Teso & Kersting, 2019; Schramowski
et al., 2020; Stammer et al., 2021; Friedrich et al., 2023a) human users provide revisory feedback on the
explanations of an ML model. Similar ideas can also be found in other works of human-machine interactive
learning (Teso et al., 2023; Gao et al., 2022; AlKhamissi et al., 2023), e.g., in the context of imitation
learning (Hu & Clune, 2023) but also in preference selection for aligning VLMs (Brack et al., 2023). Compared
to these, we argue for the importance of leveraging explanations in the training loop even before the necessity
of human-machine interactions.

Indeed, several works have identified the value of leveraging explanations outside of human-interactive learn-
ing (e.g., (Giunchiglia et al., 2022; Lampinen et al., 2021; 2022; Norelli et al., 2022)). E.g., in the works
of Lei et al. (2016) and Bastings et al. (2019) (later categorized under the term explain-then-predict models
by Zhang et al. (2021)), the goal is for one model to learn to extract the explanation from an input and a
second model to learn to predict the final class from this. Similar ideas were picked up by (Zhang et al., 2021;
Krishna et al., 2023). None of these works, however, evaluate the usefulness of explanations and particularly
none use explanations as a means to revise a model.

(Self-)Refinement in ML. A recent, but quickly growing field of research related to our work is that which
we categorize under the term of self-refining ML. This roughly encompasses research that investigates forms
of self-supervised refinement of an ML model. E.g., Wang et al. (2023) propose a self-refining approach
for instruction-tuning. In the self-alignment approach of Sun et al. (2023), an LLM is aligned with few
human provided principles. On the other hand, Schick et al. (2021) identify that LLMs can identify biases in
their own generations and leverage this characteristic in a finetuning process to mitigate biased generation
in future prompts. In the work of Madaan et al. (2023) a model is used to provide feedback to its own
initial generations, where the feedback generation is guided via targeted, few-shot prompting. Zelikman
et al. (2022), on the other hand, investigate finetuning a model based on generated “chain-of-thought” (Wei
et al., 2022; Chung et al., 2022) rationales that lead to correct task predictions which is further related to
the work of Shinn et al. (2023). Lastly, Paul et al. (2023) propose an approach in which a model learns to
provide explicit intermediate reasoning steps for an answer via feedback from a critic model. In contrast to
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LSX, only a few of these approaches focus on refinement via explanations. Those that do require specifically
developed modules for providing this feedback.

In contrast to self-refining ML, a separate branch of research focuses on revising a model based on feedback
from a second, independent model (Du et al., 2023). E.g., Such et al. (2020) introduce a meta-learning
training data generation process in which a data generator and learner model are optimized to improve the
learner’s performance on a given task. Nair et al. (2023) propose an approach that leverages two agents,
researcher and decider, to iteratively work through a task. In the student-teacher approach (Wang & Yoon,
2022) the goal is knowledge distillation, i.e., learned knowledge from a trained model should be conveyed to
a second student model. Interestingly, Pruthi et al. (2022) frame the utility of an explanation in a student-
teacher setup in which the goal is for a student model to simulate a teacher’s behavior. Also Schneider &
Vlachos (2023) argue for the importance of explanations in reflective processes. However, in their proposed
approach a model makes a final prediction based on the input and explanation that is estimated by a second
model. Overall, many of these approaches have a different target and motivation than our work. Particularly,
in LSX the role of the critic submodel is to provide explicit explanatory feedback to improve the learner’s
explanations and thus, indirectly, its predictive performance.

Overall, we consider many of these approaches to be complementary to our work and combining these with
the ideas of LSX as very important future work, e.g., combining chain-of-thought prompting (Wei et al.,
2022) with LSX.

6 Conclusion

In this work, we have introduced a novel learning approach, Learning by Self-Explaining (LSX), with which
we argue for a novel perspective on the role of self-explaining in the learning process of AI models. With this
approach, we claim that explanations are important not just for human users to understand or to revise an
AI model. Rather, they can also play an important role in a form of self-refinement whereby an agent assesses
its own learned knowledge via its explanations. Our experimental evaluations highlight several benefits of
training via LSX in the context of generalization, knowledge consolidation, explanation faithfulness, and
shortcut mitigation. Conclusively, with this work, we provide evidence for the potential of explanations
within a model’s (self)-learning process and as an important component for developing more reflective AI.

There are many avenues for future research related to LSX. Investigating LSX in the context of other
modalities, e.g., natural language, or other base tasks, e.g., text generation, are both interesting possibilities.
A more conceptual direction is the integration of a memory buffer of past LSX-refined explanations, thereby
potentially allowing for models to re-iterate over previous explanations (Chi et al., 1994). Additionally,
integrating background knowledge into the explanation reflection process presents an interesting direction
whereby explanations are assessed not just based on the usefulness for the initial task, but also based on
alignment with background knowledge constraints. Another important view is the connection between self-
and causal explanations (Carloni et al., 2023; Zečević et al., 2021; Heskes et al., 2020), e.g., can an AI agent
utilize its self-explanations to perform interventional and counterfactual experiments (Woodward, 2005;
Beckers, 2022)? Another crucial avenue going forward is to further apply LSX to other forms of supervision,
such as self-supervised learning or reinforcement learning approaches, e.g., via integration into actor-critic
approaches or for guiding curiosity-driven replay (Kauvar et al., 2023). Lastly, we hypothesize that training
inherently interpretable models via LSX (which provide more faithful explanations to their decisions from
the start, e.g., Delfosse et al. (2024)) could lead to improved effects than the ones observed here based on
post-hoc explanation methods.
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Supplements

In the following, we provide details on the investigated LSX instantiations, experimental data, evaluation
metrics etc..

A LSX Instantiation Details

We here provide details of the three example LSX instantiations that were utilized in our experimental
evaluations. Exact implementation details can further be found in the corresponding code (cf. repository
link in main text).

Input
Prediction

explanation

Critic
CNN

InputXGradient

feedback

 Learner
CNN

Figure 3: CNN-LSX: Learning by Self-Explaining instantiation for training CNNs for supervised image classification.
Here CNNs represent both the learner and critic. Explanations are generated via InputXGradient. The feedback
represents the classification loss of the critic on these explanations.

A.1 CNN-LSX

Fig. 3 provides a graphical overview of the CNN-LSX example instantiation. We provide details based on
this and Tab. 1 in the following.

Learner.

The learner corresponds to a convolutional neural network (CNN) with two convolutional layers, ReLU
activation layers, one average pooling layer and two linear layers.

Critic.

The critic for CNN-LSX is identical to the architecture of the corresponding learner.

Fit.

Within the Fit module the learner is optimized via a cross-entropy loss for the task of supervised image
classification with lB := lf

CE(f(xi), yi) for (xi, yi) ∈ X̄.

Explain.

The explanation method of CNN-LSX corresponds to the differentiable InputXGradient method described
in Shrikumar et al. (2017) and Hechtlinger (2016) and implemented via the captum5 pytorch package.
Following the notation of Ancona et al. (2018), for an input sample xi and the output of model f given the
corresponding ground truth label, yi, InputXGradient is defined as:

5captum.ai/
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ei = xi ·
∂fyi(xi)

∂xi
. (1)

This form of explanation method is considered a post-hoc explanation method as it estimates the explanation
of a model after its decision processing (in comparison to inherent model explanations). Furthermore, it
represents an input attribution method, i.e., for each input element (i.e., pixel) it provides an estimate of
its importance for the model’s final decision. Lastly, as Eq. 1 shows, InputXGradient contains the original
input multiplied by the attribution information. Therefore, when the critic in CNN-LSX assesses these
explanations the critic does not need additional information on the original input data, but receives this via
the InputXGradient explanation.

Reflect.

In the Reflect module for CNN-LSX the critic’s task is to classify the explanations provided by the learner.
Specifically, the critic is trained via a cross-entropy loss to predict the corresponding class of the learner’s
explanations. The critic trains for one epoch given the learner’s explanations for the data of X̄c. We denote
the set of these explanations formally as Ec. We allow the critic to update its parameters while iterating
over all batches in (Ec, Yc) (with Yc ∈ X̄c), whereby the loss values are accumulated over all batches and
averaged. In practice we found that it was beneficial to reinitialize the critic with each LSX iteration. The
final accumulated and averaged loss value is passed back to the learner and represents the feedback in
CNN-LSX.

Revise.

In Revise the learner performs the original base task for one epoch via lB while jointly optimizing for
the critic’s explanatory feedback of the previous Reflect module. Specifically, the learner optimizes a
joint loss: L = lB + λlc

CE(c(ei), yi) for (xi, yi) ∈ X̄ and ei based on Eq. 1. Hereby, λ represents a scaling
hyperparameter which we set high (e.g., λ ≥ 100) in our evaluations to prevent the learner from mainly
optimizing for good prediction. Also here we refer to the corresponding code for the exact parameter values.

Implementation details.

In CNN-LSX we perform the Explain, Reflect, and Revise modules for several iterations until iteration
budget T is reached. In practice, we found it beneficial as a final step (i.e., when the iteration budget has
been reached) to perform a fine-tuning step in which we let the learner produce explanations for all samples
in X̄, E∗ = Explain(f, X̄), and let f be optimized for the base task making sure that it does not diverge
its explanations from E∗ in the process. This is done via the combined loss L = lB + λftlft(E′, E∗), where
lft represents a simple mean-squared error loss between E∗ and the explanations that are generated via f
within each optimisation iteration. Lastly, we note that the CNN-LSX configurations are identical for all
MNIST-based datasets.

For the results in Tab. 2 via CNN-LSX (for both MNIST and ChestMNIST) X̄c presented about 1
2 , 2

3 and
1
2 of X̄, from left column to right column, respectively. For the results in Tab. 3 via CNN-LSX on Decoy-
MNIST we present the critic with 512 samples from approximately 60000 training samples for w/ conf. and
1024 test set samples for w/ deconf..

Computational details.

This particular instantiation incorporates finetuning the critic on the learner’s explanations, which represents
a computational bottleneck. Specifically, processing one batch over the Explain, Reflect and Revise loop
in our implementation takes ≈ 0.71 seconds vs. ≈ 0.003 seconds for the vanilla setup only via Fit. These
results were averaged over ten batches. Notably, the vanilla setup is based on highly optimized pytorch
code and refactoring of our implementations can lead to improvements. However, the major limitation
remains, i.e., finetuning the critic within the learner’s finetuning step. It is thus important for future work
to investigate more efficient instantiations, e.g., based on retrieval-based feedback.
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Figure 4: NeSy-LSX: Learning by Self-Explaining instantiation for supervised image classification via neuro-symbolic
concept learner. The learner proposes a set of candidate class-specific logical explanations. The critic represents a
neuro-symbolic forward reasoner, which computes the validity of these logical statements given visual input. The
feedback represents a probabilistic ranking of the set of logical explanations with which we identify the most likely
explanation per image class and revise the learner to only use this explanation for samples of that class.

A.2 NeSy-LSX

Fig. 4 provides a graphical overview of the NeSy-LSX example instantiation. We provide details based on
this and Tab. 1 in the following.

Learner.

The learner in the NeSy-LSX example instantiation belongs to a class of predictive models that we denote
as neuro-symbolic concept learners. In our evaluations these consist of two submodules. The first module,
the encoder, receives an image and transforms it into relevant concept representations. The second module,
the predictor, makes the final task prediction based on the concept representations. Formally, an image,
xi ∈ X̄, is first processed by a (pretrained) perception module into a symbolic representation, zi ∈ [0, 1]O×A

which indicates the presence of objects and their attributes in the corresponding image. Here, O indicates
the number of objects and A the number of predicted attributes. The reasoning module next makes a final
task prediction given zi.

The learner submodel for the NeSy-LSX instantiation differs for the CLEVR-Hans3 and CUB-10 datasets.
For CLEVR-Hans3 the learner corresponds to the concept learner of Stammer et al. (2021) which incorporates
a slot attention encoder for predicting the object’s attributes (encoder) and a set transformer (predictor) for
the final class prediction. As in Stammer et al. (2021), in our experimental evaluations, we make use of a
pretrained slot attention encoder and perform updates only to the set transformer-based predictor model,
i.e., the module making the final predictions. For the CUB-10 configuration the learner corresponds to the
setup of Koh et al. (2020) representing an Inception-v3 model Szegedy et al. (2016) for predicting the bird
concepts (encoder) and a simple linear layer to make the final class prediction (predictor). Also here we
perform updates only to the linear layer predictor model. The remaining LSX modules are identical over
both datasets.

Critic.

The critic, c, of the NeSy-LSX instantiation corresponds to the neuro-symbolic forward reasoner of Shindo
et al. (2023). Briefly, this critic evaluates how likely a logical explanation represents a logical statement
that is present in a corresponding image. We refer to Shindo et al. (2023) for details. The predicate
specifications etc. required for the forward reasoner for CLEVR-Hans3 correspond to the original ones
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of Shindo et al. (2023). For CUB-10 we redefined each of the 28 bird concepts as neural predicates.
E.g., haswingcolor can take six different values which in the notation of Shindo et al. (2023) is defined as:
haswingcolor:brown,grey,yellow,black,white,buff. We note that the forward reasoner treats missing
values in a rule as zeros. Thus, the forward reasoner will only focus on those attributes that are provided
with a rule, e.g., the color green. This means that, e.g., if a rule does not specify a shape constraint, the
corresponding object can be of any shape. We refer here to our repository and the original work for details.

Fit.

Similar to the CNN-LSX instantiation the task of supervised image classification in the Fit module in NeSy-
LSX is performed by optimizing via a cross-entropy loss lB = lCE(f(xi), yi) with (xi, yi) ∈ X̄. As previously
mentioned, in our evaluations we hereby freeze the parameters of the encoder module of f , thus optimizing
only the parameters of the predictor module of the learner.

Explain.

The Explain module of NeSy-LSX builds on the explanation approach of the concept learner of Stammer
et al. (2021). Specifically, it first computes the integrated gradients (Sundararajan et al., 2017) of the
symbolic representation, zi, given the prediction. Following the notation of Ancona et al. (2018) for an input
zi this is defined as:

IntGradi = (zi − z̄i) ·
∫ 1

α=0

∂fyi
(z̃i)

∂z̃i
|z̃i=z̄i+α(zi−z̄)dα.

Hereby, z̄i represents a “baseline” value, which in our evaluations corresponds to a zero vector. Next,
the resulting attribution map on the latent concept representations, ezi ∈ [0, 1]O×A, is binarized via a
hyperparameter δ ∈ [0, 1] to e′

zi
∈ {0, 1}O×A. We next transform these binarized attribution maps into logical

statements which represent the final explanation form in NeSy-LSX (cf. Fig. 4). These logical statements
consist of all subsets of conjunctive combinations of the important attributes and objects that are present in
e′

zi
. We denote the set of these candidate logical explanations generated from sample xi as Êi. For example,

let us assume that for a specific CLEVR-Hans3 sample xi of class 1 we identify two objects to be important
for the final class prediction. Hereby, the attributes green color and cubical shape are important for the first
object and red color for the second object. Following the notation of Shindo et al. (2023) the set of generated
candidate are:

class1(X):- in(O1,X),color(O1,green).

class1(X):- in(O1,X),shape(O1,cube).

class1(X):- in(O1,X),color(O1,red).

class1(X):- in(O1,X),color(O1,green),shape(O1,cube).

class1(X):- in(O1,X),in(O2,X),color(O1,red),shape(O2,cube).

class1(X):- in(O1,X),in(O2,X),color(O1,green),color(O2,red).

class1(X):- in(O1,X),in(O2,X),color(O1,red),color(O2,green),shape(O2,cube).

We refer to this step of constructing all potential candidate rules as propositionalizing (i.e., changing the
representation of relational data).

Notably, each input sample thereby produces a set of such candidate rules which may potentially contain
many duplicates over samples of the same underlying class. Finally, by iterating over all samples in Xc,
grouping the resulting candidate rules by image class and removing duplicates we receive a set of candidate
rules per class as Ê = {Ê1, ..., ÊK}, where Êk denotes the set of generated candidate logical explanations
gathered over all samples of class k and with duplicates removed.
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For improved running times it is beneficial to limit the number of candidate rules per input sample by a
maximum number of objects and attributes per object within an explanation rule e.g., maximally four objects
per rule. In our evaluations we set these two hyperparameters to still greatly overestimate the ground-truth
rule and refer to the code for details (as well as for the values of δ).

Reflect.

Having obtained the set of candidate explanation rules per image class, we pass these to the critic. For
each underlying class and based on the data, X̄c, the critic next estimates the validity of each candidate
rule, where we refer to Shindo et al. (2023) for details.

This evaluation is done for all positive examples of a class and for all negative examples of a class (i.e., all
remaining classes), resulting in two probabilities for the ith explanation candidate from set Êk of class k,
which contains Lk candidates in total. We denote these probabilities as ρk+ ∈ [0, 1]Lk and ρk− ∈ [0, 1]Lk ,
respectively. The first probability represents the validity of the rule as observed in samples only of the relevant
class k and the second represents the validity in samples of all other (irrelevant) classes (j ∈ {1, ..., K}\k).

As we consider an explanation to be good if it distinguishes an input sample from samples of opposite classes,
but indicates similarities to samples of the same class, we next compute the overall probability for each
candidate logical explanation as ρk = ρk+ − ρk−. The set of these probabilities over classes P = {ρ1, ..., ρK}
represents the feedback of NeSy-LSX and represents the numerical values in the feedback representation
in Fig. 4.

Revise.

Finally, per image class, k, we select the explanation rule with the maximal probability from ρk corresponding
to the red enclosed rule in Fig. 4. We denote this as êk

max with Êmax = {ê1
max, ..., êK

max} for the set over all
classes.

The selected logical explanations, Êmax, are next mapped back into binary matrix form in the dimensions
of the learner’s latent symbolic representation E′

max = {e′1
max, ..., e′K

max} with e′j
max ∈ {0, 1}O×A. This is

required so we can compare, in a differentiable manner, the learner’s explanations to the valid explanations
as identified by the critic. Specifically, we compare the explanations in E′

max with those of the learner at the
level of its symbolic representations, ezi

for xi ∈ X̄. Thus, in the Revise module of NeSy-LSX we optimize
a joint loss function corresponding to L = lB +λlMSE(E′

max, ezi
). For explanation ezi

of input sample xi ∈ X̄
with corresponding class label yi lMSE is defined as:

lMSE(E′
max, ezi

) = 1
O ×A

O×A∑
q=1

(eziq
− e′yi

maxq
)2.

In comparison to CNN-LSX in our evaluations we set T = 1 for NeSy-LSX. This means the critic only
scores the proposed underlying logical explanations once and passes this back as feedback. Although it is
in principle possible to perform multiple steps of this, e.g., by first removing explanations which are most
unprobable from the learner’s representations and only after several of such iterations choose the most likely
explanation, we leave this for future investigations.

Implementation details.

Note that for NeSy-LSX on CUB-10, we replaced the pretrained slot-attention module with a pretrained
Inception-v3 network as encoder module (Szegedy et al., 2016) and the predictor module with a single linear
layer as in (Koh et al., 2020). Hereby, the encoders where pretrained to predict the symbolic representations,
z, i.e., relevant object attributes. These modules were used in the NeSy configurations both for the baseline
as well as LSX configurations.

In the setting of NeSy-LSX on CLEVR-Hans3 for the results in Tab. 2 X̄c = X̄ for the two left columns
and X̄c = X̄ = ∅ for the last column with X̄c and X̄ as 1500 to 7500, respectively (hereby, the critic was
provided samples from the original training set of 9000 samples). For the results in Tab. 3 via NeSy-LSX on
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Figure 5: VLM-LSX: Learning by Self-Explaining instantiation for visual question answering via a vision-language
model. The learner proposes a set of candidate explanations via explanation prompting. The critic represents a pre-
trained language model, which provides preference scores over the generated explanations. The feedback represents
a binary ranking of the set of explanations with which we identify “good” explanations and revise the learner for
predicting these explanations.

CLEVR-Hans3 we present the critic with 50 samples and the learner 7500 separate training samples for w/
conf. and 150 test set samples for w/ deconf.

The setting of NeSy-LSX on CUB-10 for the results in Tab. 2 represented a small variation from the previous
settings in that X̄ ⊆ X̄c, due to the small number of samples per class in CUB-10 in combination with the
neuro-symbolic forward reasoner critic (requires sufficient amount of positive and negative class samples).
In this case the datasets official validation set was concatenated with the (full) training set as a simple
workaround. In this way for the results in Tab. 2 for CUB-10 from left column to right column the ratio
between X̄c and X̄ was 29 to 24, 149 to 124 and 300 to 249, respectively. Note, the vanilla-trained models
were also trained on the concatenated set.

A.3 VLM-LSX

Fig. 5 provides a graphical overview of the VLM-LSX example instantiation. We provide details based on
this and the overview in Tab. 1 in the following.

Learner.

The learner submodel of the VLM-LSX instantiation corresponds to the pretrained vision-language model
MAGMA (Eichenberg et al., 2022). This VLM is built from a GPT-based LM backbone by adding a
CLIP-based image prefix to encode images into the LM’s embedding space. Subsequently, MAGMA trains
dedicated bottleneck adapters on vision-language tasks to adjust the model to the new domains. Overall, in
VLMs image and text can be input to the model as a joint sequence of tokens.

Critic.

We simulate a Language Model (LM) critic that provides preference scores for a set of textual explanations
proposed by the learner. Specifically, we follow the methodology of Brack et al. (2023) and utilize a set of
human-generated ground-truth explanations from VQA-X dataset (Park et al., 2018) as a form of knowledge
base for the critic (further details in Reflect below).

Fit.
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The Fit module in the VLM-LSX instantiation represents the pretraining of the original MAGMA model.
Specifically, Eichenberg et al. (2022) trained MAGMA on a collection of large-scale datasets for image cap-
tioning and visual question answering. Overall, with VLM-LSX we consider image-question-answer triplets
(i, q, a) consisting of an image, i, and a respective pair of text sequences for the question, q, and answer,
a. This triplet is represented a sequence of tokens. In the Fit module the learner model is finetuned via
such triplets. Let us denote X̄ = ((I, Q), A) as the corresponding learner set, where in our evaluations of
VLM-LSX X̄ = X̄c. The training of the VLM is finally performed via a cross-entropy loss for next token
prediction of the answer. This is based on the next-token log-probability and conditioned on the previ-
ous sequence elements (we refer to Eichenberg et al. (2022) for details). This next-token loss represents
lB = lvqa(f((I, Q)), A) and optimization is performed via adapter-based finetuning (Houlsby et al., 2019).

Explain.

Explanations in VLM-LSX represent explicitly generated textual sequences. Specifically, we let the learner
generate a set of Ne ∈ N explanations per sample, denoted as Ei for sample triplet (xi, qi, ai) ∈ X̄c. Here
we follow the approach of Brack et al. (2023) for the explanation sampling process. Briefly this is based
on a combination of top-k and temperature-based sampling and explanation prompt engineering, where an
explanation prompt is the sequence of tokens appended to the image, question, and answer to elicit textual
explanations. We select temperatures T ∈ {0.01, 0.1, 0.3, 0.6, 0.9}. This process overall results in Ne = 25
different natural language explanations per data sample.

Reflect.

Within the Reflect model of VLM-LSX (and similar to NeSy-LSX) the critic provides preference scores,
ρi ∈ [0, 1]Ne , over the generated explanations. This preference scoring is based on calculating the sample-wise
ROUGE-L score (Lin, 2004) between the learner’s generated explanations and the annotated explanations
that are stored in the critic’s knowledge base. We further follow Brack et al. (2023) and consider every
candidate with ROUGE-L ≥ 0.7 as indicating a “good” explanation with respect to the ground-truth values.

Revise.

Based on the feedback of the previous Reflect module we next select the explanations from Ei with
respect to the threshold defined above. We denote Emax as the set of these explanations over all samples
within X̄c. We next add an additional loss to the learner’s base loss: L = lB +lexpl(f((Ic, Qc, Ac)), Emax) and
optimize the learner via adapter-based finetuning (as in the Fit module) for predicting the corrext question
answer and the best corresponding explanation.

Implementation details.

In our training setup we sample a total of Ne = 25 explanations, i.e., 5 per temperature value. Furthermore,
X̄c = X̄. The number of LSX iterations was set to T = 8, where VLM (ft.) (cf. Tab. 6) was trained for the
same number of overall steps. In the setting of VLM-LSX X̄c = X̄.

B Data

MNIST. The MNIST dataset (LeCun et al., 1989) contains images of handwritten digits between 0-9. We
utilize this dataset in the context of image classification, i.e., an AI model should predict the underlying
digit from an image. The number of training images in MNIST corresponds to 60k.

ChestMNIST. ChestMNIST (Yang et al., 2023; Wang et al., 2017) originates from the NIH-ChestXray14
dataset (Wang et al., 2017), which consists of 112,120 frontal-view X-ray images from 30,805 individual
patients. Each image is originally associated with 14 disease labels extracted from text, making it a task
of multi-label binary classification. In our setting we convert the data to a binary classification problem,
i.e., an image depicts an x-ray scan of a “normal” patient or “abnormal”. The number of training images in
ChestMNIST corresponds to 78k.

DecoyMNIST DecoyMNIST (Ross et al., 2017) represents a version of MNIST (LeCun et al., 1989) in
which small boxes are placed randomly in one of the four corners for each sample (cf. Fig. 6). Importantly,
the dataset contains confounders. Within the training set the gray boxes possess a specific grayscale value
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Figure 6: Example training images from DecoyMNIST.

for each digit class, where this grayscale value is randomized at test time. The number of training images in
DecoyMNIST corresponds to 60k.

Figure 7: Example training images vs test images from ColorMNIST. Figure from Stammer et al. (2021)

ColorMNIST The ColorMNIST dataset (Kim et al., 2019; Rieger et al., 2020; Stammer et al., 2021)
represents another confounded variation of the MNIST dataset. Hereby, the confounding feature is not
spatially separate from the relevant features of the data. Specifically, in the training set each digit class
is strongly correlated with a certain color. At test time however each digit is randomly assigned a color.
(cf. Fig. 7). The number of training images in ColorMNIST corresponds to 60k.

CUB-10. CUB-10 represents a subset of the original Caltech-UCSD Birds-200-2011 dataset (CUB-200-
2011) (Wah et al., 2011) that comprises images of the first 10 classes of the full dataset. Koh et al. (2020)
originally perform a preprocessing step for CUB-200-2011 where concept vectors are replaced with the max
voting vector over all samples of a class. In other words, the resulting concept activations are identical
across all samples of a class which leads to a one-to-one mapping between concept activations and the class
affiliation.

In CUB-10 we simulate a more realistic setting in which the class concept activations of (Koh et al., 2020) are
overlaid with additional random noise, thereby maintaining the underlying class-based concept activation,
but producing random variations per class sample. Specifically, we add uniformly distributed noise between
0 and 1 onto the class-based concept activations and binarize the resulting activations with a threshold of
0.75. The number of training images in CUB-10 corresponds to 300 images.

CLEVR-Hans3 Fig. 8 presents the data distribution in CLEVR-Hans3 (Stammer et al., 2021). Specifically,
CLEVR-Hans3 is based on the graphical environment of the original CLEVR dataset (Johnson et al., 2017),
however reframed for image classification rather than visual question answering. Each class is represented
by an underlying logical rule consisting of the presence of specific object combinations. Within the original
training and validation set specific combinations of object properties are highly correlated, where they are
not within the test set. E.g., for the first class all large cubes are gray within the training set, but any color
in the test set. This gray color thus represents a confounding factor within CLEVR-Hans3. The number of
training images in CLEVR-Hans3 corresponds to 9k.

VQA-X. The VQA-X dataset (Park et al., 2018) extends the COCO (Lin et al., 2014) based VQA-v1 (Zitnick
et al., 2016; Antol et al., 2015) and v2 (Goyal et al., 2017) datasets with human-annotated explanations. It
contains open-ended queries to corresponding images which require a comprehension across vision, language,
and common-sense domains for answering.

29



Under review as submission to TMLR

Figure 8: Data setup of the CLEVR-Hans3 dataset. Figure from Stammer et al. (2021).

C Metrics

C.1 Explanation consolidation.

Ridge regression classification. For evaluating the separability of learned explanations, we provide the
accuracy of a ridge regression (RR) model that is fitted on a set of tuples consisting of explanations from
a trained learner and the corresponding ground-truth (GT) class labels of the underlying image. The RR
model is fitted on a training set and tested on an additional, held-out set of explanations (and corresponding
class labels).

This evaluation acts as a proxy of the separability of learned explanations. The higher the RR accuracy
on the test set the better the separability between explanations. For each learning configuration in our
evaluations we train a RR model separately on the explanations from the five differently seeded models.

Encoding analysis. The Inter- vs Intraclass Explanation Similarity (IIES) is defined as:

IICS = 1
K

K∑
k

1
M

∑M
i d(zk

i , µk)
1
K

∑K
j,j ̸=k d(µj , µk)

Essentially, this metric estimates in how far the explanations stemming from samples of one class are close to
another compared to the explanations of samples from other classes. The encoding of a separate, pretrained
model, h, provides the encoding space in which this similarity is assessed. The lower the values of IICS
the better separable are the data for h. Specifically, zk

i corresponds to the encoding of the explanation of
a sample i from class k. This encoding is provided by an additional model, h, via h(ei) = zk

i , where ei is
a provided explanation of sample i from a learner f . h is identical in architecture to the learner of which
the explanations are being evaluated, however h was separately pretrained only on the original task. For
evaluating explanations from the CNN configurations, h corresponds to an identical CNN that was trained
for image classification as in the vanilla configurations. For evaluating the NeSy configurations a NeSy
concept learner was pretrained for classification as in the NeSy vanilla setting. In both cases h was provided
with a random seed different from those used in the original training setups.

Furthermore, µk corresponds to the average encoding over all samples of class k (where for notations sake
we assume M samples in each class, although this can vary in practice). d(x, y) represents a distance metric
between x and y, where we have used the euclidean distance in our evaluations. We divide the distance
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within one class by the average distance between the encoding mean of class k and those of all other classes,
corresponding to an estimate of the distance to all other class encodings. Finally this is averaged over all
classes.

C.2 Faithfulness

For comprehensiveness, parts of the input are removed that correspond to important features as identified by
the explanation. As a result, the model should be less accurate in its predictions. In the case of sufficiency,
one removes those input features which were deemed unimportant according to the explanation. Hereby,
the model should not lose much accuracy. Notably, the original sufficiency and comprehensiveness metrics
of (DeYoung et al., 2020) were introduced in the context of NLP in which input sequences are considered
as discrete inputs. However, removing input features from continuous inputs such as images presents an
issue (Hooker et al., 2019) as measured differences due to pixel removal may reflect the influence of the
modified, out-of-distribution input rather than faithfulness of the explanation. For this case, we modified
the metrics for the CNN configurations (i.e., for explanations that are in a continuous form) to approximately
compensate for this effect. For evaluating explanation faithfulness we thus provide results for CNN-LSX (and
vanilla CNN) via the continuous adaptation of both metrics (denoted as COMPcont. and SUFFcont.) and
for NeSy-LSX (and NeSy vanilla) via the original comprehensiveness and sufficiency definitions (denoted as
COMPdiscr. and SUFFdiscr.). We formalize these in the following.

We follow the notation for COMPdiscr. and SUFFdiscr. of Chan et al. (2022). For this, x denotes an input
sample. We denote the predicted class of x as c(x), and the predicted probability corresponding to class j
as pj(x). Assuming an explanation is given, we denote denote the input containing only the q% important
elements as x:q%. We denote the modified input sequence from which a token sub-sequence x′ are removed
as x \ x′. Comprehensiveness and sufficiency for discrete explanations are finally defined as:

COMPdiscr. = 1
|B|

∑
q∈B

1
N

N∑
j=1

(pc(xj)(xj)− pc(xj)(xj\xj:q%))

SUFFdisc. = 1
|B|

∑
q∈B

1
N

N∑
j=1

(pc(xj)(xj)− pc(xj)(xj:q%)).

Where N here represents the number of data samples in the evaluation set. In our evaluations we set
B = {1, 5, 10, 20, 50} as in the original work of DeYoung et al. (2020).

For computing comprehensiveness and sufficiency scores based on continuous explanations we first compute
the comprehensiveness and sufficiency when a percentage q of the top input elements (e.g., pixels) are set to
the median value of all input elements of the evaluation set. In comparison to the definition of COMPdiscr.

and SUFFdiscr. of DeYoung et al. (2020) for the adaptation to continuous explanations we base the metrics
on class accuracy rather than class probabilities. We denote these alternative computations as:

ˆCOMPcont. = 1
B

∑
q∈B

acc(f(X\Xmedian
:q% ), y)

ˆSUFFcont. = 1
B

∑
q∈B

acc(Xmedian
:q% , y).

Here, acc(f(X), y) corresponds to the accuracy score of a models prediction given input data, f(X), compared
to the ground truth labels, y. X:q% corresponds to the full dataset in which everything but the top q% of
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Figure 9: Example input attribution (InputXGradient) explanations from the different CNN configurations on De-
coyMNIST. The top row show an original test set sample and the corresponding explanations for CNN (w/ conf.),
CNN-LSX (w/ conf.) and CNN-LSX (w/ deconf.). The bottom row shows the same setup for 20 randomly selected
test set samples. In red we have highlighted the confounding factor of the specific example. Note that the CNN-LSX
models (both trained w/ conf. and w/ deconf.) do not indicate importance of the confounder in their explanations.

each samples input elements were set to the median value of the dataset and X\Xmedian
:q% where the top q%

of each samples input elements were set to the median value of the dataset.

Next we compute the same metrics, but when removing randomly chosen q% of the input elements by setting
them to the median value. We denote these computations as ˆCOMP

rand

cont. and ˆSUFF
rand

cont.. Finally, we subtract
these from the original values, leading to:

COMPcont. = ˆCOMP
rand

cont. − ˆCOMPcont.

and

SUFFcont. = ˆCOMP
rand

cont. − ˆCOMPcont.

C.3 Self-unconfounding: Sample Explanations

Fig. 9 presents exemplary explanations from the different CNN configurations on the DecoyMNIST dataset.
Specifically, we provide images from original test set samples (left), explanations of the baseline CNN (w/
conf.) (second to left), explanations of the CNN-LSX (w/ conf.) (second to right) and explanations of the
CNN-LSX (w/ deconf.) (right). The explanations correspond to the InputXGradient importance maps. The
top row represents images for a single sample, where the red box in the test sample image indicates the
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confounder. We observe that both LSX configurations do not put any importance on this confounder for
this sample. The bottom row shows the same setting for altogether 20 randomly selected test set images
(two per class). Importantly, we observe a greatly reduced confounder importance in the explanations of the
LSX configurations, though this is not fully removed (consistent with the accuracy results of Tab. 3).

Fig. 10 presents concept-level exemplary explanations (ezi) from the different NeSy configurations on class
1 images of the CLEVR-Hans3 dataset. Over four randomly chosen class 1 training images we observe that
the baseline NeSy model puts great importance on the confounding factor of class 1 (e.g., the gray color
of large cubes, highlighted in red in the figure) the LSX based models both ignore this factor and even
indicate the original groundtruth class rule (a large cube and large cylinder, highlighted in blue in the figure)
despite never having received any explicit feedback on this. These qualitative results further indicate the
confounding mitigation results observed in Tab. 3.

D Additional Discussion

Human-machine interactions. Accurate and trustworthy human-machine interactions have been iden-
tified as important criteria for the future deployability of AI systems (Friedrich et al., 2023a; Teso et al.,
2023; Holzinger, 2021; Angerschmid et al., 2022). Also for LSX-trained models there is no guarantee that its
explanations are aligned with human requirements and knowledge. This makes conclusive human assessment
and potential human-based revisions necessary also for LSX trained models. However, in contrast to other
learning frameworks, LSX directly facilitates the development and integration of such mechanisms that allow
for fruitful human-machine interactions. E.g., when integrating a model into LSX one must develop both
the Explain and Revise module. Via the Explain module a human user can directly query the learner’s
reasons for a prediction and via the Revise module integrate feedback on these explanations. This can
potentially ease the integration of necessary revisory feedback from humans.

System 1 and 2 processing. A prominent hypothesis from cognitive psychology (which has gained
recent interest in AI research (Goyal & Bengio, 2022; Kautz, 2022; Ganapini et al., 2022; Booch et al.,
2021)) is that human cognition can be described via two processing systems: an approximate, fast system
(system 1) that handles the majority of familiar situations and an embedded, slower, yet more exact system
(system 2) that processes unfamiliar settings (Kahneman, 2011). There are interesting parallels between this
framework and that of LSX where Fit can be considered to represent a fast, initial processing phase, and
the triad consisting of Explain, Reflect and Revise to represent a slower, embedded processing phase.
An important open question, particularly in AI research on system 1 and 2 processing, is on the form of
communication between the two systems (Goyal & Bengio, 2022; Kautz, 2022). Explanations, as utilized in
LSX, possess interesting properties for this aspect. Specifically, explaining and reflecting on the learner’s
explanations in LSX represents a form of making the implicit knowledge of the learner explicit. At the
same time, system 2 processing can also influence the processing of system 1 as alluded to by our findings
on explanation consolidation (cf. Tab. 4). Lastly, our NeSy-LSX example instantiation has many parallels
concerning the integration of neural and symbolic components to Henry Kautz’s Neuro[Symbolic] system 1
and 2 approach (Kautz, 2022). Overall however, LSX is still far away from such models of human cognition
and much additional research is needed.
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Figure 10: Example explanations from the different NeSy configurations for class 1 images of CLEVR-Hans3. Specif-
ically, we provide images of the integrated gradients-based explanations, ezi . The first row depicts original images
of four randomly selected training samples that belong to class 1. The second, fourth and sixth row depicts the
symbolic representation, zi, of these images, as processed by the slot-attention-based perception module, where row
four and six merely represent row-wise permutations of zi in row two. Row three depicts explanations of baseline
NeSy (w/ conf.). Row five depicts explanations from NeSy-LSX (w/ conf.) and the last row depicts explanations
from NeSy-LSX (w/ deconf.). In red we highlight the confounding object attribute of class 1. In blue we highlight
the underlying rule of class 1 based on each sample.
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