
Bioinspired Dynamic Control of Amphibious Articulated Creatures with
Spiking Neural Networks

Ioannis Polykretis∗
Accenture Labs

Rutgers University

Mridul Aanjaneya*

Rutgers University
Konstantinos Michmizos†

Rutgers University

ABSTRACT

We present a biologically plausible, compact spiking neural network
for controlling the crawling and swimming behaviors of amphibious
creatures with articulated skeletons. Prior methods for learning effi-
cient control policies for such creatures are resource-greedy, both in
terms of computational time and energy requirements due to the high
number of degrees of freedom introduced by the many joints present
in the creature skeleton. Our approach takes a radical departure from
prior work and exploits the physiology of amphibious creatures.
Specifically, we emulate experimentally identified biological con-
trollers for amphibious creatures with a network of spiking neurons,
which alleviates the need for training altogether and can potentially
provide the additional benefit of utilizing minimal resources in terms
of energy. Our approach is robust and allows the amphibious crea-
ture to avoid both static and dynamic obstacles when exhibiting
different movement patterns, and also adaptively control its swim-
ming speed. Moreover, we show that the creature can seamlessly
transition between crawling and swimming behaviors as it moves
from land to water or vice-versa, similar to its real-world counter-
part. Our approach presents an efficient and scalable alternative for
producing vivid and lively motion, as we demonstrate through a
complex scene where multiple amphibious creatures interact with
each other, successfully avoiding collisions while moving across a
pool of water. Our approach is generalizable to other creatures also,
as we show through the design of a controller for a quadruped.

Index Terms: Computing methodologies—Computer graphics—
Physical Simulation—

1 INTRODUCTION

Character animation is an integral part of computer graphics [27,
62, 68]. Beyond the immense success in the VFX industry [31, 32],
methods for controlling characters are finding increasing use cases
in robotics for applications such as housekeeping [23], autonomous
driving [69], meal assistance [47], etc. This development is partly
motivated by the promise that robots may some day completely
replace humans in dangerous or undesirable tasks, such as rescue
missions [48], and planetary [54] or underwater explorations [52].
While wheeled robots can effectively address simple tasks in struc-
tured environments, the increasing variability in unstructured en-
vironments demands articulated robots with multiple degrees of
freedom (DOFs). However, this additional complexity also makes it
more challenging to control their behaviors.

The most common and successful method for training the
behaviors of articulated characters is Reinforcement Learning
(RL) [4, 28, 49]. RL algorithms have provided remarkable results
in a wide range of tasks spanning from high-level cognition, such
as path planning [72], to low-level control of crawling [6], walk-
ing [39], and swimming [46, 57] behaviors. However, RL methods

*e-mail: {ip211, mridul.aanjaneya}@rutgers.edu
†e-mail: km1078@cs.rutgers.edu

also suffer from some crucial drawbacks. First, their training phase
requires tens of thousands of steps, even for simple tasks such as
an inverted pendulum [20], resulting in considerably long training
times. Second, the training time also scales with the number of
DOFs of the characters [64], rendering the training of such agents
computationally challenging. Third, the prolonged training results
in significant power consumption [17, 41].

Decreasing the training time of articulated characters/robots, both
algorithmically and computationally, and lowering power require-
ments has been a major goal for the research community, and has led
to the development of step-skipping algorithms [35] and specialized
hardware accelerators [59].

Alternatively, researchers have drawn inspiration from biologi-
cal agents that effortlessly give rise to complicated behaviors and
have attempted to replicate them in bioinspired algorithms for char-
acter control [9, 38, 49]. Especially for repetitive behaviors, such
as locomotion and swimming, numerous studies have replicated
the function of the specialized biological networks called Central
Pattern Generators (CPG) [30, 57] that are known to drive such
behaviors. These networks give rise to periodic activity patterns
that drive the limbs and muscles of biological agents for generat-
ing the motion [25]. The periodic patterns, which are the core of
such networks, have been traditionally approximated with oscilla-
tors defined as dynamical systems, alleviating the need for training
altogether [29, 30]. However, arbitrary sets of ordinary differential
equations (ODEs) that simulate oscillators require precise numerical
operations. As a result, they are not inherently compatible with edge
computing hardware, such as neuromorphic processors [14, 43], that
could also alleviate the power requirements of the control. Even
when explicitly designed for deployment on such platforms to ben-
efit from their energy efficiency, ODE-based methods introduce
additional resource requirements [22, 60].

In this paper, we exploit the identified biological principles of
neuronal CPG networks that give rise to crawling and swimming
behaviors in amphibious animals, such as lizards, salamanders, and
crocodiles. We design a compact network of spiking neurons, which
emulates the individual biological neurons and their connectivity in
CPG networks to control the motions of an articulated amphibious
creature without the need for any training. Our control method
produces biologically realistic motion for one crawling and two
swimming patterns, including the ability to seamlessly transition
between these behaviors. Additionally, we demonstrate that the
amphibious creature can adapt its speed to external control signals.
We also incorporate sensory feedback to allow the creature to avoid
collisions with static and dynamic obstacles that may be present in
the surrounding environment. In summary, our main contributions
are as follows:

• A continuous-valued oscillator that utilizes the aggregate pop-
ulation dynamics of groups of bursting neurons,

• Three novel, bioinspired architectures based on spiking neural
networks (SNN) that use populations of bursting neurons as
building blocks for controlling two different swimming pat-
terns and one crawling pattern of an articulated amphibious
creature, and seamlessly transitioning between them, and



• A closed-loop controller that responds to external stimuli and
modifies the creature’s speed and direction of motion to nav-
igate in unstructured environments with static and dynamic
obstacles.

Our bioinspired control method requires the understanding of the
biological networks that drive the swimming behaviors in animals
and some empirical tuning of its hyperparameters in exchange for
a prolonged training that is conventionally necessary for driving
the amphibious creature. Our work hints that biologically plausible
control of low-level behaviors with networks of spiking neurons
could mitigate the computational burden of training multi-DOF
agents with RL and allow for parallel employment of the available
computational resources for performing high-level cognitive tasks.

2 RELATED WORK

Simulating biologically plausible motion of articulated characters
is an active area of research in computer graphics [11, 12, 18]. Its
primary goal is the demonstration of physically realistic behaviors,
which can preserve the robustness of their biological counterparts
to perturbation and which can adapt to control inputs. While biped
locomotion has been extensively studied for understanding the emer-
gence of human gait patterns [37, 38], and also their recovery [56]
as well as enrichment with fine motor skills [42], the walking mo-
tions of multi-legged animals has also attracted considerable in-
terest [19, 44, 51]. Researchers have also explored swimming of
humanoids [57] and aquatic animals [46], and flying in bird-like
characters [34, 67]. The common ground in all these works is the
exploration of the underlying control algorithms that can give rise to
these fine and complex movement patterns.

Increasing the number of DOFs in characters and the complexity
of the surrounding environment results in high-dimensional observa-
tion and action spaces, which cannot be easily captured in predefined
datasets of reasonable size. This highlights the applicability of RL
algorithms that are based on trial-and-error for accumulating rewards
and punishments [4, 28]. The inclusion of deep network architec-
tures has provided remarkable generalization to diverse agents and
tasks, such as the generalization of policies from biped humanoids
to dinosaur-resembling quadrupeds [49], or the control of diverse
soft-bodied animals spanning from starfishes to octopuses and from
stingrays to squids [46]. Beyond the generalization to different
agents, RL algorithms can also address various tasks. For example,
the deep networks in [49] are not limited to walking control and
can also replicate dancing, flipping, and even throwing behaviors.
However, this versatility comes at a significant computational cost.
Even for small and simple tasks such as an inverted pendulum, the
training requires tens of thousands of steps [20]. The training time
deteriorates with increase in the number of DOFs [64], as hundreds
of thousands of samples are required to achieve the required gen-
eralization. Moreover, long training processes need to be repeated
even when only slight changes are made to the task or the character’s
skeleton [21]. In addition to compute time, long training sessions
are considerably greedy in terms of power consumption [17, 41],
which is an essential concern for mobile and resource-constrained
agents [63].

To mitigate the computational burden of RL training, a line of
research sought inspiration in the effortless emergence of repetitive
behaviors such as locomotion, swimming, and flying in biological
agents. Typically, such methods approximate the biological CPG
networks with oscillator circuits [30, 71]. The resulting controllers
require minimal training for effectively controlling the character’s
joints and give rise to several motion patterns. The output of such
networks is a sinusoid that could, theoretically, be replaced by a
simple function generator. However, a static sinusoidal function is
insufficient to provide effective control with real-time adaptation
(frequency, phase, continuity) to dynamic environments. Conversely,
the dynamical systems can adapt to external signals [30] and can also

incorporate learning to fine-tune their behavior [57]. However, they
also introduce some new limitations to the control problem. First, the
generation of the oscillatory behavior relies on systems of high-order,
non-linear differential equations [57, 66], whose solution requires
high-order numerical methods and high precision, which introduces
computational overhead. More importantly, the use of ODE systems
limits their applicability to accelerated and energy-efficient edge
devices, such as neuromorphic processors. This incompatibility is
due to the biological inspiration of these methods being limited to
the phenomenological level of the oscillatory activity. A handful of
works [2, 40, 50] attempt to go deeper and emulate the characterized
underlying neuronal connectome of the CPG networks that drives
the periodic activity [25]. These methods benefit from the compact
and explainable connectivity of the biological networks to provide
effective and efficient control, but this area is still in its infancy.

Our work follows this last direction and alleviates the need for
training when controlling the crawling and swimming motions of
articulated amphibious creatures. Emulating the experimentally
identified connectome of the CPG that drives these behaviors in
animals such as salamanders and lizards, our compact SNN produces
different behaviors and naturally transitions between them. Using a
small number of spiking neurons and a simplified model for each
of them, we reduce the computational requirements and provide a
controller that can be directly deployed on different neuromorphic
platforms, allowing for energy-efficient character control.

3 BURSTING NEURON MODEL

Neurons in artificial neural networks sum continuous-valued inputs,
apply threshold functions and provide continuous-valued outputs [7].
Therefore, they only loosely approximate biological neurons, which
integrate their synaptic inputs in their continuous membrane voltage.
When this voltage exceeds a threshold value, the neuron emits a
binary, all-or-none output called a spike and resets its membrane
voltage. Adding more functionality to their networks, different types
of spiking neurons have distinct firing modes, with a prominent one
being the bursting neuron [36].

Figure 1: The activity of a single bursting neuron alternates between
spike bursts and quiescence and can approximate discrete signals (A).
The cumulative activity of a population of sufficiently many bursting
neurons (B) can closely approximate a continuous sinusoidal oscilla-
tion (C) as the number of neurons increases.

Unlike regular-firing neurons that emit solitary spikes and re-
set, bursting neurons fire a packet of spikes called a burst when
exceeding their threshold and reset for a more extended period of
quiescence (see Figure 1A). This alternation between spiking and
quiescence, which is not typical in neurons with other firing modes,



Figure 2: A. A simple controller driving alternating contractions of the left and right sides of the creature’s body. The contractions of the first joint
are anti-phasic with the rest of them to drive the forward swimming movement. B. A controller consisting of a chain of oscillators propagates the
activation sequentially through the creature’s body and gives rise to an undulatory movement. C. A controller that rotates the creature’s legs
forward. When combined with the alternating spine contractions (A), the movement of the legs generates the crawling pattern.

makes the bursting neuron a great candidate for approximating the
periodic fluctuation of an oscillator. In fact, a single bursting neuron
has been used to drive the discrete, periodic movements (such as, el-
evation and lowering, forward and backward motion) of a hexapod’s
limbs and control its locomotion [50].

However, the activity of a single bursting neuron resembles a
binary oscillator that toggles between two discrete states. While this
binary nature is sufficient for driving motion patterns that consist
of discrete components (such as, leg elevation/lowering), it results
in abrupt movements and discontinuous behaviors. Consequently,
it hinders the applicability of the bursting neuron for continuous
control tasks that require intermediate position values over a range of
the discrete extremes. To address this issue, we propose a continuous-
valued oscillator that utilizes the population dynamics of groups of
bursting neurons, as shown in Figure 1B.

4 POPULATION OF BURSTING NEURONS

Before describing our approach for simulating the spiking activity
of a population of bursting neurons, we explain our modeling of a
single bursting neuron. We used the simplified neuron model in [33]
which is governed by the following set of equations:

v̇ = 0.04v2 +5v+140−u− Iex +
1
M

M

∑
j=1

s jw jvpsp + ε, (1)

u̇ = a(bv−u), (2)

with the voltage being reset based on the following condition:

if v≥ 30 mV, then v← c, u← u+d, (3)

where v is the neuron’s voltage, u is an internal state variable, v̇, u̇
denote time derivatives, Iex is an external input current, s j ∈ {0,1}
denotes the spike of the jth presynaptic neuron, and w j is the weight
of the connection for the jth out of the M presynaptic neurons. The
postsynaptic potential vpsp (set to 1.5 mV) is the increase in the
postsynaptic voltage membrane due to a single presynaptic spike,
while ε ∼U(−0.2,0.4) is a uniformly distributed noise factor used
for emulating the variability of the population dynamics that emerge
from weight mismatch, synaptic failures, etc [1]. The parameters
a, b, c, and d define the neuron’s firing mode. We set a to 0.02, b

to 0.2, c to -65, and d to 2 as suggested in [33] for simulating all
neurons. For simulating the slow bursting behavior (see Figure 1A),
we set a to 0.00125 to slow down the decay of u, and c to −47 to
reset v at a higher value. We integrate equations (1) and (2) using
forward Euler with a time step of 0.5 ms.

Next, we aggregate the activity of multiple bursting neurons and
observe their population dynamics, as shown by the motor neurons
in Figure 1B. Although small populations of neurons (e.g., N = 10)
introduce intermediate levels of oscillatory activity, increasing the
population size (e.g., N ∈ {100,1000}) improves the approximation
of a continuous-valued oscillator, as shown in Figure 1C. Even in
its most resource-greedy version (1000 neurons per population for
12 bursting neurons, 12 motor neurons, and 2 sensing populations,
26K in total), our controller, can still be deployed on a single neuro-
morphic processor (Intel’s Loihi includes 128 neurocores of 1024
neurons each [14]). In fact, that size of our SNN is comparable to
similar controller networks proposed before (38 neurocores in [60]),
whose power consumption is about 10mW. In a real-world system,
the power required for the motors is generally dominating the overall
system consumption. However, our method targets the computa-
tional aspects of control; hence, a fair comparison can be made
against other methods with the same goal, i.e., planning the motor
activations, integration of sensory feedback and behavior adaptation,
etc. In that domain, the use of spiking neurons with minimal training
requirements does provide considerable improvement in energy con-
sumption. As a result, the biological plausibility of our network and
its compatibility with edge-computing hardware provide significant
energy efficiency for the control task in a dynamic environment.

5 BIOINSPIRED MOTION CONTROL

Using a population of bursting neurons as a building block, we pro-
pose three novel, bioinspired architectures based on spiking neural
networks (SNN) to control an amphibious articulated creature: (a)
the sequential alternation network (Figure 2A) that gives rise to al-
ternating, synchronized contractions of the right and left sides of the
creature’s body, (b) the chained oscillator network (Figure 2B) that
gives rise to an undulatory movement of the spine by propagating
the activation of the joints along the spine, and (c) a subnetwork that
we use in conjunction with the sequential alternation controller to
move the creature’s legs (Figure 2C) during crawling.



5.1 Sequential Alternation Controller for Swimming
This controller draws inspiration from the alternating flaps of the
tails of a fish when swimming [24]. Two mutually inhibiting bursting
neuron populations acting as coupled oscillators form the core of
the sequential alternation controller, as shown in Figure 2A. We
drive these two populations with an external input that dictates their
oscillation frequency. This input corresponds to control signals from
the midbrain [10] that descends to the spine in the form of tonic
excitation, a stable excitatory input [58]. To ensure that the spiking
activity of the two populations will be alternating and not concurrent,
we fully connect them with inhibitory synapses whose weights w
are set to -1. In this way, the population that is activated first delays
the activation of the other, and so on.

We use two groups of motor neurons for each spinal joint, corre-
sponding to the flexor and extensor motor neurons, for translating
the alternating activation of the two bursting populations to alter-
nating contraction of the right and left sides of the creature’s body.
For driving the alternating contractions, we use ipsilateral excitatory
connections with a weight w set to 1 from one bursting population
to the flexor motor neuron, and from the other to the extensor motor
neuron. For ensuring a forward swimming movement, we mimic the
experimentally identified connectivity of CPG in fish [25, 55] that
moves the creature’s head in a direction opposite to that of the rest of
its body. This is achieved by introducing contralateral connections
from the bursting neuron populations to the motor neurons only
for that joint. The spikes of the flexor motor neuron increases the
joint’s angle, leading to a left contraction, while the spikes of the
extensor motor neuron decreases it, leading to a right contraction.
For controlling the joint angle using the motor neuron spikes, we
first calculate the normalized, instantaneous motor neuron activity
as follows:

α =
1
N

(
N

∑
j=1

sF
j −

N

∑
j=1

sE
j

)
, (4)

where sF
j and sE

j denote the spikes of the flexor and extensor motor
neuron populations respectively, and N is the population size. Then,
we use α to modify the joint’s angle θ as follows:

θ ← θ +α,θ ← ⟨−θmax,θmax⟩, (5)

where ⟨·⟩ denotes the clipping of the angle value between its mini-
mum and maximum value. We set θmax to π/8 to generate biologi-
cally realistic and aesthetically pleasing motion sequences.

5.2 Chained Oscillator Controller for Swimming
This controller is inspired by the undulatory movement of the spine
in eels, lizards, and snakes [55], which is achieved by contracting
(i.e., by flexing or extending) all the spinal joints in the same direc-
tion. However, unlike the sequential alternation controller, these
contractions are not synchronized but have a phase lag.

To control this movement, we introduce one pair of bursting
neuron populations per joint (see Figure 2B). These populations act
as coupled oscillators for controlling each joint independently from
the others. We drive all bursting neuron populations with the same
tonic excitation input that dictates their oscillation frequency.

For simulating the required phase lag in the contractions of the
spinal joints, we break the synchrony of the different oscillators by
introducing top-down inhibitory connections from the oscillators
closer to the creature’s head to the ones closer to its tail, which
are illustrated by the thin lines in Figure 2B. The weights w of
these connections are set to −0.5/Ntdi, where Ntdi is the number
of top-down inhibitory inputs that each bursting neuron population
receives. In this way, the activation of the first oscillator inhibits the
rest, introducing a slight delay to the onset of their activity until their
input exceeds the inhibition. With each bursting neuron population

inhibiting the ones below it, they are activated one after the other
and the oscillations exhibit the desired phase lag.

For translating these orchestrated oscillations of the bursting neu-
ron populations to joint contractions, we introduce flexor and exten-
sor motor neuron populations, as described in Section 5.1. We use
one bursting neuron population of each mutually inhibiting pair to
drive a flexor motor neuron population which increases the joint’s
angle, and the other to drive an extensor motor neuron population
which decreases it. For enforcing the contractions of all joints in the
same direction, we only introduce ipsilateral connections between
the bursing neuron and the motor neuron populations.

5.3 Leg Controller for Crawling

For moving the creature forward when it is on the ground, we utilize
the rotational motors for its legs in conjunction with the sequentially
alternating spine movement (as described in Section 5.1) during
crawling. To drive the forward crawling, we group the four legs into
two pairs. The left front and right hind legs form one pair, and the
right front and left hind legs form the other pair. The legs in each
pair are synchronously rotated forward and we introduce a constant
phase lag of a half-cycle to enforce the alternating movement of
the two pairs. To control each leg, we employed two motor neuron
populations similar to the control of the spinal joints, as shown in
Figure 2C. To ensure the synchronization of each leg pair with the
spine contraction in one direction, we connected the two bursting
neuron populations of the sequential alternating spine controller
to the two motor neuron populations that control the legs. We
set the weights of these excitatory connections to 1. To achieve
forward crawling, we rotate each leg only in the forward direction
by translating the spikes of both motor neuron populations to an
increase in the joint angle. We set θmax to π for the leg joints. Note
that the angle of the leg joints was not clipped using equation (5) to
allow for continuous forward rotation and crawling movement.

5.4 Transition between Motion Patterns

For transitioning between the crawling and swimming patterns, or
vice-versa, we use the creature’s position in the surrounding envi-
ronment as provided by a GPS sensor. When it is no longer on
the ground and sufficiently submerged into the water based on a
user-specified tolerance, we stop the movement of its legs and force
them to point backwards for minimal resistance while swimming.
Similarly, we use the leg controller when the GPS sensor indicates
that the creature has moved sufficiently out of the water.

6 SENSORS AND FEEDBACK NETWORKS

With a few exceptions [3, 61], SNN-based CPG are open-loop con-
trollers that do not modify their behavior in response to sensory
inputs [16, 26]. While some of them can adapt their oscillation fre-
quency to external signals [50], they still disregard sensory feedback,
hindering their applicability to dynamic environments where the
agent needs adapt its behavior.

To remedy this, we introduce two feedback loops to our SNN-
based CPG to allow the amphibious creature to interact with its
surrounding environment. The first feedback loop utilizes a GPS
sensor, from which we read the creature’s position and swimming
speed in real-time. This allows us to select the used motion pattern
as a function of its position. The second feedback loop employs two
distance sensors that are positioned on the sides of the creature’s
head, resembling a pair of eyes (see Figure 2) and allowing it to
detect and avoid obstacles in its environment. Each distance sensor
is equipped with six rays arranged equidistantly on the surface of a
cone, whose angle is 45 degrees, with a maximum sensing distance
dmax = 0.7 m, and provides a value d that is an estimate of the
distance between the creature’s head and the closest object.



6.1 Distance Sensory Feedback Network
To incorporate the distance sensory feedback, we translate the read-
out values dr and dℓ of the right and left sensor, respectively, into
two excitatory current values as follows:

Ir
ds = A ·

(
(dmax−dr)− (dmax−dl)

)
, (6)

Il
ds = A ·

(
(dmax−dl)− (dmax−dr)

)
, (7)

where A is a scaling factor that is set to 70 to rescale the current
value to the operating range of the neuron model. Next, we use
these excitatory currents to drive two sensory neuron populations
(see Figures 2A and B), whose spiking activity encodes the distance
of objects from the left and right sides of the creature’s head.

Subsequently, we use the spiking activity of these two distance
sensory neuron populations to modify the output of the CPG network.
In the sequential alternation controller, we decrease the contraction
of the spinal joints in the direction of an obstacle by connecting the
sensory neuron to the flexor and the extensor motor neuron popula-
tions of the spinal joints with inhibitory synapses, whose weight w
are set to −1. In this way, when an obstacle is on the left (right) side
of the creature’s head, the left (right) distance sensor provides a read-
out value dℓ < dmax (dr < dmax). This increases the current value Ir

ds
(Iℓds) that stimulates the corresponding sensory neuron populations
(see equations (6) and (7)) and increases the sensory neuron activity.
The sensory neuron spikes inhibit the motor neuron populations
that induce left (right) contractions, turning the creature to the right
(left) and avoiding the obstacle. We achieve a similar result with
the chained oscillator controller by connecting the sensory neuron
populations directly to the bursting neuron populations to inhibit
their activity and decrease the contractions in the given direction, as
described above. Note that in the sequential alternating controller,
we connect the sensory neuron populations directly to the motor
neuron populations, not the busting neuron populations. This was
done so as to avoid interference of the sensory feedback network
with the leg movement network since the bursting neuron activity in
that controller directly reflects on the frequency and range of the leg
movements.

7 GENERALIZATION TO QUADRUPED LOCOMOTION

Figure 3: Architecture of the
quadruped locomotion controller.

To demonstrate the appli-
cability of our approach to
agents beyond the afore-
mentioned articulated crea-
ture, we sought to use our
method to control the loco-
motion of a quadruped. As
an example, we focused on
the Ant-v2 agent from Mu-
JoCo OpenAI gym that is
widely used as a test bed
for RL algorithms. Simi-
larly to the salamander con-
troller, a pair of mutually
inhibiting bursting popula-
tions constituted the core
of the quadruped controller
and its specific connectivity
was then dictated by the desired locomotion pattern. More specif-
ically, the legs of the quadruped were grouped in two pairs (front
left with hind right and front right with hind left), with sequentially
alternating half-cycles: The first half-cycle consisted of the lifting
and forward motion of the first pair, and the concurrent lowering and
backward motion of the second pair, while in the second half cycle
the order of the pairs switched. To recreate this behavior, we utilized
one pair of mutually inhibiting BN populations, whose activity set
the pace of the sequential alternation (Fig. 3). Each BN population

(e.g., left) drove a pair of MN groups (e.g., top-left and bottom-right).
Each MN group lifted and moved forward the corresponding leg,
while lowering and moving backward a leg of the opposite pair. To
compare the performance of our SNN controller, we used a RL base-
line and trained the quadruped to walk using the well-established
Proximal Policy Optimization (PPO) algorithm [15, 53]. We mea-
sured the training time (number of episodes) it required to reach the
SNN performance, and compared the reward accumulated by the
SNN controller and PPO in the early episodes of the training.

8 SIMULATION RESULTS

We used the Webots framework [45] for our simulations, an open-
source mobile robot simulation software developed by Cyberbotics
Ltd. We chose this platform because it has been successfully used
by other research groups in prior work for simulating swimming
and amphibious robots [8, 13, 70]. We used the salamander robot
prototype [30] and environment that are provided with this software
package. Upon acceptance, accompanying this article, we will open-
source our code for running 3D simulations of amphibious creatures
with our proposed bioinspired controller.

In this section, we demonstrate the applicability of our proposed
method for controlling the behavior of an amphibious articulated
creature. Our method can effectively generate two swimming pat-
terns, as described in Sections 8.2 and 8.4, and one crawling pattern
(see Section 8.3) for the amphibious creature. Moreover, our con-
troller is robust enough to adapt the creature’s speed to external
control signals, as described in Section 8.6, and drive it to avoid
collisions with static and dynamic obstacles in its surrounding envi-
ronment (see Section 8.7). We first present how our spiking neural
network can control the contractions of a single spinal joint.

8.1 Single Joint Control

Figure 4: SNN for
a single joint.

We control the alternating contractions of a
single spinal joint in a simplified version of
the amphibious creature with the core mod-
ule of our spiking neural network, as shown
in Figure 4. The external tonic excitation in-
put induces bursting activity in both bursting
neuron populations, and their mutual inhi-
bition ensures the alternation of their burst-
ing activities. With each bursting neuron
population exciting a corresponding motor
neuron population, the activity of the two
motor neuron populations is also alternating
(see Figure 5A). Translating the motor neu-
ron activity to changes in the joint’s angle
(equations (4)–(5)) results in an oscillation
between the minimum and maximum angle
values, as shown in Figure 5C. This oscilla-
tion of the joint angle translates to an alter-
nating contraction of the right and left sides of the creature’s body,
as illustrated in Figure 5B. As these alternating contractions of the
two sides of the body constitute the basis of swimming movements,
we move on to examine the emergence of such swimming patterns
with our full-scale controllers.

8.2 Sequential Alternation Swimming Pattern
We extended the core module of our spiking neural network to con-
trol all six spinal joints of the amphibious creature for generating
a swimming pattern with alternating contractions of the right and
left sides of its body, as shown in Figure 6. Our controller (see
Figure 2A) drives each of the six joints as described in Section 8.1,
giving rise to similar oscillations of their angles between the mini-
mum and maximum values. The oscillations of different joints are
synchronized and give rise to synchronous contractions of the left
side of the body that alternate with synchronous contractions of the



Figure 5: Alternating contraction of a single joint in a simplified crea-
ture model using our SNN oscillator. Two alternating bursting neuron
populations drive the activity of two motor neuron populations that
flex and extend the joint. The positive motor neuron population (right
in Figure 4) increases the joint angle (C), while the negative motor
neuron population (left in Figure 4) decreases it. The joint flexion and
extension changes the creature’s pose (B).

right side (see the bottom row in Figure 6). This synchronization
emerges from using a single pair of mutually inhibiting bursting
neuron populations that act as a coupled oscillator and dictate the
pace of the contractions for the whole spine. While synchronized
with the rest of the spinal joints, the contractions of the first joint
are anti-phasic (see top row in Figure 6). This constant phase lag of
180 degrees is due to the contralateral connections of the oscillatory
bursting neuron populations to the flexor and extensor motor neuron
populations of the first joint, as shown in Figure 2A. Functionally,
this phase reversal moves the creature’s head in the opposite direc-
tion to the rest of its body and creates the necessary propulsion to
move in the water. Note that the short, synchronized joint activation
in the first few milliseconds of the movement (see Figure 6) is an
artifact due to the initialization of the neuron stimulation.

8.3 Crawling Pattern

To allow the creature to move on the ground, we combine the al-
ternating contractions of its spine with the rotation of its legs via
a subnetwork that actuates the legs, as shown in Figure 2C. The
movement of the legs is pairwise synchronized: the right front leg
and the left hind leg rotate simultaneously and, consequently, always
point in the same direction (see Figure 7A). The other two legs are
similarly synchronized. The synchronization of the leg rotations
with the sequential alternation of the spine contractions gives rise
to the crawling pattern. More specifically, the two pairs of legs
complete a half-rotation with each spine contraction. In this way,
the right front and left hind legs always point forwards when the
spine contracts to the left, as shown in Figure 7A1, while the other
two legs point backwards, and vice-versa. This synchronization of
the leg rotations and the spine contractions is due to the common
drive of their corresponding motor neuron populations by the same
oscillatory core, i.e., the pair of mutually inhibiting bursting neuron
populations, as shown in Figures 2A and C. The crawling motion
allows the creature to initially move on the ground before entering
the water (see Figure 7B). Its legs keep rotating as long as the water
is shallow and then stop and are kept to the side of the body when
only a swimming movement is required. This transition from the
crawling to the swimming motion is dictated by the estimate of the
creature’s position, as provided by the GPS sensor.

Figure 6: Swimming pattern with alternating contractions of the left
and right sides of the creature’s body. The sequential alternation
controller presented in Figure 2A drives the six rotational joints on the
spine. The phase reversal of the first joint (top) generates the required
propulsion for the swimming motion (bottom).

8.4 Undulatory Swimming Pattern
In this section, we demonstrate how our chained oscillator controller,
as shown in Figure 2B, gives rise to the characteristic undulatory
movement of various amphibious animals, such as salamanders,
crocodiles, and lizards. Similar to the swimming pattern with se-
quentially alternating contractions (see Figure 6), our spiking neural
network induces oscillations for all six spinal joint angles between
their maximum and minimum values, as shown in Figure 8. How-
ever, these oscillations are not synchronized. Instead, there is a
phase lag between the oscillations of consecutive joints (shown by
the dashed line in Figure 8). This phase lag is due to the top-down
inhibition, as described in Section 8.4. Functionally, this results in
the propagation of contraction initiation along the spine and gives
rise to the undulatory movement, as shown in the bottom row of
Figure 8. Notably, the magnitude of this phase lag adapts to the
oscillation frequency, allowing for undulatory swimming at differ-
ent velocities without any changes to the network architecture or
configuration. In agreement with experimental findings [5, 65], we
diminish the phase lag at low and high oscillation frequencies, break-
ing the swimming pattern (see also Section 9). We also highlight
that the orchestrated joint contractions generate the propulsion to
move the creature, without requiring an anti-phasic joint oscillation
as used in the sequential alternating controller (see Section 8.2). The
short, synchronized joint activation in the first few milliseconds of
the movement (see Figure 8) is an artifact due to the initialization of
the neuron stimulation.

8.5 Timings
We examined the applicability of our method to real-time character
control by measuring the execution time of our SNN controller. A
stripped-down implementation of our sequential alternation network



Figure 7: The crawling pattern of the amphibious creature (A) moves
it on the ground until it reaches the pond, where it transitions to the
swimming pattern (B). During crawling, the contractions of the left side
of the body (A1) are synchronized with the front right and hind left
legs pointing forward, while the two remaining feet are synchronized
with the contractions of the right side (A2).

(see Section 5.1) simulated 1s of real-time in 689,63± 0.38 ms,
while the larger chained oscillator network (see Section 5.2) required
829,07± 0.72 ms. These results are averaged over 100 iterations
running on an Intel i5-1035G1 CPU with 8 cores at 1 GHz.

Figure 8: The chained oscillator controller (see Figure 2B) drives
the six rotational joints of the spine. The phase lag (dashed line)
introduced by the top-down inhibition gives rise to the characteristic
undulatory swimming motion of amphibious creatures (bottom).

Figure 9: Adaptation of the creature’s swimming speed to external
input. The frequency of the network’s oscillation adapted to the tonic
excitation input. In turn, the oscillation frequency controls the swim-
ming speed. Notably, the swimming speed saturates at both low and
high oscillation frequencies, while providing a linear control range as
observed in real animals [55]. Error bars denote standard deviation of
the mean swimming speed over 10 iterations.

8.6 Speed Adaptation
The periodic nature of the oscillations raises the question whether
its possible to control their frequency and, thus, the creature’s swim-
ming speed. To investigate this, we focus on the undulatory swim-
ming pattern, which is utilized by animals when fast swimming is
required, as it can produce high thrust forces [55]. To modify the
oscillation frequency, we provide different levels of tonic excitation
to the mutually inhibiting bursting neuron populations shown in
Figure 2. More specifically, we select six levels of input current
Iex, which cover the operating range of the simplified neuron model,
and drive the bursting neuron populations. For each input level, we
ran ten simulation experiments, where we measured the oscillation
frequency of the bursting neuron populations and the corresponding
swimming speed, as shown in Figure 9. Our results demonstrate that
the increase in the tonic excitation input induces a gradual increase
in the oscillation frequency and, in turn, an increase in the creature’s
swimming speed. Interestingly, the oscillation frequency and the
swimming speed exhibit a linear relationship across a range, which
is typical for undulatory swimming across species [55]. Additionally,
the swimming speed saturates at low and high oscillation frequen-
cies. The reason for this is two-fold: First, those frequencies distort
the phase lag between consecutive joints, which is necessary for
undulatory swimming. Second, at high frequencies, the mechani-
cal properties of the joints and motors do not allow for full-range
movements of the joints.

8.7 Obstacle Avoidance
The amphibious creature can not only adapt its swimming speed
to external inputs, but also adjust its swimming direction to avoid
collisions with obstacles in its environment. To demonstrate this,
we utilized the distance sensors and our controllers’ corresponding
feedback network, as described in Section 6. We also chose the
undulatory swimming pattern for its higher movement flexibility.

Focusing on static obstacles first, we simulated a complex envi-
ronment with various objects, as shown in Figure 10A. We initially



Figure 10: Static (A) and dynamic (B) obstacle avoidance by our
closed-loop spiking neural network controllers. The distance sen-
sors detect the presence of obstacles on either side of the creature’s
head and drive the corresponding sensory neuron populations (see
Figures 2A and B). The sensory neurons modulate the spinal contrac-
tions to turn the creature from its initially straight trajectory.

oriented the creature such that its straight swimming motion would
have driven it into the rightmost barrel and allowed it to swim freely.
While initially swimming in a straight line, the feedback from the
distance sensors modified the spine contractions and turned the crea-
ture to the right. After avoiding the rightmost barrel, its swimming
direction pointed towards the middle barrel. Again, the creature
sensed the new obstacle and turned to the left to avoid colliding with
it. In a similar fashion, it also avoided the left barrel to navigate
successfully through the complex environment.

Next, focusing on dynamic obstacles, we introduced an identical
swimming creature (left) that was swimming in the pond using
the sequential alternating controller, as shown in Figure 10B. We
selected this pattern for the left creature because its slower swimming
speed allowed for the detection of its thin skeleton by the distance
sensors of the right creature. We initially oriented the two swimming
creatures so that their straight trajectories would result in a direct
collision and allowed them to swim freely. While the one on the right
initially swam in a straight line, it modified its spinal contractions
as soon as it detected the left creature, and turned right to avoid the
collision. In fact, its higher swimming speed due to its undulatory
swimming pattern allowed it to swim past the left creature and
continue swimming along its updated trajectory.

8.8 Method generalization and comparison

Finally, we examined whether our method could be used for the

Figure 11: Walking pattern of a
quadruped with our proposed SNN.

locomotion control of
agents beyond the sala-
mander creature and how
its performance compared
against traditional RL
methods. For this, we
used the adaptation of our
control method presented
in Section 7 to drive the
locomotion of a quadruped
and compared its perfor-
mance against PPO. Since
our SNN controller does
not require training due
to its biologically inspired
architecture, it accumulates
rewards right away, while

Figure 12: Comparison between the SNN-controlled and the PPO-
trained agent. The SNN accumulates higher reward than PPO in the
first episodes of training (left). PPO eventually outperforms the SNN
controller after 118,337 episodes (right).

PPO performs poorly in the first episodes of its training (see
Figure 12). While PPO eventually outperformed our method as
expected, it took 118,337 episodes to match and exceed the SNN
performance. Moreover, our SNN gave rise to a consistently realistic
walking pattern, unlike PPO, which sacrificed motion realism to
further increase the covered distance (and, therefore, the rewards).
Although the comparison of our method against RL is necessary
from an evaluation perspective, it is not perfectly fair. Our control
architecture does not require thousands of training episodes to learn
the behavior from scratch. However, it requires the domain-expert
knowledge of neuroscientists that have identified the biological
networks providing these behaviors in animals. In addition, it also
requires some manual tuning of hyperparameters to replicate the
biological function.

8.9 Multi-agent Simulations
Our method scales well and allows for the simulation of multiple
amphibious creatures in a complex environment. Specifically, we
simulated seven creatures that were driven by our spiking neural net-
work controllers, as shown in Figure 13. The creatures navigated the
pond avoiding collisions with each other while moving along their
individual trajectories. The creatures would move along a straight
line from their initial positions (T = 0 s), but their trajectories were
modified to avoid collisions with other creatures or due to terrain
irregularities. Two of the creatures were initially on the ground
(index 1) or in shallow water (index 7) and utilized the crawling
pattern to move before transitioning to swimming.

9 LIMITATIONS

We proposed a bioinspired method for controlling amphibious crea-
tures with multiple DOFs that addresses some drawbacks of well-
established methods, such as the long training times and high com-
putational overhead, and also has the potential to reduce power
requirements. However, it is also challenged by its own limitations.

While our controller gives rise to three different behaviors, sepa-
rate subnetworks drive each of them. Although universal controllers
are challenging even for mature training methods, the requirement to
design a specialized subnetwork for each behavior limits the general-
ity of our approach. Beyond its task-specific design, our architecture
is also tailored to the number of DOFs in the creature’s skeleton.
While extending the spiking neural network to control additional
joints in the spine is straightforward, completely different repetitive
behaviors require manual intervention. The generalization to tasks
for different agents (e.g. biped locomotion) that require balancing
based on extensive feedback would introduce additional challenges
to our method and require further refinement.

The separation of subnetworks that give rise to the three motion
patterns introduces some discontinuity when transitioning between



Figure 13: Seven amphibious creatures driven by our spiking neural network controllers interact with each other, successfully avoiding collisions
while moving across the pond. Two creatures (1 and 7) initially crawl before transitioning to swimming when they enter the water.

behaviors. Specifically, the leg rotations are synchronized with the
alternating contractions of the spine during crawling, as discussed
in Section 8.3, providing a smooth transition to the sequentially
alternating swimming pattern. However, when transitioning to the
undulatory swimming pattern, the transition is abrupt. It would be
interesting to investigate control strategies that can allow the creature
to smoothly ease in and out between different motion patterns.

Although our method is designed to mitigate the computational
requirements of other approaches, computation can still pose as
a potential limitation. Our biologically plausible spiking neural
network inherits the compact structure of its biological counterpart.
However, the size of the neuron populations is decisive for the
elegance of the resulting motions. In the current context, we were
able to effectively control the amphibious creature with as few as
20 neurons per population, and their total number would scale up
linearly with the addition of extra joints. However, increasing the
number of neurons per population to 100 or 1000 could make the
motion patterns more smooth and intricate (see Figures 1B and C).

Finally, the number of distance sensors and their positioning on
the creature’s head limited the sensing capabilities of our network.
Using a higher number of more sophisticated sensors and integrating
them into our feedback loop could further improve the control.

10 CONCLUSION AND FUTURE WORK

We presented a bioinspired method for controlling an articulated
amphibious creature that demonstrated one crawling motion and
two swimming motions without the need for any prior training. Our
method allows for closed-loop control with feedback from sensory
input. This allowed the creature to transition between different mo-
tion patterns, avoid collisions with static and dynamic obstacles, and
also adaptively control its swimming speed. We demonstrated the
scalability of our method by showing multiple amphibious creatures
interact with each other in a complex environment.

The structure of the creature on which we tailored our method
set the limits for the emergent behaviors that we could target. For
example, with the spinal joints moving only along the horizontal
plane, we could not target three-dimensional swimming motions or
diving and resurfacing behaviors. In the future, we plan to investigate
motion control for creatures with more complex skeletons. Moreover,
we would like to explore whether and how the inclusion of more
sensors of increasing sophistication (inertial units, lidar, etc) would
allow for the generalization of our control methods to other tasks
and agents (e.g. biped locomotion).

More broadly, it would be interesting to develop a workflow for
designing controllers for low-level behaviors that would mitigate the
need for domain-expert knowledge and manual design, as mentioned
in Section 9. We envision training-free controllers for low-level be-
haviors, such as locomotion or swimming, being integrated with
trained controllers for high-level cognitive tasks for providing effi-
cient performance that matches that of biological agents.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback. I. P.
was supported in part by the Onassis Foundation scholarship. M. A.
was supported in part by the Rutgers University start-up grant and
the National Science Foundation under awards CCF-2110861 and
IIS-2132972. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

REFERENCES

[1] C. Allen and C. F. Stevens. An evaluation of causes for unreliability
of synaptic transmission. Proceedings of the National Academy of
Sciences, 91(22):10380–10383, 1994.



[2] M. Ambroise, T. Levi, S. Joucla, B. Yvert, and S. Saı̈ghi. Real-time
biomimetic central pattern generators in an fpga for hybrid experiments.
Frontiers in neuroscience, 7:215, 2013.

[3] E. Angelidis, E. Buchholz, J. Arreguit, A. Rougé, T. Stewart, A. von
Arnim, A. Knoll, and A. Ijspeert. A spiking central pattern generator for
the control of a simulated lamprey robot running on spinnaker and loihi
neuromorphic boards. Neuromorphic Computing and Engineering,
1(1):014005, 2021.

[4] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath.
Deep reinforcement learning: A brief survey. IEEE Signal Processing
Magazine, 34(6):26–38, 2017.

[5] Y. Baba, Y. Kake, M. Yoshida, and K. Uematsu. Activities of mesen-
cephalic nucleus neurons during fictive swimming of the carp cyprinus
carpio. Fisheries science, 69(3):581–588, 2003.

[6] Z. Bing, C. Lemke, L. Cheng, K. Huang, and A. Knoll. Energy-efficient
and damage-recovery slithering gait design for a snake-like robot based
on reinforcement learning and inverse reinforcement learning. Neural
Networks, 129:323–333, 2020.

[7] C. M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006.

[8] J. Braure. Participation to the construction of a salamander robot:
exploration of the morphological configuration and the locomotion
controller. Biologically Inspired Robotics Group, master thesis, pp.
1–46, 2004.

[9] T. Bujard, F. Giorgio-Serchi, and G. D. Weymouth. A resonant
squid-inspired robot unlocks biological propulsive efficiency. Science
Robotics, 6(50):eabd2971, 2021.

[10] V. Caggiano, R. Leiras, H. Goñi-Erro, D. Masini, C. Bellardita, J. Bou-
vier, V. Caldeira, G. Fisone, and O. Kiehn. Midbrain circuits that set
locomotor speed and gait selection. Nature, 553(7689):455–460, 2018.

[11] S. Coros, P. Beaudoin, and M. van de Panne. Robust task-based control
policies for physics-based characters. ACM Trans. Graph., 28(5):1–9,
2009.

[12] S. Coros, A. Karpathy, B. Jones, L. Reveret, and M. van de Panne.
Locomotion skills for simulated quadrupeds. ACM Trans. Graph.,
30(4), 2011.

[13] A. Crespi, A. Badertscher, A. Guignard, and A. J. Ijspeert. Amphibot i:
an amphibious snake-like robot. Robotics and Autonomous Systems,
50(4):163–175, 2005.

[14] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. Ieee Micro, 38(1):82–99,
2018.

[15] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, Y. Wu, and P. Zhokhov. Openai baselines.
https://github.com/openai/baselines, 2017.

[16] E. Donati, F. Corradi, C. Stefanini, and G. Indiveri. A spiking imple-
mentation of the lamprey’s central pattern generator in neuromorphic
vlsi. In 2014 IEEE Biomedical Circuits and Systems Conference (Bio-
CAS) Proceedings, pp. 512–515, 2014.

[17] X. Dong, J. Huang, Y. Yang, and S. Yan. More is less: A more compli-
cated network with less inference complexity. In IEEE Conference on
Computer Vision and Pattern Recognition, 2017.

[18] P. Faloutsos, M. van de Panne, and D. Terzopoulos. Composable
controllers for physics-based character animation. In Proceedings of
the 28th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’01, p. 251–260, 2001.

[19] J. Fang, C. Jiang, and D. Terzopoulos. Modeling and animating myr-
iapoda: a real-time kinematic/dynamic approach. In Proceedings of
the 12th ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pp. 203–212, 2013.

[20] S. Geva and J. Sitte. A cartpole experiment benchmark for trainable
controllers. IEEE Control Systems Magazine, 13(5):40–51, 1993.

[21] R. Glatt, F. L. Da Silva, and A. H. R. Costa. Towards knowledge trans-
fer in deep reinforcement learning. In 2016 5th Brazilian Conference
on Intelligent Systems (BRACIS), pp. 91–96. IEEE, 2016.

[22] S. Glatz, J. Martel, R. Kreiser, N. Qiao, and Y. Sandamirskaya. Adap-
tive motor control and learning in a spiking neural network realised on
a mixed-signal neuromorphic processor. In 2019 International Con-
ference on Robotics and Automation (ICRA), pp. 9631–9637. IEEE,

2019.
[23] B. Graf, M. Hans, and R. D. Schraft. Care-o-bot ii—development of a

next generation robotic home assistant. Autonomous robots, 16(2):193–
205, 2004.

[24] J. Gray. How fishes swim. Scientific American, 197(2):48–55, 1957.
[25] S. Grillner, Ö. Ekeberg, A. El Manira, A. Lansner, D. Parker, J. Tegner,

and P. Wallen. Intrinsic function of a neuronal network—a vertebrate
central pattern generator. Brain Research Reviews, 26(2-3):184–197,
1998.

[26] D. Gutierrez-Galan, J. P. Dominguez-Morales, F. Perez-Peña,
A. Jimenez-Fernandez, and A. Linares-Barranco. Neuropod: a real-
time neuromorphic spiking cpg applied to robotics. Neurocomputing,
381:10–19, 2020.

[27] S. Huber, R. Poranne, and S. Coros. Designing actuation systems for
animatronic figures via globally optimal discrete search. ACM Trans.
Graph., 40(4), 2021.

[28] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine.
How to train your robot with deep reinforcement learning: lessons
we have learned. The International Journal of Robotics Research,
40(4-5):698–721, 2021.

[29] A. J. Ijspeert. Central pattern generators for locomotion control in
animals and robots: a review. Neural networks, 21(4):642–653, 2008.

[30] A. J. Ijspeert, A. Crespi, D. Ryczko, and J.-M. Cabelguen. From
swimming to walking with a salamander robot driven by a spinal cord
model. science, 315(5817):1416–1420, 2007.

[31] Y. Inagaki, E. Boucher, M. Hong, L. Bouancheau, and F. Nilsson.
Cracking the snake code on the bad guys. In ACM SIGGRAPH 2022
Talks, SIGGRAPH ’22, 2022.

[32] V. Ivanov and P. Havaldar. Artistically directable walk generation. In
ACM SIGGRAPH 2022 Talks, SIGGRAPH ’22, 2022.

[33] E. M. Izhikevich. Simple model of spiking neurons. IEEE Transactions
on neural networks, 14(6):1569–1572, 2003.

[34] E. Ju, J. Won, J. Lee, B. Choi, J. Noh, and M. G. Choi. Data-driven
control of flapping flight. ACM Transactions on Graphics (TOG),
32(5):1–12, 2013.

[35] P. Kormushev, K. Nomoto, F. Dong, and K. Hirota. Time hopping tech-
nique for faster reinforcement learning in simulations. CYBERNETICS
AND INFORMATION TECHNOLOGIES, 11(3), 2011.

[36] R. Krahe and F. Gabbiani. Burst firing in sensory systems. Nature
Reviews Neuroscience, 5(1):13–23, 2004.

[37] J. Laszlo, M. van de Panne, and E. Fiume. Limit cycle control and its
application to the animation of balancing and walking. In Computer
Graphics and Interactive Techniques, pp. 155–162, 1996.

[38] Y. Lee, S. Kim, and J. Lee. Data-driven biped control. In ACM
SIGGRAPH 2010 papers, pp. 1–8. 2010.

[39] A. S. Lele, Y. Fang, J. Ting, and A. Raychowdhury. Learning to walk:
bio-mimetic hexapod locomotion via reinforcement-based spiking cen-
tral pattern generation. IEEE Journal on Emerging and Selected Topics
in Circuits and Systems, 10(4):536–545, 2020.

[40] M. A. Lewis, F. Tenore, and R. Etienne-Cummings. Cpg design using
inhibitory networks. In IEEE International Conference on Robotics
and Automation, pp. 3682–3687, 2005.

[41] C. H. Liu, Z. Chen, J. Tang, J. Xu, and C. Piao. Energy-efficient
uav control for effective and fair communication coverage: A deep
reinforcement learning approach. IEEE Journal on Selected Areas in
Communications, 36(9):2059–2070, 2018.

[42] L. Liu and J. Hodgins. Learning bastsketball dribbling skills using
trajectory optimization and deep reinforcement learning. ACM Trans-
actions on Graphics (TOG), 37(4):1–14, 2018.

[43] C. Mayr, S. Hoeppner, and S. Furber. Spinnaker 2: A 10 million core
processor system for brain simulation and machine learning. arXiv
preprint arXiv:1911.02385, 2019.

[44] M. McKenna and D. Zeltzer. Dynamic simulation of autonomous
legged locomotion. ACM SIGGRAPH Computer Graphics, 24(4):29–
38, 1990.

[45] O. Michel. Webots: Professional mobile robot simulation. Journal of
Advanced Robotics Systems, 1(1):39–42, 2004.

[46] S. Min, J. Won, S. Lee, J. Park, and J. Lee. Softcon: Simulation
and control of soft-bodied animals with biomimetic actuators. ACM
Transactions on Graphics (TOG), 38(6):1–12, 2019.

https://github.com/openai/baselines


[47] I. Naotunna, C. J. Perera, C. Sandaruwan, R. Gopura, and T. D.
Lalitharatne. Meal assistance robots: A review on current status, chal-
lenges and future directions. In IEEE/SICE International Symposium
on System Integration, pp. 211–216, 2015.

[48] F. Niroui, K. Zhang, Z. Kashino, and G. Nejat. Deep reinforcement
learning robot for search and rescue applications: Exploration in un-
known cluttered environments. IEEE Robotics and Automation Letters,
4(2):610–617, 2019.

[49] X. B. Peng, P. Abbeel, S. Levine, and M. Van de Panne. Deepmimic:
Example-guided deep reinforcement learning of physics-based charac-
ter skills. ACM Trans. on Graph., 37(4):1–14, 2018.

[50] I. Polykretis, G. Tang, and K. P. Michmizos. An astrocyte-modulated
neuromorphic central pattern generator for hexapod robot locomotion
on intel’s loihi. In International Conference on Neuromorphic Systems
2020, pp. 1–9, 2020.

[51] L. Reveret, L. Favreau, C. Depraz, and M.-P. Cani. Morphable model
of quadrupeds skeletons for animating 3d animals. In Proceedings
of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer
animation, pp. 135–142, 2005.

[52] J. Rosenblatt, S. Williams, and H. Durrant-Whyte. A behavior-based
architecture for autonomous underwater exploration. Information Sci-
ences, 145(1-2):69–87, 2002.

[53] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Prox-
imal policy optimization algorithms. arXiv preprint arXiv:1707.06347,
2017.

[54] M. J. Schuster, S. G. Brunner, K. Bussmann, S. Büttner, A. Dömel,
M. Hellerer, H. Lehner, P. Lehner, O. Porges, J. Reill, et al. Towards
autonomous planetary exploration. Journal of Intelligent & Robotic
Systems, 93(3):461–494, 2019.

[55] R. E. Shadwick and S. Gemballa. Structure, kinematics, and muscle
dynamics in undulatory swimming. Fish physiology, 23:241–280,
2005.

[56] T. Shiratori, B. Coley, R. Cham, and J. K. Hodgins. Simulating balance
recovery responses to trips based on biomechanical principles. In
Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, pp. 37–46, 2009.

[57] W. Si, S.-H. Lee, E. Sifakis, and D. Terzopoulos. Realistic biomechan-
ical simulation and control of human swimming. ACM Transactions
on Graphics (TOG), 34(1):1–15, 2014.

[58] S. Soffe and A. Roberts. Tonic and phasic synaptic input to spinal cord
motoneurons during fictive locomotion in frog embryos. Journal of
Neurophysiology, 48(6):1279–1288, 1982.

[59] S. Spano, G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, D. Giardino,
M. Matta, A. Nannarelli, and M. Re. An efficient hardware imple-
mentation of reinforcement learning: The q-learning algorithm. Ieee
Access, 7:186340–186351, 2019.

[60] R. K. Stagsted, A. Vitale, A. Renner, L. B. Larsen, A. L. Christensen,
and Y. Sandamirskaya. Event-based pid controller fully realized in
neuromorphic hardware: a one dof study. In 2020 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pp.
10939–10944. IEEE, 2020.

[61] S. Steingrube, M. Timme, F. Wörgötter, and P. Manoonpong. Self-
organized adaptation of a simple neural circuit enables complex robot
behaviour. Nature physics, 6(3):224–230, 2010.

[62] J. Tan, Y. Gu, G. Turk, and C. K. Liu. Articulated swimming creatures.
ACM Trans. Graph., 30(4), 2011.

[63] G. Tang, N. Kumar, and K. P. Michmizos. Reinforcement co-learning
of deep and spiking neural networks for energy-efficient mapless navi-
gation with neuromorphic hardware. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pp. 6090–6097, 2020.

[64] S. B. Thrun. Efficient exploration in reinforcement learning. 1992.
[65] K. Uematsu and T. Ikeda. The midbrain locomotor region and in-

duced swimming in the carp cyprinus carpio. Nippon Suisan Gakaishi,
59(5):783–788, 1993.

[66] Z. Wang, Q. Gao, and H. Zhao. Cpg-inspired locomotion control for a
snake robot basing on nonlinear oscillators. Journal of Intelligent &
Robotic Systems, 85(2):209–227, 2017.

[67] J.-c. Wu and Z. Popović. Realistic modeling of bird flight animations.
ACM Transactions on Graphics, 22(3):888–895, 2003.

[68] Z. Xie, S. Starke, H. Y. Ling, and M. van de Panne. Learning soccer

juggling skills with layer-wise mixture-of-experts. In ACM SIGGRAPH
Conference Proceedings, 2022.

[69] K. Yamazaki, R. Ueda, S. Nozawa, M. Kojima, K. Okada, K. Mat-
sumoto, M. Ishikawa, I. Shimoyama, and M. Inaba. Home-assistant
robot for an aging society. Proceedings of the IEEE, 100(8):2429–2441,
2012.

[70] B. Yang, L. Han, G. Li, W. Xu, and B. Hu. A modular amphibious
snake-like robot: design, modeling and simulation. In 2015 IEEE
international conference on robotics and biomimetics (ROBIO), pp.
1924–1929. IEEE, 2015.

[71] J. Yu, M. Tan, J. Chen, and J. Zhang. A survey on cpg-inspired control
models and system implementation. IEEE transactions on neural
networks and learning systems, 25(3):441–456, 2013.

[72] B. Zhang, Z. Mao, W. Liu, and J. Liu. Geometric reinforcement
learning for path planning of uavs. Journal of Intelligent & Robotic
Systems, 77(2):391–409, 2015.


	Introduction
	Related Work
	Bursting Neuron Model
	Population of Bursting Neurons
	Bioinspired Motion Control
	Sequential Alternation Controller for Swimming
	Chained Oscillator Controller for Swimming
	Leg Controller for Crawling
	Transition between Motion Patterns

	Sensors and Feedback Networks
	Distance Sensory Feedback Network

	Generalization to quadruped locomotion
	Simulation Results
	Single Joint Control
	Sequential Alternation Swimming Pattern
	Crawling Pattern
	Undulatory Swimming Pattern
	Timings
	Speed Adaptation
	Obstacle Avoidance
	Method generalization and comparison
	Multi-agent Simulations

	Limitations
	Conclusion and Future Work

