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ABSTRACT

As LLMs increasingly impact society, their ability to represent diverse perspec-
tives is critical. However, recent studies reveal that alignment algorithms such as
RLHF and DPO significantly reduce the diversity of LLM outputs. Not only do
aligned LLMs generate text with repetitive structure and word choice, they also
approach problems in more uniform ways, and their responses reflect a narrower
range of societal perspectives. We attribute this problem to the KL divergence
regularizer employed in preference learning algorithms. This causes the model to
systematically overweight majority opinions and sacrifice diversity in its outputs.
To address this, we propose Diverse Preference Learning, which decouples the
entropy and cross-entropy terms in the KL penalty — allowing for fine-grained
control over LLM generation diversity. From a capabilities perspective, LLMs
trained using Diverse Preference Learning attain higher accuracy on difficult re-
peated sampling tasks and produce outputs with greater semantic and lexical di-
versity. From an alignment perspective, they are capable of representing a wider
range of societal viewpoints and display improved logit calibration. Notably, Di-
verse Preference Learning resembles, but is a Pareto improvement over standard
temperature scaling.

1 INTRODUCTION

Large language models (LLMs) are increasingly impacting society, now generating a significant
portion of online content (Thompson et al., 2024). As LLMs become more integrated into how
people consume information (Bick et al., 2024) and approach tasks (Deloitte, 2024), their ability to
represent diverse perspectives is critical.

For example, consider an LLM answering the following multiple-choice question:

The best way to reduce income inequality is:

(A) Increase minimum wage
(B) Expand access to education and job training
(C) Implement universal basic income
(D) Lower taxes on the wealthy to stimulate job creation

Imagine a survey showing people’s preferences as: A (55%), B (20%), C (15%), and D (10%). How
should an LLM respond to this question? Ideally, we may prefer it to reflect the range of views in
the population. If an LLM assigns 99% probability to majority option A, it fails to represent the
diversity of perspectives. With LLMs becoming important information sources, this may reinforce
dominant narratives at the expense of minority views.

However, recent studies reveal that alignment algorithms such as RLHF and DPO significantly re-
duce the diversity of LLM outputs. This leads to mode collapse towards majority preferences, as
described in the example above (Kirk et al., 2024; Padmakumar & He, 2024; Rafailov et al., 2024;
Christiano et al., 2023). On multiple choice questions, this manifests as overconfidence and poor
calibration (Tian et al., 2023; Kadavath et al., 2022). In a generative setting, this results in repet-
itive responses, as illustrated in Figure 1. Here, the DPO model frequently describes doctors with
the same name and relationship to the patient. Lastly, in problem-solving settings, we show that
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Prompt: Please write a two sentence story about a doctor and a close 
family member

DPO
Dr. Amelia watched with a heavy heart as her elderly father, tears streaming 
down his face, admitted to no longer being able to care for himself at home. 
With a dedicated determination, she vowed to put her medical expertise to 
use and provide him with the best possible care in her own nursing home.
Dr. Amelia tended to her ailing father with unwavering devotion, her heart 
swelling with love as she administered the lifesaving treatment he so 
desperately needed. Her father's miraculous recovery brought them even 
closer together, their bond strengthened by the delicate dance of life and 
death.

DPO 
Amidst the sterile hospital bureaucracy, Dr. Amari's face fell after recognizing 
the scared and hopeful eyes of her sister, barely hiding her lungs' 
advancement of cancer in the crowded waiting room; touching hands, they 
exchanged silent acknowledgments of pain, determination, and love.
Dr. Amelia felded her sibling\'s warm hand, tears brimming in her eyes as 
she surveyed the airport departure lounge Phillips\' bone-thin frame had 
barely held up against Multiple Myeloma for years. Their embrace was an 
ignorant权dmermiment of infirm}[ como handsome hero][COL 
shootColors(new Array manuscript Josh Goldman I L…

t = 1.4

CDPO 
Dr. Alanna sat quietly in her hospital office, the sun casting golden rays 
through the window over her quiet, motionless mother. Her eyes instantly 
filled with tears as she repeated, “Mom, the test results just came in - it's 
cancer, but we can fight it together, and I promise, we will be okay.”
Dr. Amelia's heart ached as herened IT technician brother, Tom, was rushed 
into the hospital Pacific City Medical System, the very place where they'd 
grown up, with heart failure. "Please save my brother," Amelia begged 
imperatively, her voice trembling with emotion. "I'll do everything in my 
power to save him," Amelia reassured, activation the defibrillator.

α/β = 2

(a) Example stories generated by DPO, DPO with temperature scaling,
and our algorithm, DPL. We highlight Doctor name, gender, and textual
aberration features shown in the plots on the right.
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(b) Feature-level diversity and
lexical integrity statistics on 100
generated stories.

Figure 1: Diverse Preference Learning increases output diversity while preserving quality.
DPO responses are well-formed but lack diversity (e.g. same doctor name, gender, and family
relationship to patient). With temperature scaling (t = 1.4), DPO generates responses with more
diversity at the cost of fluency and token-level aberrations. In particular, temperature scaling results
in many non-word tokens. Meanwhile, DPL at global temperature α/β = 2 similarly increases
diversity, but with significantly less degradation.

diversity loss harms models’ ability to answer difficult questions across multiple samples. While
standard token-level temperature scaling is effective at correcting for micro-scale diversity loss (e.g.
for next-tokens on multiple-choice questions), it leads to rapid degradation of fluency and quality in
multi-token generations(Kadavath et al., 2022).

We attribute this diversity loss to the KL-divergence term in preference learning, which strongly
biases models towards majority preferences and sacrifices diversity in their outputs. In Section 3,
we analyze RLHF and DPO from a social choice perspective. We prove that when the preferences
of different groups conflict, the probability of generating majority-preferred outputs far exceeds the
population preference for that output. This mode collapse has consequences for the social perspec-
tives language models represent but also for lexical and logical diversity.

To address this issue, we propose splitting the KL penalty into distinct entropy and cross-entropy
terms. This enables diversity to be controlled independently from the model’s bias towards a refer-
ence policy. We call this method Diverse Preference Learning (DPL). DPL resembles but improves
upon standard temperature scaling, increasing diversity at the sequence level rather than token-by-
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token. This increases macro-scale diversity while avoiding the rapid quality degradation caused by
standard temperature scaling.

In summary, we provide the following contributions:

1. We identify KL-regularization as a cause of diversity loss in aligned language models. We
connect this to a social choice analysis, where we prove that the KL divergence term heavily
biases the model towards majority-preferred outputs.

2. We propose Diverse Preference Learning (DPL), which decouples the entropy and cross-
entropy terms in the KL penalty, allowing for independent control of generation diversity.
We prove this enables proportional representation of population preferences.

3. We demonstrate empirically that DPL improves output diversity in chat domains, best-of-
N accuracy on difficult math problems, and logit calibration on common multiple-choice
benchmarks.

Our work connects popular methods for LLM alignment with notions of diversity and representation.
DPL advances LLMs that are attuned to the diversity of preferences in society while also displaying
improved capability in a number of settings.

2 RELATED WORK

Diversity loss in aligned LLMs. Prior work has studied diversity loss caused by LLM alignment
algorithms (Kirk et al., 2024; Park et al., 2023; Xiao et al., 2024; Wang et al., 2023) as well as its im-
pact on humans who use these models (Padmakumar & He, 2024; Ding et al., 2023; Doshi & Hauser,
2024). In Appendix B, we evaluate against Wang et al. (2023), who use other f-divergences as regu-
larizers to avoid the mode-seeking property of KL divergence. Meanwhile, we analyze policies using
social choice theory and propose entropy regularization to restore population representation. Xiao
et al. (2024) also investigate entropy regularization to improve preference representation in aligned
LLMs, however they do not perform experiments in a generative setting. Lastly, Sun & van der
Schaar (2024) propose an inverse reinforcement learning-based approach to mitigate mode collapse
during alignment, but focus on learning from demonstrations rather than pairwise preferences.

Social choice theory and alignment. Several recent works explore the intersection of social choice
theory and AI alignment. Siththaranjan et al. (2024) analyze the reward learning portion of RLHF
as a case of the Borda Count voting rule. In contrast, we characterize trained policies. Munos et al.
(2024); Swamy et al. (2024), and Chakraborty et al. (2024) develop preference learning algorithms
to better handle intransitive preferences. While these approaches also lead to proportional repre-
sentation under some conditions, they require complex multi-agent reinforcement learning setups to
train, and are not studied in a linguistic diversity or problem-solving setting.

Temperature scaling. Token-level temperature scaling is a common tool for controlling diversity
of LLM outputs. Previous work applies temperature scaling to improve LLM calibration (Kadavath
et al., 2022; Tian et al., 2023; Xie et al., 2024) and best-of-N coding ability Chen et al. (2021).
In contrast, our method performs global temperature scaling over the entire sequence. Shih et al.
(2023) develop a procedure for global temperature scaling for LLMs using reinforcement learning.
Meanwhile, we develop an offline supervised learning algorithm for preference learning. Recent
work has also combined high-temperature sampling with token-level heuristics to preserve quality
while maintaining diversity ((Nguyen et al., 2024)).

Entropy bonuses. Entropy bonuses are common in reinforcement learning algorithms to encourage
exploration (Haarnoja et al., 2018; Eysenbach & Levine, 2022; Lee et al., 2024). In contrast, we use
entropy to restore diversity and proportional representation in an alignment setting. Additionally,
entropy bonuses in RL tend to be orders of magnitude smaller than what we consider.

3 THEORETICAL ANALYSIS AND METHOD

In this section, we perform a theoretical analysis of the RLHF and DPO objectives through the
lens of social choice theory. In settings where subpopulations disagree about the relative merit of
different options, we prove that standard RLHF and DPO amplify majority preferences by several
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orders of magnitude. This causes mode collapse to the majority-preferred output, which decreases
output diversity and worsens logit calibration.

In particular, we prove that this phenomenon is caused by these objectives’ KL-regularization term
performing two independent functions. First, it maximizes the log-likelihood of generations un-
der the reference policy (cross-entropy term), and second, it maximizes the diversity of the learned
policy (entropy term). We then propose Diverse Preference Learning (DPL), which decouples the
cross-entropy and entropy terms from the KL-regularization objective. This allows for distinct con-
trol over generation diversity and bias towards the reference policy.

3.1 RLHF AND DPO LEAD TO MODE COLLAPSE

First, we outline RLHF as a three-step alignment procedure

1. Preference Collection: Query humans to gather a dataset of preferences over pairs of LLM
generations

D = {y1 ≻ y′1, y2 ≻ y′2, y3 ≻ y′3, ...} (1)

2. Reward Modeling: Learn a reward model with Bradley-Terry likelihood

max
r

Ey≻y′∼D[log σ(r(y)− r(y′))] (2)

3. KL-regularized Reinforcement Learning: Train a new policy against the learned reward
with regularization against a reference policy

max
π

Ey∼π[r(y)]− βDKL(π||πref ) (3)

In the following proposition, we perform a social choice analysis of RLHF. We show that when
a population has conflicting preferences about LLM generations, RLHF vastly overrepresents the
majority preference. Appendix A contains a generalized, multi-outcome version of this proposition.
Proposition 3.1 (Two-Outcome RLHF Policy). Suppose a population of raters prefers completion
y ≻ y′ with probability p. Then RLHF (or DPO) with KL-regularization penalty β has the optimal
policy

π(y) ∝ πref (y)p
1/β .

Thus, in RLHF’s optimal policy π(y) ∝ πref (y)p
1/β , the KL regularization term β controls both

the relative weighting of the reference policy and the sharpness of the resulting distribution.

For both RLHF and DPO, empirical choices of β typically lie in the range [0.01, 0.1] (Ouyang et al.,
2022; Ahmadian et al., 2024; Rafailov et al., 2024; Tunstall et al., 2023). This results in a very peaky
distribution that exponentiates population preferences to the 10th or 100th power. For example, if
80% of the population prefer y and 20% prefer y′, then with β = 0.1, π∗ generates y with 99.9999%
probability and y′ with 0.0001% probability.

Relationship to output diversity. Since models trained on RLHF and DPO fail to represent diverse
preferences, they will also struggle to produce diverse outputs. While the social choice result in
Proposition 3.1 is most obviously relevant to a model’s representation of social perspectives, LLM
preferences encode many other aspects of diversity as well.

In many cases, preference variation is the result of random noise that we wish to preserve. For
example, if a person has no strong preference over which of two synonyms is used in a sentence, the
Bradley-Terry model (Equation 2) predicts their preference distribution will look relatively uniform.
However, the optimal RLHF policy in Proposition 3.1 would remove this diversity and choose one
of the words nearly all of the time. This perspective is supported at the large-scale by Kobak et al.
(2024), who form trendlines of word usage in the academic literature. They find that common
words used by Chat-GPT begin to occur orders of magnitude more frequently after the introduction
of academic papers — an example of failing to match the true distribution of human writing. We
demonstrate that DPL models attain higher generation diversity in Section 4.1.

Relationship to problem-solving. Diversity loss can harm capabilities as well as representation.
The RLHF policy from Proposition 3.1 may underperform on challenging problem-solving tasks
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that require multiple samples to tackle. For instance, consider a difficult geometry problem: 60% of
preferred samples in the preference dataset approach it using synthetic geometry, while the remain-
ing 40% rely on coordinate geometry. Although many geometry problems appear similar, each often
requires a specific method. In this case, when the optimal RLHF policy encounters a problem that
demands coordinate geometry, it may almost always try to use synthetic geometry. Across multiple
samples, this RLHF policy would consistently fail, whereas a more diverse algorithm, such as DPL,
would succeed. We empirically verify this intuition in Section 4.2.

Recent developments have emphasized the importance of repeated inference-time sampling —
Google DeepMind’s models recently achieved silver medal performance on the International Math-
ematical Olympiad (DeepMind, 2023), and OpenAI’s o1 model achieved state-of-the-art perfor-
mance on a number of benchmarks (OpenAI, 2023). Similarly, inference-time methods like Tree of
Thought (Yao et al., 2023) show promising initial results. DPL increases problem-solving diversity
across samples, which is critical for the success of these methods.

Relationship to calibration. Finally, we should expect the optimal policy in Proposition 3.1 to
exhibit poor logit calibration. The RLHF objective trains models to place very high probability
mass on their preferred option, resulting in high confidence on almost every generation. As a result,
RLHF and DPO models tend to have high output confidence regardless of their accuracy on the
task (Tian et al., 2023). We study this and DPL’s ability to improve logit calibration on factual
multiple-choice benchmarks in Section 4.3.

3.2 DIVERSE PREFERENCE LEARNING

Now, we introduce Diverse Preference Learning (DPL), which decouples the KL-regularization term
into separate cross-entropy and entropy terms, allowing for separate control of diversity and bias
towards the reference policy

max
π

Ey∼π(y|x)[r(x, y)] + αH(π(·|x))− βH(π(·|x), πref (·|x)) (4)

While the entropy parameter α optimizes for diversity, the cross-entropy penalty β maximizes the
average log-likelihood under the reference policy πref of generations from the learned policy. This
controls the strength of the reference model as a prior.

We also propose a DPO-style objective that bypasses the reinforcement learning step

max
π

Ey≻y′∼D[log σ(α log
π(y|x)
π(y′|x)

− β log
πref (y|x)
πref (y′|x)

)] (5)

with a derivation in Appendix A.
Proposition 3.2 (Two-Outcome DPL Policy). Suppose a population of raters prefers completion
y ≻ y′ with probability p. Then DPL with entropy bonus α and cross-entropy penalty β has the
optimal policy

π(y) ∝ πref (y)
β/αp1/α.

Proof in Appendix A. Note that standard RLHF and DPO are special cases of DPL with α = β.

By choosing an appropriate α parameter, DPL avoids raising probabilities to high powers, thereby
preventing mode collapse. Through the choice of α, DPL allows for fine-grained control over the
diversity of the learned policy. From a social choice perspective, separately controlling a policy’s
diversity allows for increased representation of minority preferences. As α → 1, π becomes less
focused on majority preferences. When α = 1, we recover proportional representation.
Corollary 3.1. Suppose a population of raters prefers completion y ≻ y′ with probability p. Then
DPL with entropy bonus α = 1 is a proper scoring rule, weighted by a reference policy prior.

In other words, DPL can produce well-calibrated policies. This means that the distribution over
outputs matches the population preference distribution they are trained on.

DPL performs global temperature scaling. The α entropy bonus in DPL can be thought of as a
sequence-level (or global) version of standard token-level temperature. Standard token-level tem-
perature scales and renormalizes the distribution at each token

π′(y|x) =
N∏
i=1

π(yi|y1:i−1)
1/t

Z(y1:i−1)
(6)
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Meanwhile, following Proposition A.2, the optimal DPL policy has the form

π′(y|x) = exp(
1

α
r(x, y))π

β/α
ref /Z (7)

= exp(
1

β
r(x, y))β/απ

β/α
ref /Z (8)

= πDPO(y|x)β/α/Z (9)

= πDPO(y|x)1/(α/β)/Z (10)

Meaning α/β resembles a global “temperature” on top of the DPO policy. Global temperature scales
the probability of entire sequences rather than individual tokens.

While standard temperature scaling is a convenient heuristic to control diversity at inference time, it
quickly degrades quality at temperatures above 1 (e.g. Figure 1). One important advantage of global
temperature scaling is that it preserves the relative probability ordering of each sequences, whereas
regular temperature scaling does not. This means that the “best” or majority-preferred sequences
always remain the most likely outputs.

Empirical choices in training DPL models. Corollary 3.2 shows that with the right hyperparam-
eters, DPL policies achieve proportional representation of preferences. However, in practice, we
must negotiate important tradeoffs between performance and diversity. We find DPL performs best
at a middle ground between standard preference learning’s α = β and proportional representation
at α = 1. At low global temperatures, the policy lacks diversity, while at high temperatures, quality
begins to degrade. Nevertheless, we note that while standard temperature scaling often leads to un-
intelligible sequences at temperatures just above one, DPL remains relatively stable at much higher
global temperatures (Figure 1).

One reason we see a performance dropoff at large α could be due to dataset noise. In these cases,
some overweighting of majority preferences can be beneficial. If preference variation is due to
random error, a lower temperature implicitly denoises the policy in a manner akin to a majority
voting rule. For example, there is a significant 37% cross-rater disagreement rate within the HH-
RLHF preference dataset we use (Bai et al., 2022). However, much of this variation is thought to be
due to random noise (Cai et al., 2024).

4 EXPERIMENTS

In this section, we consider four experimental settings for evaluating our algorithm. First, we show
that in general-purpose chat domains, DPL allows for increased diversity with less performance
degradation than DPO with token-level temperature scaling. Second, we consider an application of
high-temperature generation in best-of-N problem-solving settings. Finally, we evaluate DPL’s logit
calibration, finding reduced overconfidence and improved calibration on standard multiple-choice
benchmarks.

4.1 IMPROVING DIVERSITY-QUALITY TRADEOFFS

Currently, inference-time strategies such as token-level temperature scaling are the standard ap-
proach to sampling diverse outputs from aligned LLMs. However, at temperatures above 1, output
quality degrades rapidly. In contrast, performing global temperature scaling using DPL leads to
increased diversity without such a steep degradation in quality.

For these experiments, we LoRA finetune Mistral-7B-Instruct-v0.2 with DPO and DPL (Rafailov
et al., 2024; Hu et al., 2021). We train on the HH-RLHF preference dataset for 5,000 steps (details
in Appendix C.3) (Bai et al., 2022).

Quality metrics. We evaluate against three quality metrics. First, we use Arena-Hard, a popular
LLM chatbot benchmark with high agreement with human annotators (Tianle Li*, 2024). Arena-
Hard evaluates models on 500 queries, which mostly deal with programming, business, or software
help. We use gpt-4o-mini-2024-07-18 as a judge. Models are assessed by win-rate against gpt-4-
0314 outputs on the same responses. This metric measures general-purpose capabilities acquired by
the model during training. For our second quality metric, we train a separate reward model on the
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Figure 2: Improved diversity-quality tradeoffs with DPL. We construct diversity-quality Pareto
curves contrasting DPO with token-level temperature scaling against DPL (by modulating the en-
tropy term). We also plot the performance of DPO with min-p, top-p, and top-k sampling, which
can improve diversity-quality tradeoffs when sampling at high temperatures. We plot points that lie
below the Pareto curve in lighter shades. DPL Pareto-dominates DPO with standard temperature
scaling across all nine metrics, and it outperforms all sampling methods on six.

HH-RLHF dataset (details in Appendix C.3). We then evaluate models by the average reward of
their generations on a held-out test set of 500 inputs, for which we generate 16 responses each and
compute the average reward. This metric measures how well DPO and DPL optimize generation
quality on the dataset against the training metric. Finally, we include the cross-entropy with respect
to the reference policy, which is the second part of the alignment optimization objective. The cross-
entropy is again computed over the HH-RLHF test set. Ideally, models achieve high diversity while
maintaining high average reward on the training dataset, low reference cross-entropy, and strong
general-purpose chat capabilities.

Diversity metrics. We include three diversity metrics in Figure 2, with results against additional
metrics in Appendix B. Drawing on Kirk et al. (2024); Tevet & Berant (2021), who perform diver-
sity studies on LLM outputs, our diversity metrics roughly measure 1) general semantic diversity
(embedding distance metric), 2) logical diversity or diversity of viewpoints (logical disagreement
metric), and 3) diversity in response content and ideas (content diversity metric). For all diversity
metrics, we compute per-input diversity between 16 generated responses for each of 500 inputs
on a held-out test split of HH-RLHF. Our first metric evaluates expected cosine similarity between
embeddings of model outputs. The second and third metrics follow the design of human diversity
questionnaires in Tevet & Berant (2021). Here pools of 4 responses are presented to gpt-4o-mini and
evaluated according to their logical agreement and content diversity on a scale of 1-5. See Appendix
B for further details, example generations, and results against additional diversity metrics.

Results. In Figure 2, we construct diversity-quality Pareto curves contrasting DPO with token-level
temperature scaling against DPL with different values of α, the entropy bonus. We perform a sweep
across token-level temperature range [1, 1.5]. For min-p sampling, we choose pbase = 0.1 and
token-level temperature range [1.3, 4]. For top-p sampling, we choose p = 0.9 and temperature
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range [1.1, 1.7]. For top-k sampling, we choose k = 180 and temperature range [1.1, 2.5]. We
choose these ranges since beyond this, responses are nearly always nonsensical. We choose min-p
pbase, top-p cutoff, and top-k cutoffs according to the recommendations in Nguyen et al. (2024).
For DPL, we sweep across global temperature range [1, 11]. We run all results with β = 0.1. See
Appendix B for additional baselines and hyperparameters. Across diversity and quality metrics,
DPL with global temperature scaling is always competitive or Pareto-dominant.

We note that increasing diversity with DPL eventually results in quality loss. But importantly, unlike
token-level temperature scaling, DPL never results in predominantly nonsensical generations, even
at very high global temperatures. This means that in applications where diversity is particularly
important, it can be achieved without rendering responses useless.

In most cases, increasing both global and token-level temperature leads to significant improvements
in diversity. However, we note that the content diversity metric shows less variation. This is because
at the highest temperatures, the content diversity metric rates completions as less diverse. We label
points displaying this non-monotonic behavior in Figure 2. In contrast, the embedding distance
and logical disagreement metrics exhibit purely monotonic relationships between temperature and
diversity. We provide results with additional diversity metrics in Appendix B.

4.2 BEST-OF-N PROBLEM-SOLVING

Previous work has found that increasing token-level temperature can improve LLM performance in
a best-of-N problem-solving setting (Chen et al., 2021). Intuitively, this is because in a repeated
sampling setting, it is desirable to test a diversity of strategies and potential solutions. This aligns
with recent observations that effective use of inference-time compute can lead to greater gains than
scaling model size (Snell et al., 2024). Similar approaches have allowed LLMs to solve previously
unprecedented reasoning problems (OpenAI, 2024; DeepMind, 2023). While other alignment al-
gorithms like RLHF and DPO cause mode collapse, DPL models exhibit an increased diversity of
problem-solving strategies.

Setup and evaluation. We apply DPO and DPL to a Mistral-7B base model (HuggingFace, 2023)
trained with supervised fine-tuning on the UltraChat dataset (Ding et al., 2023). We finetune with
LoRA for one epoch, replicating the Zephyr training recipe, but with β = 0.1, which improved
performance (Tunstall et al., 2023). This approach trains on the Ultrafeedback-200k dataset, a large
preference dataset covering a broad suite of chat and reasoning tasks (Cui et al., 2024).

We evaluate against two mathematical reasoning datasets: the GSM8K grade-school math dataset
(Cobbe et al., 2021) and the more challenging MATH dataset (Hendrycks et al., 2021b). We include
few-shot chain-of-thought examples to prompt the model to perform reasoning step-by-step. We
sample 128 completions on a random split of 200 problems from each dataset. We also divide
problems into Easy, Medium, and Hard categories. For MATH, this corresponds to Level 1, Level
3, and Level 5 problems. For GSM8K, we run our evaluation on Mistral-Instruct-7B and group
problems as easy if they take 4 or fewer samples to solve, medium if they take 5-64 samples to
solve, and hard if they take more than 64 samples to solve.

Results. Figure 3 shows our results. On easy and medium questions, standard DPO performs the
best. On GSM8K and MATH hard splits, both token-level temperature scaling and DPL improve
performance over standard DPO at higher samples, with DPL performing best.

In the figure, higher temperature runs have a lower y-intercept – meaning they perform worse in a
one-shot setting. This makes sense as DPO concentrates probability mass on the option likely to be
best. However, on the hard splits, high-temperature runs cross with and surpass the DPO curve due
to better exploration of the solution space.

However, quality quickly degrades at higher token-level temperatures. For example, DPO at t = 1.2
performs poorly in nearly all evaluations. In contrast, DPL with global temperature α/β = 1.2 per-
forms relatively well in all settings. The performance gap between DPL and temperature-scaled
DPO is most pronounced in challenging, high-sample scenarios. In these cases, the level of diver-
sity required would cause token-level temperature scaling to significantly degrade output quality,
while DPL’s sequence-level approach preserves coherence. We provide an extensive analysis of the
relationship between problem difficulty, temperature, and best-of-N sampling in Appendix C.
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Figure 3: DPL improves best-of-N mathematical problem-solving on difficult instances. Left
three columns show best-of-N accuracy across difficulty levels. Right column shows performance on
hard problems relative to DPO at a given sample count. For easier problems, standard DPO (t = 1)
performs well. However, hard repeated sampling tasks benefit from diverse solution strategies.
On hard problems, both token-level temperature sampling and DPL improve best-of-N accuracy.
However, DPL achieves a better quality-diversity tradeoff, especially at high temperatures where
token-level scaling rapidly degrades quality. This makes DPL particularly effective for generating
diverse yet high-quality solutions.

4.3 LOGIT CALIBRATION

As predicted by the theory in Section 3, DPL models trained with higher global temperatures exhibit
increased logit calibration and decreased overconfidence. They do this while preserving multiple-
choice accuracy.

Setup and evaluation. We evaluate logit calibration using standard calibration metrics on multiple-
choice datasets. Our baseline is a Mistral-7B base model (HuggingFace, 2023), finetuned with
supervised fine-tuning (SFT) on the UltraChat dataset (Ding et al., 2023). We also evaluate a suite
of DPL models trained on top of this base model with the training setup from Section 4.2. For each
model, we track its Expected Calibration Error (ECE), Brier Score, and accuracy across questions.
We prompt the model to begin its response with the token corresponding to its answer choice and
use the normalized probabilities assigned to A, B, C, and D to evaluate its calibration (Appendix D).

Datasets. We evaluate against two standard multiple-choice datasets: TruthfulQA and MMLU.
TruthfulQA is a benchmark designed to assess a model’s ability to provide truthful answers in con-
texts where misconceptions are prevalent (Lin et al., 2022). MMLU tests a model’s knowledge and
reasoning across 57 diverse subjects, from philosophy to abstract algebra (Hendrycks et al., 2021a).

Results. As shown in Figure 4, models trained with higher global temperatures consistently display
lower calibration error. While models trained using an global temperature of 1 (equivalent to DPO)
are less calibrated than the base model, increasing the global temperature during training quickly
enables the DPL models to surpass even the base model’s calibration. DPL models also maintain
similar accuracy to models trained using DPO. In fact, DPL models with global temperatures slightly
greater than 1 consistently attain both higher accuracy and lower calibration error than their DPO
counterparts.
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Figure 4: DPL improves both calibration and accuracy on multiple-choice question (MCQ)
datasets. We plot model accuracy, Expected Calibration Error (ECE), and Brier Score for all models
on both TruthfulQA and MMLU. The DPO model (equivalent to DPL with global temperature 1)
displays significantly worse calibration than the base model. In contrast, DPL models consistently
exhibit improved calibration without sacrificing accuracy.

5 CONCLUSION

In this paper, we presented Diverse Preference Learning (DPL), a novel approach to mitigating the
loss of output diversity in aligned LLMs. By analyzing the role of the KL divergence regularizer
in RLHF and DPO, we identified that the coupling of entropy and cross-entropy terms leads to
overweighting of majority preferences and reduced output diversity. DPL addresses this issue by
decoupling these terms, allowing for independent control over generation diversity and bias towards
the reference policy.

Our experimental results demonstrate that LLMs trained with DPL outperform those trained with
standard methods in several key areas. From a capabilities standpoint, DPL models produce out-
puts with greater semantic and lexical variety and achieve higher accuracy on challenging tasks
that benefit from diverse sampling strategies. From an alignment perspective, these models can
proportionately represent a wider range of societal viewpoints and exhibit improved logit calibra-
tion. Importantly, DPL achieves enhanced diversity with less quality degradation, offering a Pareto
improvement over standard temperature scaling.

The introduction of DPL highlights the importance of diversity in the development and alignment of
LLMs. DPL provides the most significant benefits in scenarios that require inference-time scaling
or representation of diverse perspectives. By providing a mechanism to align LLMs without causing
mode collapse, DPL contributes to the creation of more capable, reliable, and representative lan-
guage models. It would be also interesting to explore alternative, semantically grounded diversity
metrics that could be integrated into preference learning algorithms — such as metrics constructed
from embeddings or LLM judges.
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APPENDIX

A THEORETICAL RESULTS

Proposition 3.1 (Two-Outcome RLHF Policy). Suppose a population of raters prefers completion
y ≻ y′ with probability p. Then RLHF (or DPO) with KL-regularization penalty β has the optimal
policy

π(y) ∝ πref (y)p
1/β . (11)

Proof. From Rafailov et al. (2024), RLHF and DPO share the same optimal policy. So, it suffices
to analyze the RLHF objective. First, consider the Bradley-Terry reward modeling objective

max
r

p log σ(r(y)− r(y′)) + (1− p) log σ(r(y′)− r(y)) (12)

Because log-loss is a proper scoring rule, we know that the optimal r∗ will result in distribution-
matching

p = σ(r∗(y)− r∗(y′)) =
exp(r∗(y))

exp(r∗(y)) + exp(r∗(y′))
.

Following Rafailov et al. (2024), the solution to the KL-regularized RL problem gives us optimal
policy

π(y) = πref (y) exp(r
∗(y))1/β/Z (13)

for a normalizing constant Z. We may rewrite this as

π(y) = πref (y)(
exp(r∗(y))

exp(r∗(y)) + exp(r∗(y′))
)1/β/Z ′ (14)

= πref (y)p
1/β/Z ′. (15)

for a new normalizing constant Z ′.

Proposition 3.2 (Two-Outcome DPL Policy). Suppose a population of raters prefers completion
y ≻ y′ with probability p(y ≻ y′). Then DPL with entropy bonus α and cross-entropy penalty β has
the optimal policy

π(y) ∝ πref (y)
β/αp1/α. (16)

Proof. From Rafailov et al. (2024), RLHF and DPO share the same optimal policy. So it suffices to
analyze the RLHF objective. First, consider the Bradley-Terry reward modeling objective

max
r

p log σ(r(y)− r(y′)) + (1− p) log σ(r(y′)− r(y)) (17)

Because log-loss is a proper scoring rule, we know that the optimal r∗ will result in distribution-
matching p = σ(r(y)− r(y′)) = exp(r(y))/(exp(r(y)) + exp(r(y′))).

Following Proposition A.2, we obtain optimal policy

π(y) = πref (y)
β/α exp(r(y))1/α/Z (18)

for a normalizing constant Z. We may rewrite this as

π(y) = πref (y)
β/α(

exp(r(y))

exp(r(y)) + exp(r(y′))
)1/α/Z ′ (19)

= πref (y)
β/αp1/α/Z ′. (20)

for a new normalizing constant Z ′.
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Proposition A.1 (Multi-Outcome DPL Policy). Suppose a population of raters have preferences
over completions that can be modeled by Plackett-Luce (i.e. there exists an r such that ∀y1, ..., yN
we have p(y1 ≻ y2, ..., yN ) = exp(r(y))∑N

i=1 exp(r(y))
). Then DPL with entropy bonus α and cross-entropy

penalty β has the optimal policy

π(y) ∝ πref (y)
β/αpbest(y)

1/α (21)
where pbest(y) = p(y ≻y′ ̸=y y′) is the proportion of people for whom y is the most preferred
completion.

Proof. With more than two completions, it is possible to form preference distributions that cannot
be perfectly fit by a Bradley-Terry model (e.g. intransitive preferences). So, we first assume that the
preference distribution can be represented by a Bradley-Terry model, which ensures that the reward
learning step results in distribution-matching p(y ≻ y) = exp(r(y))

exp(r(y))+exp(r(y′)) .

Following Proposition A.2, we have optimal policy π(y) = πref (y)
β/α exp(r(y))1/α/Z. We may

rewrite this as

π(y) = πref (y)
β/α(

exp(r(y))∑
y′ exp(r(y′))

)1/α/Z ′ (22)

= πref (y)
β/αpbest(y)

1/α/Z ′ (23)
for a new normalizing constant Z.

Proposition A.2 (DPL DPO Derivation). The following objective

max
π

Ey≻y′∼D[log σ(α log
π(y|x)
π(y′|x)

− β log
πref (y|x)
πref (y′|x)

)] (24)

shares the same optimal policy as the DPL RLHF objective
max
π

Ey∼π(y|x)[r(x, y)] + αH(π(·|x))− βH(πref (·|x), π(·|x)). (25)

Proof. For the RLHF objective, we begin by training a reward model using Bradley-Terry to find
r∗(x, y) = argmax

r
Ey≻y′|x∼D[log σ(r(x, y)− r(x, y′))] (26)

Next, we find the optimal policy for the DPL RLHF objective. Let us represent policies π(·|x) and
πref (·|x) and reward function r(x, ·) as vectors π,πref , r. We rewrite the DPL RLHF objective as

max
π

π⊤r − απ⊤ logπ − βπ⊤ logπref (27)

= π⊤(r − β logπref − α logπref ) (28)

We solve this constrained optimization problem using the Lagrangian:

L(π, λ) = π⊤r − απ⊤ logπ − βπ⊤ logπref + λ

(∑
i

πi − 1

)
. (29)

Taking the derivative with respect to π and setting it to zero, we obtain:
0 = ∇πL(π, λ) = r − α(1+ logπ)− β logπref + λ1. (30)

Now, solving for π, we have:
α(1+ logπ) = r − β logπref + λ1 (31)

1+ logπ =
r − β logπref + λ1

α
(32)

logπ =
r − β logπref + (λ− α)1

α
(33)

π = exp

(
r − β logπref + (λ− α)1

α

)
(34)
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which implies the optimal DPL RLHF policy for all x

π∗(y|x) = exp(
1

α
r∗(x, y))πref (y|x)β/α/Z(x) (35)

where Z(x) = exp(α− λ) is a normalizing constant such that the probabilities over outputs sum to
one.

Finally, we analyze the optimal policy for the DPO-style objective. Applying the substitution trick
from Rafailov et al. (2024), we can reparameterize reward functions in terms of their optimal policies
according to Equation A.2.

π(y|x) = exp(
1

α
r(x, y))πref (y|x)β/α/Z(x) (36)

log π(y|x) = 1

α
r(x, y) +

β

α
log πref (y|x)− logZ(x) (37)

α log π(y|x) = r(x, y) + β log πref (y|x)− α logZ(x) (38)
r(x, y) = α log π(y|x)− β log πref (y|x) + α logZ(x) (39)

Observe that

r(x, y)− r(x, y′) = α log π(y|x)− β log πref (y|x) + α logZ(x) (40)

− [α log π(y′|x)− β log πref (y
′|x) + α logZ(x)] (41)

= α log
π(y|x)
π(y′|x)

− β log
π(y|x)
π(y′|x)

(42)

since the normalizing constants cancel.

We now substitute our reward function reparameterization into the Bradley-Terry objective to get
the DPL DPO objective

π∗(y|x) = max
π

Ey≻y′|x∼D[log σ(α log
π(y|x)
π(y′|x)

− β log
πref (y|x)
πref (y′|x)

)] (43)

which satisfies the relationship π∗(y|x) = exp( 1
αr

∗(x, y))πref (y|x)β/α/Z(x).
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B DIVERSITY-QUALITY TRADEOFFS EXPERIMENT

B.1 ADDITIONAL DIVERSITY-QUALITY RESULTS AND DETAILS ON DIVERSITY METRICS
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Figure 5: Diversity-quality tradeoffs with additional diversity metrics. Here, Sentence-BERT is
an additional expected cosine distance metric in addition to “Embedding Cosine Distance” which
uses the OpenAI Embeddings API. The remaining four diversity metrics are evaluated with an LLM
judge on pools of responses. For DPL, we perform a global temperature sweep in range t ∈ [1, 11].
For all other methods, we sweep until outputs degenerate into unintelligible text. For some diversity
metrics, such as content, surface form, and perspective diversity, low-quality generations are often
rated as less diverse (see examples below). We label points off the Pareto frontier to help identify
these cases.
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Cosine distance diversity metrics. In Figure 2 and Figure 5, the Sentence-BERT Cosine Distance
and Embedding Cosine Distance measure the expected cosine distance between response embed-
ding pairs according to two different embedding models: 1) Sentence-BERT-Large (Reimers &
Gurevych, 2019) and OpenAI’s “text-embedding-3-small” model. For each of 500 held-out prompts
from HH-RLHF, we sample N = 16 inputs and calculate the mean cosine distance between all
pairs. Concretely, this is expressed in the formula

Ey1,...,yN∼π(y|x),x∼D

 1

N2

∑
i,j

1− ϕ(yi)
⊤ϕ(yj)

||ϕ(yi)|| · ||ϕ(yj)||

 (44)

where ϕ(·) is the embedding map acting on response y.

LLM-based diversity metrics. For the remaining diversity metrics, which we split the 16 responses
into smaller pools and use “gpt-4o-mini-mini-2024-07-18” as a judge for response diversity. Here
we provide the list of diversity evaluation prompts used for metrics in Figures 2 and 5.

Logical Agreement Evaluation Prompt

You will be presented with 2 responses to the same prompt. Your task is to analyze their
logical agreement on a scale of 1-5, where 1 means completely divergent approaches or
ideas and 5 means nearly identical logical frameworks or conclusions.

Prompt: {input}
Responses: {response list}
Please provide a numerical rating (1-5) of their logical agreement. Output your response
as Rating: X, where X is your rating. Afterwards, on the next line, please provide a brief
explanation of your rating.

For the logical agreement prompt, we then subtract the resulting score from 5 to turn it into a logical
disagreement metric.

Content Diversity Evaluation Prompt

You will be presented with 4 responses to the same prompt. Your task is to analyze their
content diversity on a scale of 1-5, where 1 means nearly identical content or conclusions
and 5 means completely divergent content or ideas.

Prompt: {input}
Responses: {response list}
How diverse are the contents of the proposed responses? Please provide a numerical rating
(1-5). Output your response as Rating: X, where X is your rating. Afterwards, on the next
line, please provide a brief explanation of your rating.

Surface Form Diversity Prompt

You will be presented with 4 responses to the same prompt. Your task is to analyze their
surface form diversity on a scale of 1-5, where 1 means nearly identical textual organization
or structure, and 5 means completely varied textual arrangements or styles.

Prompt: {input}
Responses: {response list}
How diverse are the surface forms of the proposed responses? Please provide a numerical
rating (1-5). Output your response as Rating: X, where X is your rating. Afterwards, on the
next line, please provide a brief explanation of your rating.
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Perspective Diversity Prompt

You will be presented with 4 responses to the same prompt. Your task is to analyze their per-
spective diversity on a scale of 1-5, where 1 means nearly identical viewpoints or approaches
and 5 means completely varied perspectives or approaches to the topic.

Prompt: {input}
Responses: {response list}
How diverse are the perspectives of the proposed responses? Please provide a numerical
rating (1-5). Output your response as Rating: X, where X is your rating. Afterwards, on the
next line, please provide a brief explanation of your rating.

B.2 EXAMPLE GENERATIONS

B.3 TRAINING SETUP

DPO and DPL Finetuning and Inference. For both DPO and DPL, we LoRA-finetune Mistral-
7B-Instruct-v0.2 on HH-RLHF for 5,000 steps with batch size 8. We use LoRA rank rLoRA = 16,
regularization αLoRA = 16, and dropout pLoRA = 0.05. We use learning rate 1e− 5, 150 warmup
steps, and max conversation length of 512 tokens.

For all runs, we use regularization parameter β = 0.1. For DPO with token-level temperature
scaling, we sample with temperatures t = 1, 1.1, 1.2, 1.3, 1.4, and 1.5. When combined with min-
p sampling, we choose pbase = 0.1 and temperatures t = 1.3, 1.5, 2, 2.5, 3, 3.5, and 4. When
combined with top-p sampling, we choose p = 0.9 and temperatures t = 1.1, 1.2, 1.3, 1.4, 1.5,
1.6, and 1.7. When combined with top-k sampling, we choose k = 180 and temperatures t = 1.1,
1.2, 1.3, 1.5, 2, and 2.5. We stop at these temperatures for token-level methods because beyond this,
responses are nearly always incoherent strings of tokens. For DPL, we train with global temperatures
α/β = 1, 1.1, 1.2, 1.3, 1.5, 2, 4, and 11.

Reward Model Training and Inference. As one of our quality metrics, we measure the average
reward obtained by model completions against a separately trained reward function. To obtain this
reward model, we LoRA-finetune Mistral-7B-Instruct-v0.2 with a reward head using the Bradley-
Terry loss on the HH-RLHF dataset.

At inference time, we sample 500 prompts from a held-out validation split of HH-RLHF that neither
the language models nor the reward model were trained on. We use this to calculate the average
reward achieved by each model’s completions.
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C BEST-OF-N PROBLEM-SOLVING EXPERIMENT

C.1 RELATIONSHIP BETWEEN PROBLEM DIFFICULTY AND OPTIMAL TEMPERATURE

In this section, we study the following questions

1. Why do harder problems generally benefit from higher temperatures? And why does this
benefit disappear once the temperature becomes too large?

2. Why are high temperatures especially helpful in high best-of-N sample settings?
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Figure 6: Optimal DPL temperature as a function of problem difficulty. On the x-axis, we mea-
sure problem difficulty as the expected number of samples needed for Mistral-Instruct-7B to achieve
a correct answer. On the y-axis, we indicate which DPL temperature led to the best success rate on
that problem. We then fit a polynomial trendline to the data, which finds a positive relationship
between problem difficulty and higher optimal temperatures. Dots are plotted with transparency,
meaning darker dots correspond to multiple problems.

Why harder problems benefit from higher temperatures, up to a point. We first consider the
role of temperature in the single-sample (not best-of-N setting). As displayed in Figure 6, every
problem has an optimal temperature that maximizes the probability of a successful solution. In-
creasing temperature flattens the distribution while decreasing it sharpens the distribution. Difficult
problems are those where the trained model has a low probability of generating a correct solution.

During inference-time scaling procedures, our goal is to construct a sampling distribution that mini-
mizes the number of samples needed to obtain a correct solution. For best-of-N, we receive feedback
only upon generation completion, where samples must pass a final scoring function. This is akin to
rejection sampling in statistics, where proposal distributions are chosen to minimize the number of
samples required to approximate a target distribution.

In the rejection sampling literature, when little is known about the target distribution, it is well-
known that flatter or high-entropy proposal distributions are best (Robert, 1999). Intuitively, highly
concentrated proposal distributions that narrowly miss the target will achieve extremely low success
rates. In contrast, flatter proposal distributions whose modes narrowly miss the target will still
achieve reasonable success rates. The optimal proposal distribution scales in flatness inversely with
one’s confidence in its overlap with the target distribution (Geweke, 1989). However, an overly flat
distribution is also inefficient, underestimating the true overlap with the target distribution.

This intuition is confirmed in Figure 6, where low-success problems are benefitted by DPL tem-
peratures higher than 1, which produce flatter sampling distributions. However, when temperatures
become too large, performance again degrades. Additional evidence can be found in the y-intercepts
of Figure 3 and best-of-1 performance of Tables 1- 3. On easy and medium problems, DPO has a
substantially higher single-sample success rate than temperature-scaled methods. However, on hard
problems, this gap shrinks. Table 1 shows that on GSM8K and MATH hard splits, DPL is within
0.2% and 0.08% of DPL’s best-of-1 success rate. This supports the finding that harder problems
have higher optimal temperatures.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Single-sample success probability p

0.0

0.2

0.4

0.6

0.8

1.0

Be
st

-o
f-N

 su
cc

es
s p

ro
ba

bi
lit

y 
p B

oN

pBoN vs p

N=1
N=16
N=128

Figure 7: Best-of-N success rate vs single-sample success rate as a function of N . As N in-
creases, the best-of-N success curve approaches a step function. Hard problems with low single-
sample success rates benefit substantially from small increases in p. Meanwhile, the best-of-N suc-
cess rate of problems past the “elbow” is already saturated, meaning that small decreases in p have
little effect on pBoN . The rapidly decreasing gradient of this curve favors high-variance strategies
such as high-temperature sampling.

Why high temperatures are especially helpful in high sample best-of-N settings. For a given
problem x, let use define the acceptable set A as the set of completions y that are correct. We can
then define the probability of success for an LLM as p = π(A|x) =

∑
y∈A π(y|x).

The best-of-N success rate can then be modeled by the CDF of a geometric distribution

pBoN = 1− (1− p)N . (45)

Note that pBoN is monotonic in single-sample success rate p. This means that for a given problem,
the optimal temperature which maximizes single-sample success rate also maximizes best-of-N suc-
cess rate. Thus the number of samples N does not influence the optimal sampling temperature for a
problem.

Why, then, in Figure 3 do we observe high temperatures being differentially helpful at high N?
While optimal temperatures do not change, the relative gains and losses from increasing temperature
become asymmetrical.

Rather than single problem performance, we are interested in the aggregate success rate across a set
of problems with different difficulty levels

Ex,A∼D[pBoN ] = Ex,A∼D[1− (1− π(A|x))N ]. (46)

As shown in Figure 7, hard problems benefit more from small increases in p than easier problems
suffer from an equivalent decrease in p. In aggregate, this causes the optimal temperature for the set
of problems to trend upwards as N increases. Intuitively, at high N , we can afford to sacrifice some
performance on easy problems (which will still succeed) to boost performance on hard problems
(which benefit more from more diversity).

This behavior is a consequence of the concavity of the best-of-N success rate function f(p) = 1 −
(1−p)N . By Jensen’s inequality, increasing the variance of p (e.g., via higher temperatures) can raise
the aggregate success rate across problems, even though the single-problem optimal temperature
remains unchanged (Boyd & Vandenberghe, 2004). This results in the “crossing” behavior seen in
Figures 8 and 9. As N increases, f(p) becomes more aggressively concave, and higher temperatures
begin to outperform standard DPO.
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Figure 8: Normalized best-of-N accuracy on difficult problem-solving instances. We show best-
of-N accuracy of each method as a fraction of the accuracy achieved by standard DPO. On these
problems, higher temperature runs have a lower single-sample accuracy than standard DPO. How-
ever, some of them cross and eventually surpass DPO for large N . However, with too high of a
token-level temperature, quality degradation is so significant that the curve never approaches stan-
dard DPO performance.
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Figure 9: Sample efficiency versus DPO. For each number of standard DPO samples, we show
how many samples are required for other methods to achieve the same best-of-N accuracy. At low
samples, DPO is the most sample efficient method. However, at higher sampling budgets, DPL
achieves the same accuracy as DPO with 25-35% computational savings. DPO t = 1.2 was not
included in this graph as it lies far below all other methods.

One intuitive mechanism that drives this diversity-favoring non-convexity is the way that best-of-N
treats duplicate solutions. As shown in Figure 10, redundant samples are a major source of sample
inefficiency for DPO at large N. In the single sample case, putting high mass on likely completions
increases the success probability. However, in the best-of-N setting, it is optimal to never sample
the same solution twice, as it does not increase the probability of success. One advantage of high-
temperature sampling in the best-of-N setting is simply that it produces fewer redundant samples.

Conclusion. This analysis provides theoretical grounding for our empirical finding that higher DPL
temperatures benefit difficult problems in high-sample settings. It also suggests guidelines for prac-
titioners: when compute allows for many samples, appropriately chosen high temperature sampling
can be used to tackle the hardest problems in a dataset without significantly impacting overall per-
formance.
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Figure 10: Solution diversity and sampling efficiency. For best-of-N sampling, repetition in final
solutions is a major cause of sample inefficiency. At 128 samples, 30-40% of solutions are redundant
and have already been sampled before. While convergent chain-of-thought reasoning can be helpful
in settings such as majority voting, it is undesirable when a verifier is present. Both token-level
temperature scaling and DPL increase the number of unique solutions sampled. For example, DPL
samples 17% and 10% more unique solutions than DPO on GSM8K and MATH, respectively. This
is equivalent to a 12% and 22% reduction in redundant solutions.

C.2 BEST-OF-N ACCURACY TABLES

We also provide results from Figure 3 in tabular form for an easier quantitative performance com-
parison.

Best-of-N DPO t=1 DPO t=1.1 DPO t=1.2 DPL α/β=1.1 DPL α/β=1.2
GSM8K

1 1.43% 1.24% 0.59% 1.24% 0.91%
4 5.35% 4.75% 2.25% 4.74% 3.53%

16 16.92% 16.37% 7.62% 16.30% 12.50%
64 37.98% 41.11% 17.77% 42.43% 32.91%

128 48.75% 54.07% 21.66% 58.34% 43.07%

MATH
1 0.86% 0.85% 0.35% 0.78% 0.85%
4 3.22% 3.19% 1.37% 2.97% 3.20%

16 10.18% 10.44% 5.03% 9.89% 10.50%
64 22.12% 24.02% 14.81% 23.11% 24.51%

128 27.99% 30.62% 21.31% 29.16% 31.91%

Table 1: Best-of-N accuracy on GSM8K and MATH dataset hard splits. We provide Figure
3 results in tabular form for easier quantitative analysis. 64 samples and above on GSM8K and
16 samples and above on MATH, DPL outperforms standard and temperature-scaled DPO. At 128
samples on GSM8K, DPL achieves a 10% higher accuracy than standard DPO and a 4% higher
accuracy than temperature-scaled DPO. At 128 samples on MATH, DPL achieves a 4% higher
accuracy than DPO and 1% higher accuracy than temperature-scaled DPO. We expect these gaps
to widen with more compute-efficient inference-time scaling methods than naive best-of-N.
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Best-of-N DPO t=1 DPO t=1.1 DPO t=1.2 DPL α/β=1.1 DPL α/β=1.2
GSM8K

1 8.95% 6.06% 3.62% 5.79% 5.22%
4 26.81% 19.70% 12.39% 19.01% 17.39%

16 55.63% 46.67% 31.77% 46.05% 42.45%
64 79.21% 72.74% 55.10% 73.40% 67.33%

128 85.30% 80.17% 63.93% 81.14% 74.40%

MATH
1 5.40% 3.67% 2.16% 3.43% 3.56%
4 15.57% 11.23% 7.59% 11.09% 11.61%

16 36.15% 26.74% 20.71% 27.62% 29.57%
64 61.49% 50.92% 39.31% 52.11% 56.41%

128 69.07% 62.66% 46.88% 62.01% 66.96%

Table 2: Best-of-N accuracy on GSM8K and MATH dataset medium splits. Standard DPO
achieves the best accuracy in all settings here, although DPL begins to approach DPO at high sample
counts, especially on the harder MATH dataset.

Best-of-N DPO t=1 DPO t=1.1 DPO t=1.2 DPL α/β=1.1 DPL α/β=1.2
GSM8K

1 34.18% 26.40% 15.58% 24.33% 21.86%
4 68.94% 58.70% 41.93% 56.60% 52.70%

16 91.39% 85.67% 72.19% 84.75% 82.04%
64 97.97% 97.00% 89.48% 96.51% 95.62%

128 98.80% 98.51% 92.86% 98.38% 98.22%

MATH
1 22.51% 16.99% 14.01% 18.02% 15.09%
4 46.52% 40.07% 34.89% 42.09% 38.32%

16 72.03% 65.00% 60.18% 66.99% 63.60%
64 89.72% 87.51% 83.32% 88.49% 81.86%

128 92.77% 94.49% 91.84% 92.63% 86.05%

Table 3: Best-of-N accuracy on GSM8K and MATH dataset easy splits. Standard DPO is by far
the best performer prior to saturation (accuracies near 100). At 128 samples on MATH however,
temperature scaled DPO outperforms standard DPO by 2% and DPL matches standard DPO.

C.3 TRAINING AND INFERENCE SETUP

DPO and DPL Finetuning and Inference. For both DPO and DPL, our base model is a Mistral-7B
base model that has been full-parameter supervised fine-tuned on the UltraChat dataset. We then
LoRA-finetune this model on Ultrafeedback-200k for one epoch. We use batch size 4, LoRA rank
rLoRA = 64, regularization αLoRA = 64, and dropout pLoRA = 0.05. We use learning rate 1e− 5,
150 warmup steps, and max conversation length of 1024 tokens. This replicates the Zephyr training
recipe, except that we use β = 0.1 instead of β = 0.01, which substantially improved problem-
solving performance. While more computationally expensive than the HH-RLHF training runs, we
found it necessary to use a stronger fine-tuning recipe like Zephyr in order to get meaningful results
in difficult mathematical problem-solving settings.

At inference-time, we use standard few-shot prompts to encourage chain-of-thought reasoning.
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GSM8K few-shot prompt

As an expert problem solver solve step by step the following mathematical questions. Place
your answer after the “####” symbol.

Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After
they are done, there will be 21 trees. How many trees did the grove workers plant today?
A: We start with 15 trees. Later we have 21 trees. The difference must be the number of
trees they planted. So, they must have planted 21 - 15 = 6 trees. The answer is 6. #### 6

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the
parking lot?
A: There are 3 cars in the parking lot already. 2 more arrive. Now there are 3 + 2 = 5 cars.
The answer is 5. #### 5

Q: {question}
A:

MATH few-shot prompt

Given a mathematics problem, determine the answer. Simplify your answer as much as
possible. Output your answer in the format Answer: $\boxed{answer}$

Problem: Let $f(x)=xˆ3+3$ and $g(x) = 2xˆ2 + 2x +1$. What is $g(f(-2))$?
Answer: We note that $f(-2)=(-2)ˆ3+3=-5$, so $g(f(-2))=g(-5)=2\cdot(-5)ˆ2+2\cdot(-
5)+1=41$ So, $\boxed{41}$
###
Problem: What is the greatest possible value of $x+y$ such that $xˆ2 + yˆ2 =90$ and
$xy=27$?
Answer: We have $(x+y)ˆ2=xˆ2+yˆ2+2xy=90+2\cdot 27=144$, so $x+y=12$ or $x+y=-
12$. We want the larger value $x+y=\boxed{12}$
###
Problem: {problem}
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D LOGIT CALIBRATION EXPERIMENT

Multiple Choice Prompt

Please answer the following multiple choice question. Start your answer with the capital
letter corresponding to your choice:

{question}

Answer choices:
A. {option a}
B. {option b}
C. {option c}
D. {option d}

Your answer:
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