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ABSTRACT

Off-policy evaluation (OPE) is crucial for assessing a target policy’s impact offline
before its deployment. However, achieving accurate OPE in large state spaces
remains challenging. This paper studies state abstractions – originally designed
for policy learning – in the context of OPE. Our contributions are three-fold: (i)
We define a set of irrelevance conditions central to learning state abstractions for
OPE, and derive a backward-model-irrelevance condition for achieving irrelevance
in (marginalized) importance sampling ratios by constructing a time-reversed
Markov decision process (MDP). (ii) We propose a novel iterative procedure that
sequentially projects the original state space into a smaller space, resulting in
a deeply-abstracted state, which substantially simplifies the sample complexity
of OPE arising from high cardinality. (iii) We prove the Fisher consistencies of
various OPE estimators when applied to our proposed abstract state spaces.

1 INTRODUCTION

Motivation. Off-policy evaluation (OPE) serves as a crucial tool for assessing the impact of a
newly developed policy using a pre-collected historical data before its deployment in high-stake
applications, such as healthcare (Murphy et al., 2001), recommendation systems (Chapelle & Li,
2011), education (Mandel et al., 2014), dialog systems (Jiang et al., 2021) and robotics (Levine et al.,
2020). A fundamental challenge in OPE is its “off-policy” nature, wherein the target policy to be
evaluated differs from the behavior policy that generates the offline data. This distributional shift is
particularly pronounced in environments with large state spaces of high cardinality. Theoretically, the
error bounds for estimating the target policy’s Q-function and value decrease rapidly as the state space
dimension increases (Hao et al., 2021a; Chen & Qi, 2022). Empirically, large state space significantly
challenges the performance of state-of-the-art OPE algorithms (Fu et al., 2020; Voloshin et al., 2021).

Although different policies induce different trajectories in the large ground state space, they can pro-
duce similar paths when restricted to relevant, lower-dimensional state spaces (Pavse & Hanna, 2023).
Consequently, applying OPE to these abstract spaces can significantly mitigate the distributional shift
between target and behavior policies, enhancing the accuracy in predicting the target policy’s value.
This makes state abstraction, designed to reduce state space cardinality, particularly appealing for
OPE. However, despite the extensive literature on studying state abstractions for policy learning (see
Section 2 for details), it has been hardly explored in the context of OPE.

Contributions. This paper aims to systematically investigate state abstractions for OPE to address
the aforementioned gap. Our main contributions include:
1. Introduction of a set of irrelevance conditions for OPE, and derivation of a backward-model-

irrelevance condition for state abstractions to achieve irrelevance in marginalized importance
sampling ratios by constructing a time-reversed Markov decision process (MDP, Puterman, 2014)
that swaps the future and past.

2. Development of a novel iterative procedure to sequentially compress the state space. Specifically,
within each iteration, our algorithm consistently produces a state space that is either smaller
in size or remains the same. Through its iterative nature, the proposed approach produces a
deeply-abstracted state space, which substantially reduces the sample complexity of OPE.

3. Validations of various OPE methods when applied to the proposed abstract state spaces.

Organization. The rest of the paper is structured as follows. Section 2 is dedicated to the literature
review of related works. MDP-related notions and OPE methodologies relevant to our proposal are
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recalled in Section 3. Our proposed state abstractions for OPE are presented in Section 4. Section 5
conducts numerical experiments to demonstrate the efficiency of our approach.

2 RELATED WORK

Our proposal is closely related to OPE and state abstraction. Additional related work on confounder
selection in causal inference is relegated to Appendix A.

Off-policy evaluation. OPE aims to estimate the expected return of a given target policy, utilizing
historical data generated by a possibly different behavior policy (Dudík et al., 2014; Uehara et al.,
2022). The majority of methods in the literature can be classified into the following three categories:

1. Value-based methods that estimate the target policy’s return by learning either a value function
(Sutton et al., 2008; Luckett et al., 2019; Li et al., 2024) or a Q-function (Le et al., 2019; Feng
et al., 2020; Hao et al., 2021b; Liao et al., 2021; Chen & Qi, 2022; Shi et al., 2022) from the data.

2. Importance sampling (IS) methods that adjust the observed rewards using the IS ratio, i.e., the
ratio of the target policy over the behavior policy, to address their distributional shift. There are
two major types: sequential IS (SIS, Precup, 2000; Thomas et al., 2015; Hanna et al., 2019; Hu &
Wager, 2023) which employs a cumulative IS ratio, and marginalized IS (MIS, Liu et al., 2018;
Nachum et al., 2019; Xie et al., 2019; Dai et al., 2020; Yin & Wang, 2020; Wang et al., 2023)
which uses the MIS ratio to mitigate the high variance of the SIS estimator.

3. Doubly robust methods or their variants that employ both the IS ratio and the value/reward
function to enhance the robustness of OPE (Zhang et al., 2013; Jiang & Li, 2016; Thomas &
Brunskill, 2016; Farajtabar et al., 2018; Kallus & Uehara, 2020; Tang et al., 2020; Uehara et al.,
2020; Shi et al., 2021; Kallus & Uehara, 2022; Liao et al., 2022; Xie et al., 2023).

However, none of the aforementioned works studied state abstraction, which is our primary focus.

State abstraction. State abstraction aims to obtain a parsimonious state representation to simplify the
sample complexity of reinforcement learning (RL), while ensuring that the optimal policy restricted
to the abstract state space attains comparable values as in the original, ground state space. There
is an extensive literature on the theoretical and methodological development of state abstraction,
particularly bisimulation — a type of abstractions that preserve the Markov property in the abstracted
state (Singh et al., 1994; Dean & Givan, 1997; Givan et al., 2003; Ferns et al., 2004; Ravindran,
2004; Jong & Stone, 2005; Li et al., 2006; Ferns et al., 2011; Abel et al., 2016; Wang et al., 2017;
Castro, 2020; Allen et al., 2021; Abel, 2022). In particular, Li et al. (2006) analyzed five irrelevance
conditions for optimal policy learning. Unlike the aforementioned works that focus on policy learning,
we introduce irrelevance conditions for OPE, and propose abstractions that satisfy these irrelevant
properties. Meanwhile, the proposed abstraction for achieving irrelevance for the MIS ratio resembles
the Markov state abstraction developed by Allen et al. (2021) in the context of policy learning, while
relaxing their requirement for the behavior policy to be Markovian.

More recently, Pavse & Hanna (2023) made a pioneering attempt to study state abstraction for OPE,
proving its benefits in enhancing OPE accuracy. However, they primarily focused on MIS estimators.
In contrast, our theoretical analysis applies to a broader range of OPE estimators, covering all three
aforementioned categories. Moreover, their abstraction did not achieve MIS-ratio irrelevance. Nor
did they implement the iterative procedure.

Lastly, state abstraction is also related to variable selection (Kolter & Ng, 2009; Geist & Scherrer,
2011; Geist et al., 2012; Nguyen et al., 2013; Fan et al., 2016; Guo & Brunskill, 2017; Shi et al., 2018;
Zhang & Zhang, 2018; Qi et al., 2020; Hao et al., 2021a; Ma et al., 2023) as well as representation
learning for both policy learning (see e.g., Gelada et al., 2019; Zhang et al., 2020; Uehara et al.,
2021b) and OPE (see e.g., Wang et al., 2021; Chang et al., 2022; Ni et al., 2023; Pavse & Hanna,
2024).

3 PRELIMINARIES

In this section, we first introduce some key concepts relevant to OPE in RL, such as MDP, target and
behavior policies, value functions, IS ratios (Section 3.1). We next review state abstractions for opti-
mal policy learning (Section 3.2), alongside with four prominent OPE methodologies (Section 3.3).
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3.1 DATA GENERATING PROCESS, POLICY, VALUE AND IS RATIO

Data. Assume the offline dataset D comprises multiple trajectories, each containing a se-
quence of state-action-reward triplets (St, At, Rt)t≥1 following a finite MDP, denoted by M =
⟨S,A, T ,R, ρ0, γ⟩. Here, S and A are the discrete state and action spaces, both with finite cardinali-
ties, T andR are the state transition and reward functions, ρ0 denotes the initial state distribution,
and γ ∈ (0, 1) is the discount factor. The data is generated as follows:

1. At the initial time, the state S1 is generated according to ρ0;
2. Subsequently, at each time t, the agent finds the environment in a specific state St ∈ S and selects

an action At ∈ A according to a behavior policy b such that P(At = a|St) = b(a|St);
3. The environment delivers an immediate reward Rt with an expected value of R(At, St), and

transits into the next state St+1
d∼ T (• | At, St) according to the transition function T .

Notice that both the reward and transition functions rely only on the current state-action pair (St, At),
independent of the past data history. This ensures that the data satisfies the Markov assumption.

Policy and value. Let π denote a given target policy we wish to evaluate. We use Eπ and Pπ to
denote the expectation and probability assuming the actions are chosen according to π at each time.
The regular E and P without superscript are taken with respect to the behavior policy b. Our objective
lies in estimating the expected cumulative reward under π, denoted by J(π) = Eπ

[∑+∞
t=1 γ

t−1Rt

]
using the offline dataset generated under a different policy b. Additionally, denote V π and Qπ as the
state value function and state-action value function (better known as the Q-function), namely,

V π(s) = Eπ
[+∞∑

t=1

γt−1Rt|S1 = s
]

and Qπ(a, s) = Eπ
[+∞∑

t=1

γt−1Rt|S1 = s,A1 = a
]
. (1)

These functions are pivotal in developing value-based estimators, as described in Method 1 of
Section 3.3. Moreover, we use π∗ to denote the optimal policy that maximizes J(π), i.e., π∗ ∈
argmaxπ J(π), and write the optimal Q- and value functions Qπ∗

, V π∗
as Q∗, V ∗ for brevity.

IS ratio. We also introduce the IS ratio ρπ(a, s) = π(a|s)/b(a|s), which quantifies the discrepancy
between the target policy π and the behavior policy b. Furthermore, define the MIS ratio

wπ(a, s) = (1− γ)
∑
t≥1

γt−1Pπ(St = s,At = a)

lim
T→∞

P(ST = s,AT = a)
. (2)

Here, the numerator represents the discounted probability of visiting a given state-action pair under
the target policy π, a crucial component in policy-based learning for estimating π∗ (Sutton et al.,
1999; Schulman et al., 2015). The denominator corresponds to the limiting state-action distribution
under the behavior policy. These ratios are fundamental in constructing IS estimators, as detailed in
Methods 2 and 3 of Section 3.3.

3.2 STATE ABSTRACTIONS FOR POLICY LEARNING

LetM = ⟨S,A, T ,R, ρ0, γ⟩ be the ground MDP. A state abstraction ϕ is a mapping from the state
space S to certain abstract state space X = {ϕ(s) : s ∈ S}. Below, we review some commonly
studied definitions of state abstraction designed for learning the optimal policy π∗; see Jiang (2018).

Definition 1 (π∗-irrelevance) ϕ is π∗-irrelevant if there exists an optimal policy π∗, such that for
any s(1), s(2) ∈ S whenever ϕ(s(1)) = ϕ(s(2)), we have π∗(a|s(1)) = π∗(a|s(2)) for any a ∈ A.

Definition 2 (Q∗-irrelevance) ϕ is Q∗-irrelevant if for any s(1), s(2) ∈ S whenever ϕ(s(1)) =
ϕ(s(2)), the optimal Q-function satisfies Q∗(a, s(1)) = Q∗(a, s(2)) for any a ∈ A.

Definitions 1 and 2 are easy to understand, requiring the optimal policy/Q-function to depend on
a state s only through its abstraction ϕ(s). In practical terms, these definitions encourage the
transformation of raw MDP data into a new sequence of state-action-reward triplets (ϕ(S), A,R) for
policy learning. However, the transformed data may not necessarily satisfy the Markov assumption.
This leads us to define the following model-irrelevance, which aims to preserve the MDP structure
while ensuring π∗- and Q∗-irrelevance.
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Figure 1: Illustrations of (a) model-irrelevance and (b) backward-model-irrelevance. St is decom-
posed into the union of ϕ(St) (relevant features) and ψ(St) (irrelevant features).

Definition 3 (Model-irrelevance) ϕ is model-irrelevant if for any s(1), s(2) ∈ S whenever ϕ(s(1)) =
ϕ(s(2)), the following holds for any a ∈ A, s′ ∈ S and x′ ∈ X :

R(a, s(1)) = R(a, s(2)) and
∑

s′∈ϕ−1(x′)

T (s′|a, s(1)) =
∑

s′∈ϕ−1(x′)

T (s′|a, s(2)). (3)

The first condition in equation 3 corresponds to “reward-irrelevance” whereas the second condition
represents “transition-irrelevance”. Consequently, Definition 3 defines a “model-based” abstraction,
in contrast to “model-free” abstractions considered in Definitions 1 and 2. Notice that the term∑

s′∈ϕ−1(x′) T (s′|a, s) – appearing in the second equation of equation 3 – represents the probability
of transitioning to ϕ(S′) = x′ in the abstract state space. Thus, the second condition essentially
requires the abstract next state ϕ(S′) to be conditionally independent of S given A and ϕ(S).
Assuming S can be decomposed into the union of ϕ(S) and ψ(S), which represent relevant features
and irrelevant features, respectively. This condition implies that the evolution of those relevant
features depends solely on themselves, independent of those irrelevant features. This ensures that the
transformed data triplets (ϕ(S), A,R) remains an MDP. Meanwhile, the evolution of those irrelevant
features may still depend on the relevant features; see Figure 1(a) for an illustration.

It is also known that model-irrelevance implies Q∗-irrelevance, which in turn implies π∗-irrelevance;
see e.g., Theorem 2 in Li et al. (2006). Given that the transformed data remains an MDP under
model-irrelevance, one can apply existing state-of-the-art RL algorithms to the abstract state space
instead of the original ground space, leading to more effective learning of the optimal policy.

3.3 OPE METHODOLOGIES

We focus on four OPE methods, covering the three families of estimators introduced in Section 2.
Each method employs a specific formula to identify J(π), which we detail below. The first method
is a popular value-based approach – the Q-function-based method. The second and third methods
are the two major IS estimators: SIS and MIS. The fourth method is a semi-parametrically efficient
doubly robust method, double RL (DRL), known for achieving the smallest possible MSE among a
broad class of OPE estimators (Kallus & Uehara, 2020; 2022; Liao et al., 2022).

Method 1 (Q-function-based method). For a given Q-function Q, define f1(Q) as the estimating
function

∑
a∈A π(a|S1)Q(a, S1) with S1 being the initial state. By equation 1 and the definition of

J(π), it is immediate to see that J(π) = E[f1(Qπ)]. This motivates the Q-function-based method
which uses a plug-in estimator to approximate E[f1(Qπ)] and estimate J(π). In particular, Qπ can
be estimated by Q-learning type algorithms (e.g., fitted Q-evaluation, FQE, Le et al., 2019), and the
expectation can be approximated based on the empirical initial state distribution.

Method 2 (Sequential importance sampling). For a given IS ratio ρπ , let ρπ1:t denote the sequential
IS ratio

∏t
j=1 ρ

π(Aj , Sj). It follows from the change of measure theorem that the counterfactual
reward Eπ(Rt) is equivalent to E(ρπ1:tRt) whose expectation is taken with respect to the offline
data distribution. Assuming all trajectories in D terminate after a finite time T , this allows us to
represent J(π) by E[f2(ρπ)] where f2(ρπ) =

∑T
t=1 γ

t−1ρπ1:tRt. SIS utilizes a plug-in estimator
to first estimate ρπ (when the behavior policy is unknown), and then employs this estimator, along
with the empirical data distribution, to approximate E[f2(ρπ)]. However, a notable limitation of
this estimator is its rapidly increasing variance due to the use of the SIS ratio ρπ1:t. Specifically, this
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variance tends to grow exponentially with respect to t, a phenomenon often referred to as the curse of
horizon (Liu et al., 2018).

Method 3 (Marginalized importance sampling). The MIS estimator is designed to overcome the
limitations of the SIS estimator. It breaks the curse of horizon by taking the structure of the MDP
model into account. As noted previously, under the Markov assumption, the reward depends only
on the current state-action pair, rather than the entire history. This insight allows us to replace the
SIS ratio with the MIS ratio, which depends solely on the current state-action pair. This modification
considerably reduces variance because wπ is no longer history-dependent. Assuming the data
trajectory is stationary over time – that is, all state-action-reward (S,A,R) triplets have the same
distribution – it can be shown that J(π) = E[f3(wπ)] where f3(wπ) = (1 − γ)−1wπ(A,S)R for
any triplet (S,A,R). Both wπ and the expectation can be effectively approximated using offline data.

Method 4 (Double reinforcement learning). DRL combines the Q-function-based method with
MIS. Let f4(Q,w) = f1(Q) + (1 − γ)−1w(A,S)[R + γ

∑
a π(a|S′)Q(a, S′) −Q(A,S)], where

f1 is defined in Method 1 and (S,A,R, S′) denotes a state-action-reward-next-state tuple. Under the
stationarity assumption, it can be shown that J(π) = E[f4(Q,w)] when either Q = Qπ or w = wπ

(Kallus & Uehara, 2022). DRL proposes to learn both Qπ and wπ from the data, employing these
estimators to calculate E[f4(Q,w)] and approximate the expectation with empirical data distribution.
The resulting estimator benefits from double robustness: it is consistent when either Qπ or wπ is
correctly specified.

4 PROPOSED STATE ABSTRACTIONS FOR POLICY EVALUATION

This section presents model-free (Section 4.1), model-based irrelevance conditions (Section 4.2) for
OPE and analyzes the OPE estimators under these conditions (Lemma 1 & Theorem 1). Motivated
by this analysis, we propose our iterative procedure (Section ??) and study its property (Theorem 2).

Our theoretical analysis is concerned with the Fisher consistency of various OPE estimators, named
after, Ronald Fisher, the founder of modern statistics. In particular, the Fisher consistency requires an
estimator to be exactly equal to the ground truth given infinite samples. Specialized to our settings, it
imposes two requirements:

(i) The identification formulas presented in Section 3.3 remain valid when replacing the oracle
Q-function or (M)IS ratio with those projected into the proposed abstract state space;

(ii) The Q-function or (M)IS ratio defined on the abstract state space is identifiable.

Once the Fisher consistency is established, the estimator’s finite sample properties can be readily
obtained using existing techniques (see e.g., Uehara et al., 2021a). Therefore, for conciseness and to
avoid redundancy, we chose not to present finite sample results in our theoretical analysis.

4.1 MODEL-FREE IRRELEVANCE CONDITIONS

We first introduce several model-free irrelevance conditions tailored for OPE.

Definition 4 (π-irrelevance) ϕ is π-irrelevant if for any s(1), s(2) ∈ S whenever ϕ(s(1)) = ϕ(s(2)),
we have π(a|s(1)) = π(a|s(2)) for any a ∈ A.

Definition 5 (Qπ-irrelevance) ϕ is Qπ-irrelevant if for any s(1), s(2) ∈ S whenever ϕ(s(1)) =
ϕ(s(2)), we have Qπ(a, s(1)) = Qπ(a, s(2)) for any a ∈ A.

Definitions 4 and 5 are adaptations of Definitions 1 and 2 designed for policy evaluation, with the
optimal policy π∗ replaced by the target policy π. The following definitions are tailored for IS
estimators (see Methods 2 and 3 in Section 3.3).

Definition 6 (ρπ-irrelevance) ϕ is ρπ-irrelevant if for any s(1), s(2) ∈ S whenever ϕ(s(1)) =
ϕ(s(2)), we have ρπ(a, s(1)) = ρπ(a, s(2)) for any a ∈ A.

Definition 7 (wπ-irrelevance) ϕ is wπ-irrelevant if for any s(1), s(2) ∈ S whenever ϕ(s(1)) =
ϕ(s(2)), we have wπ(a, s(1)) = wπ(a, s(2)) for any a ∈ A.
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Figure 2: Illustrations of (a) the forward MDP model and (b) the backward MDP model. bt is a
shorthand for b(At|St) for any t ≥ 1.

These irrelevance conditions encourage us to conduct OPE on the abstract state space to reduce sample
complexity. Nevertheless, methods for deriving abstractions that satisfy these conditions (particularly
Qπ- and wπ-irrelevance) remain unclear. Furthermore, the state-action-reward triplets transformed
via these abstractions (ϕ(S), A,R) might not maintain the MDP structure. This complicates the
process of learning Qπ

ϕ and wπ
ϕ . These challenges motivate us to consider model-based irrelevance

conditions introduced in the subsequent section.

4.2 MODEL-BASED IRRELEVANCE CONDITIONS

To begin with, we discuss two perspectives of the data generated within the MDP framework; see
Figure 2 for a graphical illustration.

1. The first perspective is the traditional forward MDP model with all state-action-reward triplets
sequenced by time index. This yields the model-based irrelevance condition defined in Definition
3. We will discuss the relationship between this condition and Definitions 5-7 below.

2. The second perspective offers a backward view by reversing the time order. Specifically, due to
the symmetric nature of the Markov assumption — implying that if the future is independent of
the past given the present, the past must also be independent of the future given the present —
the reversed state-action pairs also maintain the Markov property. Leveraging this property, we
define another backward MDP, which forms the basis for deriving model-based conditions for
achieving wπ-irrelevance and motivates the subsequent iterative procedure. This development
represents one of our main contributions.

Forward MDP-based model-irrelevance. We first discuss the connections between the model-
irrelevance given in Definition 3 and the notions of Qπ-, ρπ- and wπ-irrelevance, and introduce
the following conditions to establish Fisher consistency. These conditions are mild and frequently
imposed in the RL and OPE literature (see e.g., Thomas & Brunskill, 2016; Kallus & Zhou, 2018;
Chen & Jiang, 2019; Fan et al., 2020; Cai et al., 2021; Shi et al., 2021; Kallus & Uehara, 2022).

Assumption 1 (Boundedness) All immediate rewards are uniformly bounded.

Assumption 2 (Coverage) The denominator in equation 2 is strictly positive.

Assumption 3 (Stationary) The MDP (St, At, Rt)t≥1 is stationary over time.

The following lemma summarizes the findings. Results in the first two bullet points are based on
those in the existing literature (see e.g., Li et al., 2006; Pavse & Hanna, 2023).

Lemma 1 (OPE under model-irrelevance) Assume Assumptions 1–3 hold. Let ϕ denote a model-
irrelevant abstraction. Suppose ϕ is additionally π-irrelevant. Then:
• Qπ-irrelevance & Fisher consistency of Q-function-based method: ϕ is also Qπ-irrelevant,

and the corresponding Q-function-based method (Method 1) is thus Fisher consistent, i.e., the
Q-function Qπ

ϕ defined on the abstract space is identifiable and satisfies E[f1(Qπ)] = E[f1(Qπ
ϕ)];

• Fisher consistency of MIS: While ϕ is not necessarily wπ-irrelevant, MIS (Method 3) is Fisher
consistent when applied to the abstract state space, i.e., the MIS ratio wπ

ϕ defined on the abstract
state space is identifiable and satisfies E[f3(wπ)] = E[f3(wπ

ϕ)];
• Fisher consistency of SIS: While ϕ is not necessarily ρπ-irrelevant, SIS (Method 2) with a history-

dependent IS ratio (detailed in the proof of Lemma 1 in Appendix D.1) is Fisher consistent when
applied to the abstract space;

• Fisher consistency of DRL: DRL (Method 4) is Fisher consistent when applied to the abstract
state space.

6
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The first bullet point establishes the link between model-irrelevance and Qπ-irrelevance and proves
the Fisher consistency of the Q-function-based method when applied to the abstract state space. To
satisfy Qπ-irrelevance, we need both model-irrelevance and π-irrelevance. In our implementation,
we first adapt existing algorithms to train a model-irrelevant abstraction ϕ, parameterized via deep
neural networks. We next combine ϕ(s) with {π(a|s) : a ∈ A} to obtain a new abstraction ϕfor(s).
This augmentation ensures ϕfor(s) is π-irrelevant, and hence Qπ-irrelevant. Refer to Appendix B.1
for the detailed procedures.

The last three bullet points validate the SIS, MIS and DRL estimators, despite ϕ being neither wπ-
irrelevant nor ρπ-irrelevant. By definition, ρπ-irrelevance can be achieved by selecting state features
that adequately predict the IS ratio. However, methods for constructing wπ-irrelevant abstractions
remain less clear. In the following, we introduce a backward MDP model-based irrelevance condition
that ensures wπ-irrelevance.

Backward MDP-based model-irrelevance. To illustrate the rationale behind the proposed model-
based abstraction, we introduce the backward MDP model by reversing the time index. Under the
(forward) MDP model assumption described in Section 3.1 and that the behavior policy b is not
history-dependent, actions and states following St are independent of those occurred prior to the
realization of St. Accordingly, (St−1, At−1) is conditionally independent of {(Sk, Ak)}k>t given
St. Recall that T corresponds to the termination time of trajectories in D. We define a time-reversed
process consisting of state-action-reward triplets {(St, At, b(At|St)) : t = T, . . . , 1}. Its dynamics
is described as follows (see also Figure 2(b) for the configuration):

• State-action transition: Due to the aforementioned Markov property, the transition of the past
state St+1 in the reversed process (future state in the original process) into the current state St is
independent of the past action At+1 in the reversed process (future action in the original process)
while the behavior policy that generates At depends on both the current state St and the past
state St+1 in the reversed process. This yields the time-reversed state-action transition function
P(At = a, St = s|St+1).

• Reward generation: For each state-action pair (St, At), we manually set the reward to the behavior
policy b(At|St), which plays a crucial role in constructing IS estimators.

Given this MDP, analogous to Definition 3, our objective is to identify a state abstraction that is
crucial for predicting the reward (e.g., the behavior policy) and the reversed transition function. We
provide the formal definition of the proposed backward MDP-based model-irrelevance (short for
backward-model-irrelevance) below.

Definition 8 (Backward-model-irrelevance) ϕ is backward-model-irrelevant if for any s(1), s(2) ∈
S whenever ϕ(s(1)) = ϕ(s(2)), the followings hold for any a ∈ A , x ∈ X and t ∈ N+:

(i) b(a|s(1)) = b(a|s(2)); (4)

(ii)
∑

s∈ϕ−1(x)

P(At = a, St = s|St+1 = s(1)) =
∑

s∈ϕ−1(x)

P(At = a, St = s|St+1 = s(2)). (5)

The conditions of backward-model-irrelevance are similar to those specified for model-irrelevance
outlined in Definition 3. Equation 4 essentially requires behavior-policy-irrelevance, or reward-
irrelevance in the backward MDP. Equation 5 corresponds to the “backward-transition-irrelevance”,
and is equivalent to the conditional independence assumption between the pair (At, ϕ(St)) and St+1

given ϕ(St+1). As previously assumed, St can be decomposed into the union of relevant features
ϕ(St) and irrelevant features ψ(St) (see Figure 1), leading to the following factorization:

P(St+1 = s′|At, ϕ(St)) = P(ψ(St+1) = ψ(s′)|ϕ(St+1) = ϕ(s′))P(ϕ(St+1) = ϕ(s′)|At, ϕ(St)).

This indicates a two-step transition in the forward model: initially from (ϕ(St), At) to ϕ(St+1),
and then from ϕ(St+1) to ψ(St+1). Importantly, the generation of ψ(St+1) in the second step is
conditionally independent of At and ϕ(St). Consequently, ϕ extracts state representations that are
influenced either by past actions or past relevant features; see Figure 1(b) for an illustration. Combined
with π-irrelevance and behavior-policy-irrelevance, this ensures that all information contained within
the historical IS ratios {ρπ(Ak, Sk)}k<t can be effectively summarized using a single At−1 and the
abstract state ϕ(St−1), thus achieving wπ-irrelevance (see Theorem 1 below).

Theorem 1 (OPE under backward-model-irrelevance) Assume Assumptions 1–3 hold, and ϕ is
both backward-model-irrelevant and π-irrelevant.
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Figure 3: Illustrations of the iterative procedure.

• Then ϕ is both ρπ-irrelevant and wπ-irrelevant.
• Additionally, all the four OPE methods (i.e., Q-function-based, SIS, MIS, DRL) are Fisher consistent

when applied to the abstract state space.

Theorem 1 validates the four OPE methods when applied to the abstract state space. To conclude
this section, we draw a connection between the proposed backward-model-irrelevant abstraction for
OPE and the Markov state abstraction (MSA) developed by Allen et al. (2021) for policy learning.
MSA impose two conditions: (i) inverse-model-irrelevance, which requires At to be conditionally
independent of St and St+1 given ϕ(St) and ϕ(St+1); (ii) density-ratio-irrelevance, which requires
ϕ(St) to be conditionally independent of St+1 given ϕ(St+1). For effective policy learning, MSA
requires both conditions to hold in data generating processes following a diverse range of behavior
policies. When restricting them to one behavior policy, the two conditions are closely related to our
backward-model-irrelevance. In particular, they imply our proposed backward-transition-irrelevance
condition in equation 5 whereas backward-transition-irrelevance in turn yields their density-ratio-
irrelevance. This allows us to adapt their algorithm to train state abstractions that satisfy our proposed
backward-model-irrelevance; see Appendix B.2 for details.

Finally, it is worth noting that both the proposed backward-model-irrelevant abstraction and MSA
require the behavior policy to be Markov, independent of the past observations.The following section
will relax this condition and extend our proposal to accommodate history-dependent behavior policies.

4.3 ITERATIVE PROCEDURE FOR DEEP STATE ABSTRACTION

To summarize, we have reviewed the model-irrelevance condition and proposed a new backward-
model-irrelevance condition. Both lead to Fisher consistent OPE estimators when confined to
the corresponding abstract state spaces. This motivates us to combine the two procedures for a
more condensed state abstraction, resulting in the following iterative algorithm (see Figure 3 for a
visualization):

1. Forward abstraction: learn an abstraction ϕ1 from the ground state space S = X0 to X1 using
the data triplets (S,A,R) that is both (forward)-model-irrelevant and π-irrelevant.

2. Backward abstraction: Learn an abstraction ϕ2 from the abstract state space X1 to X2 using the
data triplets (ϕ1(S), A,R) that is both backward-model-irrelevant and π-irrelevant.

3. Iterate the two steps to compute the final abstraction ϕK ◦ · · · ◦ ϕ2 ◦ ϕ1 from the ground space S
to XK where K denotes the number of iterations and ◦ denotes the function composition operator.

In particular, our approach alternates between forward and backward abstraction on the state space
obtained from the previous iteration. Each iteration guarantees that the cardinality of the state space
does not increase, effectively maintaining or reducing complexity. Consequently, such an iterative
procedure progressively reducing state cardinality, which ultimately yields a deeply-abstracted state.
We thus refer to our approach as deep state abstraction (DSA).

To elaborate the usefulness of DSA in reducing state cardinality, we analyze two examples: a bandit
example and an MDP example. In both examples, we focus on a specific type of state abstraction
known as variable selection, which selects a sub-vector from the original state. Additionally, we
focus on the class of state-agnostic target policies where π is independent of the states. This type
of policy is prevalent in causal inference and A/B testing, where the objective is to learn the global

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: Two illustrative examples.

treatment effect of applying either a new or old policy consistently over time (see e.g., Hu & Wager,
2022; Leung, 2022; Bojinov et al., 2023; Shi et al., 2023; Xiong et al., 2024).

Example I (A bandit example): To illustrate the main idea, we start by considering the contextual
bandit setting (CB, Dudík et al., 2014), which can be regarded as a special MDP with independent
state transitions. Under this setting, the states are i.i.d. generated, and model-irrelevance is reduced to
reward-irrelevance whereas the proposed backward-model-irrelevance simplifies to behavior-policy-
irrelevance. When specialized to variable selection in CB, our proposal is reduced to the iterative
confounder selection algorithm in causal inference (see e.g., Guo et al., 2022); see also the review of
confounder selection in Appendix A. We assume the states can be divided into three independent
groups, denoted by S(1)

t , S(2)
t and S(3)

t , respectively. Each group influences the system differently:
S
(1)
t affects only the reward, S(2)

t impacts both the action and the reward, and S(3)
t solely influences

the action; see Figure 4(a) for an illustration. As formally proven in Lemma D.3 (see Appendix D.5):

• The forward abstraction selects the first two groups S(1)
t and S(2)

t ;
• The proposed backward abstraction selects the last two groups S(2)

t and S(3)
t ;

• The proposed DSA selects their intersection S(2)
t and converges in two steps, resulting in a smaller

subset of variables compared to the two non-iterative procedures.

Example II (An MDP example): We next consider an MDP with three groups of states, depicted in
Figure 4(b). Key observations from this example are as follows: (i) The reward depends on the state
only through the first group of variables; (ii) The evolution of the state depends only on the second
group. Specifically, the second group evolves first at each time step and subsequently influences the
rest two groups; (iii) The behavior policy depends only on the last group; (iv) The second group is
directly influenced by the previous action. Based on these observations, we show have that:

• According to (i), selecting the first group of variables achieves reward-irrelevance.
• According to (iii), selecting the last group of variables achieves behavior-policy-irrelevance.
• According to (ii) and (iv), selecting the second group achieves both transition-irrelevance (see the

second equation in 3) and backward-transition-irrelevance (see equation 5).

Consequently, the forward and backward abstractions select the first two and last two groups of
variables, respectively. The iterative procedure again selects their intersection S(2)

t and converges in
two iterations, leading to in a smaller state space. The reader is referred to Appendix D.5 for formal
justifications.

In both examples, we have demonstrated the advantage of DSA in reducing state space cardinality
over non-iterative procedures. However, in more general scenarios, two challenges arise from the
iterative nature of DSA: (i) After forward abstraction, the behavior policy when restricted to the
abstract space can be history-dependent. This would invalidate the subsequent backward abstraction
for achieving wπ-irrelevance. (ii) After backward abstraction, the Markov assumption might be
violated. This would invalidate the subsequent forward abstraction for consistent OPE.

To address both challenges, we modify the proposed backward-model-irrelevance by employing
a history-dependent behavior policy bt(at|st, at−1, st−1, · · · , s1) = P(At = at|St = st, At−1 =
at−1, St−1 = st−1, · · · , S1 = s1) in equation 4. Specifically, we require that for any two state
sequences {s(1)ℓ }ℓ ,{s(2)ℓ }ℓ such that ϕ(s(1)ℓ ) = ϕ(s

(2)
ℓ ), any action sequence {aℓ}ℓ and any time

index t ≥ 1,

bt(at|s(1)t , at−1, s
(1)
t−1, · · · , s

(1)
1 ) = bt(at|s(2)t , at−1, s

(2)
t−1, · · · , s

(2)
1 ). (6)
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The following theorem validates the abstraction produced by the proposed DSA at any iteration.

Theorem 2 (OPE under the iterative procedure) Assume Assumptions 1–3 hold. With the refined
backward-model-irrelevance, the four OPE methods are Fisher consistent when applied to the
abstract state space produced by the proposed DSA, regardless of the number of iterations conducted.

Finally, we note that the initialization of the iterative procedure doesn’t necessarily have to begin with
forward abstraction; backward abstraction can serve as the starting point as well. In our experiments,
both starting points have their merits, with their effectiveness varying depending on the environment.
However, the overall differences in results are small.

5 NUMERICAL EXPERIMENTS

We investigate the finite sample performance of our proposal in this section and detail its implementa-
tion in Appendix B.

Comparisons. We compare the proposed deep state abstraction (denoted by ‘DSA’) against single-
iteration forward (‘forward’), backward (‘backward’) abstractions, the Markov state abstraction
(Allen et al., 2021) (‘MSA’) and a reconstruction-based abstraction (Lange & Riedmiller, 2010)
(‘auto-encoder’). For fairer comparison, each abstraction’s performance is tested by applying a base
FQE algorithm (Le et al., 2019) applied to the abstract state space. We also report the performance of
FQE applied to the unabstracted, ground state space (‘FQE’).

Environment. We consider the “LunarLander-v2” environment in this section, with an original state
dimension of 8. We manually include 292 irrelevant variables in the state, leading to a challenging
300-dimensional system. Refer to Appendix C for more details about the environment.

Results. We report MSEs and absolute biases of different post-abstraction-OPE estimators and those
of the baseline FQE estimator without abstraction in Figure 5. It can be seen that the proposed DSA
method outperforms other baseline methods, with the smallest relative MSE and absolute bias in
most cases. To conclude, our analysis answers the following questions:

1. Is state abstraction useful for OPE? Both figures show that the baseline FQE applied to the
ground state space performs the worst among all cases. This comparison reveals the usefulness of
state abstractions for OPE.

2. Is the deep/iterative procedure more effective compared to single-iteration procedure? Notice
that ‘Markov’ and ‘auto-encoder’ are types of model-irrelevant abstractions. The comparisons
against these abstractions as well as ‘forward’ and ‘backward’ demonstrate the advantages of DSA
over single-iteration procedures.
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Figure 5: Relative MSEs and absolute biases of FQE estimators when applied to ground and abstract
state spaces with various abstractions. The behavior policy is ϵ-greedy with respect to the target
policy, with ϵ = 0.1, 0.3, 0.5 from left to right.
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APPENDIX

This appendix is structured as follows: Section A introduces additional related works on confounder
selection in causal inference. The implementation details of the proposed state abstraction are
discussed in Section B. Additional information concerning the environment and computing resources
utilized is presented in Section C. All technical proofs can be found in Section D.

A CONFOUNDER SELECTION IN CAUSAL INFERENCE

Broadly speaking, confounding refers to the problem that even if two variables are not causes of each
other, they may exhibit statistical association due to common causes. Controlling for confounding is
a central problem in the design of observational studies, and many criteria for confounder selection
have been proposed in the literature. A commonly adopted criterion is the “common cause heuristic”,
where the user only controls for covariates that are related to both the treatment and the outcome
(Glymour et al., 2008; Austin, 2011; Shortreed & Ertefaie, 2017; Koch et al., 2020). Another widely
used criterion is to simply use all covariates that are observed before the treatment in time (Rubin,
2009; Hernán & Robins, 2010; 2016). However, both of these approaches are not guaranteed to
find a set of covariates that are sufficient to control for confounding. From a graphical perspective,
confounder selection is essentially about finding a set of covariates that block all “back-door” paths
(Pearl, 2009), but this requires full structural knowledge about the causal relationship between the
variables which is often not possible. This motivated some methods that only require partial structural
knowledge (Vander Weele & Shpitser, 2011; VanderWeele, 2019; Guo & Zhao, 2023). All the
aforementioned methods need substantive knowledge about the treatment, outcome, and covariates.
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Other methods use statistical tests (usually of conditional independence) to trim a set of covariates
that are assumed to control for confounding (Robins, 1997; Greenland et al., 1999; Hernán & Robins,
2010; De Luna et al., 2011; Belloni et al., 2014; Persson et al., 2017). The reader is referred to Guo
et al. (2022) for a recent survey of objectives and approaches for confounder selection.

Confounder selection can be considered as a special example of our problem under certain conditions:
(i) The state transition is independent, effectively transforming the MDP into a contextual bandit;
(ii) The action space is binary, with the target policy consistently assigning either action 0 or action
1, aimed at assessing the average treatment effect; (iii) State abstractions are confined to variable
selections. While our proposed iterative procedure shares similar spirits with the aforementioned
algorithms, it addresses a more complex problem involving state transitions. Additionally, our focus
is on abstraction that facilitates the engineering of new feature vectors, rather than merely selecting a
subset of existing ones.

B IMPLEMENTATION DETAILS

In this section, we present implementation details for forward abstraction (Section B.1) and backward
abstraction (Section B.2).

B.1 IMPLEMENTATION DETAILS FOR FORWARD ABSTRACTION

We provide details for implementing the proposed forward abstraction in this subsection. We use deep
neural networks to parameterize the forward abstraction and estimate the parameters by minimzing
the following loss function:

α1Lr + β1LT + δ1LQ + λ1Lpenalty, (B.1)

where Lr, LT and LQ are the loss functions detailed below, Lpenalty is a penalty term, and
α1, β1, δ1, λ1 are positive constant hyper-parameters whose values are reported in Table B.1.

By definition, the forward abstraction is required to achieve both model-irrelevance and π-irrelevance.
As discussed in Section 4.2, our approach is to learn a model-irrelevant abstraction, denoted as ϕ, and
then concatenate it with {π(a|•) : a ∈ A}. We denote the concatenated abstraction by ϕfor.

We next detail the loss functions and the penalty term. The first two losses Lr and LT are to ensure
reward-irrelevance and transition-irrelevance, respectively,

Lr =
1

|D|
∑

(S,A,R)∈D

[
R−Rϕ

(
A, ϕ(S)

)]2
, LT =

1

|D|
∑

(S,A,S′)∈D

∥Tϕ
(
A, ϕ(S)

)
− ϕ(S′)∥22,

where Rϕ0
and Tϕ0

are the estimated reward and transition functions applied to the abstract state
space parameterized by deep neural networks as well, and |D| is the cardinality of the dataset D.

The inclusion of the third loss function, LQ, is motivated by the demonstrated benefits of utilizing
model-free objectives to guide the training of state abstractions in policy learning François-Lavet
et al. (2019).

Given our interest in OPE, we integrate the following FQE loss into the objective function,

LQ =
1

|D|
∑

(S,A,R,S′)∈D

[
R+ γ

∑
a∈A

π(a|S′)Q−(ϕfor(S′), a
)
−Q

(
ϕfor(S), A

)]2
,

where Q− and Q represent the estimated Qπ
ϕfor

function applied to the abstract state space during
the previous and current iterations, respectively.

The above objectives allow us to effectively train forward abstractions. However, a potential
concern is that the resulting abstraction and transition can collapse to some constant x0 such that
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ϕfor(S)→ x0, ∀S ∈ S. To address this limitation, we include the following penalty function of
two randomly drawn states to promote diversity in the abstractions:

Lc =
1

|D|(|D| − 1)

∑
S,S̃∈D,S ̸=S̃

exp(−C0∥ϕ̂(S)− ϕ̂(S̃)∥2)

for some positive scaling constant C0, and ϕ̂(s) is the estimated abstract state from transition function.
ϕ̂(s̃) can be achieved by shuffling ϕ̂(s′) from pairs (s, s′) in the batch. Additionally, we add another
penalty to penalize consecutive abstract states for being more than some predefined distance d0 away
from each other,

Ls =
1

|D|
∑

(S,S′)∈D

C1[∥ϕfor(S)− ϕfor(S′)∥2 − d0]2,

for some positive constant C1. These components combine into the final penalty function:

Lpenalty = Ls + Lc.

The forward model architecture is as follow:

Forward_model(
(encoder): Encoder_linear(

(activation): ReLU()
(encoder_net): Sequential(

(0): Linear(in_features=300, out_features=64, bias=True)
(1): ReLU()
(2): Linear(in_features=64, out_features=64, bias=True)
(3): ReLU()
(4): Dropout(p=0.2, inplace=False)
(5): Linear(in_features=64, out_features=64, bias=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=64, out_features=100, bias=True)

)
)
(transition): Transition(

(activation): ReLU()
(T_net): Sequential(

(0): Linear(in_features=100, out_features=64, bias=True)
(1): ReLU()
(2): Linear(in_features=64, out_features=64, bias=True)
(3): ReLU()
(4): Dropout(p=0.2, inplace=False)
(5): Linear(in_features=64, out_features=64, bias=True)

)
(lstm): LSTMCell(64, 128)
(tanh): Tanh()

)
(reward): Reward(

(activation): ReLU()
(reward_net): Sequential(

(0): Linear(in_features=100, out_features=64, bias=True)
(1): ReLU()
(2): Linear(in_features=64, out_features=64, bias=True)
(3): ReLU()
(4): Dropout(p=0.2, inplace=False)
(5): Linear(in_features=64, out_features=64, bias=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
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Table B.1: Hyper-parameters information. m is the input feature dimension, and ∗∗ means no value.
Hyper-parameters Values Hyper-parameters Values

α1 1 α2 1
β1 1 β2 1
γ1 1 γ2 1
λ1 min(1, 20m ) λ2 min(1, 20m )
C0 1 C0 ∗∗
C1 1 C1 1
d0 0.15m d0 0.15m

(8): Linear(in_features=64, out_features=64, bias=True)
(9): ReLU()
(10): Dropout(p=0.2, inplace=False)
(11): Linear(in_features=64, out_features=64, bias=True)
(12): ReLU()
(13): Dropout(p=0.2, inplace=False)
(14): Linear(in_features=64, out_features=2, bias=True)

)
)
(FQE): FQE(

(activation): ReLU()
(action_net): Sequential(

(0): Linear(in_features=1, out_features=16, bias=True)
(1): ReLU()
(2): Linear(in_features=16, out_features=100, bias=True)

)
(xa_net): Linear(in_features=200, out_features=100, bias=True)
(FQE_net): Sequential(

(0): Linear(in_features=100, out_features=64, bias=True)
(1): ReLU()
(2): Linear(in_features=64, out_features=64, bias=True)
(3): ReLU()
(4): Dropout(p=0.2, inplace=False)
(5): Linear(in_features=64, out_features=64, bias=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=64, out_features=2, bias=True)

)
)

)

B.2 IMPLEMENTATION DETAILS FOR BACKWARD ABSTRACTION

We provide details for implementing the proposed backward abstraction in this subsection. Similar
to Section B.1, we use deep neural networks to parameterize the abstraction ϕback and estimate the
parameters by solving the following loss function,

α2Lb + β2Lratio + δ2Linv + λ2Ls,

where α2, β2, δ2, λ2 are positive hyper-parameters specified in Table B.1.

Recall that backward-model-irrelevance requires both ρπ-irrelevance (Definition 6) and equation 5.
To enforce ρπ-irrelevance, we first introduce behavior-irrelevance, this can be achieved by minimizing
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the following cross-entropy loss for behavior:

Lb = −
1

|D|
∑

(S,A)∈D

log b
(
A = a|S

)
and followed by concatenating with {π(a|•) : a ∈ A}, which ensures π-irrelevance. Note that in
deeply-abstracted procedure, we replace the behavior loss by

Lb = −
1

|D|
∑

(St,At)∈D

log b
(
At = at|ϕ1(St), {At−k, ϕ1(St−k)}k=1,2,...

)
which incorporates history information as mentioned in 4.3. In practice, we do not use all
the history information for behaviour policy, instead we use the history up to past two steps:
b(At|ϕ1(St), At−1, ϕ1(St−1), At−2, ϕ1(St−2)).

As commented in Section 4.2, equation 5 holds by satisfying the conditional independence assump-
tion between (At, ϕ(St)) and St+1 given ϕ(St+1). By Bayesian formula, we can show that it is
satisfied by the inverse-model-irrelevance and density-ratio-irrelevance when setting the learning
policy π to b. This motivates us to leverage the two objectives Linv and Lratio used by Allen et al.
(2021) for training MSA. More details regarding these losses can be found in Section 5 of Allen et al.
(2021). Note that to obtain non-sequential states (s, s̃) used in Lratio, we flip s′ in the pairs (s, s′) in
each batch instead of shuffling.

Finally, Ls corresponds to the smoothness penalty introduced in Section B.1. The backward model
architecture is:

Backward_model(
(encoder): Encoder_linear(

(activation): ReLU()
(encoder_net): Sequential(

(0): Linear(in_features=100, out_features=64, bias=True)
(1): ReLU()
(2): Linear(in_features=64, out_features=64, bias=True)
(3): ReLU()
(4): Dropout(p=0.2, inplace=False)
(5): Linear(in_features=64, out_features=64, bias=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=64, out_features=6, bias=True)

)
)
(inverse): Inverse(

(activation): ReLU()
(inverse_net): Sequential(

(0): Linear(in_features=12, out_features=64, bias=True)
(1): ReLU()
(2): Linear(in_features=64, out_features=64, bias=True)
(3): ReLU()
(4): Dropout(p=0.3, inplace=False)
(5): Linear(in_features=64, out_features=64, bias=True)
(6): ReLU()
(7): Dropout(p=0.3, inplace=False)
(8): Linear(in_features=64, out_features=64, bias=True)
(9): ReLU()
(10): Dropout(p=0.3, inplace=False)
(11): Linear(in_features=64, out_features=64, bias=True)
(12): ReLU()
(13): Dropout(p=0.3, inplace=False)
(14): Linear(in_features=64, out_features=1, bias=True)
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)
)
(density): Density(

(activation): ReLU()
(density_net): Sequential(

(0): Linear(in_features=12, out_features=64, bias=True)
(1): ReLU()
(2): Linear(in_features=64, out_features=64, bias=True)
(3): ReLU()
(4): Dropout(p=0.3, inplace=False)
(5): Linear(in_features=64, out_features=64, bias=True)
(6): ReLU()
(7): Dropout(p=0.3, inplace=False)
(8): Linear(in_features=64, out_features=64, bias=True)
(9): ReLU()
(10): Dropout(p=0.3, inplace=False)
(11): Linear(in_features=64, out_features=64, bias=True)
(12): ReLU()
(13): Dropout(p=0.3, inplace=False)
(14): Linear(in_features=64, out_features=1, bias=True)

)
)
(rho): Rho(

(activation): ReLU()
(rho_net): Sequential(

(0): Linear(in_features=6, out_features=64, bias=True)
(1): ReLU()
(2): Linear(in_features=64, out_features=64, bias=True)
(3): ReLU()
(4): Dropout(p=0.3, inplace=False)
(5): Linear(in_features=64, out_features=64, bias=True)
(6): ReLU()
(7): Dropout(p=0.3, inplace=False)
(8): Linear(in_features=64, out_features=2, bias=True)

)
)

)

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 REPRODUCIBILITY

We release our code and data on the website at
https://anonymous.4open.science/r/state-abstraction-588A/README.md
The hyper-parameters to train the proposed forward and backward abstractions can be found in
Table B.1.

C.2 EXPERIMENTAL SETTINGS AND ADDITIONAL RESULTS

For the environment LunarLander, we use Adam Kingma & Ba (2014) optimizer with learning rate
0.003. Model architectures and hyper-parameters are outlined in B. When conducting OPE, the FQE
network has 3 hidden layers with 64 nodes per hidden layer for abstraction methods, and is equipped
with 5 hidden layers with 128 nodes per hidden layer for non-abstracted observations (shown as
‘FQE’ in the plot).

Data generating processes
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We similarly insert 292 irrelevant auto-regressive features in the state:

P(St+1,j |St, At) = P(St+1,j |St,j), j = 9, . . . , 300.

The number of trajectories n in the offline dataset is chosen from {10, 20, 35, 60}, where trajectory
length differs significantly in this environment. Some lengthy episodes can have length larger than
100000 while short episodes have fewer than 100 decision points. When trained and evaluated on
the short episodes, OPE methods will fail due to huge distributional drift. We therefore truncate
the episode length at 1000 if it exceeds, define it as long episode and those fewer than 1000
as short episodes. When generating trajectories, we use a long-short combination for each size:
{10 = 7long + 3short, 20 = 14long + 6short, 35 = 25long + 10short, 60 = 45long + 15short}. The
target policy is an estimated optimal policy pre-trained by an DQN agent whereas the behavior policy
again ϵ-greedy to the target policy with ϵ ∈ {0.1, 0.3, 0.5}. Results are averaged over 20 runs for
each (n, ϵ) pair and are reported in Figure 5

Model parameters

For forward and backward models, we abstract the original state dimension from 300 → 10, and
for DSA method we reduce dimensions from 300→ 100→ 50→ 20→ 6, by [backward, forward,
backward, forward] order.

Pre-trained agent

We pre-train an agent by using DQN as our target policy. The agent is trained until there exists an
episode that has accumulative discounted rewards exceeding 200 with discounted rate γ = 0.99. We
evaluated oracle value (61.7) of the optimized agent by Monte Carlo method with the same discounted
rate. The agent model architecture is as follow:

DQN(
(fc1): Linear(in_features=8, out_features=64, bias=True)
(fc2): Linear(in_features=64, out_features=64, bias=True)
(fc3): Linear(in_features=64, out_features=4, bias=True)

)

C.3 LICENCES FOR EXISTING ASSETS

We consider the environment from OpenAI Gym (Brockman et al., 2016) “LunarLander-v2” with the
MIT License and Copyright (c) 2016 OpenAI (https://openai.com).

C.4 COMPUTING RESOURCES

To build Figure 5, we trained 3 abstraction methods and one non-abstraction method on 4 different
sizes of data, each with 20 runs, under 3 ϵ values. In average, each run takes approximately 8 minutes
for four methods on an E2-series CPU with 64GB memory on GCP. It takes about 32 compute hours
to complete all the experiments in the figure.

D TECHNICAL PROOFS

We provide the detailed proofs of our theorems (Lemma 1, Theorems 1 & 2) in this section.

Notations. For events or random variables A,B,C, A ⊥⊥ B means the independence between A
and B whereas A ⊥⊥ B|C means the conditional independence between A and B given C.

An auxiliary lemma. To begin with, we introduce the following lemma which validates the
unbiasedness of various OPE estimators under the model-free irrelevance conditions in Definitions 5
– 7, whose proof is given in Section D.1.
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Lemma D.1 (Unbiasedness under model-free irrelevance conditions) Under Qπ-, ρπ- or wπ-
irrelevance, the corresponding methods are unbiased when applied to the abstract state space,
assuming the oracle Q-function or (M)IS ratio is identifiable from the data:

• Under Qπ-irrelevance, Q-function-based method (Method 1) remains unbiased, i.e., the Q-function
Qπ

ϕ defined on the abstract space satisfies E[f1(Qπ)] = E[f1(Qπ
ϕ)];

• Under ρπ-irrelevance, SIS (Method 2) remains unbiased, i.e., the IS ratio ρπϕ defined on the abstract
state space satisfies E[f2(ρπ)] = E[f2(ρπϕ)];

• Under wπ-irrelevance, MIS (Method 3) remains unbiased, i.e., the MIS ratio wπ
ϕ defined on the

abstract state space satisfies E[f3(wπ)] = E[f3(wπ
ϕ)].

Moreover, when ϕ satisfies either Qπ-irrelevance or wπ-irrelevance, DRL (Method 4) remains unbi-
ased, i.e., Qπ

ϕ and wπ
ϕ defined on the abstract state space satisfy E[f4(Qπ, wπ)] = E[f4(Qπ

ϕ, w
π
ϕ)].

Lemma D.1 proves the unbiasedness of the four OPE methods presented in Section 3.3 when applied
to the abstract state space, under the corresponding irrelevance conditions. Notably, DRL requires
weaker irrelevance conditions compared to the Q-function-based method and MIS, owing to its
inherent double robustness property.

D.1 PROOF OF LEMMA D.1

We prove Lemma D.1 in this subsection. We first prove that under Qπ-, ρπ- or wπ-irrelevance, the
corresponding methods remain unbiased when applied to the abstract state space:

• Unbiasedness underQπ-irrelevance. By definition,Qπ is the expected return given an initial state
S1 and A1. Under Qπ-irrelevance, the Q-function depends on S1 only through ϕ(S1). It follows
that Qπ equals the expected return given ϕ(S1) and A1, the latter being Qπ

ϕ – the Q-function when
restricted to the abstract state space, i.e.,Qπ

ϕ(a, ϕ(s)) =
∑

t≥1 γ
t−1Eπ[Rt|A1 = a, ϕ(S1) = ϕ(s)].

It follows that

E[f1(Qπ)] =
∑
a,s

π(a|s)Qπ(a, s)P(S1 = s)

=
∑
a,s

π(a|s)Qπ
ϕ(a, ϕ(s))P(S1 = s)

=E[f1(Qπ
ϕ)].

• Unbiasedness under ρπ-irrelevance. We first establish the equivalence between ρπ and ρπϕ – the
IS ratio defined on the abstract state space. Under ρπ-irrelevance, ρπ(a, s) becomes a constant
function of x = ϕ(s). Consequently, for any conditional probability mass function (pmf) f(•|x)
such that

∑
s′∈ϕ−1(x) f(s

′|x) = 1, we have ρπ(a, s) =
∑

s′∈ϕ−1(x) f(s
′|x)ρπ(a, s′). By setting

f(•|x) to the pmf of St given At = a and ϕ(S) = x, it follows that

ρπ(a, s) =
∑

s′∈ϕ−1(x)

P(St = s′|At = a, ϕ(St) = x)ρπ(a, s′). (D.1)

Notice that

P(St = s′|At = a, ϕ(St) = x) =
P(At = a, St = s′|ϕ(St) = x)

P(At = a|ϕ(St) = x)
.

The denominator equals bϕ,t(a|x), the behavior policy when restricted to the abstract state space
at time t. Notice that this behavior policy can be non-stationary over time, despite that b being
time-invariant. As for the numerator, it is straightforward to show that it equals b(a|s′)P(St =
s′|ϕ(St) = x). This together with equation D.1 yields

ρπ(a, s) =
∑

s′∈ϕ−1(x)

π(a|s′)
bϕ,t(a|x)

P(St = s′|ϕ(St) = x) =
πϕ,t(a|x)
bϕ,t(a|x)

, (D.2)
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where πϕ,t denotes the target policy confined on the abstract state space at time t, namely,
πϕ,t(a|x) =

∑
s′∈ϕ−1(x) π(a|s′)P(St = s′|ϕ(St) = x). The last term in equation D.2 is given by

ρπϕ,t. Consequently, the sequential IS ratio ρπ1:t is equal to
∏t

k=1 ρ
π
ϕ,k(Ak, ϕ(Sk)). This in turn

yields E[f2(ρπ)] = E[f2(ρπϕ)].
• Unbiasedness under wπ-irrelevance. Similar to the proof under ρπ-irrelevance, the key lies

in establishing the equivalence between wπ(a, s) and wπ
ϕ(a, ϕ(s)), the latter being the MIS ra-

tio defined on the abstract state space. Once this has been proven, it is immediate to see that
E[f3(wπ)] = E[f3(wπ

ϕ)], so that the MIS remains Fisher consistent when applied to the abstract
state space.
As discussed in Section 3.3, to guarantee the unbiasedness of the MIS estimator, we additionally
require a stationarity assumption. Under this requirement, for a given state-action pair (S,A) in the
offline data, its joint pmf function can be represented as p∞ × b where p∞ denotes the marginal
state distribution under the behavior policy. Additionally, let pπt denote the pmf of St generated
under the target policy π. The MIS ratio can be represented by

wπ(a, s) =
(1− γ)

∑
t≥1 γ

t−1pπt (s)π(a|s)
p∞(s)b(a|s)

.

Similar to equation D.2, under wπ-irreleavance, it follows that

wπ(a, s) = (1− γ)
∑

s′∈ϕ−1(x)

∑
t≥1 γ

t−1pπt (s
′)π(a|s′)

p∞(s′)bϕ(a|x)
P(S = s′|ϕ(S) = x)

=
(1− γ)

∑
s′∈ϕ−1(x)

∑
t≥1 γ

t−1pπt (s
′)π(a|s′)

p∞(x)bϕ(a|x)
.

Here, the subscript t in bϕ and S is dropped due to stationarity. Additionally, p∞(x) is used to
denote the probability mass function (pmf) of ϕ(S), albeit with a slight abuse of notation. Moreover,
the numerator represents the discounted visitation probability of (A, ϕ(S)) under π. This proves
that wπ(a, s) = wπ

ϕ(a, ϕ(s)).

Finally, we establish the unbiasedness of DRL. According to the doubly robustness property, DRL
is Fisher consistent when either Qπ or wπ is correctly specified. Under Qπ-irrelevance, we have
Qπ(a, s) = Qπ

ϕ(a, ϕ(s)) and thus DRL remains Fisher consistent when applied to the abstract state
space. Similarly, we have wπ(a, s) = wπ

ϕ(a, ϕ(s)) under wπ-irrelevance, which in turn implies
DRL’s unbiasedness. This completes the proof.

D.2 PROOF OF LEMMA 1

We prove Lemma 1 in this subsection. We first show Qπ-irrelevance under model-irrelevance &
π-irrelevance, and prove the Fisher consistency of the Q-function-based method. Then, we establish
Fisher consistency of MIS. Next, we derive Fisher consistency of SIS. Finally, we prove the Fisher
consistency of DRL.

• Fisher consistency of Q-function-based method. We first use the induction method to prove that

Qπ(a, s(1)) = Qπ(a, s(2)), (D.3)

whenever s(1) and s(2) satisfy ϕ(s(1)) = ϕ(s(2)). This demonstrates Qπ-irrelevance, which further
implies E[f1(Qπ)] = E[f1(Qπ

ϕ)] according to Lemma D.1. We next establish the identifiability of
Qπ

ϕ.
Define

Qπ
j (a, s) = Eπ

[
j∑

t=1

γt−1Rt|S1 = s,A1 = a

]
, and

V π
j (s) = Eπ

[
j∑

t=1

γt−1Rt|S1 = s

]
.
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Under reward-irrelevance, we have

Qπ
1 (a, s

(1)) =Eπ
[
R1|S1 = s(1), A1 = a

]
=R(a, s(1))
=R(a, s(2))
=Qπ

1 (a, s
(2)).

Together with π-irrelevance, we obtain that

V π
1 (s(1)) =

∑
a∈A

Qπ
1 (a, s

(1))π(a|s(1))

=
∑
a∈A

Qπ
1 (a, s

(2))π(a|s(2))

=V π
1 (s(2)).

Suppose we have shown that the following holds for any j < T ,

Qπ
j (a, s

(1)) = Qπ
j (a, s

(2)) and V π
j (s(1)) = V π

j (s(2)), (D.4)

whenever ϕ(s(1)) = ϕ(s(2)). Our goal is to show equation D.4 holds with j = T .
We similarly define Qπ

j,ϕ and V π
j,ϕ as the Q- and value functions on the abstract state space. Similar

to the proof of Theorem D.1, we can show that Qπ
j = Qπ

j,ϕ and V π
j = V π

j,ϕ for any j < T .
Direct calculations yield

Qπ
T (a, s

(1)) =Eπ

[
T∑

t=1

γt−1Rt|S1 = s(1), A1 = a

]

=Eπ

[
T∑

t=2

γt−1Rt|S1 = s(1), A1 = a

]
+R(a, s(1))

=Eπ
∑
s′∈S

[
T∑

t=2

γt−1Rt|S2 = s′

]
T (s′|s(1), a) +R(a, s(1))

=γEπ
∑
x′∈X

∑
s′∈ϕ−1(x′)

[
T∑

t=2

γt−2Rt|S2 = s′

]
T (s′|s(1), a) +R(a, s(1))

=γ
∑
x′∈X

∑
s′∈ϕ−1(x′)

V π
T−1(s

′)T (s′|s(1), a) +R(a, s(1))

=γ
∑
x′∈X

∑
s′∈ϕ−1(x′)

V π
T−1(s

′)T (s′|s(2), a) +R(a, s(2))

=Qπ
T (a, s

(2)),

where the second last equation holds due to transition-irrelevance in equation 3 and equation D.4,
which states that V π

T−1(s
′) is constant as a function of s′ ∈ ϕ−1(x′).

This together with π-irrelevance proves V π
T -irrelevance. By induction, we have shown that equa-

tion D.4 holds for any j ≥ 1. Under the boundness assumption in Assumption 1, Qπ
j → Qπ as

j →∞. We thus obtain equation D.3, which yields Qπ-irrelevance.
Next, we prove the identifiability of Qπ

ϕ. Similarly, we define

Qπ
j,ϕ(a, x) =

j∑
t=1

γt−1Eπ [Rt|ϕ(S1) = x,A1 = a] . (D.5)

By setting j = 1, it reduces to Eπ[R1|ϕ(S1) = x,A1 = a]. Under the MDP model assumption,
the conditional mean of the immediate reward depends solely on the current state-action pair,
independent of past history. This together with the reward-irrelevance condition further implies that
the conditional mean of the reward depends solely on the abstract-state-action pair. Consequently,

Eπ[R1|ϕ(S1) = x,A1 = a] = E[R1|ϕ(S1) = x,A1 = a]︸ ︷︷ ︸
Rϕ(a,x)

.
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Notice that the expectation on the right-hand-side (RHS) is defined with respect to the behavior
policy. It can thus be consistently estimated using the offline data under the coverage assumption in
Assumption 2. This yields the identifiability of Qπ

1,ϕ.
Similarly, we can show that

Pπ[ϕ(S2) = x′|A1 = a, ϕ(S1) = x] = P[ϕ(S2) = x′|A1 = a, ϕ(S1) = x]︸ ︷︷ ︸
Tϕ(x′|a,x)

,

under transition-irrelevance, which establishes the identifiability of the left-hand-side (LHS).
Notice that for any j ≥ 1, under the MDP model assumption, Qπ

j,ϕ can be represented using
Eπ[R1|ϕ(S1) = x,A1 = a] and Pπ[ϕ(S2) = x′|A1 = a, ϕ(S1) = x]. Both have been proven
identifiable. This the establishes identifiability of Qπ

j,ϕ. Again, by letting j →∞, we obtain the
identifiability of Qπ

ϕ under the boundedness assumption in Assumption 1. The proof is hence
completed.

• Fisher consistency of MIS. We use pπt,ϕ(a, x) to denote the probability Pπ(At = a, ϕ(St) = x)

and pπt (s) to denote Pπ(St = s). Under the stationary assumption, direct calculations yield

E[f3(wπ
ϕ)] =E

[
(1− γ)−1wπ

ϕ(A, ϕ(S))R
]

=E
[
(1− γ)−1wπ

ϕ(A, ϕ(S))R
(
A,S

)]
=E

(1− γ)−1wπ
ϕ(A, ϕ(S)) Rϕ

(
A, ϕ(S)

)︸ ︷︷ ︸
reward-irrelevant


=

∑
a∈A,x∈X

+∞∑
t=1

γt−1pπt (a, x)Rϕ(a, x)

=
∑

a∈A,x∈X

∑
s∈ϕ−1(x)

+∞∑
t=1

γt−1π(a|s)pπt (s)R(a, s)

=

+∞∑
t=1

γt−1Eπ(Rt)

=E[f3(wπ)].

To complete the proof, it remains to establish the identifiability of wπ
ϕ .

Under the stationarity assumption in Assumption 3, ωπ
ϕ can be represented by∑

t≥1 γ
t−1pπt,ϕ(a, x)

P(A1 = a, ϕ(S1) = x)
.

It is immediate to see that the denominator is identifiable, as the probability is calculated with
respect to the behavior policy. It suffices to show that for any t ≥ 1, pπt is identifiable as well.
Under transition-irrelevance, the data triplets (ϕ(S), A,R) forms an MDP, satisfying the Markov
assumption. As such, we can rewrite pπt (at, xt) as∑

a1,··· ,at−1∈A
x1,··· ,xt−1∈X

ρ0,ϕ(x1)

t−1∏
k=1

[
πϕ(ak|xk)Tϕ(xk+1|ak, xk)

]
πϕ(at|xt),

where ρ0,ϕ denotes the pmf of ϕ(S1) which is independent of π, and both πϕ and Tϕ are identifiable
under π- and transition-irrelevance, respectively. This proves the identifiability of pπt , and hence,
the identifiability of wπ

ϕ .
• Fisher consistency of SIS. Recall that we require the behavior policy to be Markovian, meaning

that at any time t, At is independent of historical observations given St. A key challenge in
state abstraction for the SIS estimator is that, after abstraction, the behavior policy can be history-
dependent, leading to the inconsistency of SIS. Toward that end, we employ a history-dependent IS
ratio to address this challenge. Specifically, let ρπj,ϕ denote

ρπj,ϕ =
πϕ(Aj |ϕ(Sj))

bj,ϕ(Aj |ϕ(Sj), Aj−1, ϕ(Sj−1), . . . , A1, ϕ(S1))
. (D.6)
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Under π-irrelevance, the numerator is well-defined and identifiable. However, unlike the standard
IS ratio where the denominator depends solely on the current state, the denominator in equation D.6
depends on the entire history. Notice that the denominator is essentially the data distribution of Aj

given ϕ(Sj), Aj−1, ϕ(Sj−1), . . . , A1, ϕ(S1), it is thus identifiable from the offline data as well.
Under the coverage assumption in Assumption 2, the behavior policy is bounded away from zero.
Since the behavior policy is stationary, this conditional pmf can be represented by

E[b(•|Sj)|ϕ(Sj), Aj−1, ϕ(Sj−1), . . . , A1, ϕ(S1)],

which is bounded away from zero as well. Consequently, ρπt,ϕ is bounded and identifiable.
Let ρπ1:t,ϕ denote the SIS ratio

∏t
j=1 ρ

π
j,ϕ. It suffices to show

E(ρπ1:tRt) = E(ρπ1:t,ϕRt), (D.7)

for any t. Under the Markov assumption, Rt is independent of past state-action pairs given At and
St. Consequently, the left-hand-side can be represented as

E[E(ρπ1:t−1|At, St)ρ
π(At, St)Rt].

Additionally, since the generationAt depends only on St, the inner expectation equals E(ρπ1:t−1|St)
which can be further shown to equal to pπt (St)/p∞(St). This allows us to represent the left-hand-
side of equation D.7 by

E
[ pπt (St)

p∞(St)
ρπ(At, St)Rt

]
. (D.8)

Using similar arguments to the proof of Fisher consistency of MIS estimator, under reward-
irrelevance, equation D.8 can be shown to equal to

∑
a1,··· ,at∈A
x1,··· ,xt∈X

ρ0(x1)

t−1∏
k=1

[
πϕ(ak|xk)Tϕ(xk+1|ak, xk)

]
πϕ(at|xt)Rϕ(at, xt).

Notice that both Tϕ and Rϕ independent of the target policy π. Using the change of measure
theorem, we can represent above expression by E(ρπ1:t,ϕRt). This completes the proof.

• Fisher consistency of DRL under model-irrelevance. Since model-irrelevance and π-irrelevance
imply Qπ-irrelevance and the identifiability of Qπ , the conclusion directly follows from the double
robustness of DRL and that in the first bullet point.

D.3 PROOF OF THEOREM 1

We establish the Fisher consistencies of SIS, MIS, Q-function-based method and DRL one by one.

• Fisher consistency of SIS. Notice that ρπ-irrelevance directly follows from the definition of
backward-model-irrelevance and π-irrelevance. It follows from Lemma D.1 that E[f2(ρπ)] =
E[f2(ρπϕ)].
Additionally, under π-irrelevance and behavior-policy-irrelevance, both the numerator and the
denominator of the IS ratio ρπϕ are identifiable. Consequently, ρπϕ is identifiable as well. This
establishes the Fisher consistency of SIS.

• Fisher consistency of MIS. We first establish the wπ-irrelevance. We next establish the identifia-
bility of wπ

ϕ .
To prove the wπ-irrelevance, we begin by defining the marginal density ratio at a given time t as

wπ
t (a, s) =

Pπ(At = a, St = s)

P(At = a, St = s)
.

Under the stationarity assumption, the denominator is independent of t. Notice that wπ(a, s) =
(1− γ)

∑∞
t=1 γ

t−1wπ
t (a, s). Hence, it is sufficient to prove that ϕ is wπ

t -irrelevance, for any t.
We prove this by induction. First, when t = 1, wπ

t is reduced to ρπ . Consequently, wπ
1 -irrelevance

is readily obtained by backward-model-irrelevance and π-irrelevance.
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Second, suppose we have established wπ
t -irrelevance. We aim to show wπ

t+1-irrelevance. With
some calculations, we obtain that

E[wπ
t (At, St)ρ

π(At+1, St+1)|At+1 = a, St+1 = s]

=
∑
a′,s′

wπ
t (a

′, s′)
π(a|s)
b(a|s)

P(At = a′, St = s′|At+1 = a, St+1 = s)

=
∑
a′,s′

Pπ(At = a′, St = s′)

P(At = a′, St = s′)

π(a|s)
b(a|s)

P(At = a′, St = s′, At+1 = a, St+1 = s)

P(At+1 = a, St+1 = s)

=
∑
a′,s′

Pπ(At = a′, St = s′)
π(a|s)
b(a|s)

× P(At+1 = a|St+1 = s,At = a′, St = s′)

P(At+1 = a, St+1 = s)
P(St+1 = s|At = a′, St = s)

=
∑
a′,s′

Pπ(At = a′, St = s′)
π(a|s)

P(At+1 = a, St+1 = s)
P(St+1 = s|At = a′, St = s)

=
Pπ(At+1 = a, St+1 = s)

P(At+1 = a, St+1 = s)

=wπ
t+1(a, s),

(D.9)

where the third last equality is due to that the behavior policy is stationary. This establishes the link
between wπ

t , ρπ and wπ
t+1.

To prove wπ
t+1-irrelevance, we first prove the following equation holds:∑

s′∈ϕ−1(x′)

P(At = a′, St = s′|At+1 = a, St+1 = s(1))

=
∑

s′∈ϕ−1(x′)

P(At = a′, St = s′|At+1 = a, St+1 = s(2)),
(D.10)

whenever ϕ(s(1)) = ϕ(s(2)).
Indeed, by equation 5, we obtain that∑

s′∈ϕ−1(x′)

P(At = a′, St = s′|At+1 = a, St+1 = s(1))

=
∑

s′∈ϕ−1(x′)

P(At = a′, St = s′, At+1 = a, St+1 = s(1))

P(At+1 = a, St+1 = s(1))

=
∑

s′∈ϕ−1(x′)

P(At+1 = a|St+1 = s(1), At = a′, St = s′)

P(At+1 = a, St+1 = s(1))
P(St+1 = s(1), At = a′, St = s′)

=
∑

s′∈ϕ−1(x′)

P(At = a′, St = s′|St+1 = s(1))

=
∑

s′∈ϕ−1(x′)

P(At = a′, St = s′|St+1 = s(2))

=
∑

s′∈ϕ−1(x′)

P(At = a′, St = s′|At+1 = a, St+1 = s(2)).

Consequently,

wπ
t+1(a, s

(1))

=
∑
a′,s′

wπ
t (a

′, s′)ρπ(a, s(1))P(At = a′, St = s′|At+1 = a, St+1 = s(1))

=
∑
a′,s′

wπ
t (a

′, s′)ρπ(a, s(2))P(At = a′, St = s′|At+1 = a, St+1 = s(2))

=wπ
t+1(a, s

(2)),
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where the second last equation follows from wπ
t -irrelevance, ρπ-irrelevance and equation D.10.

This yields wπ
t+1-irrelevance, and subsequently wπ-irrelevance, by induction. By Lemma D.1,

wπ-irrelevance further yields E[f3(wπ)] = E[f3(wπ
ϕ)].

It remains to prove the identifiability of wπ
ϕ . We similarly define

wπ
t,ϕ(a, x) =

Pπ(At = a, ϕ(St) = x)

P(At = a, ϕ(St) = x)
.

It follows that wπ
ϕ =

∑
t≥1 γ

t−1wπ
t,ϕ. Again, wπ

1,ϕ corresponds to ρπϕ, which is identifiable under
backward-model-irrelevance and π-irrelevance.
Based on the aforementioned arguments, we can show that

wπ
t+1,ϕ(a, x) =

∑
a′,x′

wπ
t,ϕ(a

′, x′)ρϕ(a|x)P(At = a′, ϕ(St) = x′|At+1 = a, ϕ(St+1) = x),

where the last term on the RHS is well-defined according to equation D.10. Suppose we have
shown the identifiability of wπ

t,ϕ. Then each term on the RHS is identifiable. This proves the
identifiability of wπ

t+1,ϕ. By induction, wπ
t,ϕ is identifiable for each t ≥ 1.

According to the coverage and stationarity assumptions in Assumptions 2 and 3, the denominators
in {wπ

t,ϕ} are bounded away from zero. Consequently, {wπ
t,ϕ} are uniformly bounded. By letting

t→∞, we obtain the identifiability of wπ
ϕ . The proof is thus completed.

• Fisher consistency of Q-function-based method. We first show that E[f1(Qπ
ϕ)] = E[f1(Qπ)]

under π-irrelevance. This is immediate by noting that

E[f1(Qπ)] = J(π) =
∑
t≥1

γt−1Eπ(Rt) =
∑
a,x

∑
t≥1

γt−1Eπ(Rt|A1 = a, ϕ(S1) = x)

×Pπ(A1 = a|ϕ(S1) = x)P(ϕ(S1) = x) = E[f1(Qπ
ϕ)],

where the first term on the second line equals π(a|s) for any s such that ϕ(s) = x, under π-
irrelevance.
It remains to prove the identifiability of Qπ

ϕ under π- and backward-model-irrelevance. First, we
establish the identifiability of Eπ(R1|A1 = a, ϕ(S1) = x). By definition

Eπ(R1|A1 = a, ϕ(S1) = x) =
Eπ[R1I(A1 = a, ϕ(S1) = x)]

Pπ(A1 = a, ϕ(S1) = x)
.

Using the change of measure theorem, the numerator equals

E
[
ρπ(a|S1)R1I(A1 = a, ϕ(S1) = x)

]
= E

[
ρπϕ(a|x)R1I(A1 = a, ϕ(S1) = x)

]
= ρπϕ(a|x)E

[
R1I(A1 = a, ϕ(S1) = x)

]
,

where the first equation holds due to π- and behavior-policy-irrelevance. Notice that the denomina-
tor equals P(ϕ(S1) = x)πϕ(a|x), it follows that

Eπ(R1|A1 = a, ϕ(S1) = x) = E(R1|A1 = a, ϕ(S1) = x),

which is identiable from the data.
Similarly, one can show that Pπ(ϕ(S2) = x′|A1 = a, ϕ(S1) = x) = P(ϕ(S2) = x′|A1 =
a, ϕ(S1) = x) is identifiable as well.
Now, the identifiability can be readily obtained if we show (ϕ(St), At, Rt)t≥1 remains an MDP. In
that case, standard Q-learning algorithms can be applied to such a reduced MDP to consistently
identify Qπ

ϕ. Such an MDP property will be proven in Section D.4.2 under a more challenging
setting that allows the behavior policy to be history-dependent.

• Fisher consistency of DRL. Due to the double robustness property of DRL, the conclusion directly
follows from the last conclusion of Theorem D.1 and the first two conclusions of Theorem 1.

D.4 PROOF OF THEOREM 2

First, we notice that according to the DRL’s double robustness property, its Fisher consistency is
achieved when either the MIS or the Q-function-based estimator is Fisher consistent. Consequently,
it suffices to prove the Fisher consistencies of the rest three estimators.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Additionally, at the first iteration, these Fisher consistencies directly follows from Lemma 1. Conse-
quently, it suffices to prove the Fisher consistencies at later iterations. Below, we first prove the Fisher
consistencies of SIS, MIS and Q-function-based estimator at the second iteration. Next, we prove
the resulting abstraction is a Markov state abstraction (Allen et al., 2021) in that the data generating
process when confined to the abstract state space remains an MDP. This together with Lemma 1
proves the Fisher consistencies at the third iteration. Using similar arguments, we can establish the
Fisher consistencies at any K > 3 iterations. The proof can thus be completed.

D.4.1 FISHER CONSISTENCIES AT THE 2ND ITERATION

It is worthwhile mentioning that at the second iteration, the refined backward-model-irrelevance
condition is defined with respect to the abstract state space induced by the forward abstraction ϕ1 at
the first iteration instead of the ground state space. In particular, we require

bϕ1,t(at|x
(1)
t , at−1, x

(1)
t−1, · · · , x

(1)
1 ) = bϕ1,t(at|x

(2)
t , at−1, x

(2)
t−1, · · · , x

(2)
1 ), (D.11)

for any t and {at}t, whenever ϕ2(x
(1)
t ) = ϕ2(x

(1)
t ) for any {x(1)t }t and {x(2)t }t, where bϕ1,t denote

the history-dependent behavior policy (see also the denominator of Equation D.6), and∑
x∈ϕ−1

2 (x2)

P(At = a, ϕ1(St) = x|ϕ1(St+1) = x(1))

=
∑

x∈ϕ−1
2 (x2)

P(At = a, ϕ1(St) = x|ϕ1(St+1) = x(2)),
(D.12)

whenever ϕ2(x(1)) = ϕ2(x
(2)).

In the following, we prove the Fisher consistencies of SIS, MIS and Q-function-based method one
by one:

• Fisher consistency of SIS. When restricting to the abstract state space induced by ϕ1, the result-
ing behavior policy is not guaranteed to be Markovian. To address this challenge, SIS employs
the history-dependent IS ratio defined in Equation D.6 to maintain consistency. Let ρπ1:t,ϕ1

and
ρπ1:t,ϕ2◦ϕ1

denote the history-dependent SIS ratios at the first and second iterations, respectively. Un-
der π-irrelevance and the refined history-dependent-behavior-policy-irrelevance (see equation D.11),
it is immediate to see that ρπ1:t,ϕ1

= ρπ1:t,ϕ2◦ϕ1
so that ρπ-irrelevance is achieved at the second

iteration. This in turn validates the unbiasedness of the SIS estimator based on {ρπ1:t,ϕ2◦ϕ1
}t.

Finally, notice that the denominators in ρπ1:t,ϕ2◦ϕ1
are identifiable since these probabilities are

defined with respect to the offline data distribution. Meanwhile, under π-irrelevance, the numerator
is identifiable as well. This proves the identifiability of these history-dependent IS ratios. The
Fisher consistency of SIS thus follows.

• Fisher consistency of MIS. We first show that the abstraction produced by DSA at the second
iteration achieves wπ-irrelevance, i.e., wπ

ϕ1
= wπ

ϕ2◦ϕ1
. We next establish the identifiability of the

MIS ratio wπ
ϕ2◦ϕ1

.
The proof is very similar to that of Theorem 1. Specifically, define

wπ
t,ϕ1

(a, x) =
Pπ(At = a, ϕ(St) = x)

P(At = a, ϕ(St) = x)
,

we have wπ
ϕ1

= (1− γ)
∑

t≥1 γ
t−1wπ

t,ϕ1
. It suffices to establish the irrelevance in wπ

t,ϕ1
for any t.

When t = 1, wπ
1,ϕ1

is reduced to the IS ratio πϕ1
(a|x)/b1,ϕ1

(a, x). Under π-irrelevance and
behavior-policy-irrelevance (by setting j in Equation D.11 to 1), the numerator πϕ1

and denominator
b1,ϕ1

equal πϕ2◦ϕ1
and b1,ϕ2◦ϕ1

(the behavior policy when restricting to the abstract state space
produced by DSA at the 2nd iteration), respectively. This establishes the irrelevance in wπ

1,ϕ1
.

Suppose we have proven the irrelevance in wπ
t,ϕ1

, we aim to show the irrelevance in wπ
t+1,ϕ1

. Under
the stationarity assumption in Assumption 3, by setting j in Equation 6 to 2, we obtain that

P(At = a2|ϕ1(St) = x
(1)
2 , At−1 = a1, ϕ1(St−1) = x

(1)
1 )

=P(At = a2|ϕ1(St) = x
(2)
2 , At−1 = a1, ϕ1(St−1) = x

(2)
1 ),

(D.13)
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for any t, a1 and a2, whenever ϕ2(x
(1)
1 ) = ϕ2(x

(2)
1 ) and ϕ2(x

(1)
2 ) = ϕ2(x

(2)
2 ).

Let Xt denote ϕ1(St) for any t. We next claim that

wt+1,ϕ1
(a, x) = E

[
wt,ϕ1

(At, Xt)
πϕ1

(At|Xt)

b2,ϕ1(At+1|Xt+1, At, Xt)
|At+1 = a,Xt+1 = x

]
. (D.14)

Notice that this formula is very similar to equation D.9. The only difference lies in that the
denominator of the IS ratio on the RHS is no longer Markovian. Rather, it depends on the current
state as well as the previous state-action pair. Meanwhile, equation D.14 can be proven using
similar arguments to equation D.9.
Based on equation D.14, we are ready to establish the irrelevance in wπ

t+1,ϕ. In particular, looking
at the RHS of equation D.14, both wt,ϕ1 and the IS ratio πϕ1/b2,ϕ1 depend on Xt and Xt+1

only through their abstractions ϕ2(Xt) and ϕ2(Xt+1). Meanwhile, the conditional distribution
of At, Xt given At+1, Xt+1 depends on Xt and Xt+1 through their abstractions, as well, given
equation D.13 and equation D.12. This establishes the irrelevance in wt+1,ϕ1

. By induction, we
have proven the irrelevance in wt,ϕ1

for any t. Under the coverage assumption in Assumption 2,
these ratios are uniformly bounded. It follows that the limit limT

∑T
t=1 γ

t−1wπ
t,ϕ1

is well-defined.
By setting T →∞, we obtain the irrelevance in wπ

ϕ1
.

So far, we have established the wπ-irrelevance. This in turn yields E[f3(wπ
ϕ1
)] = E[f3(wπ

ϕ2◦ϕ1
)],

according to Lemma D.1. It remains to prove the identifiability of wπ
ϕ2◦ϕ1

. However, this can
be proven using similar arguments to the proof of Theorem 1. Specifically, we first observe that
wπ

ϕ2◦ϕ1
= limT

∑T
t=1 γ

t−1wπ
t,ϕ2◦ϕ1

. Next, when setting t = 1, the identifiability of wπ
1,ϕ2◦ϕ1

is
readily available, given that of ρπϕ2◦ϕ1

. Finally, since wt+1,ϕ2◦ϕ1
(a, x2) equals

E
[
wt,ϕ2◦ϕ1(At, ϕ2(Xt))

πϕ2◦ϕ1
(At|ϕ2(Xt))

b2,ϕ2◦ϕ1(At+1|ϕ2(Xt+1), At, ϕ2(Xt))
|At+1 = a, ϕ2(Xt+1) = x2

]
,

we can employ similar arguments to the proof of Theorem 1 to prove the identifiability of the above
expression, assuming wt,ϕ2◦ϕ1 is identifiable. By induction, this establishes the identifiability of
wϕ2◦ϕ1 .

• Fisher consistency of Q-function-based method. The Fisher consistency of Q-function-based
method can be established in a similar manner to that in Theorem 1. Specifically, under π-
irrelevance, it is trivial to show E[f1(Qπ

ϕ1
)] = J(π) = E[f1(Qπ

ϕ2◦ϕ1
)]. Meanwhile, its identifiabil-

ity is readily obtained based on the results in the following section, which proves that the process
(ϕ2(ϕ1(St)), At, Rt)t≥1 remains an MDP.

D.4.2 BACKWARD ABSTRACTION IS A MARKOV STATE ABSTRACTION

It is equivalent to prove that, when the backward abstraction ϕ is obtained by applying the refined
backward-model-irrelevance condition to the original MDP (St, At, Rt)t≥1 with a history-dependent
behavior policy, the reduced process (ϕ(St), At, Rt)t≥1 remains an MDP.

We start by presenting the following lemma and its proof.

Lemma D.2 For any a, x, t and st+1, xt+1 such that ϕ(st+1) = xt+1, we have∑
s∈ϕ−1(x)

P(At = a, St = s|St+1 = st+1) = P(At = a, ϕ(St) = x|ϕ(St+1) = xt+1). (D.15)

Additionally, for any at, st, xt such that ϕ(st+1) = xt+1, we have

P(At = at|St = st)

P(At = at|ϕ(St) = xt)
=

P(At = at|St = st, {At−k = at−k, ϕ(St−k) = xt−k}k∈G)

P(At = at|ϕ(St) = xt, {At−k = at−k, ϕ(St−k) = xt−k}k∈G)
,

(D.16)

for any G = {1, 2, . . . , ℓ} with any ℓ ∈ {1, 2, . . . , t− 1}.
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Proof of Lemma D.2. Using similar arguments to equation D.2, we have
P(At = a, ϕ(St) = x|ϕ(St+1) = xt+1)

=
P(At = a, ϕ(St) = x, ϕ(St+1) = xt+1)

P(ϕ(St+1) = xt+1)

=
∑

st+1∈ϕ−1(xt+1)

P(At = a, ϕ(St) = x, St+1 = st+1)

P(ϕ(St+1) = xt+1)

=
∑

s′t+1∈ϕ−1(xt+1)

P(At = a, ϕ(St) = x|St+1 = st+1)P(St+1 = s′t+1|ϕ(St+1) = xt+1)

=P(At = a, ϕ(St) = x|St+1 = st+1)

=
∑

s∈ϕ−1(x)

P(At = a, St = s|St+1 = st+1),

(D.17)

where the third equation is due to the backward-transition-irrelevance condition, under which P(At =
a, ϕ(St) = x|St+1 = st+1) equals P(At = a, ϕ(St) = x|St+1 = s′t+1). This proves equation D.15.

Next, under the stationarity assumption in Assumption 3 and the history-dependent-behavior-policy-
irrelevance condition, we have for any {s(1)ℓ }ℓ, {s

(2)
ℓ }t such that ϕ(s(1)ℓ ) = ϕ(s

(2)
ℓ ) = xℓ for all ℓ ≥ 1

that
P(At = at|St = s

(1)
t , {At−k = at−k, St−k = s

(1)
t−k}k∈G))

=P(At = at|St = s
(2)
t , {At−k = at−k, St−k = s

(2)
t−k}k∈G),

(D.18)

for any t, {aℓ}ℓ and G. This in turn yields,

P(At = at|St = s
(1)
t )

P(At = at|St = s
(2)
t )

=
P(At = at|St = s

(1)
t , {At−k = at−k, St−k = s

(1)
t−k}G))

P(At = at|St = s
(2)
t , {At−k = at−k, St−k = s

(2)
t−k}G)

.

(D.19)

With some calculations, we have
P(At = at|St = st, {At−k = at−k, ϕ(St−k) = xt−k}k∈G)

=
P(At = at, {At−k = at−k, ϕ(St−k) = xt−k}k∈G|St = st)

P({At−k = at−k, ϕ(St−k) = xt−k}k∈G|St = st)

=
∑

st−k∈ϕ−1(xt−k),k∈G

P(At = at, {At−k = at−k, St−k = st−k}k∈G|St = st)

P({At−k = at−k, ϕ(St−k) = xt−k}k∈G|St = st)

=
∑

st−k∈ϕ−1(xt−k),k∈G

P({At−k = at−k, St−k = st−k}k∈G|St = st)

P({At−k = at−k, ϕ(St−k) = xt−k}k∈G|St = st)

× P(At = at|St = st, {At−k = at−k, St−k = s
(1)
t−k}k∈G)

=P(At = at|St = st, {At−k = at−k, St−k = s
(1)
t−k}k∈G),

(D.20)

where the last equation follows from equation D.18.

Combing equation D.19 with equation D.20, we obtain that

P(At = at|St = s
(1)
t , {At−k = at−k, ϕ(St−k) = xt−k}k∈G)

P(At = at|St = s
(2)
t , {At−k = at−k, ϕ(St−k) = xt−k}k∈G)

=
P(At = at|St = s

(1)
t , {At−k = at−k, St−k = s

(1)
t−k}k∈G)

P(At = at|St = s
(2)
t , {At−k = at−k, St−k = s

(2)
t−k}k∈G)

=
P(At = at|St = s

(1)
t )

P(At = at|St = s
(2)
t )

,
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or equivalently,

P(At = at|St = s
(1)
t )

P(At = at|St = s
(1)
t , {At−k = at−k, ϕ(St−k) = xt−k}k∈G)

=
P(At = at|St = s

(2)
t )

P(At = at|St = s
(2)
t , {At−k = at−k, ϕ(St−k) = xt−k}k∈G)

.

(D.21)

Using similar arguments to equation D.2 and equation D.17, the LHS can be represented by
P(At = at|ϕ(St) = xt)

P(At = at|ϕ(St) = xt, {At−k = at−k, ϕ(St−k) = xt−k}k∈G)

equation D.16 follows directly from equation D.21.

Proof of the Markov property. We next prove that the refined backward abstraction is indeed an
MSA, despite that the behavior policy is no longer Markovian. Toward that end, we first show that
the evolution of ϕ(St) remains Markovian. Specifically, we aim to show

(At−k, ϕ(St−k))1≤k≤t−1 ⊥⊥ St+1|(ϕ(St), At). (D.22)

Indeed, by setting the time index t in equation D.15 to t+ 1, we obtain that
P(St = st|At−1 = at−1, ϕ(St−1) = xt−1)

P(ϕ(St) = xt|At−1 = at−1, ϕ(St−1) = xt−1)
=

P(St = st)

P(ϕ(St) = xt)
. (D.23)

Combing equation D.23 with equation D.16, we have
P(St = st|At−1 = at−1, ϕ(St−1) = xt−1)P(At = at|St = st, At−1 = at−1, ϕ(St−1) = xt−1)

P(ϕ(St) = xt|At−1 = at−1, ϕ(St−1) = xt−1)P(At = at|ϕ(St) = xt, At−1 = at−1, ϕ(St−1) = xt−1)

=
P(St = st)P(At = at|St = st)

P(ϕ(St) = xt)P(At = at|ϕ(St) = xt)
, (D.24)

or equivalently,
P(At = at, St = st|At−1 = at−1, ϕ(St−1) = xt−1)

P(At = at, ϕ(St) = xt|At−1 = at−1, ϕ(St−1) = xt−1)

=
P(At = at, St = st)

P(At = at, ϕ(St) = xt)
.

(D.25)

Since the original process (St, At, Rt)t≥1 is an MDP, we have

P(At = at, St = st|At−1 = at−1, ϕ(St−1) = xt−1)

P(At = at, ϕ(St) = xt|At−1 = at−1, ϕ(St−1) = xt−1)

× P(St+1 = st+1|At = at, St = st, At−1 = at−1, ϕ(St−1) = xt−1)

=
P(St+1 = st+1|At = at, St = st)P(At = at, St = st)

P(At = at, ϕ(St) = xt)
,

leading to

P(St+1 = st+1|At = at, ϕ(St) = xt, At−1 = at−1, ϕ(St−1) = xt−1)

=P(St+1 = st+1|At = at, ϕ(St) = xt).
(D.26)

Equation D.26 implies that when k = 1, equation D.22 holds.

Furthermore, by summing over st+1 ∈ ϕ−1(xt+1) on both sides of equation D.26, we obtain that

P(ϕ(St+1) = xt+1|At = at, ϕ(St) = xt, At−1 = at−1, ϕ(St−1) = xt−1)

=P(ϕ(St+1) = xt+1|At = at, ϕ(St) = xt).

This together with equation D.26 yields
P(St+1 = st+1|At = at, ϕ(St) = xt, At−1 = at−1, ϕ(St−1) = xt−1)

P(ϕ(St+1) = xt+1|At = at, ϕ(St) = xt, At−1 = at−1, ϕ(St−1) = xt−1)

=
P(St+1 = st+1|At = at, ϕ(St) = xt)

P(ϕ(St+1) = xt+1|At = at, ϕ(St) = xt)
=

P(St+1 = st+1)

P(ϕ(St+1) = xt+1)
,
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where the last equation again, follows from the backward-transition-irrelevance.

Under the stationarity assumption, it leads to

P(St = st|At−1 = at−1, ϕ(St−1) = xt−1, At−2 = at−2, ϕ(St−2) = xt−2)

P(ϕ2(St) = xt|At−1 = at−1, ϕ(St−1) = xt−1, At−2 = at−2, ϕ(St−2) = xt−2)

=
P(St = st)

P(ϕ(St) = xt)
.

Applying the same arguments can be repeatedly for t− 2 times, we obtain that

P(St = st|{At−k = at−k, ϕ(St−k) = xt−k}1≤k≤t−1)

P(ϕ2(St) = xt|{At−k = at−k, ϕ(St−k) = xt−k}1≤k≤t−1)

=
P(St = st)

P(ϕ(St) = xt)
.

(D.27)

Now, using the same arguments to equation D.24 and equation D.26, we obtain

P(St+1 = st+1|{At−k = at−k, ϕ(St−k) = xt−k}0≤k≤t−1)

=P(St+1 = st+1|At = at, ϕ(St) = xt).
(D.28)

This proves equation D.22. It is immediate to see that equation D.22 yields

(At−k, ϕ(St−k))1≤k≤t−1 ⊥⊥ ϕ(St+1)|(ϕ(St), At),

which implies that the evolution of {ϕ(St)}t is Markovian.

Next, we demonstrate that the reward function when confined to the abstract state space also satisfies
the Markov property. Similar to equation D.25, by combining equation D.27 and equation D.16, we
obtain that

P(At = at, St = st|{At−k = at−k, ϕ(St−k) = xt−k}1≤k≤t−1)

P(At = at, ϕ(St) = xt|{At−k = at−k, ϕ(St−k) = xt−k}1≤k≤t−1)

=
P(At = at, St = st)

P(At = at, ϕ(St) = xt)
.

(D.29)

Notice that in the original MDP, the reward function satisfies the Markov property, i.e., the conditional
mean of the reward is independent of {At−k, ϕ(St−k)}1≤k≤t−1), given At and St. Consequently,
we can multiply the

∑
r rP(Rt = r|At = at, St = st) on both sides of equation D.29 and obtain that

E[RtI(At = at, St = st)|{At−k = at−k, ϕ(St−k) = xt−k]}1≤k≤t−1

P(At = at, ϕ(St) = xt|{At−k = at−k, ϕ(St−k) = xt−k}1≤k≤t−1)

=
E[RtI(At = at, St = st)]

P(At = at, ϕ(St) = xt)
.

By summing st over ϕ−1(xt) on both sides of the equation, we obtain

E(Rt|At = at, ϕ(St) = xt, {At−k = at−k, ϕ(St−k) = xt−k}0≤k≤t−1)

=E(Rt|At = at, ϕ(St) = xt).

This proves the Markov property of the reward function when restricted to the abstract state space.
The proof is hence completed.

D.5 LEMMA D.3 AND ITS PROOF

We first state Lemma D.3.

Lemma D.3 Suppose the reward is a deterministic function of the state-action pair. Then, the
followings hold for both the bandit and MDP examples:

• The forward abstraction selects the first two groups S(1)
t and S(2)

t ;
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• The proposed backward abstraction selects the last two groups S(2)
t and S(3)

t ;
• The proposed DSA selects their intersection S(2)

t and converges in two steps, resulting in a smaller
subset of variables compared to the two non-iterative procedures.

We next prove this lemma. Notice that reward-irrelevance requires the reward function (i.e., the
conditional mean of the immediate reward given the state-action pair) to depend on the state only
through its abstraction. Under the deterministic reward assumption in Lemma D.3, such a conditional
mean independence is equivalent to conditional independence. In other words, reward-irrelevance is
achieved if the reward is conditionally independent of the state given the action and the abstract state.

D.5.1 PROOF FOR THE BANDIT EXAMPLE

We first consider the bandit example. As commented in the main text, in the contextual bandit setting,
model-irrelevance is reduced to reward-irrelevance whereas backward-model-irrelevance is reduced
to behavior-policy-irrelevance. Consequently, it is immediate to see that the assertions in the first two
bullet points hold.

To prove the last bullet point, notice that according to the first bullet point, DSA would select S(1)
t

and S(2)
t in the first iteration. In the second iteration, DSA would select S(2)

t , due to the conditional
independence between At and S(1)

t given S(2)
t . To verify such conditional independence, notice that

there are two paths from S
(1)
t → At: (i) S(1)

t → Rt ← At; (ii) S(1)
t → Rt ← S

(2)
t → A2. The

second path is blocked by S(2)
t whereas the first path contains a collider Rt which is a child of S(2)

t .
Consequently, both paths fail to d-connect S(1)

t and At given S(2)
t , leading to the desired conditional

independence property. Since Rt is a child of S(2)
t , in the third iteration, S(2)

t will be selected as
well. Similarly, in the subsequent iteration, S(2)

t will again be selected since At is a child of S(2)
t .

Consequently, DSA converges after two iterations.

D.6 PROOF FOR THE MDP EXAMPLE

As discussed in the main text:

• Selecting the first group of variables achieves reward-irrelevance.
• Selecting the last group of variables achieves behavior-policy-irrelevance.
• Selecting the second group of variables achieves both transition-irrelevance and backward-transition-

irrelevance.

It is immediate to see that the the assertions in the first two bullet points hold. To prove the last bullet
point, again, notice that DSA would select S(1)

t and S(2)
t in the first iteration. In the second iteration,

DSA would select S(2)
t , due to (i) the conditional independence between S(1)

t and At given S(2)
t

and (ii) that between S(1)
t+1 and (At, S

(2)
t ) given S(1)

t+2. This is because (i) implies behavior-policy-
irrelevance and (ii) implies backward-transition-irrelevance (see the discussion below equation 5)
when restricted to the space of the first two groups of variables.

It remains to verify (i) and (ii). To prove (i), notice that all paths from S
(1)
t to At is either blocked by

S
(2)
t , or include the collider S(1)

t → Rt ← At. To prove (ii), similarly, notice that all paths from (At,
S
(2)
t ) to S(1)

t+1 is either blocked by S(2)
t , or include the collider S(1)

t+1 → Rt+1 ← At+1.

Thus, we have shown that DSA would select S(2)
t in the second iteration. In the third iteration, notice

that there is a path S(2)
t → S

(1)
t → Rt which is not blocked by At. Consequently, DSA would select

S
(2)
t in the third iteration as well. Similarly, in the subsequently iteration, DSA would select S(3)

t ,
due to the path S(2)

t → S
(3)
t → At. As such, it converges after two iterations.
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