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Abstract

Representation systems for polymers are a constant issue in the development of
deep-learning models for polymer property prediction, necessitating a balance
between structural accuracy, interpretability, and interoperability to achieve utility
across prediction tasks. To facilitate this, we introduce a serialized polymer graph
(SPG) notation and SPG-TED289M , a SPG-based foundation model for polymers,
which has been pre-trained on a carefully curated dataset of 1 million SPG samples.
To better handle the unique characteristics of SPG, we extended the tokenization
process, resulting in a vocabulary of 2,407 distinct tokens. We evaluated the
SPG-TED289M model’s performance across a range of tasks including copolymer
electron affinity and ionization potential, polymer membrane properties, multi-task
learning, refractive index prediction, ionic conductivity, gas permeability, and glass
transition temperature. The model demonstrated state-of-the-art performance in
most of these areas, achieving results on par with specialized models designed for
specific tasks. This indicates that SPG-TED289M , with minimal fine-tuning, can
adapt effectively to complex polymer-related tasks, showcasing its robustness and
versatility as a foundation model. The SPG-TED289M model provides significant
flexibility and scalability, making it a valuable tool for various applications in
polymer science.

1 Introduction

The creation of generalizable predictive models for polymer properties is a challenging yet critical
endeavor to accelerate the development of high-performance polymeric materials. The ability to
accurately predict polymer properties based solely on their respective structural and architectural fea-
tures is imperative to guide experimental design choices. This is particularly relevant for applications
leveraging automated or autonomous experimentation platforms,[1] where active learning or rein-
forcement learning algorithms may select new candidates based on both on predicted properties and
feasibility within the automated system. However, both the stochastic nature of polymers and myriad
possible architectures makes it difficult to represent their structure accurately and discretely—a
necessity for construction of meaningful models for property prediction. Such difficulties in polymer
representation are frequently circumvented by modeling polymer structures as discrete SMILES
strings with connectivity between repeat units denoted with an asterisk, a notation commonly re-
ferred to as PSMILES.[2, 3] These text-based representations are either used directly as input to
predictive models[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] or converted to another format, such as
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images[9, 13] or graphs,[13, 15, 16, 17] prior to ingestion. Models built using PSMILES and other
representations have been demonstrated to be effective in predicting a single or handful of polymer
properties,[6, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] however, very few have been shown
to generalize across a range physical and chemical properties.[3, 4, 5, 7] Moreover, the majority of
predictive models for polymers are overwhelmingly focused on homopolymers, frequently without
accounting for end groups.[6, 8] For models which can accomodate for copolymer architectures, these
are largely relegated to simple random copolymers, block copolymers, or alternating copolymers
where the topology is already pre-encoded into the PSMILES string.[3, 11, 15, 19, 22] Finally,
other SMILES-based representations such as BigSMILES have been created to address some of the
limitations of PSMILES and is capable of at representing a broad range of complex architectures.[23]
However, the more complex syntax makes it less interoperable with existing literature datasets
overwhelmingly represented as PSMILES as well as requiring a significantly more specialized token
vocabulary for chemistry language models.

To overcome limitations of existing polymer representation schemes and construct a highly effective
foundation model for polymer property predictions, a straightforward representation system is needed
that could accommodate both a range of polymer architectures and is easily be interoperable with
existing literature data. Recently, a domain-specific programming language, termed Chemical
Markdown Language (CMDL) was developed and enabled researchers to easily construct polymer
graph representations—including both the connectivity between critical structural components of
the polymer and their relation to experimentally measured values.[24] The CMDL polymer graph
representations could then be compiled and exported, serializing the polymer graph representation to
a string for downstream use in regression transformer models for property prediction and structure
generation.[24, 25, 26, 27] The CMDL polymer graph representation also exploited the use of edge
weights based on polymer architecture symmetry, avoiding a redundant 1:1 representation of polymer
structural components in complex architectures and facilitating a more compact serialized output.
Despite these advantages and demonstrated effectiveness as a chemical language model inputs,
the serialized CMDL graph output was still somewhat verbose and required special modifications
to the tokenizer in the regression transformer model. Hence, we surmised that revising the this
representation to more closely resemble PSMILES yet keep information regarding edge connectivity
between structural components would provide a new serialized polymer graph (SPG) representation
that could accommodate both a broad array of polymer architectures and be easily interoperable with
existing literature datasets—simplifying assembly of pre-training and benchmarking datasets.

2 Related Work

As noted above, relatively few efforts exist in the development of foundation models for polymers
which can generalize across a range of prediction tasks for physical and chemical properties. One
such effort is polyBERT, a transformer model which is pre-trained on 100 million hypothetical
PSMILES strings—which are generated from a fragmentation and recombination of >13K previously
synthesized polymers—and then fine-tuned for predictive tasks across several polymer property
classes.[3] Another model, TransPolymer, was pre-trained on 5 million PSMILES augmented from the
1 million present in PI1M, a PSMILES dataset generated from the PolyInfo database.[28] The model
was then fine-tuned augmented versions of common DFT benchmark datasets.[2] MMPolymer is an
analogous multimodal transformer model, using both PSMILES input as well as 3D conformations
to facilitate predictive tasks across several datasets.[4] Finally, SML-MT is a foundation model for
polymer property prediction pre-trained on 1 billion SMILES from Enamine REAL dataset and then
fine-tuned against several DFT benchmark datasets represented using PSMILES.[7]

3 Overview of the Proposed Approach

This section provides an overview of the proposed SPG-based foundation model for polymers. Here,
we detail the processes of representation design, collecting, curating, and pre-processing the pre-
training data, the token encoding, and SPG encoder-decoder processes. Figure 1 illustrates the general
architecture of the base model.
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Figure 1: This figure illustrates the general architecture of the base SPG-TED289M model.

3.1 Polymer Representation Design

The serialization protocol for CMDL polymer graphs was adjusted to minimize introduction of new to-
kens to the model vocabulary and facilitate straightforward interconversion of existing benchmarking
datasets. Prior non-atomic place holder characters used in CMDL polymer graphs (R or Q, (1c) were
replaced with asterisks enclosed in brackets and numbered as shown with an example Nylon 6 ho-
mopolymer (1d, Figure 2A). Edge connections between structural components are denoted using the
numeric labels of the attachement points following the SMILES strings (1d, Figure 2A). For polymers
or copolymers with more structural components, each component is separated with a semicolon as
opposed to a more commonly used dot separator,[15] as the semicolon may facilitate better distinction
of charged components (Figure 2B). Copolymers with different architectures, such as block versus
statistical copolymers (Figure 2B), but identical structural components may be distinguished based
on their edge connectivity. With the random copolymer 1e, the extra edge between the lactide and
trimethylene carbonate repeat units (5 -> 4, 1e) is present to indicate statistical bonding between
the two repeat units whereas AB block copolymer 1d lacks such a feature (Figure 2B). Finally,
representation of formulations, which include both polymeric and small-molecule components, was
accomplished by appending additional components with a semi-colon as shown with 1f where the
lithium bis(trifluoromethanesulfonyl)imide salt was separated from the polymer component with a
semi-colon (Figure 2C).

Additional modifications were made to ensure smooth conversion of existing literature datasets
using PSMILES into the SPG notation. Despite the arrow notation to indicate an edge connection
between two components, no directionality is implied or assumed. Additionally, only the minimal
number of edges needed to describe the connectivity are indicated in contrast to other graph-focused
approaches.[15] Finally, no attempt was made to ensure the edge connection between two structural
components was indeed a chemically realistic in terms of known polymer forming reactions. This
is a reasonable modification as many literature datasets are homopolymers and those that contain
copolymers tend to focus on a narrow set of polymerization reactions (e.g. radical polymerization,
polycondensation, ring-opening polymerization, etc.).[11, 15] These modifications enabled asterisks
within a SMILES string to be numbered programmatically along with a set of edge labels based on
existing architecture labels for the polymer.

3.2 Pre-training Data

Collection of polymer data for pre-training suffers from two distinct problems: 1) scarcity of
large, open curated sets of experimentally realized materials and 2) potential lack of structural
diversity given the stringent requirements for a successful polymerization reaction placing a limit
on the types of viable structural components of a polymer. In overcoming the first problem, the
use of synthetic or combinatorially generated datasets is almost unavoidable to reach a sufficient
volume of pre-training data. While the latter issue of improving structural diversity in the face of
experimental reality is more challenging; arbitrary insertion of two or more asterisks into a SMILES
string—as is frequently encountered in generative models[28, 29, 30, 31]—does not turn it into a
feasible polymeric repeat unit. Additionally, synthetic datasets are known to contain non-viable
polymer structures, including anti-aromatic rings or structures with unstable oxidation states for heavy
atoms.[28] Hence, the pre-training data were carefully pooled from a selection of open literature
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Figure 2: A) Example representations of Nylon 6 (1a) as PSMILES (1b), the original CMDL polymer
graphs (1c) and the updated CMDL polymer graphs (1d. B) Example polymer graph representation
of a poly(trimethylene carbonate-co-lactide) copolymer. C) Example

sources,[1, 2, 6, 11, 12, 13, 14, 15, 17, 21, 29, 32], avoiding whenever possible, datasets containing
potentially problematic structures. Next, these PSMILES data were canonicalized using RDKit,
converted into the SPG representation, and duplicate entries were removed to afford the final 1M
SPG pre-training dataset.

3.3 Model Architecture

We pre-train the SPG-TED289M model using a deep bidirectional transformers-based encoder [33]
for polymers token processing, integrated within an encoder-decoder architecture for SPG generation.
The hyperparameters of the SPG-TED289M base model are provided in Table 1.

Table 1: SPG-TED289M base architecture specificity.

Hidden size Attention heads Layers Dropout Normalization
768 12 12 0.2 LayerNorm

Vocab size # SMILES # Mol tokens # Encoder # Decoder Total params
2993 91M 4T 47M 242M 289M

To enhance relative encoding, the SPG-TED289M employs a modified version of the RoFormer [34]
attention mechanism, where position-dependent rotations Rm are applied to the queries and keys
at position m. These rotations are implemented as pointwise multiplications, ensuring minimal
computational overhead, as demonstrated in Eq. (1).

Attentionm(Q,K, V ) =

∑N
n=1 ⟨φ(Rmqm), φ(Rnkn)⟩ vn∑N
n=1 ⟨φ(Rmqm), φ(Rnkn)⟩

(1)

where Q,K,V are the query, key, and value respectively, and φ is a random feature map.

We start with a sequence of polymers tokens extracted from SPG, each embedded in a 768-dimensional
space. The encoder-decoder layer is designed to process molecular token embeddings, represented
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as x ∈ RD×L, where D denotes the maximum number of tokens and L represents the embedding
space dimension.

In encoder-only models, a mean pooling layer is commonly used to represent tokens as SPG in the
latent space. However, this method is constrained by the absence of a natural inversion process
for the mean pooling operation. To address this limitation, we propose constructing a latent space
representation for SMILES by submersing x into a latent space, denoted as z, as described in Eq. 2.

z = (LayerNorm (GELU (xW1 + b1)))W2, (2)

where z ∈ RL, W1 ∈ RD×L, b1 ∈ RL, W2 ∈ RL×L, with L denoting the latent space size
(specifically, L = 768) and D representing the original feature space size (namely, D = 202).
Subsequently, we can immerse z back by calculating Eq. 3.

x̂ = (LayerNorm (GELU (zW3 + b3)))W4 (3)

where x̂ ∈ RD×L, W3 ∈ RL×L, b3 ∈ RL, W4 ∈ RL×D.

A language layer (decoder) is employed to process the encoded representation x̂. This layer applies
non-linearity and normalization to the input, transforming it into a refined vector. The refined vector is
then projected onto a set of logits corresponding to the vocabulary. These logits serve as probabilities
for predicting the next token in the molecular sequence, thereby enabling the generation of SPG
strings token by token [35]. This approach facilitates the sequential decoding of molecular structures,
ensuring that the model captures the underlying polymers syntax effectively.

3.4 Pre-training strategies

Pre-training of the SPG-TED289M model was conducted over 150 epochs using the curated SPG
dataset, with a fixed learning rate of 1.6e-4 and a batch size of 256 molecules. The training was
distributed across 4 NVIDIA V100 (16G) GPUs, parallelized into 4 nodes using DDP and torch run.
The process involves two key phases: i) Learning polymer token embeddings through a masking
mechanism. ii) Mapping these embeddings into a unified latent space that represents the entire SPG
string. This latent space not only captures the structural representation of the SPG but also enables
the reconstruction of both individual polymer tokens and the complete SPG strings.

Accordingly, the pre-training process utilizes two distinct loss functions: one associated with the
token embeddings, driven by the masking process, and another targeting the encoder-decoder layer,
focusing on token reconstruction.

For encoder pre-training we use the masked language model method defined in [33]. Initially 15% of
the tokens are selected for possible learning. From that selection, 80% of the tokens are randomly
selected and replaced with the [MASK] token, 10% of the tokens are randomly selected to be replaced
with a random token, while the remaining 10% of the tokens will be unchanged. The implementation
of distinct pre-training strategies has positively impacted the model’s efficiency, as demonstrated
by the observed improvements in the corresponding loss functions. By optimizing the pre-training
phases, we have developed a model that is both robust and highly adept at capturing and reconstructing
SPG strings.

4 Experiments

To evaluate the latent space generated by our proposed methodology, we evaluated our proposed
foundation model on 28 polymers-specific tasks using a set of 16 datasets from different sources
as demonstrated in Table 2. Specifically, we demonstrate the capability of the SPG-TED289M in
classification and regression tasks. To ensure an unbiased assessment, we maintained consistency
with the original benchmark by adopting identical train/validation/test splits for all tasks.

To fine-tune the SPG-TED289M model, each task was executed using a dedicated NVIDIA V100 GPU
with 32 GB of memory. In the next sections, we detail the results obtained during these experiments.
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Table 2: Evaluated datasets description

Dataset Description Metric Source
Copolymers (MIT) DFTB computed electron affinity and ionization potential of copolymers. RMSE [15]

IBM-Membrane Computed thermal and gas permeability properties of polymers. R2 [29]
ACS-AMI-Homopolymer-Tg Tg of homopolymers RMSE [36]

Polymer-Refractive-Index Polymer refractive index RMSE [32]
Polymer-Electrolyte-Conductivity (MIT) Conductivity of polymers and polymer formulations MAE [17]

Polymer-Gas-Permeability (NETL) Gas permeability and selectivity of polymers MAE [12]
Polymer-Gas-Permeability (CalTech) Gas permeability of polymers R2 [11]

Polyimide-Tg Tg of polyimides MAE [6]
Polymer-Chain-Bandgap-(Egc) DFT computed polymer chain bandgap RMSE [2, 5]

Polymer-Electron-Affinity-(Eea) DFT computed electron affinity of polymers RMSE [2, 5]
Polymer-Bulk-Bandgap-(Egb) DFT computed bulk bandgap of polymers RMSE [2, 5]

Polymer-Ionization-Energy-(Ei) DFT computed ionization energy of polymers RMSE [2, 5]
Polymer-Dielectric-Constant-(EPS) DFT computed dielectric constant of polymers RMSE [2, 5]

Polymer-Refractive-Index-(Nc) DFT computed refractive index of polymers RMSE [2, 5]
Polymer-Crystallization-Tendency-(Xc) DFT computed crystallization tendency of polymers RMSE [2, 5]

Polymer-Conductivity-(PE-II) Conductivity of polymers RMSE [2]

5 Results and Discussion

In this section, we present a detailed analysis of the results obtained using the SPG-TED289M model
across a diverse set of tasks, including copolymer electron affinity and ionization potential, polymer
membrane properties, multi-task learning for polymers, refractive index prediction, ionic conductivity,
gas permeability, and glass transition temperature. Fig. 3 illustrates a summary of the results obtained
during the experiments.

Figure 3: Comparison of the SPG-TED289M model with state-of-the-art models across various
polymer property predictions. The results show that SPG-TED289M outperforms SOTA models in
10 out of 18 properties. The errors are normalized such that a value of 1 represents the maximum
error observed in the comparison.

5.1 Comparison with SOTA on benchmarking tasks

Copolymer electron affinity and ionization potential: Here, we present the results of testing
the SPG-TED289M model’s ability to predict electron affinity (EA) and ionization potential (IP)
across a diverse range of monomer compositions, stoichiometries, and chain architectures using a
comprehensive copolymer dataset. The dataset encompasses over 40,000 polymers with varying
monomer compositions and stoichiometries with density functional tight-binding computed EA and
IP, providing a rigorous benchmark for evaluating the model’s predictive performance. Table 3
demonstrates the results obtained for this task.

The SPG-TED289M model shows competitive performance, particularly in predicting ionization
potential (IP), where it achieves similar accuracy to the Neural Networks (Polymer) model. Although
the wD-MPNN slightly outperforms SPG-TED289M in terms of predictive accuracy for both EA and
IP, our model still demonstrates solid performance, particularly when considering the challenging
nature of the dataset, which includes a wide variety of polymer structures and compositions.
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Table 3: Copolymer electron affinity and ionization potential. RMSE is used as evaluation metric,
therefore, in this case lower is better. ↓ indicates the best models.

Method Dataset
EA (eV) IP (eV)

Neural Networks (Monomer) [15] 0.22 0.19
Neural Networks (Polymer) [15] 0.18 0.16
wD-MPNN [15] 0.03 ↓ 0.03 ↓
SPG-TED289M 0.15 0.16

Polymer membranes: For the prediction of polymer membrane properties relevant to carbon
dioxide separation, the SPG-TED289M model was fine-tuned to target multiple key properties:
half-decomposition temperature (Td 1

2
), glass transition temperature (Tg), and CO2-permeability

(log(PCO2)). These properties are critical for evaluating the performance and stability of polymer
membranes in CO2 separation applications. The results of these fine-tuning experiments are presented
in Table 4 demonstrates the results for these complex tasks.

Table 4: Polymer membranes prediction performance. R2 is used as evaluation metric, therefore, in
this case higher values is better. ↑ indicates the best models.

Method Dataset
Td 1

2
Tg log(PCO2

)

Lasso [29] 0.81 0.90 0.87
ElasticNet [29] 0.81 0.88 0.89
Ridge [29] 0.82 0.90↑ 0.90↑
SPG-TED289M (Frozen Weights) 0.85 0.69 0.71
SPG-TED289M (Fine-tuned) 0.96↑ 0.86 0.88

As the Table 4 illustrates, the fine-tuned SPG-TED289M model outperforms traditional linear models,
such as Lasso, ElasticNet, and Ridge regression, on the regression tasks for these complex molecular
properties. Specifically, the fine-tuned model shows significant improvements in prediction accuracy
for half-decomposition temperature and CO2-permeability, demonstrating the effectiveness of the
model’s architecture in capturing the intricate relationships inherent in polymer data.

The improvement in the results of the fine-tuned model, particularly in the Td 1
2

predictions, highlights
the model’s capacity to adapt to the nuances of polymer membrane data, which is crucial for real-world
applications in material science.

Polymer multi-task learning: Here, we assess the capabilities of the SPG-TED289M model in
multi-task learning, focusing on its ability to predict various polymer properties using high-accuracy
density functional theory (DFT) calculations. The model was applied to predict a range of properties,
including thermodynamic and physical attributes, optical and dielectric properties, and electronic
measurements, as outlined in [5]. Table 5 presents the results of these predictions, where the
SPG-TED289M model is compared against the current state-of-the-art (SOTA) methods.

Table 5: Polymer multi-task prediction. RMSE is used as evaluation metric, therefore, in this case
lower is better. ↓ indicates the best models.

Method Dataset
Polymer
Chain

Bandgap (Egc)

Polymer
Electron

Affinity (Eea)

Polymer
Bulk

Bandgap (Egb)

Polymer
Ionization

Energy (Ei)

Polymer
Dielectric

Constant (EPS)

Polymer
Refractive
Index (Nc)

Polymer
Crystallization
Tendency (Xc)

SOTA [2, 3] 0.44↓ 0.28↓ 0.49 0.39 0.52 0.09↓ 16.57↓
SPG-TED289M 0.49 0.29 0.32↓ 0.37↓ 0.38↓ 0.12 17.82

The results show that the SPG-TED289M model achieves comparable or better accuracy in several
key areas, highlighting its effectiveness in predicting complex polymer properties across multiple
tasks. This performance demonstrates SPG-TED289M robustness and versatility in capturing the
intricate relationships governing polymer properties.

Polymer refractive index: In this experiment, we evaluate the performance of the SPG-TED289M

model in predicting the refractive index of polymers, a critical parameter for various optical ap-
plications, such as high-refractive-index lenses, which have gained significant interest in recent
years. The refractive index is not only important for practical applications but is also theoretically
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significant, as it can be determined by the molecule’s volume and polarizability, as described by the
Lorentz–Lorenz equation. Table 6 presents the results of these predictions, where the SPG-TED289M

model is compared against the current state-of-the-art (SOTA) methods.

Table 6: Polymer refractive index prediction. RMSE is used as evaluation metric, therefore, in this
case lower is better. ↓ indicates the best models.

Method Dataset
Refractive
index (n)

GPT-4 [32] 0.0310
Boruta [32] 0.0339
SPG-TED289M 0.0210↓

Table 6 presents the results of these predictions, where the SPG-TED289M model is compared against
current state-of-the-art (SOTA) methods, including GPT-4 and Boruta. The results demonstrate that
the SPG-TED289M model outperforms these methods, achieving a lower error rate in refractive index
prediction. This improvement suggests that the SPG-TED289M model is highly effective at capturing
the underlying relationships between polymer structure and optical properties, making it a valuable
tool for designing materials with specific refractive indices.

Polymer ionic conductivity: Here, we evaluate the performance of the SPG-TED289M model in
predicting ionic conductivity of solid polymer electrolytes (SPEs). SPEs have the potential to improve
lithium-ion batteries by enhancing safety and enabling higher energy densities.[17] However, SPEs
suffer from significantly lower ionic conductivity than liquid and solid ceramic electrolytes,limiting
their adoption in functional batteries. Machine learning based models can be used To facilitate more
rapid discovery of high ionic conductivity SPEs. Table 7 presents the results of these predictions,
where the SPG-TED289M model is compared against the current state-of-the-art (SOTA) methods.

Table 7: Polymer ionic conductivity. MAE is used as evaluation metric, therefore, in this case lower
is better. ↓ indicates the best models.

Method Dataset
Polymer ionic
conductivity

XGBoost [32] 1.09
Chemprop [32] 1.08
ChemArr [32] 1.00
SPG-TED289M 0.89↓

The results highlight the superior predictive capability of the SPG-TED289M model, which achieves
a significantly lower error in predicting ionic conductivity. This improvement underscores the
model’s ability to accurately capture the complex interactions within SPEs that influence their ionic
conductivity. The results of SPG-TED289M in this domain not only demonstrates its potential to
guide the development of more efficient SPEs, but also supports its broader applicability in the field
of battery materials.

Gas permeability of polymers (NETL): In this study, we employed the SPG-TED289M foundation
model to evaluate and screen polymers for their effectiveness in CO2/CH4 and CO2/N2 gas separation
using membrane technology. Membrane-based gas separation is a critical process for applications
such as carbon capture and natural gas purification, where the selective permeability of polymers can
significantly impact efficiency and cost-effectiveness. Table 8 presents the results of these predictions,
where the SPG-TED289M model is compared against the current state-of-the-art methods.

Table 8: Gas permeability of polymers (NETL) prediction. MAE is used as evaluation metric,
therefore, in this case lower is better. ↓ indicates the best models.

Method Dataset
CO2 CO2/CH4 CH4 CO2/N2 N2

SOTA [12] 0.29↓ 5.34 0.37 4.14 0.38
SPG-TED289M 0.29↓ 4.71↓ 0.35↓ 3.89↓ 0.31↓

When compared against state-of-the-art (SOTA) methods, SPG-TED289M demonstrates competitive
performance, achieving near parity in CO2 permeability while maintaining strong predictive accuracy
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across other metrics. The model’s ability to closely approximate SOTA results, particularly in the
challenging task of multi-gas separation, underscores its potential utility in the polymer design
process for gas separation applications.

Gas permeability of polymers (CalTech): In this study, we assess the SPG-TED289M model’s
performance in multitask predictions for gas permeabilities of six critical gases: helium (He),
hydrogen (H2), oxygen (O2), nitrogen (N2), carbon dioxide (CO2), and methane (CH4). Polymer
membranes are central to numerous industrial separations, including gas purification and carbon
capture, with substantial implications for environmental sustainability. Accurate prediction of gas
permeability in polymers is therefore essential for optimizing membrane performance and enhancing
the efficiency of these processes.

Table 9: Gas permeability of polymers (CalTech) prediction. R2 is used as evaluation metric,
therefore, in this case higher values is better. ↑ indicates the best models.

Method Dataset
He H2 O2 N2 CO2 CH4

RF (descriptors) [11] 0.73 0.74 0.75 0.74 0.38 0.75
DNN ensemble(descriptors) [11] 0.87 0.88 0.89 0.90 0.90 0.89↑
DNN ensemble(MFFs) [11] 0.91 0.90 ↑ 0.92↑ 0.91 0.90 0.88
SPG-TED289M 0.92↑ 0.87 0.89 0.91↑ 0.91↑ 0.85

Results in Table 9, show that the SPG-TED289M model achieves high accuracy in predicting the
permeabilities of these gases, closely matching or surpassing the performance of advanced models
such as descriptor-based Random Forest (RF) and Deep Neural Network (DNN) ensembles. Notably,
SPG-TED289M outperformed existing methods in predicting the permeability of helium and carbon
dioxide, which are gases of significant industrial importance due to their roles in energy applications
and greenhouse gas mitigation.

Glass-transition temperature of polyimides: In this study, we fine-tuned the SPG-TED289M

model to predict the glass transition temperature (Tg) of polymers, a critical property that influences
the thermal and mechanical behavior of polymeric materials. Glass transition temperature (Tg) is a
fundamental parameter that dictates the thermal performance of polymers, particularly in applications
where material stability at various temperatures is crucial. Accurately predicting Tg from the
molecular structure of polymer repeating units is essential for the design and development of new
polymeric materials with tailored properties for specific industrial applications. The performance
of the fine-tuned SPG-TED289M model was benchmarked against current state-of-the-art (SOTA)
methods, with the results summarized in Table 10.

Table 10: Glass-transition temperature prediction. MAE is used as evaluation metric, therefore, in
this case lower is better. ↓ indicates the best models.

Method Dataset
Tg (K)

SOTA [6] 53.02 (24.42)
SPG-TED289M 9.56↓

The model demonstrated a substantial improvement in prediction accuracy compared to existing
SOTA methods, achieving a significantly lower error in Tg predictions. Due to limitations in re-
sharing data sourced from PolyInfo, the MAE was computed from separate dataset[16] screened by
the author’s model whereas the value in the parentheses is the best MAE from the author’s model
on PolyInfo data.[6] The results of the SPG-TED289M model in this context highlights its ability to
learn complex relationships between the polymer structure and its thermophysical properties.

6 Conclusion

This paper presents the development of a SPG-based foundation model for polymers, named SPG-
TED289M . The model was pre-trained on a curated dataset comprising 1 million SPG samples.
In the course of this work, we extended the tokenization process originally introduced by [37] to
accommodate the unique characteristics of SPG, resulting in a vocabulary consisting of 2,407 distinct
tokens specific to this representation.
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The performance of the SPG-TED289M model was comprehensively evaluated across a variety of
tasks, including copolymer electron affinity and ionization potential, polymer membrane properties,
polymer multi-task learning, refractive index prediction, ionic conductivity, gas permeability, and
glass transition temperature. SPG-TED289M model achieved results comparable to specialized models
tailored for specific tasks, while requiring only minimal fine-tuning to adapt to the complexities of
each task.
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