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Abstract

Retrofitting static vector space word repre-001
sentations using external knowledge bases002
has yielded substantial improvements in their003
lexical-semantic capacities but is non-trivial to004
apply to contextual word embeddings (CWE).005
In this paper, we propose MAKESENSE, a006
method that ‘approximates’ retrofitting in007
CWEs to better infer word sense knowledge008
from word contexts. We specifically analyze009
BERT and MAKESENSE-transformed BERT010
representations over a diverse set of exper-011
iments encompassing sense-sensitive similar-012
ities, alignment with human-elicited similar-013
ity judgments, and probing tasks focusing on014
sense distinctions and hypernymy. Our find-015
ings indicate that MAKESENSE imparts sub-016
stantial improvements in word sense informa-017
tion over vanilla CWEs but largely preserves018
more complex usage of sense and directionally019
sensitive information such as hypernymy.020

1 Introduction021

Word sense disambiguation (WSD) is a fundamen-022

tal component for language understanding (Navigli,023

2009). Humans readily show this capacity by infer-024

ring word meanings from their linguistic contexts025

(Klein and Murphy, 2001). Recently proposed pre-026

trained language models (Devlin et al., 2019; Rad-027

ford et al., 2019; Liu et al., 2019) represent words028

as a function of their sentence/paragraph contexts,029

producing contextualized word embeddings (CWE)030

that overcome the ‘meaning conflation deficiency’031

(Camacho-Collados and Pilehvar, 2018) of static032

vector space models such as word2vec (Mikolov033

et al., 2013). Perhaps unsurprisingly, CWEs have a034

clear edge in empirical performance on a range of035

sense-disambiguation tasks (Raganato et al., 2017;036

Pilehvar and Camacho-Collados, 2019; Reif et al.,037

2019), highlighting their relative potential as mod-038

els of polysemy (Nair et al., 2020).039

Incorporating external knowledge sources040

(Loureiro and Jorge, 2019) has further enhanced041

the WSD capacities of CWEs, opening up new av- 042

enues to engage in combining statistical and sym- 043

bolic paradigms. An alternate route of incorporat- 044

ing knowledge into distributional representations of 045

words is retrofitting. This paradigm operates on the 046

enhancement of the distributional vector geometry 047

by injecting linguistic constraints (Faruqui et al., 048

2015; Mrkšić et al., 2016; Lengerich et al., 2018), 049

improving alignment with word-relatedness mea- 050

sures (Faruqui et al., 2015) as well as downstream 051

tasks (Mrkšić et al., 2016). While extensively ap- 052

plied to static word representations, retrofitting has 053

been rather under-explored in the context of CWEs. 054

We speculate that this is largely due to CWEs of 055

words being sensitive to the contexts they appear in, 056

making the formulation of the geometrical trans- 057

formations intractable due to the vastness of the 058

range of possible contexts in which a word can 059

occur. The one approach that does retrofit CWEs 060

explicitly for sense-information (Bihani and Rayz, 061

2021) does it on a static inventory of contexts, and 062

as such cannot be applied to instances of words in 063

context disjoint from its training data, making it 064

non-trivial for researchers to test its effectiveness. 065

In this paper, we revisit retrofitting by proposing 066

MAKESENSE, a method that ‘approximates’ CWEs 067

specialized for word sense information, and is ap- 068

plicable to any polysemous or homonymous word 069

in context, thereby generalizing sense retrofitting to 070

unseen instances. As a case study, we apply this ap- 071

proach to BERTbase (Devlin et al., 2019).1 We then 072

take steps to clarify the sense-sensitive properties 073

our method imparts on the BERT representational 074

space by testing it on sense-similarity measures 075

from discrete and graded human-elicited judgments 076

(Erk et al., 2013). We then turn to probing litera- 077

ture (Ettinger et al., 2016a; Adi et al., 2017) and 078

establish the extent to which MAKESENSE makes 079

information about word-senses more readily acces- 080

1Our methods and analyses can be applied to any CWE
model. We make our code available at url-anonymized.
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sible during supervised classification. Finally, we081

investigate patterns of sense-sensitive hypernymy082

in MAKESENSE representations. Our experiments083

explicitly compare MAKESENSE against BERTbase,084

and are conducted in a layerwise fashion, allowing085

us to shed light on how-much sense-information is086

already present as a result of pre-training, how it087

evolves within the model, and whether our approx-088

imation approach enhances it.089

2 Related Work090

Our contributions build upon two different strands091

of research that focus on computational lexical se-092

mantics. The first strand of research investigates093

manifestation of word-sense representations within094

CWEs. Most studies carry out such investigations095

by using standard WSD benchmarks and quantify096

knowledge of senses based on a 1-NN (nearest097

neighbor) classifier built on top of popular CWEs098

such as BERT (Devlin et al., 2019) and ELMo (Pe-099

ters et al., 2018), resulting in state-of-the-art per-100

formance at the time. This indicates favorable com-101

petence of CWEs in retaining sense-information102

as a result of pre-training, and suggests that they103

form representations that are largely similar for104

words carrying similar meaning in context. Layer-105

wise investigations by Reif et al. (2019); Loureiro106

et al. (2021) suggest that deeper layers align bet-107

ter with sense-disambiguation information while108

shallow layers are closer to words’ static represen-109

tations and perform worse on WSD. Interestingly,110

smaller models (BERTbase) tend to out-perform111

larger ones (BERTlarge) (Pilehvar and Camacho-112

Collados, 2019). Our analysis methods stray away113

from WSD benchmarks due to complete data over-114

lap with their standard splits (see §3), we instead115

focus on a diverse set of tasks requiring crucial116

access to the sense-disambiguation signal within117

the representations — e.g. differentiating between118

same and different senses of a word, and predicting119

whether pairs of words in contexts have a hyper-120

nymy relation. While the latter has been recently121

analyzed by Ravichander et al. (2020), they only122

consider words with single-senses.123

A large body of work focuses on augmenting124

BERT’s pre-existing WSD capacities by incorpo-125

rating external knowledge by altering its training126

objective (Peters et al., 2019), defining an auxil-127

iary task (Bevilacqua and Navigli, 2020; Levine128

et al., 2020), leveraging gloss knowledge (Loureiro129

and Jorge, 2019; Blevins and Zettlemoyer, 2020;130

Huang et al., 2019) or diversifying contexts us- 131

ing knowledge-enhanced corpora (Scarlini et al., 132

2020a,b). We complement these findings using a 133

different mechanism of knowledge incorporation 134

in CWEs, which we describe next. 135

The second strand of research focuses on 136

retrofitting approaches. Retrofitting was first pro- 137

posed by Faruqui et al. (2015) as a graph based 138

post-processing technique that could specialize any 139

word embedding space, acting as an alternative to 140

model training-dependent semantic specialization 141

(Yu and Dredze, 2014; Xu et al., 2014; Bian et al., 142

2014). Recent works have extended this approach 143

to include a variety of linguistic entities such as 144

paraphrases (Wieting et al., 2015) and word senses 145

(Jauhar et al., 2015; Ettinger et al., 2016b), as well 146

as lexical relations such as antonymy (Mrkšić et al., 147

2016), lexical entailment (Vulić and Mrkšić, 2018) 148

and other functional relations (Lengerich et al., 149

2018). Joint retrofitting models have also been 150

proposed to learn semantic specialization from 151

cross lingual resources and are beneficial for low- 152

resource language representation learning (Mrkšić 153

et al., 2017). Since retrofitting methods are lim- 154

ited to entities seen in corpora, recent works on 155

post-specialization have focused on extending the 156

specialization learnt during retrofitting to unseen 157

lexical instances (Glavaš and Vulić, 2018; Vulić 158

et al., 2018), which we build upon here, for CWEs. 159

2.1 Retrofitting CWEs using LASeR 160

LASeR (Bihani and Rayz, 2021) is a sense 161

retrofitting method that aims to encode sense in- 162

formation into CWEs. LASeR utilizes sense an- 163

notated corpora to modify any given vector space 164

by injecting sense information within word vec- 165

tors, while minimizing anisotropy, the tendency for 166

vector spaces to occupy a narrow cone, resulting 167

in inflated vector similarities (Ethayarajh, 2019). 168

LASeR performs anisotropy reduction by remov- 169

ing the top common direction(s) within the vec- 170

tor space, making it uniformly distributed. It fur- 171

ther extends the retrofitting update developed by 172

Faruqui et al. over word senses, such that vector 173

representations of same word senses are shifted 174

closer together while retaining the distributional 175

properties learnt during pretraining. LASeR is 176

trained on multi-sense nouns, verbs, and adjec- 177

tives from five sense-annotated resources from var- 178

ious SemEval and SensEval tasks, concatenated 179

under a unified WSD framework by Raganato et al. 180
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(2017). Although LASeR-enhanced CWEs empiri-181

cally show greater sensitivity to sense-information,182

their generation critically depends on the existence183

of ground-truth sense information, which is unre-184

alistic when encountering words embedded in sen-185

tence contexts that have not been seen during the186

retrofitting step. This facet of the method restricts187

its testing to only intrinsic analyses (see Bihani and188

Rayz, 2021) and prevents testing on standard WSD189

benchmarks due to complete data-overlap, or super-190

vised sense-sensitive tasks thereby casting doubts191

about its effectiveness in NLP applications.192

3 Method: Approximating LASeR193

To circumvent the aforementioned issues, we194

propose to instead “approximate” sense-enriched195

CWEs from vanilla CWEs in a supervised-learning196

setup. Specifically, given d-dimensional CWE rep-197

resentations X = {x1, . . . ,xn}, and their corre-198

sponding sense-enriched LASeR representations199

Xs = {xs,1, . . . ,xs,n}, we propose to learn an ap-200

proximation function f : Rd → Rd, that maps201

each xi to xs,i by minimizing a regression-based202

loss. Approximating LASeR embeddings allows203

researchers to better test the benefits of inducing204

sense information through retrofitting — i.e., one205

can simply use the learned function f on word rep-206

resentations that are disjoint from the vocabulary207

that LASeR was trained for and then probe the208

resultant vectors for sense-information. Figure 1209

illustrates our entire approximation method.210

Model Investigated We perform our experi-211

ments on 768-dimensional embeddings extracted212

from BERTbase (Devlin et al., 2019). We use BERT213

as our CWE model due to precedence in earlier214

research investigating word-sense information in215

CWEs produced by pre-trained LMs (see §2). Fur-216

thermore, this lets us narrow in on deeper analyses217

— e.g., investigating layerwise effects. However,218

our methods are agnostic to any model that encodes219

words in context and therefore can be extended to220

any distributional CWE models.221

Data We first expand the coverage of our sense-222

enriched representations by combining the original223

LASeR corpus with a subset of SemCor (Miller224

et al., 1993) consisting only of single-word nouns,225

verbs, and adjectives. This is a considerable update226

as it results in 181,768 total instances, compris-227

ing of 16,528 unique words and 16,751 unique228

senses, embedded in 36,360 unique sentences. By229

I enjoyed reading that book!

BERT
Vector

Approximated
Vector

Sense Retrofitted
Vector

MAKESENSE

Figure 1: Illustration of the MAKESENSE approxima-
tion method. In practice, BERT(.) can be replaced by
any CWE, provided one has access to the LASeR em-
beddings corresponding to the desired CWE.

contrast, Bihani and Rayz have 2,416 instances, 230

426 unique senses, 918 unique words, and 966 231

unique sentences. We apply LASeR2 on the 232

BERTbase representations (xi) of target-words ex- 233

tracted from our augmented sense-annotated data, 234

yielding a sense-enriched vector space Xl
s for 235

each layer (l) in the BERTbase model, amount- 236

ing to 13 distinct Xs spaces.3 For each layer, 237

we lexically split the resultant set of tuples Dl = 238

{(xl
1,x

l
s,1), . . . , (x

l
n,x

l
s,n)} into our experimental 239

datasets: Dl
train (80%), Dl

dev (10%), and Dl
test 240

(10%), such that their vocabularies are disjoint 241

from one another. Our lexical-split strategy allows 242

for a more robust model training procedure to gen- 243

eralize LASeR approximation as opposed to simply 244

memorize it due to word-identity information leaks 245

(Levy et al., 2015). 246

Approximation function construction Follow- 247

ing Vulić et al. (2018), who propose post- 248

specialization of retrofitted static word embeddings, 249

we assume non-linear mappings to be a better hy- 250

pothesis of how retrofitted sense information can 251

be estimated from CWEs — owing to the fact that 252

retrofitting injects several constraints to the vector 253

space, making it limiting for a linear map to suc- 254

cessfully approximate it. Therefore, we formulate 255

our approximation function as a multi-layer percep- 256

tron, i.e., f(xi) = MLP(xi). We use the standard 257

L2 loss between the sense-enriched embedding xs,i 258

and the approximated embedding f(xi): 259

Lm(x,xs) = ||fm(x)− xs||22 (1) 260

2we use the publicly released code: https://github.
com/bihani-g/LASeR

312 transformer layers and one ‘0-th’ layer that serves as
input to the first transformer layer.
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We experiment with composing h ∈ {1, . . . , 5}261

different hidden layers, with sizes dh ∈262

{512, 1024, 2048}. Each layer is passed through a263

ReLU activation and a dropout function (p = 0.5).264

We find the best hyperparameter configuration265

by training multiple models on the training set266

(Dtrain), and choose our final model as the one267

that achieves the minimum average loss on the de-268

velopment set (Ddev). Henceforth, we refer our269

best model as MAKESENSE.270

Training Details We use the Adam optimizer271

(Kingma and Ba, 2015) with regularization (with272

a weight decay of 0.001) to train all of our approx-273

imation functions. For each training regimen, the274

best initial learning rate for the optimizer is chosen275

from the space: {0.001, 0.0001, 0.0003}. Our mod-276

els are trained for a maximum of 40 epochs, with a277

batch size of 128. For each run, we halt the training278

process if the loss on the development set does not279

reach a new minimum for five consecutive epochs.280

With our various parameter configurations, we train281

585 different approximation functions (3 learning-282

rate values× 3 hidden layer sizes× 5 hidden layers283

× 13 distinct BERT layers). Interestingly, all of284

our final 13 MAKESENSE models converge to the285

exact same configuration: two hidden layers of size286

2048 each, and an initial learning rate of 0.0001.287

Representations from MAKESENSE show substan-288

tial improvements over BERTbase representations289

in vector space isotropy (see appendix A).290

4 Does MAKESENSE make sense?291

We now conduct a range of tests targeting vari-292

ous sense-sensitive properties that our proposed293

MAKESENSE method imparts to the original CWE294

(BERTbase). Our analyses crucially require access295

to sense information and serve as a holistic bench-296

mark environment where success of a model is297

quantified by various metrics that allow for robust298

comparison and conclusions regarding the repre-299

sentational quality produced by performing MAKE-300

SENSE. Data used in each analysis are disjoint301

from those used in our approximation experiments,302

contributing further to the robustness of our tests.303

4.1 Investigating word sense information304

through representation similarity305

Recent work in CWE-based WSD (see §2) sug-306

gests that computational models/agents that are307

sensitive to word sense information should likely308

Words with same sense are

more similar on average

Words with same sense are

less similar on average

−0.1

0.0

0.1

0.2

0 1 2 3 4 5 6 7 8 9 10 11 12
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-v
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ue
s

Figure 2: ∆ values computed per-layer for BERTbase
and MAKESENSE representations, on the WIC corpus.

produce representations that are similar for surface- 309

forms of words with same as opposed to different 310

senses. We gauge word-sense sensitivity in MAKE- 311

SENSE and the original BERTbase embeddings by 312

comparing their representational similarities for 313

words used in similar versus different senses. Let, 314

S = {(s11, s21), . . . , (s1n, s2n)} be contextual embed- 315

ding space of pairs of words with the same sense 316

and D = {(d11, d21), . . . , (d1m, d2m)} be the embed- 317

ding space of pairs of words with different senses.4 318

To assess sensitivity to word sense information, we 319

utilize the ∆ metric, calculated as the difference 320

of average cosine similarity between same-sense 321

word instances and that of different-sense word 322

instances: 323

∆ =
1

n

n∑
i=1

cos(s1i , s
2
i )−

1

m

m∑
j=1

cos(d1j , d
2
j ). (2) 324

Thus, for a given word, if representations pro- 325

duced by MAKESENSE are on average more simi- 326

lar for surface-forms of the same sense and farther 327

apart for its different senses, relative to the represen- 328

tations from the original model (∆MS > ∆BERT), 329

then we take this as evidence in favor of MAKE- 330

SENSE in terms of the improvements it lends to the 331

BERTbase representations. 332

We rely on the WIC dataset (Pilehvar and 333

Camacho-Collados, 2019) for this experiment. 334

WIC consists of pairs of contexts with marked tar- 335

get words (e.g., row 1 of table 1), annotated for a 336

discrete judgment of whether the surface-forms of 337

the words carry the same sense. We use the con- 338

catenation of the training and development splits 339

made publicly available by the authors.5 340

4Note that the surface-form of s1i is the same as that of s2i ,
and that of d1j is the same as that of d2j .

5The ground-truth data for the test split is part of an on-
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Experiment Stimulus Example Outcome Evaluation Metric(s)

WIC (§4.1 and §4.3)

(1a) He designed a new piece of equipment.
(1b) She bought a lovely piece of china.

Same sense
∆ (similarity); Accu-
racy (probing)

(1c) Life has lost its point.
(1d) He broke the point of his pencil.

Different sense

USIM (§4.2)

(2a) No, we are not talking about the fortunes
of a rich and powerful democracy.
(2b) Rich people manage their money well.

Avg. Human
Similarity: 4.75

Spearman’s ρ with
human judgments(2c) What are the important variables that cre-

ate a rich online learning experience, . . . cont.
(2d) Rich people manage their money well.

Avg. Human
Similarity: 1.63

WHIC (§4.4)

(3a) Magnus Carlsen is the world chess champion.
(3b) The championship game was played yesterday.

Hypernymy
Weighted F1 (overall);
Directional-accuracy

(3c) He refused to give titles to his paintings.
(3d) He had the status of a minor.

No Hypernymy

Table 1: Example of stimuli used in our analyses. Note: The outcome column represents the ground-truth label or
value of the corresponding stimulus example. Dataset statistics and source URLs can be found in Appendix B.

Results and Analysis Figure 2 shows ∆-values341

for representations extracted at each layer of the342

BERTbase model and their corresponding MAKE-343

SENSE representations. In general, we see greater344

∆-values in deeper layers, suggesting that over-345

all sensitivity to word-sense information largely346

increases as we move closer to the output of the347

BERT model. MAKESENSE substantially enhances348

this sensitivity in deeper layers with greater ∆-349

values compared to BERTbase. However, we see350

the opposite behavior in layers prior to layer 6,351

where the average similarity of surface-forms with352

the same sense is in fact not very different or even353

lower (starting at layer 3) than that of surface-forms354

with different senses. Since embeddings in layers355

closer to the input to BERT are more likely to re-356

tain information about word identity (Devlin et al.,357

2019), we speculate that this property makes earlier358

layers less susceptible to making distinctions be-359

tween different usage of words in context, thereby360

producing low ∆-values. From this preliminary361

analysis, we predict that benefits of using MAKE-362

SENSE are more likely to be observed in deeper as363

opposed to shallow layers.364

Takeaways MAKESENSE representations show365

greater sensitivity to sense-information compared366

to the original BERTbase embeddings. However,367

this behavior is only local to deeper layers (layer 6368

going competition and only allows limited access to 10 tries,
which is insufficient for our experiments.

and above) and is reversed in shallow layers, sug- 369

gesting that deeper layers may be more susceptible 370

to improvements by MAKESENSE. 371

4.2 Correspondence with Graded Word 372

Sense Similarity Judgments 373

Next, we turn to a setting that sheds a more nu- 374

anced light on inferring word meaning from con- 375

text. This setting draws on theories of cognition 376

advocating for ‘fuzzy’ concept boundaries (Zadeh, 377

1999; Rosch, 1973; Hampton, 2007), and casts re- 378

latedness in contextual word meaning as a graded 379

measure (Kintsch, 2007). In table 1 for instance, 380

rich in (2a) is more closely related to that in (2b) 381

than it is to rich in (2c). We test the extent to which 382

our representations are able to make word related- 383

ness predictions consistent with this intuition. To 384

this end we rely on the USIM dataset (Erk et al., 385

2013). USIM contains word meaning similarity an- 386

notations on pairs of instances of the same word 387

appearing in different contexts. Each instance in 388

the dataset presents a word lemma w in two con- 389

texts, where annotators judge graded similarity be- 390

tween their perceived word meanings on a scale 391

of 1 (completely different) to 5 (same meaning). 392

We compare MAKESENSE and BERTbase based on 393

their correspondence (measured using Spearman’s 394

ρ) with two measures: (1) USIM, the raw human- 395

elicited similarity judgements reported by Erk et al.; 396

and (2) UMID (McCarthy et al., 2016), the propor- 397
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Figure 3: Spearman’s ρ computed between representa-
tions’ cosine relatedness and gold-standard metrics of
graded sense-similarities: USIM and UMID.

tion of mid-range similarity judgments (between 2398

and 4) on a word lemma, extracted from the USIM399

dataset. Correspondence with USIM denotes the400

alignment of the representational space with hu-401

man intuitions about sense-similarity, while that402

with UMID reflects the uncertainty/disagreement403

regarding the perceived word meaning across dif-404

ferent contexts. For a given word lemma, we expect405

models with enhanced sense-information to show406

greater positive correlation with USIM, suggesting407

better alignment with humans, and more negative408

correlation with UMID, indicating less uncertainty409

about word-sense similarity judgments.410

Results and Analysis The correlation compar-411

isons are plotted in Figure 3. We observe that412

MAKESENSE embeddings show greater correla-413

tion with USIM in deeper layers, as compared414

to BERTbase embeddings, suggesting greater cor-415

respondence with overall human intuitions of416

sense-similarities. MAKESENSE representations417

also show greater negative correlation with UMID418

scores, especially in the middle layers. This sug-419

gests that MAKESENSE representations are bet-420

ter equipped to capture fine-grained gradedness421

in word sense similarity, i.e. they are more sus-422

ceptible to distinguishing between moderately vs.423

highly similar instances relative to BERTbase rep-424

resentations, which show more uncertainty in their425

similarity judgments. These findings agree with426

our prior observation (see §4.1) that MAKESENSE427

improves performance in the deeper model layers.428

We additionally observe that gradedness in sense429

similarities are better captured by MAKESENSE430

representations, especially in the middle layers and431

the final layer. 432

Takeaways In comparison to BERTbase, MAKE- 433

SENSE representations not only encode more sense 434

information, but also create vector spaces that show 435

greater correspondence with gradedness in word 436

sense similarity. 437

4.3 Probing for Binary Sense Judgments 438

We now turn to the body of work popularly known 439

as probing (Ettinger et al., 2016a; Adi et al., 2017; 440

Conneau et al., 2018) to further characterize the 441

differences between MAKESENSE and BERTbase 442

in terms of word-sense information. The probing 443

paradigm lets us explore the extent to which repre- 444

sentations extracted from black-box models make 445

a certain feature or property (linguistic or non- 446

linguistic) readily accessible in a supervised setting. 447

We hypothesize that representations that better en- 448

code sense-level information are also more con- 449

ducive to successfully determining whether a given 450

surface-form of a word carries the same meaning in 451

a pair of minimally-overlapping sentence or phrasal 452

contexts. Using our example from the first row of 453

table 1, representations with better sense-level ca- 454

pacities should support the classification of piece 455

in (1a) and (1b) as the same sense, while that of 456

point in (1c) and (1d) as different. 457

We again rely on WIC as our experimental 458

dataset, but instead cast our investigation as a bi- 459

nary classification setting, leveraging the annotated 460

labels of “same-sense” and “different-sense” as 461

our target labels. We follow Adi et al. (2017) and 462

Hewitt and Liang (2019) and use a simple one- 463

hidden-layer MLP as our probing classifier with 464

256 hidden-units, ReLU activation, and a sigmoid 465

layer to generate the probability of the “same-sense” 466

label. For each layer, we train our probe on 90% of 467

the training split—we reserve 10% for validation— 468

and test generalization performance using the final 469

model’s accuracy on the development set. A finer- 470

grained description of our training details can be 471

found in Appendix C. 472

Results and Analysis Figure 4 shows classifica- 473

tion accuracies of the probe on the development set 474

of the WIC dataset. Since WIC is balanced for its 475

two class labels, chance performance on this task is 476

50%. We see that MAKESENSE elevates the prob- 477

ing accuracy of BERTbase on this task across a ma- 478

jority of layers (all except layer 3), suggesting that 479

the MAKESENSE method makes sense-information 480

more accessible to the probe relative to the vanilla 481
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Figure 4: Probing accuracies on the WIC dataset.

BERTbase model. However, it should be noted that482

the increase in the representational-capacity to bi-483

nary classification is modest — with the maximum484

difference in performance being 2.41 percentage-485

points in layer 7. Nonetheless, all layers show486

above chance level performance, with the best ac-487

curacy being 65% for MAKESENSE at layer 12.488

Revisiting our hypothesis from §4.1, MAKESENSE489

shows its maximum benefit in deeper layers.490

Takeaways BERTbase representations trans-491

formed using the MAKESENSE method show492

enhanced capacities to distinguish between same493

and different meanings of surface-forms of words494

in context, in a supervised setting. These capacities495

generally increase as we go deeper into the model’s496

layers, matching evidence from previous work497

(Reif et al., 2019).498

4.4 Probing for sense-sensitive hypernymy499

Our final experiment deals with perhaps one of500

the most fundamental and well-studied lexical rela-501

tion: the hypernymy or IS-A relation (Pustejovsky,502

1995). Most linguists argue that hypernymy is a503

relation between word senses as opposed to surface-504

forms (see Murphy, 2003, and references therein).505

That is, chess in (3a) is a hyponym of game in506

(3b) but not a hyponym of game in “The poachers507

looked to hunt the big game,” where it corresponds508

to "animal hunted for food" as per WordNet. We509

explore in this section the extent to which MAKE-510

SENSE and BERTbase encode this sense-sensitive511

relation, where the pair (chess, game) in (3a) and512

(3b) is classified as a case of hypernymy, while the513

pair (titles, status) in (3c) and (3d) is not. While514

MAKESENSE does not include any hierarchical515

component in its learning mechanism, it should516

at the very least preserve the hypernymy informa-517

tion that is already contained in BERTbase for it to 518

be competitive in this experiment, especially since 519

it focuses on manipulating representations for a 520

different—albeit related—task. Arguably, this is 521

a non-trivial task that involves not only discern- 522

ing the sense of a word from its context, but also 523

predicting the existence as well as direction of the 524

relation — hypernymy is asymmetric, i.e., chess 525

is a hyponym of game (provided their senses are 526

correctly disambiguated) but the reverse is not true. 527

For this experiment, we rely on the Word Hy- 528

pernyms in Context (WHIC) dataset (Vyas and 529

Carpuat, 2017). WHIC consists of pairs of sen- 530

tence contexts with marked words that are anno- 531

tated for whether the first word’s sense is the hy- 532

ponym of the second word’s sense, thereby making 533

this dataset sensitive to both the senses of words 534

in context and the direction of the relationship. An 535

example stimuli is shown in row 3 of table 1. The 536

dataset comes in standard splits (70% - train, 5% - 537

dev, and 25% - test) that have disjoint vocabulary 538

in terms of the marked words, thereby eliminating 539

issues related to lexical-overlap (Levy et al., 2015). 540

Note that WHIC is an imbalanced dataset, with 541

more negative than positive instances — the nega- 542

tive instances include both directionally opposite 543

versions of the positive instances, as well as multi- 544

ple cases where the senses of the two words do not 545

have a hypernymy relation. 546

We again use the probing paradigm to test the 547

extent to which MAKESENSE and BERTbase rep- 548

resentations make sense-sensitive hypernymy re- 549

lation accessible in a manner that is directionally 550

sensitive. To this end, we conduct tests on two ver- 551

sions of WHIC: (1) WHIC-FULL, which consists 552

of the entire dataset; and (2) WHIC-DIRECTIONAL, 553

which consists of a balanced version of WHIC with 554

positive instances and their directionally reversed 555

counterparts as negative instances. We use the same 556

architecture as the probing experiments on WIC 557

for our WHIC-probing experiments and perform 558

layerwise probing experiments. 559

Results on WHIC-FULL This test focuses on 560

the overall encoding of hypernymy information in 561

the representations that we test. Due to the imbal- 562

anced nature of this dataset, we use the weighted- 563

F1 score as our performance measure, following 564

Vyas and Carpuat (2017). Figure 5a shows our re- 565

sults. Overall, we find that representations from all 566

layers show above-chance performance, suggest- 567

ing non-trivial access to sense-sensitive hypernmy 568
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Figure 5: layerwise performance from our sense-sensitive hypernymy tests: (a) Weighted F1 scores on WHIC-
FULL; and (b) Directional accuracies on WHIC-DIRECTIONAL. Note: Y-axes are different in (a) and (b).

information during classification. On comparing569

MAKESENSE and BERTbase, we see little to no dif-570

ference in overall performance, suggesting that our571

approximation experiments show no particular ben-572

efits in inferring taxonomic relations from context.573

At the same time, overall high F1 scores on WHIC-574

FULL from BERTbase suggests that this information575

is considerably imparted during pre-training.576

Results on WHIC-DIRECTIONAL This test fo-577

cuses on specifically shedding light on the extent578

to which the representations we test are sensitive579

to the asymmetrical nature of the hypernymy rela-580

tion. We quantify this sensitivity by evaluating the581

‘directional accuracy’ of the probe trained on the582

WHIC-DIRECTIONAL subset of WHIC. This met-583

ric represents the proportion of pairwise instances584

where directionally correct instances (chess in (3a)585

is a hyponym of game in (3b)) and their flipped586

counterparts (game in (3b) is a hypernym of chess587

in (3a)) are assigned the correct label. We observe588

that both MAKESENSE and BERTbase show high di-589

rectional accuracies across all layers, ranging from590

81-88%, with performance roughly increasing with591

layer. Again, we observe that MAKESENSE shows592

no particular benefit in making the asymmetrical593

property of hypernymy more accessible during su-594

pervision, instead it largely preserves it despite595

numerically altering the BERTbase representations.596

Takeaways Both MAKESENSE and BERTbase597

are equally conducive to making sense and direc-598

tional sensitive hypernymy information readily ac-599

cessible from linguistic context. Pre-training im-600

parts a non-trivial amount of context-sensitive hy-601

pernymy information to BERT representations and602

MAKESENSE largely preserves this information.603

5 Conclusion and Future work 604

We present MAKESENSE, a post-processing ap- 605

proach that incorporates word sense information in 606

CWEs. MAKESENSE generalizes the retrofitting 607

paradigm by learning a transformation to push 608

words with similar senses closer together in vector 609

space, while also making the space more isotropic. 610

This way, sense information can be induced for 611

any homonymous or polysemous word by sim- 612

ply passing its contextual representation through 613

MAKESENSE. Through our analyses, we observe 614

MAKESENSE to better impart sense-sensitive in- 615

formation in deeper layers of the original model, 616

resulting in sense-similarity predictions that align 617

better with human intuitions about word senses. 618

Our probing studies show improvements in mak- 619

ing sense-disambiguation information more readily 620

accessible. However. we see that MAKESENSE 621

largely preserves hierarchical knowledge about in- 622

ferred word senses through our investigation for 623

sense-sensitive hypernymy, opening up avenues to 624

incorporate structured lexical semantic knowledge 625

into CWEs in future work. 626

There remains substantial work to be done in cap- 627

turing the nuances of lexical ambiguity in context. 628

Our work presents a step towards building gener- 629

alizable models of lexical specialization, not only 630

at the word token level, but also word sense level. 631

In the future, we aim to experiment with a variety 632

of different approximation methods, as well as in- 633

corporate more diverse knowledge sources into the 634

approximation pipeline. It would be informative 635

to also interact MAKESENSE with more context- 636

aware embeddings to better infer word meaning 637

patterns from context. 638
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A Isotropy Improvements by1003

MAKESENSE1004

Anisotropy in contextual word embeddings1005

(CWEs) has been shown to hinder the semantic ca-1006

pabilities of models (Gao et al., 2019). Moreover,1007

the existence of anisotropy in a vector space ren-1008

ders vector geometry based sense similarity judge-1009

ments inconsequential (Ethayarajh, 2019). To ad-1010

dress this problem and improve lexical-semantic1011

capabilities of CWEs, recent works have proposed1012

methods to boost the isotropy of the underlying1013

vector space (Gao et al., 2019; Su et al., 2021;1014

Bihani and Rayz, 2021). In this regard, MAKE-1015

SENSE-transformed vector spaces show significant1016

improvements in isotropy, especially in the deeper1017

layers of models. We plot the average similarity1018

between 1,000 randomly sampled words (multi-1019

sense nouns, verbs and adjectives) extracted from1020

the sense annotated corpora, for MAKESENSE and1021

BERTbase word representations across model lay-1022

ers, as shown in Figure 6. It can be observed that1023

unlike BERTbase embeddings, where average simi-1024

larity between random words increases across the1025

model layers, MAKESENSE embeddings create a1026

vector space such that random words have almost1027

no similarity. Thus, MAKESENSE-transformed1028

BERT embeddings successfully create uniformly1029

distributed vector spaces, while retaining and even1030

enhancing the lexical-semantic information present.1031
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Figure 6: Average similarity between representations
of randomly sampled words across model layers

1032

B Dataset statistics1033

All our data are in the English language. Exper-1034

imental statistics of the WIC, WHIC-FULL, and1035

WHIC-DIRECTIONAL datasets that we use in our1036

analyses are shown in Table 2.1037

We collect our experimental data from the fol-1038

lowing sources:1039

WIC
Same Sense Different Sense

Train 2,714 2,714
Dev 319 319

WHIC-FULL

Hypernymy No Hypernymy

Train 3,693 12,023
Dev 283 1,421
Test 1,263 4,098

WHIC-DIRECTIONAL

Hypernymy No Hypernymy

Train 3,693 3,693
Dev 283 283
Test 1,263 1,263

Table 2: Statistics of experimental splits of the WIC,
WHIC-FULL, and WHIC-DIRECTIONAL datasets used
in our probing experiments.

• WIC: https://pilehvar.github. 1040

io/wic/package/WiC_dataset.zip 1041

• USIM: https://www. 1042

dianamccarthy.co.uk/ 1043

downloads/WordMeaningAnno2012/ 1044

cl-meaningincontext.tgz 1045

• WHIC: https://github.com/ 1046

yogarshi/WHiC 1047

C Training Details for Probing 1048

Classifiers 1049

We use probing classifiers for our analyses in §4.3 1050

and §4.4. As described, both our probes are multi- 1051

layer perceptrons (MLP) with a single hidden layer 1052

with 256 units and a final sigmoid layer for clas- 1053

sification. Our probes takes as input concatenated 1054

representations of the marked words, and classify 1055

for same vs. different sense in the case of WIC, and 1056

whether the first marked is a hyponym of the sec- 1057

ond marked word in the context of WHIC. In both 1058

cases, we optimize for the binary cross-entropy us- 1059

ing the Adam optimizer (Kingma and Ba, 2015) 1060

with a learning rate of 0.001 and perform regular- 1061

ization with a weight-decay of 1e-5. Following 1062

Hewitt and Liang (2019), we halve the learning 1063

rate if after every epoch the optimizer is unable to 1064

find a new minimum loss, and stop training if we 1065

encounter 5 such epochs consecutively. 1066
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D Implementation Details1067

We use Pytorch (Paszke et al., 2019) and scikit-1068

learn (Pedregosa et al., 2011) for our probing ex-1069

periments and analyses. The BERT model was ac-1070

cessed using the transformers library by Hug-1071

gingFace (Wolf et al., 2020). Our experiments were1072

run on a NVIDIA V100 GPU with a 32GB RAM.1073
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