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Abstract

Retrofitting static vector space word repre-
sentations using external knowledge bases
has yielded substantial improvements in their
lexical-semantic capacities but is non-trivial to
apply to contextual word embeddings (CWE).
In this paper, we propose MAKESENSE, a
method that ‘approximates’ retrofitting in
CWE:s to better infer word sense knowledge
from word contexts. We specifically analyze
BERT and MAKESENSE-transformed BERT
representations over a diverse set of exper-
iments encompassing sense-sensitive similar-
ities, alignment with human-elicited similar-
ity judgments, and probing tasks focusing on
sense distinctions and hypernymy. Our find-
ings indicate that MAKESENSE imparts sub-
stantial improvements in word sense informa-
tion over vanilla CWEs but largely preserves
more complex usage of sense and directionally
sensitive information such as hypernymy.

1 Introduction

Word sense disambiguation (WSD) is a fundamen-
tal component for language understanding (Navigli,
2009). Humans readily show this capacity by infer-
ring word meanings from their linguistic contexts
(Klein and Murphy, 2001). Recently proposed pre-
trained language models (Devlin et al., 2019; Rad-
ford et al., 2019; Liu et al., 2019) represent words
as a function of their sentence/paragraph contexts,
producing contextualized word embeddings (CWE)
that overcome the ‘meaning conflation deficiency’
(Camacho-Collados and Pilehvar, 2018) of static
vector space models such as word2vec (Mikolov
et al., 2013). Perhaps unsurprisingly, CWEs have a
clear edge in empirical performance on a range of
sense-disambiguation tasks (Raganato et al., 2017;
Pilehvar and Camacho-Collados, 2019; Reif et al.,
2019), highlighting their relative potential as mod-
els of polysemy (Nair et al., 2020).

Incorporating external knowledge sources
(Loureiro and Jorge, 2019) has further enhanced

the WSD capacities of CWEs, opening up new av-
enues to engage in combining statistical and sym-
bolic paradigms. An alternate route of incorporat-
ing knowledge into distributional representations of
words is retrofitting. This paradigm operates on the
enhancement of the distributional vector geometry
by injecting linguistic constraints (Faruqui et al.,
2015; Mrksic et al., 2016; Lengerich et al., 2018),
improving alignment with word-relatedness mea-
sures (Faruqui et al., 2015) as well as downstream
tasks (MrkSsic et al., 2016). While extensively ap-
plied to static word representations, retrofitting has
been rather under-explored in the context of CWEs.
We speculate that this is largely due to CWEs of
words being sensitive to the contexts they appear in,
making the formulation of the geometrical trans-
formations intractable due to the vastness of the
range of possible contexts in which a word can
occur. The one approach that does retrofit CWEs
explicitly for sense-information (Bihani and Rayz,
2021) does it on a static inventory of contexts, and
as such cannot be applied to instances of words in
context disjoint from its training data, making it
non-trivial for researchers to test its effectiveness.
In this paper, we revisit retrofitting by proposing
MAKESENSE, a method that ‘approximates’ CWEs
specialized for word sense information, and is ap-
plicable to any polysemous or homonymous word
in context, thereby generalizing sense retrofitting to
unseen instances. As a case study, we apply this ap-
proach to BERT},, (Devlin et al., 2019)." We then
take steps to clarify the sense-sensitive properties
our method imparts on the BERT representational
space by testing it on sense-similarity measures
from discrete and graded human-elicited judgments
(Erk et al., 2013). We then turn to probing litera-
ture (Ettinger et al., 2016a; Adi et al., 2017) and
establish the extent to which MAKESENSE makes
information about word-senses more readily acces-
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sible during supervised classification. Finally, we
investigate patterns of sense-sensitive hypernymy
in MAKESENSE representations. Our experiments
explicitly compare MAKESENSE against BERT e,
and are conducted in a layerwise fashion, allowing
us to shed light on how-much sense-information is
already present as a result of pre-training, how it
evolves within the model, and whether our approx-
imation approach enhances it.

2 Related Work

Our contributions build upon two different strands
of research that focus on computational lexical se-
mantics. The first strand of research investigates
manifestation of word-sense representations within
CWEs. Most studies carry out such investigations
by using standard WSD benchmarks and quantify
knowledge of senses based on a 1-NN (nearest
neighbor) classifier built on top of popular CWEs
such as BERT (Devlin et al., 2019) and ELMo (Pe-
ters et al., 2018), resulting in state-of-the-art per-
formance at the time. This indicates favorable com-
petence of CWEs in retaining sense-information
as a result of pre-training, and suggests that they
form representations that are largely similar for
words carrying similar meaning in context. Layer-
wise investigations by Reif et al. (2019); Loureiro
et al. (2021) suggest that deeper layers align bet-
ter with sense-disambiguation information while
shallow layers are closer to words’ static represen-
tations and perform worse on WSD. Interestingly,
smaller models (BERT},,s.) tend to out-perform
larger ones (BERTye) (Pilehvar and Camacho-
Collados, 2019). Our analysis methods stray away
from WSD benchmarks due to complete data over-
lap with their standard splits (see §3), we instead
focus on a diverse set of tasks requiring crucial
access to the sense-disambiguation signal within
the representations — e.g. differentiating between
same and different senses of a word, and predicting
whether pairs of words in contexts have a hyper-
nymy relation. While the latter has been recently
analyzed by Ravichander et al. (2020), they only
consider words with single-senses.

A large body of work focuses on augmenting
BERT’s pre-existing WSD capacities by incorpo-
rating external knowledge by altering its training
objective (Peters et al., 2019), defining an auxil-
iary task (Bevilacqua and Navigli, 2020; Levine
et al., 2020), leveraging gloss knowledge (Loureiro
and Jorge, 2019; Blevins and Zettlemoyer, 2020;

Huang et al., 2019) or diversifying contexts us-
ing knowledge-enhanced corpora (Scarlini et al.,
2020a,b). We complement these findings using a
different mechanism of knowledge incorporation
in CWEs, which we describe next.

The second strand of research focuses on
retrofitting approaches. Retrofitting was first pro-
posed by Faruqui et al. (2015) as a graph based
post-processing technique that could specialize any
word embedding space, acting as an alternative to
model training-dependent semantic specialization
(Yu and Dredze, 2014; Xu et al., 2014; Bian et al.,
2014). Recent works have extended this approach
to include a variety of linguistic entities such as
paraphrases (Wieting et al., 2015) and word senses
(Jauhar et al., 2015; Ettinger et al., 2016b), as well
as lexical relations such as antonymy (Mrksic et al.,
2016), lexical entailment (Vuli¢ and Mrksi¢, 2018)
and other functional relations (Lengerich et al.,
2018). Joint retrofitting models have also been
proposed to learn semantic specialization from
cross lingual resources and are beneficial for low-
resource language representation learning (Mrksic¢
et al., 2017). Since retrofitting methods are lim-
ited to entities seen in corpora, recent works on
post-specialization have focused on extending the
specialization learnt during retrofitting to unseen
lexical instances (Glavas and Vulié, 2018; Vulié
et al., 2018), which we build upon here, for CWEs.

2.1 Retrofitting CWEs using LASeR

LASeR (Bihani and Rayz, 2021) is a sense
retrofitting method that aims to encode sense in-
formation into CWEs. LASeR utilizes sense an-
notated corpora to modify any given vector space
by injecting sense information within word vec-
tors, while minimizing anisotropy, the tendency for
vector spaces to occupy a narrow cone, resulting
in inflated vector similarities (Ethayarajh, 2019).
LASeR performs anisotropy reduction by remov-
ing the top common direction(s) within the vec-
tor space, making it uniformly distributed. It fur-
ther extends the retrofitting update developed by
Faruqui et al. over word senses, such that vector
representations of same word senses are shifted
closer together while retaining the distributional
properties learnt during pretraining. LASeR is
trained on multi-sense nouns, verbs, and adjec-
tives from five sense-annotated resources from var-
ious SemEval and SensEval tasks, concatenated
under a unified WSD framework by Raganato et al.



(2017). Although LASeR-enhanced CWEs empiri-
cally show greater sensitivity to sense-information,
their generation critically depends on the existence
of ground-truth sense information, which is unre-
alistic when encountering words embedded in sen-
tence contexts that have not been seen during the
retrofitting step. This facet of the method restricts
its testing to only intrinsic analyses (see Bihani and
Rayz, 2021) and prevents testing on standard WSD
benchmarks due to complete data-overlap, or super-
vised sense-sensitive tasks thereby casting doubts
about its effectiveness in NLP applications.

3 Method: Approximating LASeR

To circumvent the aforementioned issues, we
propose to instead “approximate” sense-enriched
CWE:s from vanilla CWEs in a supervised-learning
setup. Specifically, given d-dimensional CWE rep-
resentations X = {xy,...,X,}, and their corre-
sponding sense-enriched LASeR representations
Xs ={xs1,...,Xsn}, We propose to learn an ap-
proximation function f : R? — R, that maps
each x; to x,; by minimizing a regression-based
loss. Approximating LASeR embeddings allows
researchers to better test the benefits of inducing
sense information through retrofitting — i.e., one
can simply use the learned function f on word rep-
resentations that are disjoint from the vocabulary
that LASeR was trained for and then probe the
resultant vectors for sense-information. Figure 1
illustrates our entire approximation method.

Model Investigated We perform our experi-
ments on 768-dimensional embeddings extracted
from BERT},se (Devlin et al., 2019). We use BERT
as our CWE model due to precedence in earlier
research investigating word-sense information in
CWE:s produced by pre-trained LMs (see §2). Fur-
thermore, this lets us narrow in on deeper analyses
— e.g., investigating layerwise effects. However,
our methods are agnostic to any model that encodes
words in context and therefore can be extended to
any distributional CWE models.

Data We first expand the coverage of our sense-
enriched representations by combining the original
LASeR corpus with a subset of SemCor (Miller
et al., 1993) consisting only of single-word nouns,
verbs, and adjectives. This is a considerable update
as it results in 181,768 total instances, compris-
ing of 16,528 unique words and 16,751 unique
senses, embedded in 36,360 unique sentences. By
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Figure 1: Illustration of the MAKESENSE approxima-
tion method. In practice, BERT(.) can be replaced by

any CWE, provided one has access to the LASeR em-
beddings corresponding to the desired CWE.

contrast, Bihani and Rayz have 2,416 instances,
426 unique senses, 918 unique words, and 966
unique sentences. We apply LASeR? on the
BERT}, representations (x;) of target-words ex-
tracted from our augmented sense-annotated data,
yielding a sense-enriched vector space X! for
each layer (I) in the BERTp,e model, amount-
ing to 13 distinct X, spaces.” For each layer,
we lexically split the resultant set of tuples D! =
{(x, xi,’l) ., (%L, %L )} into our experimental
datasets: D! . (80%) D', (10%), and Dl
(10%), such that their vocabularies are disjoint
from one another. Our lexical-split strategy allows
for a more robust model training procedure to gen-
eralize LASeR approximation as opposed to simply
memorize it due to word-identity information leaks
(Levy et al., 2015).

Approximation function construction Follow-
ing Vuli¢ et al. (2018), who propose post-
specialization of retrofitted static word embeddings,
we assume non-linear mappings to be a better hy-
pothesis of how retrofitted sense information can
be estimated from CWEs — owing to the fact that
retrofitting injects several constraints to the vector
space, making it limiting for a linear map to suc-
cessfully approximate it. Therefore, we formulate
our approximation function as a multi-layer percep-
tron, i.e., f(x;) = MLP(x;). We use the standard
L5 loss between the sense-enriched embedding x ;
and the approximated embedding f(x;):

Lon(x,%Xs) = || frm(x) — XSH% (D

Zwe use the publicly released code: https://github.
com/bihani-g/LASeR

312 transformer layers and one ‘O-th’ layer that serves as
input to the first transformer layer.


https://github.com/bihani-g/LASeR
https://github.com/bihani-g/LASeR

We experiment with composing h € {1,...,5}
different hidden layers, with sizes d, €
{512,1024,2048}. Each layer is passed through a
ReLLU activation and a dropout function (p = 0.5).
We find the best hyperparameter configuration
by training multiple models on the training set
(D¢rain), and choose our final model as the one
that achieves the minimum average loss on the de-
velopment set (Dg.,,). Henceforth, we refer our
best model as MAKESENSE.

Training Details We use the Adam optimizer
(Kingma and Ba, 2015) with regularization (with
a weight decay of 0.001) to train all of our approx-
imation functions. For each training regimen, the
best initial learning rate for the optimizer is chosen
from the space: {0.001, 0.0001, 0.0003}. Our mod-
els are trained for a maximum of 40 epochs, with a
batch size of 128. For each run, we halt the training
process if the loss on the development set does not
reach a new minimum for five consecutive epochs.
With our various parameter configurations, we train
585 different approximation functions (3 learning-
rate values x 3 hidden layer sizes x 5 hidden layers
x 13 distinct BERT layers). Interestingly, all of
our final 13 MAKESENSE models converge to the
exact same configuration: two hidden layers of size
2048 each, and an initial learning rate of 0.0001.
Representations from MAKESENSE show substan-
tial improvements over BERT},s. representations
in vector space isotropy (see appendix A).

4 Does MAKESENSE make sense?

We now conduct a range of tests targeting vari-
ous sense-sensitive properties that our proposed
MAKESENSE method imparts to the original CWE
(BERT},se). Our analyses crucially require access
to sense information and serve as a holistic bench-
mark environment where success of a model is
quantified by various metrics that allow for robust
comparison and conclusions regarding the repre-
sentational quality produced by performing MAKE-
SENSE. Data used in each analysis are disjoint
from those used in our approximation experiments,
contributing further to the robustness of our tests.

4.1 Investigating word sense information
through representation similarity

Recent work in CWE-based WSD (see §2) sug-
gests that computational models/agents that are
sensitive to word sense information should likely
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Figure 2: A values computed per-layer for BERTpe
and MAKESENSE representations, on the WIC corpus.

produce representations that are similar for surface-
forms of words with same as opposed to different
senses. We gauge word-sense sensitivity in MAKE-
SENSE and the original BERT},s. embeddings by
comparing their representational similarities for
words used in similar versus different senses. Let,
S = {(s1,5?),..., (s, s2)} be contextual embed-
ding space of pairs of words with the same sense
and D = {(d},d?),...,(d}, d?,)} be the embed-
ding space of pairs of words with different senses.*
To assess sensitivity to word sense information, we
utilize the A metric, calculated as the difference
of average cosine similarity between same-sense
word instances and that of different-sense word
instances:

n

A:%Zcos sk, s2)

l icos d! d2 )
i+ d5)
i=1 m j=1
Thus, for a given word, if representations pro-
duced by MAKESENSE are on average more simi-
lar for surface-forms of the same sense and farther
apart for its different senses, relative to the represen-
tations from the original model (A > ABgRrT),
then we take this as evidence in favor of MAKE-
SENSE in terms of the improvements it lends to the
BERT}, representations.

We rely on the WIC dataset (Pilehvar and
Camacho-Collados, 2019) for this experiment.
WIC consists of pairs of contexts with marked tar-
get words (e.g., row 1 of table 1), annotated for a
discrete judgment of whether the surface-forms of
the words carry the same sense. We use the con-
catenation of the training and development splits
made publicly available by the authors.’

“Note that the surface-form of s; is the same as that of s,

and that of d‘} is the same as that of df-.
>The ground-truth data for the test split is part of an on-



Experiment Stimulus Example

Outcome Evaluation Metric(s)

(1a) He designed a new piece of equipment.
(1b) She bought a lovely piece of china.

WIC (§4.1 and §4.3)

Same sense
A (similarity); Accu-

(1c) Life has lost its point.

(1d) He broke the point of his pencil.

racy (probing)
Different sense

(2a) No, we are not talking about the fortunes
of a rich and powerful democracy.

(2b) Rich people manage their money well.

Avg. Human

Similarity: 4.75 )
Spearman’s p with

USIM (§4.2)

(2c) What are the important variables that cre- human judgments
. . . . Avg. Human
ate a rich online learning experience, .. .cont. s 6
(2d) Rich people manage their money well. Similarity: 1.63
(3a) Magnus Carlsen is the world chess champion.
Hypernymy
WHIC (§4.4) (3b) The championship game was played yesterday. Weighted F (overall);
’ . . o Directional-accuracy
(3c) He refused to give titles to his paintings.
No Hypernymy

(3d) He had the status of a minor.

Table 1: Example of stimuli used in our analyses. Note: The outcome column represents the ground-truth label or
value of the corresponding stimulus example. Dataset statistics and source URLs can be found in Appendix B.

Results and Analysis Figure 2 shows A-values
for representations extracted at each layer of the
BERT},se model and their corresponding MAKE-
SENSE representations. In general, we see greater
A-values in deeper layers, suggesting that over-
all sensitivity to word-sense information largely
increases as we move closer to the output of the
BERT model. MAKESENSE substantially enhances
this sensitivity in deeper layers with greater A-
values compared to BERTy,.. However, we see
the opposite behavior in layers prior to layer 6,
where the average similarity of surface-forms with
the same sense is in fact not very different or even
lower (starting at layer 3) than that of surface-forms
with different senses. Since embeddings in layers
closer to the input to BERT are more likely to re-
tain information about word identity (Devlin et al.,
2019), we speculate that this property makes earlier
layers less susceptible to making distinctions be-
tween different usage of words in context, thereby
producing low A-values. From this preliminary
analysis, we predict that benefits of using MAKE-
SENSE are more likely to be observed in deeper as
opposed to shallow layers.

Takeaways MAKESENSE representations show
greater sensitivity to sense-information compared
to the original BERT},,,. embeddings. However,
this behavior is only local to deeper layers (layer 6

going competition and only allows limited access to 10 tries,
which is insufficient for our experiments.

and above) and is reversed in shallow layers, sug-
gesting that deeper layers may be more susceptible
to improvements by MAKESENSE.

4.2 Correspondence with Graded Word
Sense Similarity Judgments

Next, we turn to a setting that sheds a more nu-
anced light on inferring word meaning from con-
text. This setting draws on theories of cognition
advocating for ‘fuzzy’ concept boundaries (Zadeh,
1999; Rosch, 1973; Hampton, 2007), and casts re-
latedness in contextual word meaning as a graded
measure (Kintsch, 2007). In table 1 for instance,
rich in (2a) is more closely related to that in (2b)
than it is to rich in (2¢). We test the extent to which
our representations are able to make word related-
ness predictions consistent with this intuition. To
this end we rely on the USIM dataset (Erk et al.,
2013). USIM contains word meaning similarity an-
notations on pairs of instances of the same word
appearing in different contexts. Each instance in
the dataset presents a word lemma w in two con-
texts, where annotators judge graded similarity be-
tween their perceived word meanings on a scale
of 1 (completely different) to 5 (same meaning).
We compare MAKESENSE and BERT,, based on
their correspondence (measured using Spearman’s
p) with two measures: (1) USIM, the raw human-
elicited similarity judgements reported by Erk et al.;
and (2) UMID (McCarthy et al., 2016), the propor-
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Figure 3: Spearman’s p computed between representa-
tions’ cosine relatedness and gold-standard metrics of
graded sense-similarities: USIM and UMID.

tion of mid-range similarity judgments (between 2
and 4) on a word lemma, extracted from the USIM
dataset. Correspondence with USIM denotes the
alignment of the representational space with hu-
man intuitions about sense-similarity, while that
with UMID reflects the uncertainty/disagreement
regarding the perceived word meaning across dif-
ferent contexts. For a given word lemma, we expect
models with enhanced sense-information to show
greater positive correlation with USIM, suggesting
better alignment with humans, and more negative
correlation with UMID, indicating less uncertainty
about word-sense similarity judgments.

Results and Analysis The correlation compar-
isons are plotted in Figure 3. We observe that
MAKESENSE embeddings show greater correla-
tion with USIM in deeper layers, as compared
to BERTy,s embeddings, suggesting greater cor-
respondence with overall human intuitions of
sense-similarities. MAKESENSE representations
also show greater negative correlation with UMID
scores, especially in the middle layers. This sug-
gests that MAKESENSE representations are bet-
ter equipped to capture fine-grained gradedness
in word sense similarity, i.e. they are more sus-
ceptible to distinguishing between moderately vs.
highly similar instances relative to BERT g rep-
resentations, which show more uncertainty in their
similarity judgments. These findings agree with
our prior observation (see §4.1) that MAKESENSE
improves performance in the deeper model layers.
We additionally observe that gradedness in sense
similarities are better captured by MAKESENSE
representations, especially in the middle layers and

the final layer.

Takeaways In comparison to BERTp,se, MAKE-
SENSE representations not only encode more sense
information, but also create vector spaces that show
greater correspondence with gradedness in word
sense similarity.

4.3 Probing for Binary Sense Judgments

We now turn to the body of work popularly known
as probing (Ettinger et al., 2016a; Adi et al., 2017;
Conneau et al., 2018) to further characterize the
differences between MAKESENSE and BERT},5c
in terms of word-sense information. The probing
paradigm lets us explore the extent to which repre-
sentations extracted from black-box models make
a certain feature or property (linguistic or non-
linguistic) readily accessible in a supervised setting.
We hypothesize that representations that better en-
code sense-level information are also more con-
ducive to successfully determining whether a given
surface-form of a word carries the same meaning in
a pair of minimally-overlapping sentence or phrasal
contexts. Using our example from the first row of
table 1, representations with better sense-level ca-
pacities should support the classification of piece
in (1a) and (1b) as the same sense, while that of
point in (1c) and (1d) as different.

We again rely on WIC as our experimental
dataset, but instead cast our investigation as a bi-
nary classification setting, leveraging the annotated
labels of “same-sense” and “different-sense” as
our target labels. We follow Adi et al. (2017) and
Hewitt and Liang (2019) and use a simple one-
hidden-layer MLP as our probing classifier with
256 hidden-units, ReLLU activation, and a sigmoid
layer to generate the probability of the “same-sense”
label. For each layer, we train our probe on 90% of
the training split—we reserve 10% for validation—
and test generalization performance using the final
model’s accuracy on the development set. A finer-
grained description of our training details can be
found in Appendix C.

Results and Analysis Figure 4 shows classifica-
tion accuracies of the probe on the development set
of the WIC dataset. Since WIC is balanced for its
two class labels, chance performance on this task is
50%. We see that MAKESENSE elevates the prob-
ing accuracy of BERT},g on this task across a ma-
jority of layers (all except layer 3), suggesting that
the MAKESENSE method makes sense-information
more accessible to the probe relative to the vanilla
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Figure 4: Probing accuracies on the WIC dataset.

BERT},,sc model. However, it should be noted that
the increase in the representational-capacity to bi-
nary classification is modest — with the maximum
difference in performance being 2.41 percentage-
points in layer 7. Nonetheless, all layers show
above chance level performance, with the best ac-
curacy being 65% for MAKESENSE at layer 12.
Revisiting our hypothesis from §4.1, MAKESENSE
shows its maximum benefit in deeper layers.

Takeaways BERT},, representations trans-
formed using the MAKESENSE method show
enhanced capacities to distinguish between same
and different meanings of surface-forms of words
in context, in a supervised setting. These capacities
generally increase as we go deeper into the model’s
layers, matching evidence from previous work
(Reif et al., 2019).

4.4 Probing for sense-sensitive hypernymy

Our final experiment deals with perhaps one of
the most fundamental and well-studied lexical rela-
tion: the hypernymy or 1S-A relation (Pustejovsky,
1995). Most linguists argue that hypernymy is a
relation between word senses as opposed to surface-
forms (see Murphy, 2003, and references therein).
That is, chess in (3a) is a hyponym of game in
(3b) but not a hyponym of game in “The poachers
looked to hunt the big game,” where it corresponds
to "animal hunted for food" as per WordNet. We
explore in this section the extent to which MAKE-
SENSE and BERT},,,. encode this sense-sensitive
relation, where the pair (chess, game) in (3a) and
(3b) is classified as a case of hypernymy, while the
pair (titles, status) in (3¢) and (3d) is not. While
MAKESENSE does not include any hierarchical
component in its learning mechanism, it should
at the very least preserve the hypernymy informa-

tion that is already contained in BERTy,g for it to
be competitive in this experiment, especially since
it focuses on manipulating representations for a
different—albeit related—task. Arguably, this is
a non-trivial task that involves not only discern-
ing the sense of a word from its context, but also
predicting the existence as well as direction of the
relation — hypernymy is asymmetric, i.e., chess
is a hyponym of game (provided their senses are
correctly disambiguated) but the reverse is not true.

For this experiment, we rely on the Word Hy-
pernyms in Context (WHIC) dataset (Vyas and
Carpuat, 2017). WHIC consists of pairs of sen-
tence contexts with marked words that are anno-
tated for whether the first word’s sense is the hy-
ponym of the second word’s sense, thereby making
this dataset sensitive to both the senses of words
in context and the direction of the relationship. An
example stimuli is shown in row 3 of table 1. The
dataset comes in standard splits (70% - train, 5% -
dev, and 25% - test) that have disjoint vocabulary
in terms of the marked words, thereby eliminating
issues related to lexical-overlap (Levy et al., 2015).
Note that WHIC is an imbalanced dataset, with
more negative than positive instances — the nega-
tive instances include both directionally opposite
versions of the positive instances, as well as multi-
ple cases where the senses of the two words do not
have a hypernymy relation.

We again use the probing paradigm to test the
extent to which MAKESENSE and BERT},,. rep-
resentations make sense-sensitive hypernymy re-
lation accessible in a manner that is directionally
sensitive. To this end, we conduct tests on two ver-
sions of WHIC: (1) WHIC-FULL, which consists
of the entire dataset; and (2) WHIC-DIRECTIONAL,
which consists of a balanced version of WHIC with
positive instances and their directionally reversed
counterparts as negative instances. We use the same
architecture as the probing experiments on WIC
for our WHIC-probing experiments and perform
layerwise probing experiments.

Results on WHIC-FULL This test focuses on
the overall encoding of hypernymy information in
the representations that we test. Due to the imbal-
anced nature of this dataset, we use the weighted-
F1 score as our performance measure, following
Vyas and Carpuat (2017). Figure 5a shows our re-
sults. Overall, we find that representations from all
layers show above-chance performance, suggest-
ing non-trivial access to sense-sensitive hypernmy
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Figure 5: layerwise performance from our sense-sensitive hypernymy tests: (a) Weighted F1 scores on WHIC-
FULL; and (b) Directional accuracies on WHIC-DIRECTIONAL. Note: Y-axes are different in (a) and (b).

information during classification. On comparing
MAKESENSE and BERTy,,., we see little to no dif-
ference in overall performance, suggesting that our
approximation experiments show no particular ben-
efits in inferring taxonomic relations from context.
At the same time, overall high F1 scores on WHIC-
FULL from BERT},. suggests that this information
is considerably imparted during pre-training.

Results on WHIC-DIRECTIONAL  This test fo-
cuses on specifically shedding light on the extent
to which the representations we test are sensitive
to the asymmetrical nature of the hypernymy rela-
tion. We quantify this sensitivity by evaluating the
‘directional accuracy’ of the probe trained on the
WHIC-DIRECTIONAL subset of WHIC. This met-
ric represents the proportion of pairwise instances
where directionally correct instances (chess in (3a)
is a hyponym of game in (3b)) and their flipped
counterparts (game in (3b) is a hypernym of chess
in (3a)) are assigned the correct label. We observe
that both MAKESENSE and BERT ;5. show high di-
rectional accuracies across all layers, ranging from
81-88%, with performance roughly increasing with
layer. Again, we observe that MAKESENSE shows
no particular benefit in making the asymmetrical
property of hypernymy more accessible during su-
pervision, instead it largely preserves it despite
numerically altering the BERT},,. representations.

Takeaways Both MAKESENSE and BERT;
are equally conducive to making sense and direc-
tional sensitive hypernymy information readily ac-
cessible from linguistic context. Pre-training im-
parts a non-trivial amount of context-sensitive hy-
pernymy information to BERT representations and
MAKESENSE largely preserves this information.

5 Conclusion and Future work

We present MAKESENSE, a post-processing ap-
proach that incorporates word sense information in
CWEs. MAKESENSE generalizes the retrofitting
paradigm by learning a transformation to push
words with similar senses closer together in vector
space, while also making the space more isotropic.
This way, sense information can be induced for
any homonymous or polysemous word by sim-
ply passing its contextual representation through
MAKESENSE. Through our analyses, we observe
MAKESENSE to better impart sense-sensitive in-
formation in deeper layers of the original model,
resulting in sense-similarity predictions that align
better with human intuitions about word senses.
Our probing studies show improvements in mak-
ing sense-disambiguation information more readily
accessible. However. we see that MAKESENSE
largely preserves hierarchical knowledge about in-
ferred word senses through our investigation for
sense-sensitive hypernymy, opening up avenues to
incorporate structured lexical semantic knowledge
into CWEs in future work.

There remains substantial work to be done in cap-
turing the nuances of lexical ambiguity in context.
Our work presents a step towards building gener-
alizable models of lexical specialization, not only
at the word token level, but also word sense level.
In the future, we aim to experiment with a variety
of different approximation methods, as well as in-
corporate more diverse knowledge sources into the
approximation pipeline. It would be informative
to also interact MAKESENSE with more context-
aware embeddings to better infer word meaning
patterns from context.
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A Isotropy Improvements by

MAKESENSE

Anisotropy in contextual word embeddings
(CWEs) has been shown to hinder the semantic ca-
pabilities of models (Gao et al., 2019). Moreover,
the existence of anisotropy in a vector space ren-
ders vector geometry based sense similarity judge-
ments inconsequential (Ethayarajh, 2019). To ad-
dress this problem and improve lexical-semantic
capabilities of CWEs, recent works have proposed
methods to boost the isotropy of the underlying
vector space (Gao et al., 2019; Su et al., 2021;
Bihani and Rayz, 2021). In this regard, MAKE-
SENSE-transformed vector spaces show significant
improvements in isotropy, especially in the deeper
layers of models. We plot the average similarity
between 1,000 randomly sampled words (multi-
sense nouns, verbs and adjectives) extracted from
the sense annotated corpora, for MAKESENSE and
BERT},se word representations across model lay-
ers, as shown in Figure 6. It can be observed that
unlike BERT},s. embeddings, where average simi-
larity between random words increases across the
model layers, MAKESENSE embeddings create a
vector space such that random words have almost
no similarity. Thus, MAKESENSE-transformed
BERT embeddings successfully create uniformly
distributed vector spaces, while retaining and even
enhancing the lexical-semantic information present.
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Figure 6: Average similarity between representations
of randomly sampled words across model layers

B Dataset statistics

All our data are in the English language. Exper-
imental statistics of the WIC, WHIC-FULL, and
WHIC-DIRECTIONAL datasets that we use in our
analyses are shown in Table 2.

We collect our experimental data from the fol-
lowing sources:
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WiC

Same Sense Different Sense
Train 2,714 2,714
Dev 319 319

WHIC-FULL

Hypernymy No Hypernymy
Train 3,693 12,023
Dev 283 1,421
Test 1,263 4,098

WHIC-DIRECTIONAL

Hypernymy No Hypernymy

Train 3,693 3,693
Dev 283 283
Test 1,263 1,263

Table 2: Statistics of experimental splits of the WIC,
WHIC-FULL, and WHIC-DIRECTIONAL datasets used
in our probing experiments.

* WIC: https://pilehvar.github.
io/wic/package/WiC_dataset.zip

e UsiMm: https://www.
dianamccarthy.co.uk/
downloads/WordMeaningAnno2012/
cl-meaningincontext.tgz

e WHIC: https://github.com/
yogarshi/WHiC

C Training Details for Probing
Classifiers

We use probing classifiers for our analyses in §4.3
and §4.4. As described, both our probes are multi-
layer perceptrons (MLP) with a single hidden layer
with 256 units and a final sigmoid layer for clas-
sification. Our probes takes as input concatenated
representations of the marked words, and classify
for same vs. different sense in the case of WIC, and
whether the first marked is a hyponym of the sec-
ond marked word in the context of WHIC. In both
cases, we optimize for the binary cross-entropy us-
ing the Adam optimizer (Kingma and Ba, 2015)
with a learning rate of 0.001 and perform regular-
ization with a weight-decay of le-5. Following
Hewitt and Liang (2019), we halve the learning
rate if after every epoch the optimizer is unable to
find a new minimum loss, and stop training if we
encounter 5 such epochs consecutively.
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D Implementation Details

We use Pytorch (Paszke et al., 2019) and scikit-
learn (Pedregosa et al., 2011) for our probing ex-
periments and analyses. The BERT model was ac-
cessed using the t ransformers library by Hug-
gingFace (Wolf et al., 2020). Our experiments were
run on a NVIDIA V100 GPU with a 32GB RAM.
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