
KernelBot: A Competition Platform for Writing Heterogeneous GPU Code

Alex L Zhang * 1 Matej Sirovatka * 1 Erik Schultheis * 1 Benjamin Horowitz * 1 Mark Saroufim * 1

Abstract
Writing performant code for GPUs and parallel
processors is critical to building many machine
learning systems. However, writing these kernels
requires significant manual effort and expertise.
Furthermore, there is a lack of public, high-
quality kernels to learn from. To address these
issues, we introduce KernelBot, a community-
based open-source online platform for hosting
code competitions where users optimize GPU
algorithms. At the end of every competition, we
open source all participant submissions under a
permissive license. In this paper, we discuss how
we designed the platform with the goal of making
the submission process interactive, minimizing
barriers to entry such as cold starts. Additionally,
we built the competition such that top-performing
kernels could be taken as-is to accelerate popular
models. Since launching in early March 2025,
our platform has received over 25K submissions
in the span of two competitions. The top kernels
in these competitions have also had real impact
and success on two popular hardware vendors,
NVIDIA and AMD.

1. Introduction
Several critical innovations in modern deep learning sys-
tems, ranging from inference engines (Kwon et al., 2023;
Zheng et al., 2024) to large language models (DeepSeek-
AI et al., 2024) rely on custom GPU kernels. As a result,
optimizing GPU code has become an increasingly impor-
tant task, with modern efforts to design platforms to learn
GPU programming (GPU MODE, 2024; LeetGPU, 2025;
Tensara, 2025) and build code generation models for GPU
kernels (Ouyang et al., 2025).

We present KernelBot, an online platform for competitive
and collaborative optimization of accelerator device code.

*Equal contribution 1GPU MODE, discord.gg/gpumode. Cor-
respondence to: Mark Saroufim <marksaroufim@meta.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

The objective of each competition is to optimize a particular
algorithm on an accelerator, e.g. a GPU. This project was
built as an open source community-driven effort with the
following goals:

1. Facilitate the discovery of new and faster GPU kernels
through community-driven competition.

2. Provide a platform for people to practice writing
production-level accelerator code.

3. Curate a dataset of high-quality GPU kernels that spans
different hardware vendors to train a specialized accel-
erator coding model.

Figure 1. The public KernelBot leaderboard displays the measured
runtime of each user submission on each competition, sorted by
fastest times. Each submission must pass a set of functional cor-
rectness checks against a target reference implementation before
being benchmarked for a ranking.

In this report, we detail the design of the KernelBot compe-
tition platform and the challenges and benefits of building it
publicly and open-source. Our platform is built on top of the
Discord platform, a communication platform where users
can chat through text in isolated, topic-specific channels.
On the frontend, we create a bot using the Discord API (Dis-
cord, 2025) which participants interact with to submit, view,
and benchmark their accelerator code submissions for a par-
ticular competition. On the backend, we connect to cloud
providers or GitHub actions and schedule the benchmarking
of multiple concurrent user submissions in real-time.

The open-source development of KernelBot has led to sev-
eral positive impacts in the machine learning systems com-
munity, most notably a change to speed up the compile
times of the popular load inline function in PyTorch.

1

KernelBot: A Competition Platform for Writing Heterogeneous GPU Code

The KernelBot platform is also hosting several active com-
petitions which have already led to kernels that are up to
10x faster than equivalent PyTorch kernels on NVIDIA hard-
ware, as well as a fast FP8 generalized matrix multiplication
(GEMM) kernel used in DeepSeek-V3 (DeepSeek-AI et al.,
2025) for AMD hardware.

2. The KernelBot Competition Leaderboard
KernelBot is a virtual platform for developers to create
highly optimized accelerator kernels through community-
driven discussion and competition. We host competitions on
the platform where participants are tasked with optimizing
a particular algorithm on a particular device(s) with specific
input shapes over a fixed period of time. For example, one
competition problem we hosted challenges participants with
optimizing the FP8 Block-wise Generalized Matrix Multipli-
cation used in Deepseek-v3 (DeepSeek-AI et al., 2025) on
AMD MI300 (Smith et al., 2024). We enable participants to
view the relative ranking of their fastest submissions on a
public leaderboard (see Figure 1).

2.1. Creating a KernelBot Competition

Each competition hosted on the KernelBot platform is effec-
tively a crowd-sourced effort to optimize a particular kernel.
In this section, we describe the structure of a KernelBot
competition and the user submission process.

Evaluation process. When a user submits a kernel, the Ker-
nelBot platform runs a series of scripts that handle verifying
that the kernel is functionally correct, benchmarking the
runtime of the kernel, and defining the inputs used. Each
competition has three separate modes that the problem cre-
ator must define independent test cases for, each of which
serve a different purpose for a participant:

1. Test. These test cases serve as a quick check for par-
ticipants to verify the correctness of their kernel. These
submissions are not used on the public leaderboard.

2. Benchmark. These test cases do not check for cor-
rectness, but only provide the user with the runtime of
their kernel. These submissions are not used on the
public leaderboard.

3. Ranked. These test cases are checked for correctness
and benchmarked for runtime, and functionally correct
submissions are displayed on the public leaderboard.

We provide competition creators with template code that
supports most leaderboard configurations, while also giving
them full flexibility to customize the evaluation process for
their particular competitions as needed.

Reference kernels. A successful submission to a KernelBot
competition must be functionally equivalent to a reference
kernel that is specified by the competition creator. The
reference kernel is often a naively written PyTorch module

that participants must optimize, and can be defined in both
Python and CUDA. These reference kernels are provided by
the KernelBot platform to participants to help design their
own optimized versions that are functionally equivalent.

2.2. Participant Submissions on KernelBot

When a participant enters a competition on the KernelBot
platform, they are provided with all code files used to define
a competition described in § 2.1. Participants write their
own optimized kernels in the same format as the reference
kernel and submit a single file for evaluation. Furthermore,
testing correctness and benchmarking submissions for the
leaderboard can be slow, so we also provide participants
with “test” and “benchmark” commands, which offer faster
feedback by running reduced test suites for debugging and
partial correctness checking, respectively.

Submitting on Discord. KernelBot enables participants
to submit directly on Discord in any mode by sending a
particular command with their submission file attached,
e.g. ‘/leaderboard submit ranked FILE’. The
Discord bot then privately provides the user with informa-
tion on the correctness of the submitted code (including
compile-time or runtime errors), as well as the evaluated
speed of the kernel (see Figure 2).

Figure 2. KernelBot competition participants can submit their code
through Discord, which we configure to provide feedback on errors,
functional correctness, and benchmarked speed.

Submitting on a Command-line Interface (CLI). The
advantage of hosting our submission workflow on Discord
was quick access to community discussion through the chat
interface. However, early feedback revealed that the Dis-
cord command workflow was not amenable to iteratively
optimizing kernels. Therefore, we also added a CLI inter-
face that directly communicates with the bot and allows
users to submit, test, and benchmark their kernels through
the terminal. We utilize Discord and the CLI to serve dis-
tinct user experience functions. Discord facilitates real-time
communication and support between the developer team
and competition participants, ensuring rapid feedback and
engagement as the platform continues to evolve. The CLI
acts instead as a frictionless submission tool for participants,

2

KernelBot: A Competition Platform for Writing Heterogeneous GPU Code

enabling streamlined, one-click code submissions that we
believe most developers are comfortable with.

3. The KernelBot Backend
The frontend of the leaderboard described in § 2 abstracts
away how we accurately benchmark the runtime of each
user kernel over a particular set of inputs, as well as how
we manage concurrent user submissions in real-time. We
describe these details below.

Bot

Runner

WebFrontend

Backend DB

Runner Tester

T3T2T1

IO, parsing

Discord Leaderboard Site

API

Figure 3. Overview of the KernelBot system. Ti indicates individ-
ual test cases running in separate processes.

3.1. Overview of the KernelBot Backend

In Figure 3, we partition the workflow of the KernelBot
platform into two main components:

The Bot. The bot orchestrates the process of receiving user
submissions via a Discord interface and an API, schedules
these kernels to be executed by the Runner, and then stores
the results returned in a database. This database is eventually
used to render the leaderboard, compute statistics over user
submissions, and serve as a dataset of high-quality kernels.

The Runner. The runner(s) are responsible for testing and
benchmarking a user’s submission on an accelerator device.
The runners are responsible for receiving and unpacking
the code and test case files for a particular competition, exe-
cuting the potentially problem-dependent evaluation script,
and collecting results of the submission. Currently, we sup-
port runners based on GitHub Actions (GitHub, 2025) and
Modal (Modal, 2025), with plans to support bare-metal in-
stances and other cloud providers. To execute a kernel on

individual test cases, runner itself will call a Tester.

The Tester. The tester(s) executes and benchmarks indi-
vidual test cases in separate subprocesses for better isola-
tion. We support testers written in Python and C++, but
our current competitions use Python to allow PyTorch or
C++/CUDA reference kernels through the use of PyTorch’s
load inline functionality.

3.2. Accurately benchmarking accelerator code

Accurately benchmarking accelerator kernels is a non-trivial
task due to the many factors that can influence performance.
To limit inaccuracies introduced by benchmarking overhead,
we typically select problem sizes for which the speed-of-
light (i.e. the fastest theoretically possible implementation
based on memory bandwidth or compute capacity) imple-
mentation requires at least several hundred microseconds.
The benchmarking procedure first generates new random
input, synchronizes the accelerator, starts the timer, synchro-
nizes and measures the elapsed time, then checks the result
for correctness against a reference implementation. This
process is repeated at least three times and continues until
one of the following conditions is met:

a) The standard error (i.e. standard deviation divided by√
n− 1) falls below 1% of the mean.

b) The total running time of all user kernel invocations
exceeds 30 seconds.

c) The total wall-clock time (kernel execution + input
generation + correctness checks) exceeds 120 seconds.

3.3. Security and reproducibility considerations

There exists an inherent trade-off between granting users
maximum freedom to achieve best performance (e.g. set-
ting environment variables, querying hardware details and
performance counters, or selecting the scheduling algorithm
for the CPU) and ensuring security and reliability of the
platform.

Limitations with Cloud Providers. The KernelBot plat-
form does not provision its own hardware, so the security
of the system itself is at the discretion of the cloud provider,
which comes with certain restrictions. For example, when
using Modal, we do not get access to GPU performance
counters, or even the exact model of CPU that the code is
running on, which may vary between submissions.

Cheat-proofing submissions. Besides ensuring the in-
tegrity of the runners themselves, we are also interested
in preventing cheating during competitions to ensure that
only functionally correct submissions are accepted. We have
observed a few methods of cheating through community dis-
cussion on our platform, such as hijacking the reporting path
that the runner uses to return test results, exploiting the in-
ternal random generator’s seed, overwriting the input tensor

3

KernelBot: A Competition Platform for Writing Heterogeneous GPU Code

in such a way that the reference operation becomes trivial,
or even directly tampering with the Python interpreter. We
provide examples and address some of these methods in
Appendix C.

4. Open-source Benchmarking Infrastructure
All development of KernelBot is done in the open, includ-
ing but not limited to the submission interface described
in § 2, the runner and evaluation scripts described in § 3,
and all competition-specific code such as reference kernels
and correctness checks. Building our platform as open-
source software (OSS) has been essential for ensuring full
transparency in our grading and benchmarking procedures,
which in turn supports the usability of user submissions in
machine learning systems.

4.1. Benefits of OSS Infrastructure

Our fully open approach resulted in multiple improvements
in the ecosystem. We outline some examples of where
building KernelBot in the open has led to positive impacts
on the machine learning systems community, as well as our
own system.

Security. As discussed in § 3.3, open-sourcing our evalu-
ation code increases potential cheating risks. Interestingly,
community discussion on our platform revealed several ap-
proaches and examples of exploits that we were able to
address (see Appendix C).

Improving the load inline function in PyTorch. One
of our primary concerns was the cold start time of using
a runner to evaluate and benchmark user submissions. As
discussed in § 3.3, we do not have bare-metal access to
our machines, so we utilize GitHub Actions and Modal to
run our code. GitHub Actions in particular are stateless, so
each unique submission requires installing and setting up
the proper environment dependencies on the runner. To min-
imize these “cold-start” times, we found that the PyTorch
load inline function, which is required for writing ac-
celerator code on our Python leaderboards, was including
thousands of redundant header files, making it unnecessary
slow for applications beyond KernelBot.

This finding eventually led to changes in the PyTorch code-
base, which also reduced cold-start times on our platform
due to this function from 90s down to 5s. We describe the
exact issues and process that led to this change, as well as
some other changes we proposed in Appendix B.

5. Discussion
We hope to inspire a new wave of community-driven bench-
marking efforts that are built in the open. The KernelBot
infrastructure and competition reference kernels are all re-

leased under a permissive MIT license. By publicly re-
leasing all competition submissions, we seek to aggregate
the largest and highest-quality kernel dataset, providing a
valuable resource for both education and research.

5.1. High-quality Kernels as Data

Recent efforts to build GPU code generating large language
models (Fisches et al., 2025; Lange et al., 2025) have strug-
gled to generate performant kernels on benchmarks such
as Ouyang et al. (2025).1 A large issue is the lack of pub-
licly available and high-quality GPU code – the largest
public dataset (Paliskara & Saroufim, 2025) includes only
18k code samples despite crawling all GitHub repositories
and generating synthetic GPU code. In contrast, the Ker-
nelBot platform will continually provide high-quality code
samples across a diverse set of accelerators as data through
community-drive competition.

5.2. Commercially Useful Results

We provide examples of commercially useful kernels that
were developed by participants across two different compe-
titions hosted on our platform. See Appendix E for a list of
the competition problems we hosted.

On NVIDIA GPUs. In our first competition, one par-
ticipant submitted implementations on the histogram,
sorting, and prefix sum problems optimized for the
NVIDIA H100 that achieved speedups of 10x, 3x, and 1.14x,
respectively, compared to native PyTorch baselines, each
of which use a hand-written kernel implementation under
the hood. Remarkably, these kernels also outperformed all
other competitors across other NVIDIA GPUs (T4, V100,
A100) without requiring architecture-specific modifications,
leveraging a well-established library2. In other words, these
kernels are a good candidate as either a default or optional
dependency in PyTorch and we show an example of the
histogram kernel in the Appendix D.

On AMD MI300. In our second competition, the top sub-
mission for the FP8 Matmul on the AMD MI300 is faster
than the optimized AMD in-house kernel3 on some shapes
used directly in Deepseek-V3 (DeepSeek-AI et al., 2025).

6. Conclusion
KernelBot is a competitive and open-source GPU program-
ming platform with two main goals. The first is to aggregate
more high-quality GPU data on the public internet. The
second is to serve as an educational resource for learning
to code on accelerators. The open-source design of Kernel-

1see also Appendix A
2https://github.com/NVIDIA/cccl
3https://github.com/ROCm/aiter

4

https://github.com/NVIDIA/cccl
https://github.com/ROCm/aiter

KernelBot: A Competition Platform for Writing Heterogeneous GPU Code

Bot has been critical to its early success, and we encourage
future benchmarking platforms to build in the open. We
hope KernelBot becomes the platform that solves the GPU
kernel token data scarcity problem and continues to provide
publicly available, high quality accelerator code.

References
DeepSeek-AI, Liu, A., Feng, B., Wang, B., Wang, B., Liu,

B., Zhao, C., Dengr, C., Ruan, C., Dai, D., Guo, D., Yang,
D., Chen, D., Ji, D., Li, E., Lin, F., Luo, F., Hao, G.,
Chen, G., Li, G., Zhang, H., Xu, H., Yang, H., Zhang,
H., Ding, H., Xin, H., Gao, H., Li, H., Qu, H., Cai, J. L.,
Liang, J., Guo, J., Ni, J., Li, J., Chen, J., Yuan, J., Qiu, J.,
Song, J., Dong, K., Gao, K., Guan, K., Wang, L., Zhang,
L., Xu, L., Xia, L., Zhao, L., Zhang, L., Li, M., Wang,
M., Zhang, M., Zhang, M., Tang, M., Li, M., Tian, N.,
Huang, P., Wang, P., Zhang, P., Zhu, Q., Chen, Q., Du,
Q., Chen, R. J., Jin, R. L., Ge, R., Pan, R., Xu, R., Chen,
R., Li, S. S., Lu, S., Zhou, S., Chen, S., Wu, S., Ye, S.,
Ma, S., Wang, S., Zhou, S., Yu, S., Zhou, S., Zheng, S.,
Wang, T., Pei, T., Yuan, T., Sun, T., Xiao, W. L., Zeng,
W., An, W., Liu, W., Liang, W., Gao, W., Zhang, W.,
Li, X. Q., Jin, X., Wang, X., Bi, X., Liu, X., Wang, X.,
Shen, X., Chen, X., Chen, X., Nie, X., Sun, X., Wang,
X., Liu, X., Xie, X., Yu, X., Song, X., Zhou, X., Yang,
X., Lu, X., Su, X., Wu, Y., Li, Y. K., Wei, Y. X., Zhu,
Y. X., Xu, Y., Huang, Y., Li, Y., Zhao, Y., Sun, Y., Li, Y.,
Wang, Y., Zheng, Y., Zhang, Y., Xiong, Y., Zhao, Y., He,
Y., Tang, Y., Piao, Y., Dong, Y., Tan, Y., Liu, Y., Wang,
Y., Guo, Y., Zhu, Y., Wang, Y., Zou, Y., Zha, Y., Ma, Y.,
Yan, Y., You, Y., Liu, Y., Ren, Z. Z., Ren, Z., Sha, Z.,
Fu, Z., Huang, Z., Zhang, Z., Xie, Z., Hao, Z., Shao, Z.,
Wen, Z., Xu, Z., Zhang, Z., Li, Z., Wang, Z., Gu, Z., Li,
Z., and Xie, Z. Deepseek-v2: A strong, economical, and
efficient mixture-of-experts language model, 2024. URL
https://arxiv.org/abs/2405.04434.

DeepSeek-AI, Liu, A., Feng, B., Xue, B., Wang, B., Wu, B.,
Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan, C., Dai, D.,
Guo, D., Yang, D., Chen, D., Ji, D., Li, E., Lin, F., Dai,
F., Luo, F., Hao, G., Chen, G., Li, G., Zhang, H., Bao,
H., Xu, H., Wang, H., Zhang, H., Ding, H., Xin, H., Gao,
H., Li, H., Qu, H., Cai, J. L., Liang, J., Guo, J., Ni, J., Li,
J., Wang, J., Chen, J., Chen, J., Yuan, J., Qiu, J., Li, J.,
Song, J., Dong, K., Hu, K., Gao, K., Guan, K., Huang,
K., Yu, K., Wang, L., Zhang, L., Xu, L., Xia, L., Zhao,
L., Wang, L., Zhang, L., Li, M., Wang, M., Zhang, M.,
Zhang, M., Tang, M., Li, M., Tian, N., Huang, P., Wang,
P., Zhang, P., Wang, Q., Zhu, Q., Chen, Q., Du, Q., Chen,
R. J., Jin, R. L., Ge, R., Zhang, R., Pan, R., Wang, R.,
Xu, R., Zhang, R., Chen, R., Li, S. S., Lu, S., Zhou, S.,
Chen, S., Wu, S., Ye, S., Ye, S., Ma, S., Wang, S., Zhou,
S., Yu, S., Zhou, S., Pan, S., Wang, T., Yun, T., Pei, T.,

Sun, T., Xiao, W. L., Zeng, W., Zhao, W., An, W., Liu,
W., Liang, W., Gao, W., Yu, W., Zhang, W., Li, X. Q.,
Jin, X., Wang, X., Bi, X., Liu, X., Wang, X., Shen, X.,
Chen, X., Zhang, X., Chen, X., Nie, X., Sun, X., Wang,
X., Cheng, X., Liu, X., Xie, X., Liu, X., Yu, X., Song,
X., Shan, X., Zhou, X., Yang, X., Li, X., Su, X., Lin, X.,
Li, Y. K., Wang, Y. Q., Wei, Y. X., Zhu, Y. X., Zhang,
Y., Xu, Y., Xu, Y., Huang, Y., Li, Y., Zhao, Y., Sun, Y.,
Li, Y., Wang, Y., Yu, Y., Zheng, Y., Zhang, Y., Shi, Y.,
Xiong, Y., He, Y., Tang, Y., Piao, Y., Wang, Y., Tan, Y.,
Ma, Y., Liu, Y., Guo, Y., Wu, Y., Ou, Y., Zhu, Y., Wang,
Y., Gong, Y., Zou, Y., He, Y., Zha, Y., Xiong, Y., Ma, Y.,
Yan, Y., Luo, Y., You, Y., Liu, Y., Zhou, Y., Wu, Z. F.,
Ren, Z. Z., Ren, Z., Sha, Z., Fu, Z., Xu, Z., Huang, Z.,
Zhang, Z., Xie, Z., Zhang, Z., Hao, Z., Gou, Z., Ma, Z.,
Yan, Z., Shao, Z., Xu, Z., Wu, Z., Zhang, Z., Li, Z., Gu,
Z., Zhu, Z., Liu, Z., Li, Z., Xie, Z., Song, Z., Gao, Z.,
and Pan, Z. Deepseek-v3 technical report, 2025. URL
https://arxiv.org/abs/2412.19437.

Discord. Discord API, 2025. URL https://discord.
com/developers/docs/intro.

Fisches, Z., Paliskara, S., Guo, S., Zhang, A., Spisak, J.,
Cummins, C., Leather, H., Isaacson, J., Markosyan, A.,
and Saroufim, M. Kernelllm, 5 2025. URL https://
huggingface.co/facebook/KernelLLM. Cor-
responding authors: Aram Markosyan, Mark Saroufim.

GitHub. GitHub Actions, 2025. URL https://github.
com/features/actions.

GPU MODE. GPU MODE, 2024. URL https://
gpumode.com/.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Ef-
ficient memory management for large language model
serving with pagedattention, 2023. URL https://
arxiv.org/abs/2309.06180.

Lange, R. T., Prasad, A., Sun, Q., Faldor, M., Tang, Y.,
and Ha, D. The ai cuda engineer: Agentic cuda kernel
discovery, optimization and composition. arXiv preprint,
2025.

LeetGPU. LeetGPU, 2025. URL https://leetgpu.
com/.

mei W. Hwu, W., Kirk, D. B., and Hajj, I. E. Program-
ming Massively Parallel Processors: A Hands-on Ap-
proach. Elsevier, Amsterdam, 4 edition, 2022. ISBN
9780323984638. doi: 10.1016/C2020-0-02969-5.

Modal. Modal, 2025. URL https://modal.com/.

5

https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2412.19437
https://discord.com/developers/docs/intro
https://discord.com/developers/docs/intro
https://huggingface.co/facebook/KernelLLM
https://huggingface.co/facebook/KernelLLM
https://github.com/features/actions
https://github.com/features/actions
https://gpumode.com/
https://gpumode.com/
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://leetgpu.com/
https://leetgpu.com/
https://modal.com/

KernelBot: A Competition Platform for Writing Heterogeneous GPU Code

Ouyang, A., Guo, S., Arora, S., Zhang, A. L., Hu, W., Ré,
C., and Mirhoseini, A. Kernelbench: Can llms write
efficient gpu kernels?, 2025. URL https://arxiv.
org/abs/2502.10517.

Paliskara, S. and Saroufim, M. Kernelbook, 5 2025.
URL https://huggingface.co/datasets/
GPUMODE/KernelBook. Corresponding author:
Mark Saroufim.

Smith, A., Chapman, E., Patel, C., Swaminathan, R., Wuu,
J., Huang, T., Jung, W., Kaganov, A., McIntyre, H., and
Mangaser, R. 11.1 amd instincttm mi300 series modu-
lar chiplet package–hpc and ai accelerator for exa-class
systems. In 2024 IEEE International Solid-State Cir-
cuits Conference (ISSCC), volume 67, pp. 490–492. IEEE,
2024.

Tensara. Tensara, 2025. URL https://tensara.
org/.

Zheng, L., Yin, L., Xie, Z., Sun, C., Huang, J., Yu, C. H.,
Cao, S., Kozyrakis, C., Stoica, I., Gonzalez, J. E., Bar-
rett, C., and Sheng, Y. Sglang: Efficient execution
of structured language model programs, 2024. URL
https://arxiv.org/abs/2312.07104.

6

https://arxiv.org/abs/2502.10517
https://arxiv.org/abs/2502.10517
https://huggingface.co/datasets/GPUMODE/KernelBook
https://huggingface.co/datasets/GPUMODE/KernelBook
https://tensara.org/
https://tensara.org/
https://arxiv.org/abs/2312.07104

KernelBot: A Competition Platform for Writing Heterogeneous GPU Code

A. Related Works
Prior work such as Ouyang et al. (2025) has shown all the various ways in which existing LLMs do poorly at kernel code
generation. Other prominent work in this space such as Lange et al. (2025) faced major correctness issues 4 where LLMs
reward hacked their way to fast but inaccurate kernels. Most existing kernel code generation works leverages techniques to
scale test time compute, reinforcement learning or evolutionary algorithms with the exception of Fisches et al. (2025) which
leverages SFT. We posit that is because there is not enough high quality kernel data on the public internet for researchers to
leverage something KernelBot is attempting to resolve directly. Finally, we view reward hacking as an inevitable outcome for
any “point-in-time” benchmark such as Ouyang et al. (2025) and so our approach is to instead directly audit top submissions
manually and if we notice any reward hacking then we patch our infrastructure.

B. Improving Cold-start Times on Runners
Our fully open approach resulted in multiple improvements in the ecosystem. For example, one of our primary concerns was
fast cold starts. It would be cost prohibitive for us to supply a dedicated GPU per community member but a cost effective
queue based system like KernelBot would become unusable with minute long overheads. A key design goal for us was to
ensure that submissions could be interactive for small test cases we managed to bring down cold starts to around 10s.

We do not have bare-metal access to our machines and utilize GitHub Actions and Modal to run our code. Unfortunately,
this comes with its own set of down-sides, cold starts being one of them, as the time to launch includes also preparing the
environment on these machines. This was not a problem with Modal, as the environments are cached between calls. For our
GitHub runners, naively there is significant overhead first with downloading and installing popular dependencies such as
torch, CUDA, jax of around 180s. Instead we chose to establish a single source of truth Dockerfile which upon updates,
publishes a new Docker image which would immediately get redeployed on vendor machines. This process is also more
transparent with our end users who can escalate new dependencies they’d like to see added.

The second large problem we encountered was compilation times which were on the order of 90s.

One of our most popular forms of submission was leveraging the PyTorch function load inline(). The function expects
native C++, CUDA or HIP code as as string, will code generate the right build scripts and takes care of marshalling tensors
from CUDA to PyTorch. However, compilation of the underlying code was taking up to 90s and was the first major source
of timeouts in our platform. We investigated the problem and root caused it to PyTorch including 17,000 C++ header
files and so we included a no implicit header to PyTorch and also worked on an example with minimal headers
all the while supporting Tensor marshalling to bring down compilation times to 5s.5 We also upstreamed a new function
torch.cuda. compile kernel() which has a similar user facing API to load inline() but instead leverages
NVRTC a significantly faster runtime compilation library which would bring down compile times to 0.01s.6 We plan to
continue collaborating with the PyTorch team to ensure there is minimal overhead in leveraging native code.

C. Cheat-proofing Submissions
The goal of KernelBot is to provide usable and fast implementations of algorithms on accelerator devices, so preventing
“cheated” solutions is extremely important. In this section, we discuss community discovered hacks and safeguards we have
implemented to minimize cheating, although we acknowledge that new methods may continue to pop up.

As mentioned in § 3.3, potential ways of cheating involve trying to hijack the reporting path with which the runner returns
test results, exploiting the random generator’s seed to avoid having to load input data, overwriting the input tensor in such a
way that the operation becomes trivial, or even directly messing with the Python interpreter.

The first problem is prevented by running the test function in a separate subprocess that does not inherit the testers
file descriptors (see Listing 1), and the third by making a copy of the input before calling the user code. To prevent
random number hacks, each submission is evaluated twice: Once publicly, returning detailed error messages and arbitrary
stdout/stderr content to the user, and again privately, with a different random seed, only giving the achieved time as
feedback. Unfortunately, the only way to prevent user functions from altering the Python interpreter would be to execute

4https://x.com/main_horse/status/1892446384910987718
5https://github.com/pytorch/pytorch/pull/149480
6https://github.com/pytorch/pytorch/pull/151484

7

https://x.com/main_horse/status/1892446384910987718
https://github.com/pytorch/pytorch/pull/149480
https://github.com/pytorch/pytorch/pull/151484

KernelBot: A Competition Platform for Writing Heterogeneous GPU Code

#!POPCORN leaderboard identity_py-dev
import os
popcorn_fd = os.fdopen(int(os.getenv("POPCORN_FD")), 'w')
def log(k, v):

print(f"{k}: {v}", file=popcorn_fd, flush=True)
log("check", "pass")
log("benchmark-count", 1)
log(f"benchmark.0.spec", "")
log(f"benchmark.0.runs", 1)
log(f"benchmark.0.mean", 1e-5)
log(f"benchmark.0.std", 1e-5)
log(f"benchmark.0.err", 1e-5)
exit(0)

Listing 1: A submission trying to hijack the result reporting mechanism. It first prints indicators for successful tests, and
then exits to prevent the actual testing report from being generated. This submission will not pass on the current tester,
because the user code is executed in a separate process that does not inherit its parent’s file descriptors.

only the user code inside a separate and isolated subprocess. Although this is an avenue that we plan to implement for
large kernels, this inevitable comes with some overhead that could be problematic for fast kernels7 Consequently, while the
technical solutions described above limit the possibilities for hacking the evaluation system, they do not eliminate the need
for human validation.

Similarly, while allowing maximum flexibility in terms of available frameworks (from pip. internal import
main as pipmain) gives the widest range of possible solutions, it makes it hard to ensure reproducibility. For example,
we have received submissions that used the newly-released NVidia cccl library (see appendix, Listing 2).

D. Example of a Winning Submission
Below we show the fastest submission on the H100 histogram leaderboard, the same library cccl was leveraged for the
prefixsum and sort problem.

E. Active Competition Problems
By far the biggest manual overhead in our infrastructure is authoring interesting problems which is defined as problems for
which the solution is of immediate commercial interest. In this section, we provide a short description of each of the active
problems in the KernelBot GPU code optimization competition.

The first competition was composed of a set of problems from the popular “Programming Massively Parallel Processors”
textbook (mei W. Hwu et al., 2022). Each competition had participants write kernels for the NVIDIA H100, A100, V100,
and T4.

• 2D Convolution: Write a kernel that performs a sliding-window convolution over a 2D input tensor using a fixed-size
filter, with optional support for padding and stride.

• Grayscale: Write a kernel that converts RGB images to grayscale by applying a weighted sum across the color channels
per pixel.

• Histogram: Write a kernel that computes a histogram of input values by counting occurrences across predefined bins,
with attention to memory contention in parallel implementations.

• Full-precision Matrix Multiplication: Write a kernel that performs dense matrix multiplication in FP32 precision,
optimizing for memory access patterns and compute utilization.

7Note that, to be effective, even the code that measures timings needs to be in the original process, meaning that we necessarily include
the process switch overhead in our measurements

8

KernelBot: A Competition Platform for Writing Heterogeneous GPU Code

if not os.path.exists("cccl"):
subprocess.check_call(

["git", "clone", "https://github.com/NaderAlAwar/cccl.git"]
)

subprocess.check_call(
["git", "checkout", "gpu-mode-submissions-a100"],
cwd="cccl/python/cuda_parallel"

)

env = os.environ.copy()
env["CC"] = "gcc"
env["CXX"] = "g++"
env["CMAKE_ARGS"] = "-DCMAKE_CXX_STANDARD=20"

subprocess.check_call(
["pip", "install", "../cuda_cccl"],
cwd="cccl/python/cuda_parallel",
env=env

)
subprocess.check_call(

["pip", "install", ".[test]", "-v"],
cwd="cccl/python/cuda_parallel",
env=env

)
subprocess.check_call(

["pip", "install", "cupy-cuda12x"],
cwd="cccl/python/cuda_parallel",
env=env

)

... main code follows

Listing 2: A submission installing external dependencies.

9

KernelBot: A Competition Platform for Writing Heterogeneous GPU Code

import cupy as cp
import numpy as np

import cuda.parallel.experimental.algorithms as algorithms
import torch

from task import input_t, output_t

@functools.cache
def initialize(num_samples):

num_output_levels = np.array([257], dtype=np.int32)
lower_level = np.array([0], dtype=np.int32)
upper_level = np.array([256], dtype=np.int32)
data = torch.empty((num_samples,), dtype=torch.uint8).cuda()
d_histogram = torch.empty((num_output_levels[0] - 1,), dtype=torch.int32).cuda()
histogram = algorithms.histogram(

data, d_histogram, num_output_levels, lower_level, num_samples
)

Determine temporary device storage requirements
temp_storage_size = histogram(

None,
data,
d_histogram,
num_output_levels,
lower_level,
upper_level,
num_samples,

)

Allocate temporary storage
d_temp_storage = cp.empty(temp_storage_size, dtype=np.uint8)

return histogram, d_temp_storage, d_histogram,
num_output_levels, lower_level, upper_level

def custom_kernel(data: input_t) -> output_t:
num_samples = data.size(0)
histogram, d_temp_storage, d_histogram, num_output_levels,

lower_level, upper_level = initialize(num_samples)

histogram(
d_temp_storage,
data,
d_histogram,
num_output_levels,
lower_level,
upper_level,
num_samples,

)
return d_histogram

Listing 3: Top submission as of May 26 on the histogram problem set. The relevant high level API is
algorithms.histograms from the cuda.parallel library

10

KernelBot: A Competition Platform for Writing Heterogeneous GPU Code

• Prefix Sum: Write a kernel to compute the exclusive or inclusive prefix sum of an array, using parallel scan techniques.

• Sort: Write a kernel that sorts an array of elements, optionally supporting stable or unstable ordering, with attention to
shared memory usage and thread synchronization.

• Vector Addition: Write a simple element-wise addition kernel for two input vectors, producing an output vector of the
same shape.

• Vector Sum: Write a reduction kernel that computes the sum of all elements in a vector, using tree-based or warp-level
reduction strategies.

The second competition centered around kernels found in DeepSeek-V3 (DeepSeek-AI et al., 2025), but on an AMD MI300.

• FP8 Block-wise GEMM. Write a kernel that performs a W8A8 grouped generalized matrix multiplication (GEMM)
kernel with (128, 128) block-wise scaling factors.

• Single-GPU Mixture of Experts. Write a fast Mixture-of-Experts (MoE) layer on a single device, with no residual
connections and a softmax weighting function for routing tokens.

• Multi Latent Attention (MLA). Write an inference-only version of the MLA layer for decoding (i.e. one query token
at a time).

11

