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ABSTRACT

Contrastive Language-Image Pre-training (CLIP) models have demonstrated remarkable perfor-
mance in zero-shot classification tasks, yet their efficacy in handling complex multi-object scenarios
remains challenging. This study presents a comprehensive analysis of CLIP’s performance limi-
tations in multi-object contexts through controlled experiments. We present a specialized dataset,
ComCO, crafted to thoroughly assess the performance of CLIP’s encoders in diverse multi-object
scenarios. Our findings reveal significant biases in both encoders, with the text encoder showing a
tendency to prioritize objects that are mentioned first in the prompt, and the image encoder exhibit-
ing a bias toward larger objects. Through meticulous experiments, including both retrieval-based
and classification-based tasks, we quantify these biases across multiple CLIP variants, we quantify
these biases across multiple CLIP variants. We hypothesize that these biases originate from CLIP’s
training process and provide substantiating evidence through detailed analyses of the LAION dataset
and CLIP’s training progression. Our image-text matching experiments demonstrate substantial per-
formance drops when manipulating object sizes in the images and/or object tokens order in the
prompt, highlighting the CLIP’s unstable performance when given rephrased yet semantically simi-
lar captions. We extend this analysis to longer, more complex captions and text-to-image generative
models such as Stable Diffusion, revealing how CLIP’s text encoder bias influences object promi-
nence in generated images based on the prompt’s token order. This work provides crucial insights
into CLIP’s behavior in complex visual-linguistic contexts, offering a robust evaluation methodology
and identifying key areas for improving future vision-language models in multi-object scenarios.

1 INTRODUCTION

The convergence of vision and language in artificial intelligence has led to the development of Vision-Language
Models (VLMs) that can interpret and generate multimodal content. Among these, OpenAI’s Contrastive Language-
Image Pre-training (CLIP) model Radford et al. (2021) has been particularly influential, demonstrating remarkable
capabilities in zero-shot image classification and setting new standards for multimodal understanding Cherti et al.
(2023); Gadre et al. (2023); Schuhmann et al. (2021); Thrush et al. (2022). The success of CLIP has catalyzed a wide
array of applications—from image retrieval and visual question answering to text-to-image generation—signifying a
paradigm shift in how models perceive and relate visual and linguistic information.

Visual Language Models like CLIP face significant challenges in understanding and reasoning about complex scenes
with multiple objects and intricate relationships. CLIP struggles to identify distinct objects and model their rela-
tionships accurately, especially when captions contain the same objects but differ in their relationships. This results
in difficulty distinguishing between similar captions with different object relationships. Several benchmark datasets
have been introduced to elucidate the limitations of existing models in capturing subtle relational nuances. Notably,
Winoground Thrush et al. (2022), VL-CheckList Zhao et al. (2022), ARO Yuksekgonul et al. (2023), and CREPE Ma
et al. (2023) have been instrumental in evaluating models’ capacities to accurately match images with semantically
appropriate captions.

Numerous efforts have been made to address compositionality challenges in the multi-object setting. These studies
have predominantly employed end-to-end methodologies, including fine-tuning techniques with hard-negative samples
Yuksekgonul et al. (2023), to enhance model performance. The efficacy of these approaches have been criticized and
improved recently, SUGARCREPE Hsieh et al. (2024), and Sahin et al. (2024). Specifically, a common methodology
in these works involves the generation of negative captions through minor structural alterations, or through LLMs, to
the original positive ones, emphasizing the identification of semantic disparities between captions that share structural
similarities but differ conceptually. Hence, these approaches helped in capturing nuances in the text domain that is
necessary in the compositional multi-object scenarios.
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Figure 1: Overview of our key contributions. Step 1: We create ComCO dataset for controlled multi-object exper-
iments. Step 2: We identify biases in CLIP’s image encoder (favoring larger objects) and text encoder (prioritizing
first-mentioned objects). Step 3: We investigate the origin of these biases, finding a connection to training data char-
acteristics. Step 4: We demonstrate the practical impacts of these biases on image-text matching task, showing how
they affect model performance in multi-object scenarios.

While these efforts have primarily focused on assessing CLIP’s ability to differentiate between captions with minor
structural variations but significant conceptual divergences, there remains a paucity of research examining CLIP’s per-
formance on captions that are semantically equivalent but structurally distinct. The work of Dumpala et al. Dumpala
et al. (2024) represents one of the few forays into this domain. However, while such studies have introduced novel
benchmarks, they have not comprehensively explored the underlying mechanisms that contributes to the CLIP unstable
performance when given semantically equivalent prompts.

While previous studies have made significant strides in understanding CLIP’s limitations, our work distinguishes itself
in several key aspects. Firstly, we shift the focus from evaluating CLIP’s ability to differentiate between conceptually
distinct captions to examining its performance with semantically equivalent but structurally varied captions. This
approach allows us to probe deeper into the model’s understanding of language and visual content beyond surface-level
differences. Here, model systematic mistakes give an indication the potential baises. Secondly, unlike many previous
works that primarily introduced benchmarks or proposed end-to-end solutions, we conduct a thorough investigation
into the underlying causes of CLIP’s behavior. Our study delves into the internal mechanisms of both the image and
text encoders, providing insights into why the model is biased and lacks invariance to certain types of linguistic and
visual variations.

To facilitate this in-depth analysis, we introduce the ComCO dataset, specifically designed to isolate and examine dif-
ferent aspects of CLIP’s performance in controlled multi-object scenarios. Furthermore, our research spans multiple
versions of CLIP trained on various datasets and architectures, ensuring the broad applicability and generalizability
of our findings. By focusing on these underexplored areas and employing a more comprehensive analytical approach,
our work aims to provide a deeper understanding of CLIP’s limitations and pave the way for more robust and versatile
vision-language models. It is important to note that such an analysis not only benefits the improvement of CLIP but
also has significant implications for related models, such as text-to-image (T2I) generative models and multimodal
large language models (MLLMs). Understanding the intricacies of CLIP’s encoding process can inform and enhance
the development of these technologies, potentially leading to advancements across various domains of artificial intel-
ligence. As shown in Figure 1, our key contributions are as follows:

• Development of Novel Dataset: We introduce ComCO, a specialized dataset specifically designed to create
controlled multi-object scenarios. Here, unlike previous benchmarks, we can control the object size in the
image, and their ordering in the caption. Hence, this dataset enables precise, fine-grained analysis of model
performance across a spectrum of compositional challenges, facilitating a deeper understanding of VLMs’
strengths and weaknesses.

• Comprehensive Encoder Analysis: We perform an in-depth examination of both the image and text encoders
in CLIP when processing multi-object scenes and descriptions. This includes text-based, and object-based
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image retrievals, that reveal each text and image encoder weaknesses in preserving the information necessary
to discern various objects. By analyzing the embedding space, we identify the stages at which compositional
information is lost or distorted, providing insights into the internal mechanisms of the model.

• Identification of Specific Biases: Our research uncovers significant biases in CLIP models. The image
encoder prefers larger objects in multi-object images, while the text encoder favors first-mentioned objects
and also objects that are usually visually larger in real-world. These biases reveal the complex interplay
between visual and linguistic information processing in CLIP, influencing its interpretation of multi-object
scenarios.

• Investigation of the Bias Origin : We explore the origins of observed biases in CLIP’s performance, par-
ticularly in various multi-object scenarios. Our investigation delves into both the image and text encoders.
We hypothesize that the visually larger objects are mostly mentioned earlier in the caption in CLIP training
datasets. But it is evident that the image encoding naturally favors such objects in the embedding due to
the abundance of their visual tokens. Therefore, the text encoder may get biased towards such objects, and
consequently earlier mentioned text tokens. We provide evidence for these biases through analyses of the
LAION dataset and CLIP’s training progression, revealing a consistent trend where larger objects tend to be
mentioned earlier in image captions.

• Practical impacts of encoder biases: We demonstrate how the identified biases in CLIP’s image and text
encoders significantly impact performance in multi-object analysis/synthesis scenarios. Using our ComCO
dataset, we show substantial drops in image-text matching accuracy when manipulating object sizes and
caption order. We further reveal how these biases propagate to text-to-image generation models like Stable
Diffusion, influencing the prominence and likelihood of object appearance in generated images based on
prompt order.

These observations highlight how biases in both the text and image encoders lead to a substantial decrease in CLIP’s
performance in multi-object scenarios. Our findings underscore the importance of addressing these biases to improve
the robustness and versatility of vision-language models in complex visual environments. This work contributes valu-
able insights into CLIP’s behavior in multi-object contexts and opens up new avenues for enhancing the performance
of vision-language models in real-world applications.

2 METHODOLOGY

2.1 DATASET DESIGN

To thoroughly evaluate the performance of CLIP models in multi-object scenarios under controlled conditions, we
constructed the ComCO (Complex COCO Objects) dataset. Utilizing Blender software allowed us precise control over
the number, location, and dimensions of objects in the images (see Appendix A.1). The ComCO dataset comprises 72
objects derived from the COCO dataset Lin et al. (2015). We generated images containing 2, 3, 4, and 5 objects. Each
image is paired with a specific caption that accurately describes the objects present. This approach ensures high control
over the dataset and minimizes confounding factors, providing a robust platform for evaluating the CLIP models.

We deliberately chose not to use text-to-image models for generating these datasets due to two main reasons. First,
these models often lack the capability to produce high-quality, fully controlled multi-object images. Second, since
CLIP is used in many of these models, utilizing them could introduce unwanted biases into our evaluations.

2.2 EXPERIMENTAL FRAMEWORK FOR ENCODER ANALYSIS

The main goal of this study is to evaluate the performance of CLIP’s text and image encoders separately in multi-
object scenarios. We aim to analyze the impact and contribution of each object in the final output of the encoders. To
achieve this, we conducted experiments using our designed ComCO dataset, with images and captions containing two
to five objects. To ensure the generalizability of our findings, we also validated our results on the widely-used COCO
dataset Lin et al. (2014). We designed two sets of experiments: retrieval-based experiments and classification-based
experiments. Given the consistency of the results in both types of experiments, we have included the classification
results in the appendix A.2 and A.5 and explain the retrieval-based experiments bellow.

2.2.1 TEXT-BASED OBJECT RETRIEVAL (TOR)

The Text-based Object Retrieval task evaluates how well CLIP’s text encoder can identify individual objects within
multi-object captions. As illustrated in Figure 2a, this experiment involves several steps: First, we use CLIP’s text
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Figure 2: Experimental setup for Text-based Object Retrieval (TOR) and Image-based Object Retrieval (IOR) tasks. a)
TOR: The CLIP text encoder generates embeddings for multi-object and single-object texts. Cosine similarity scores
are calculated between the base text embedding and single-object text embeddings to identify the most similar object.
b) IOR: The CLIP image encoder generates embeddings for multi-object and single-object images. Cosine similarity
scores are calculated between the base image embedding and single-object image embeddings to identify the most
similar object.

encoder to create embeddings for both multi-object captions and single-object captions. We then measure the similarity
between each multi-object caption embedding and all single-object caption embeddings. The single-object caption
with the highest similarity score is considered the ”retrieved” object. To assess performance, we calculate retrieval
accuracy for each object position in the multi-object captions. This helps us identify any biases related to an object’s
position within a caption, such as favoring objects mentioned first or last.

2.2.2 IMAGE-BASED OBJECT RETRIEVAL (IOR)

The Image-based Object Retrieval task is similar to TOR but focuses on CLIP’s image encoder. As shown in Figure
2b, this experiment involves several steps: We begin by using CLIP’s image encoder to generate embeddings for
multi-object images and single-object images. We then compute similarity scores between each multi-object image
embedding and all single-object image embeddings. The single-object image with the highest similarity score is
considered the ”retrieved” object. To evaluate performance, we calculate retrieval accuracy for different object size
categories (e.g., large, small) within the multi-object images. This allows us to determine if the image encoder shows
any preference for objects of a particular size.

We also experimented with a variation of ComCO, called SimCO, where objects were replaced with simple geometric
shapes from the CLEVR dataset. This was done to confirm that bias persists even with non-natural, geometric objects.
Further details are provided in Appendix A.1.

3 RESULTS AND ANALYSIS

Our experiments revealed significant biases in both the text and image encoders of the CLIP model. This section
presents our findings, organized by encoder type and focusing on retrieval tasks.

3.1 TEXT ENCODER BIASES

We observed a consistent bias in the text encoder towards the first object mentioned in descriptions. In the TOR
experiment, the retrieval accuracy (as shown in Table 1) was highest for the first object, indicating its dominant
influence on the overall text representation. This suggests that the text encoder prioritizes the initial object, leading to
its more accurate retrieval compared to subsequent objects. The detailed results for the scenarios involving 2, 3, and 5
objects can be found in the appendix A.3, and experiments on longer caption templates are in Appendix A.7 and A.8.

3.2 IMAGE ENCODER BIASES

In multi-object images, the image encoder exhibited a strong bias towards larger objects. The Image-based Object
Retrieval IOR experiment, detailed in Table 2, shows that larger objects were more frequently and accurately retrieved
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during single-object image searches. This finding highlights the image encoder’s bias towards larger objects, which
receive disproportionate emphasis in the final image representation. Further detailed results, specifically for scenarios
with 2, 3, and 5 objects, are provided in the appendix A.6.

Table 1: Performance on TOR for ComCO datasets

Task Model First Obj Second Obj Third Obj Fourth Obj

TOR

CLIP LAION 63.96 21.59 10.68 3.76
CLIP Datacomp 71.13 16.26 8.74 3.87
CLIP Roberta 44.03 23.73 18.07 14.18
SIGLIP 58.11 21.16 10.99 9.73
CLIP openAI 50.31 20.74 14.45 6.79
NegCLIP 51.63 28.92 14.86 4.59
SugarCrepe 44.29 30.32 18.73 6.66

Table 2: Performance on IOR for ComCO datasets

Task Model Large Object Small Obj 1 Small Obj 2 Small Obj 3

IOR

CLIP LAION 85.45 6.36 5.45 2.73
CLIP Datacomp 85.16 5.65 4.95 4.24
CLIP Roberta 87.40 8.66 2.36 1.57
SIGLIP 77.66 10.11 6.38 5.85
CLIP openAI 65.22 17.39 8.70 8.70
NegCLIP 61.67 15.00 13.33 10.00
SugarCrepe 60.0 18.38 16.85 4.7

3.3 COCO DATASET EXPERIMENTS

To validate the generalizability of our findings from the synthetic dataset, we conducted similar experiments on the
COCO dataset, which comprises real images with accompanying captions. This real-world dataset allowed us to
investigate whether the previously observed biases persist in more naturalistic settings.

Due to the absence of single-object images for COCO objects, we approached the IOR experiment in two ways.
First, we used single-object images from the DomainNet dataset Peng et al. (2019) as retrieval targets. Second, we
introduced an alternative approach called Image-to-Text Object Retrieval (I2TOR). In I2TOR, we used the textual
names of COCO objects instead of single-object images. These object names were embedded using CLIP’s text
encoder, allowing us to perform a retrieval task consistent with the IOR methodology while adapting to the constraints
of the COCO dataset.

Table 3: Performance on TOR for coco dataset

Task Model First Obj Second Obj Third Obj Fourth Obj

TOR

CLIP openAI 35.24 21.90 20.48 22.38
CLIP LAION 67.89 13.76 8.26 10.09
CLIP Datacomp 57.68 17.68 12.75 11.88
CLIP Roberta 40.78 23.30 20.39 15.53
SIGLIP 49.47 26.84 12.11 11.58
NegCLIP 38.69 22.11 17.09 22.11

Table 4: Performance on IOR for coco dataset

Task Model Large Object Small Obj 1 Small Obj 2 Small Obj 3

IOR

CLIP openAI 43.02 28.82 17.13 11.03
CLIP LAION 39.44 28.45 17.70 14.41
CLIP Datacomp 36.71 29.55 19.13 14.61
CLIP Roberta 36.71 28.61 19.82 14.86
SIGLIP 36.63 28.29 20.02 15.06
NegCLIP 44.04 28.86 16.48 10.62

I2TOR

CLIP openAI 51.49 24.87 13.68 9.97
CLIP LAION 45.50 27.02 15.91 11.56
CLIP Datacomp 46.64 26.82 14.53 12.01
CLIP Roberta 44.69 26.98 16.04 12.29
SIGLIP 47.09 27.07 15.10 10.74
NegCLIP 49.04 27.07 14.08 9.81

Tables 3 and 4 present the results of our COCO dataset experiments. In TOR, the first-mentioned object in COCO
captions was retrieved with higher accuracy, which aligns with our earlier findings of bias in the text encoder. Similarly,
in IOR, larger objects in COCO images were retrieved more accurately, consistent with the trends observed in our
synthetic dataset experiments. The I2TOR results further confirmed this bias, demonstrating that even when using
textual object representations, the bias towards larger objects persists.

Our experiments reveal two significant biases in the CLIP model: the text encoder shows a strong preference for the
first mentioned object in textual descriptions, while the image encoder exhibits greater sensitivity to larger objects
in images. These biases can significantly impact the overall system performance in various vision-language tasks,
particularly in multi-object scenarios.

4 ORIGIN OF BIAS IN CLIP MODELS

In this section, we investigate the potential origins of the biases observed in CLIP models and provide evidence
supporting our hypotheses.
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a) b)

Figure 3: Attention allocation from the CLS token to objects of different sizes in the ComCO dataset. a) Qualitative
results showing the CLS token’s attention to each object. b) Quantitative analysis of attention distribution across
8,000 images, with each image containing one large and two small objects. The bar chart shows the average attention
allocated to the large object versus the smaller ones, demonstrating a bias towards larger objects.

Table 5: Performance on TOC and TOR for ComCO datasets

Task Model First Obj Second Obj Third Obj Fourth Obj

TOR
CLIP 56.28 22.71 13.17 7.48
SBERT 29.02 19.80 17.50 33.57
SimCSE Gao et al. (2021) 27.59 19.07 17.76 34.83

4.1 BIAS IN THE IMAGE ENCODER

The observed bias favoring larger objects within the image domain can be attributed to the architectural characteristics
of Vision Transformers (ViT) Alexey (2020) utilized in CLIP’s image encoder. Our hypothesis is that larger objects,
which occupy a greater number of patches in the ViT’s patch-based image representation, exert a more significant
influence on the final class (CLS) token representation. This bias is not exclusive to CLIP; it appears to be a consistent
feature across ViT models, as demonstrated by our experiments detailed in the appendix.

To substantiate this hypothesis, we designed an experiment to quantify the attention allocated by the CLS token to each
image patch. By calculating the cumulative attention received by each object from the CLS token, we could assess the
influence of object size on attention allocation. We applied this analysis to our three-object ComCO dataset, and the
results are illustrated in Figure 3. The findings confirm our hypothesis: larger objects indeed receive more attention
from the CLS token.

4.2 BIAS IN THE TEXT ENCODER

We explore the bias present in the text encoder from two perspectives: the attention mechanism in the model structure
and the model’s training method.

4.2.1 IMPACT OF ATTENTION MECHANISM

Text encoder models can be categorized based on their attention mechanisms: uni-directional (causal) attention and
bi-directional attention. In models with causal attention, each token attends only to preceding tokens, whereas in
bi-directional models, each token attends to all tokens in the sequence.

When OpenAI introduced the CLIP model, its text encoder employed causal attention, meaning each token could only
attend to tokens before it and itself. This differs from typical self-attention mechanisms, where tokens attend to all
other tokens. Most CLIP models use causal self-attention, with the exception of the variant using the XLM-Roberta
text encoder, which also employs self-attention. However, as shown in Table 1, even this model exhibits the mentioned
bias. This indicates that the bias does not originate from the attention mechanism itself.

4.2.2 ROLE OF TRAINING METHOD

To determine whether the observed bias is specific to CLIP models, we compared CLIP’s text encoder with two other
models designed to embed sentences into a meaningful semantic space: Sentence-BERT (SBERT) Reimers (2019)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

and SimCSE Gao et al. (2021). The primary distinction is that CLIP’s embedding space is shared between images and
text, whereas SBERT and SimCSE operate solely in the text domain.

We conducted the TOR experiment on our dataset using these models. As presented in Table 5, the bias observed in
CLIP differs from that in the other models. This suggests that CLIP’s unique training method, which aligns images
and text in a shared embedding space through contrastive learning, contributes to the bias. Therefore, to uncover the
root cause of the bias, we focus on the specifics of CLIP’s training procedure.

4.3 HYPOTHESIZED ORIGIN OF TEXT-SIDE BIAS IN CLIP

We hypothesize that the text-side bias in CLIP, which favors objects mentioned earlier in text descriptions, originates
from the image-side bias toward larger objects and is transferred to the text encoder during contrastive training. We
present evidence supporting this hypothesis through two key claims and an analysis of the training progression.

Claim 1: Larger Objects Have More Influence on Text Embeddings. Building upon the established image-side
bias discussed earlier, we posit that objects with larger physical sizes exert more influence on CLIP’s text embeddings
due to the alignment enforced during contrastive training. To test this, we categorized objects in the DomainNet dataset
into large, medium, and small groups based on their relative physical sizes in real-world (with the full list of objects
provided in the appendix A.11). Specifically, objects smaller than a school bag were categorized as small, objects
sized between a school bag and a medium-sized car were classified as medium, and objects larger than a car—up to
significantly larger items—were considered large. We then constructed two sets of sentences, each containing four
objects: one set with a large object mentioned first followed by three medium-sized objects, and another with a small
object mentioned first followed by three medium-sized objects.

Figure 4.a compares the TOR accuracy for the first object in these two groups. The higher TOR accuracy for sentences
beginning with large objects supports our hypothesis that larger objects, when mentioned first, have a more significant
impact on the text embeddings due to the cross-modal alignment with their prominent representation in images.

Claim 2: Caption Bias in Training Datasets. To investigate potential biases in CLIP’s training data, we analyzed
both the LAION Schuhmann et al. (2022) and COCO datasets. Due to limited computational resources and the large
size of the LAION dataset, which contains over 2 billion image-text pairs, we randomly selected a subset of 200,000
samples for our analysis. Using the Llama3 model, we extracted objects from the image captions and employed the
Language Segment-Anything tool to generate object masks in the corresponding images, calculating their areas based
on these masks. A detailed description of our LAION dataset analysis methodology can be found in Appendix A.9.

Figure4.b shows the position of the largest object within each caption. The results indicate that, in the majority of
cases, the largest object in an image is mentioned earlier in its caption. The same experiment was conducted on the
COCO dataset, with detailed results and the distribution for two to five object scenarios provided in Appendix A.10.
This demonstrates a consistent bias in the training data, where larger objects are not only more visually prominent but
are also described earlier in text annotations.

Analysis of Bias Development During Training. To further validate our hypothesis, we examined the progression
of text-side bias during CLIP’s training. We utilized model checkpoints from the LAION dataset at five training stages,
corresponding to exposure to 2, 4, 6, 8, and 10 billion samples. We conducted TOR experiments at each stage, focusing
on the retrieval accuracy for the first object mentioned in text descriptions.

Figure4.c depicts the evolution of the TOR rate across different training stages for scenarios with varying numbers
of objects (from 3 to 8). The consistent upward trend in the TOR rate as the model is exposed to more training data
suggests that the text-side bias strengthens over time, likely due to the cumulative effect of the image-side bias being
transferred to the text encoder through contrastive learning.

Incomplete Text Representation of CLIP Here we want to theoretically highlight why the CLIP text encoder could
learn an incomplete representation of the text. Let z and w represent a latent representation of an image content and
style, respectively. For example, z represents the fact that an image contains “a horse that is eating the grass.” In this
case, w might represent other details in the image, like the “horse color,” “where the horse is located,” etc. We assume
a data generative process as follows:

I := g(z,w)

T := h(z),

where I is the image, and T is its corresponding caption.
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a) b) c)

Figure 4: a) Top-1 Object Retrieval accuracy comparison for sentences where the first object is either large or small.
The higher TOR accuracy for sentences beginning with large objects supports the hypothesis that larger objects, when
mentioned first, exert a stronger influence on text embeddings due to cross-modal alignment with their prominent visual
representation in images. b) Distribution of the position of the largest object within image captions from the LAION
datasets. The results show a consistent bias where larger objects tend to be mentioned earlier in text descriptions.
c) Progression of TOR rates across different training stages, indicating that text-side bias strengthens as the model is
exposed to more data, suggesting the cumulative effect of image-side bias being transferred to the text encoder through
contrastive learning.

Now we want to learn a joint embedding of the image and text through the CLIP. Here, we assume that fθ and iω as
learnable functions that map the image and text into the joint embedding space, respectively.

Theorem 1 Let elements of z be independent and zero-mean. The contrastive loss for the ideal text encoder, iω = z
converges to that of a non-ideal incomplete one, i.e. iω = zs, where zs is the first d− k dimensions of z, with k being
a constant, and d → ∞.

Proof: The contrastive loss in making this learning happen can be written as:

Ez,z′,w

{
exp {S(fθ(g(z,w), iω(h(z))}

exp {S(fθ(g(z,w), iω(h(z))}+ exp {S(fθ(g(z,w), iω(h(z′))}

}
, (1)

were z and z′ are two independent samples of the content in the representation space, and S is some normalized
similarity metric, e.g. cosine similarity. We assume that elements of z, denoted as zi’s are independent and zero mean.
We further assume that the dimensionality of z, denoted as d, goes to infinity.

It is well-known that under such conditions, ∥z∥ p−→
√
d, when d is large. Therefore, for two independent copies of z,

z′, we have S(z, z′) = z⊤z′/(∥z∥∥z′∥) p−→ 0.

It is evident that in the ideal case, fθ(g(z,w)) = z and also iω(h(z)) = z, so the contrastive loss would converge to
e/(e + 1), as the numerator is e, and the second term in the denominator converges to exp(0) = 1, according to the
Mann-Wald’s theorem.

However, we show that other learning of this representation could achieve the same amount of loss. For instance, let
zs be the first d− k elements of z, with k being a constant. We show that if f = zs and i = zs, the same loss would
be achieved in the limit of large d. To see this, note that the numerator stays the same, i.e. e, while the second term in
the denominator still converges to exp(0) = 1.

This means that even if the image and text encoder of the CLIP only partially recover the content embedding, they reach
an excellent loss. But such possible incomplete representations of z are combinatorially large, making convergence of
the CLIP to such local minima pretty likely. This makes the text encoding of CLIP be far from ideal. Furthermore,
the text encoder would become biased, depending on which of such local minima it converges to. Based on this
explanation, we would expect a text encoder that has learned a complete representation to exhibit such biases to a
lesser degree. As mentioned earlier, the subject of learning text representations in VLMs that are discriminative of
hard negatives (e.g. NegCLIP) has been around for few years. We tested one of strongest such models, Hsieh et al.
(2024), in our benchmark to validate the hypothesis that an incomplete text representation is one of the causes of the
bias in the VLMs. We noticed that this model shows lower bias based on our benchmark (see the SugarCrepe model
in tables 1 and 2).
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ComCO Dataset

Original

Reordered

A  and a car and a hattoaster

A  and a car and a hattruck

A car and a hat and a toaster

A  and a car and a toaster truck

COCO Dataset

First Scenario

Second Scenario

an adorable  looking out the side of a car door window  dog

An adorable  looking out the side of a car door window. 

cat

Looking out the side of a car door window is an adorable . dog

An adorable dog looking out the side of a car door .
mirror

ComCO Dataset

First Scenario

Second Scenario

A  and a car and a hattoaster

A  and a car and a hattruck

A car and a hat and a toaster

A toaster and a car and a truck

Figure 5: An example of the correct and incorrect caption structures in the first and second scenarios.

5 PRACTICAL IMPACTS OF ENCODER BIASES

The biases we observed in CLIP’s image and text encoders have significant implications for the model’s performance
in real-world applications. This section explores how these biases manifest in practical scenarios, focusing on two key
areas: image-text matching and text-to-image generation. By examining these applications, we aim to demonstrate the
tangible effects of encoder biases on CLIP’s functionality and highlight the importance of addressing these issues for
improved model performance.

Our analysis in this section serves two primary purposes. First, it provides concrete evidence of how these theoretical
biases can translate into practical limitations. Second, it offers insights into potential areas for improvement in vision-
language models, particularly in handling complex, multi-object scenarios. Through a series of carefully designed
experiments, we illustrate how the biases in both text and image encoders can lead to unexpected or suboptimal results
in tasks that are crucial for many downstream applications.

5.1 IMAGE-TEXT MATCHING

Building upon our findings of biases in CLIP’s image and text encoders, we now demonstrate how these biases tangibly
affect the model’s performance in image-caption matching tasks. We designed two experimental scenarios, conducted
on both the ComCO and COCO datasets, to evaluate these biases. The results of these experiments are summarized in
Table 6. To better illustrate the differences between these two scenarios, an example of the caption structures is shown
in Figure 5. In each scenario, we created incorrect captions by switching one object in the caption with an object that
is not present in the image. Additionally, GPT-4O Achiam et al. (2023) was used to rewrite the captions in the COCO
dataset.

First Scenario In the first scenario, biases assist the model in distinguishing between the correct and incorrect cap-
tions. In the correct captions, the largest object in the image is placed at the beginning, aligning with the model’s bias
towards prioritizing first-mentioned objects and larger objects. For the incorrect captions, the non-existent object is
deliberately placed at the beginning, which helps the model recognize the difference between the correct and incorrect
captions more effectively. This positioning emphasizes the discrepancy early on, allowing the model to better detect
the mismatch between the caption and the image. The performance of different models in this scenario can be seen in
Table 6 under the ”First Scenario” column.

Second Scenario In the second scenario, biases lead the model to make errors. The correct captions place the largest
object at the end of the sentence, disrupting the model’s bias towards objects mentioned earlier and its preference for
larger objects. In the incorrect captions, the non-existent object is placed at the end, making it more difficult for
the model to differentiate between correct and incorrect captions as its attention is drawn away from the critical
discrepancies. The performance of different models in this scenario is shown in Table 6 under the ”Second Scenario”
column.

By comparing these two scenarios, we demonstrate that biases in CLIP can either help or hinder the model’s perfor-
mance depending on how captions are structured. The experimental results, particularly with the use of GPT-4O for
caption rephrasing in the COCO dataset, reveal how such biases can influence the accuracy of image-text matching
tasks. These biases must be addressed to improve CLIP’s robustness in real-world multi-object scenarios.
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Table 6: Performance Comparison on Image-Text matching for ComCO and COCO Datasets

Model ComCO COCO

First Scenario Second Scenario First Scenario Second Scenario

CLIP Datacomp Gadre et al. (2024) 99.99 67.50 71.2 54.2
CLIP Roberta 99.98 64.75 72.2 54.1
SIGLIP Zhai et al. (2023) 99.49 72.36 64.8 39.5
CLIP openAI 99.59 52.23 63.5 26.4
NegCLIP 96.82 46.94 72 28.7
SugarCrepe 98.55 60.43 80.0 40.9

5.2 TEXT TO IMAGE GENEATION

The biases observed in CLIP’s encoders have significant implications beyond image-text matching, particularly for
text-to-image generation models that incorporate CLIP components. To investigate this impact, we focused on Stable
Diffusion, a popular text-to-image generation model that utilizes CLIP’s text encoder in its pipeline. Stable Diffusion
employs CLIP’s text encoder to process input prompts, creating text embeddings that guide the image generation
process. Given our identification of biases in CLIP’s text encoder, especially the preference for objects mentioned
earlier in text descriptions, we hypothesized that these biases would manifest in the generated images. To test this
hypothesis, we designed an experiment using prompts containing multiple objects from the COCO dataset. Our goal
was to observe whether the order of objects in the text prompt influences their prominence or likelihood of appearance
in the generated images.

Our experimental methodology consisted of three main steps. First, we created 1,000 multi-object prompts, each
containing four distinct objects from the COCO dataset. Second, we used these prompts to generate images using
three versions of Stable Diffusion: v1.4 Rombach et al. (2022), v2, and SD-XL Podell et al. (2023). Finally, to
evaluate the presence of objects in the generated images, we employed YOLO v8 Reis et al. (2023), a state-of-the-art
object detection model. We configured YOLO v8 with a detection threshold of 0.25 and used it to validate which
objects from the original prompt were present in the generated image.

This approach allowed us to quantitatively assess how CLIP’s text encoder biases propagate through the Stable Diffu-
sion pipeline and manifest in the generated images. By comparing the frequency of object detection with their position
in the input prompt, we could directly observe the impact of the text-side bias on the image generation process.

Table 7: Object presence in Stable Diffusion-generated images

Model First Obj Second Obj Third Obj Fourth Obj

SD v1.4 57.7 44.7 38.1 35.4
SD V2 62.5 49.7 47.5 42.2
SD-XL 79.2 69.3 59.4 64.0

Our findings, presented in Table 7, demonstrate a clear correlation between an object’s position in the text prompt and
its likelihood of appearing in the generated image. This correlation aligns with our earlier observations of CLIP’s text
encoder bias, suggesting that these biases significantly influence the output of text-to-image generation models.

6 CONCLUSION

Our study reveals significant biases in CLIP’s image and text encoders, favoring larger objects and first-mentioned
items respectively. These biases, demonstrated through our ComCO dataset, substantially impact CLIP’s performance
in multi-object scenarios. The observed performance drops when manipulating object sizes and mention order un-
derscore CLIP’s limitations in handling complex visual environments. These findings highlight the need for more
balanced training approaches in vision-language models to mitigate such biases. Future work should focus on de-
veloping techniques to address these limitations, advancing the field towards more robust and versatile AI systems
capable of accurately interpreting multi-faceted real-world information.
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A APPENDIX

A.1 THE SIMCO AND COMCO DATASETS

A.1.1 THE SIMCO DATASET

The SIMCO dataset comprises 17 objects. These 17 objects are:

Cube Sphere Cylinder
Mug Pentagon Heart
Cone Pyramid Diamond
Moon Cross Snowflake
Leaf Arrow Star
Torus Pot

Using Blender software, a collection of images containing 2 to 5 objects has been created from these 17 objects. The
total number of images in this dataset is approximately 85,000. Examples of these images can be seen in Figure 6.

Figure 6: Examples of the SimCO dataset
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A.1.2 THE COMCO DATASET

The ComCO dataset contains 72 objects, as listed below:

person bicycle car motorcycle airplane bus
train truck boat traffic light fire hydrant street sign
stop sign parking meter bench bird cat dog
horse sheep cow dining table cell phone elephant
bear zebra giraffe hat backpack umbrella
shoe eye glasses handbag tie suitcase frisbee
skis snowboard kite baseball bat baseball glove tennis racket
wine glass hot dog potted plant teddy bear hair drier hair brush
skateboard surfboard bottle plate cup fork
knife spoon bowl banana apple sandwich
orange broccoli carrot pizza donut cake
chair couch bed mirror window desk
toilet door tv laptop mouse remote
keyboard microwave oven toaster sink refrigerator
blender book clock vase scissors toothbrush

In this dataset, a collection of images containing 2 to 5 different objects has also been generated. The total number of
images in this dataset is approximately 190,000. Various examples from this dataset can be seen in Figure 12.

Figure 7: Examples of the ComCO dataset
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A.2 TEXT-BASED OBJECT CLASSIFICATION

A.2.1 OBJECTIVE

The Text-based Object Classification experiment was designed to evaluate CLIP’s text encoder’s ability to represent
individual objects within multi-object captions. Our goal was to quantify any potential bias in the representation of
objects based on their position in the text.

Three Objects Texts
Dataset

CLIP Text Encoder

99% 21% 20%

Single Layer 
Classifier on
First object

Single Layer 
Classifier on

Second object

Single Layer 
Classifier on
Third object

...
pizza 

and apple 
and desk

tv
and axe

and donut

banana
and backpack

and bus

mouse
and bench
and chair

plate
and bird

and blender

orange
and bottle

and keyboard

cake
and broccoli
and scissors

elephant
and boat

and banana

Figure 8: Illustration of the Text-based Object Classification experiment. The figure demonstrates how embeddings
are calculated for multi-object captions using CLIP’s text encoder. A single-layer classifier is then trained on these
embeddings to classify individual objects.

A.2.2 METHODOLOGY

1. Dataset Preparation:
• We used both the SimCO and ComCO datasets, which contain captions describing scenes with 2 to 5

objects.
• Each caption in the dataset follows a consistent format: “Object1 and Object2 and ... and ObjectN”.

2. Text Embedding Generation:
• For each multi-object caption, we used CLIP’s text encoder to generate a text embedding.
• This embedding is a high-dimensional vector representation of the entire caption.

3. Classifier Training:
• For each object position (1st, 2nd, 3rd, etc.), we trained a separate single-layer classifier.
• Input: The text embedding of the multi-object caption.
• Output: The predicted object class for that specific position.

4. Evaluation:
• We tested each classifier on a held-out portion of the dataset.
• For each caption, we recorded whether the classifier correctly identified the object at its respective

position.
• We calculated the classification accuracy for each object position across all test captions.

We conducted the TOC experiment on various models under different scenarios, and the results are presented in Table
8. This experiment was repeated on both the SIMCO and ComCO datasets.
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Table 8: Text-based Object Classification

Number of Objects Dataset Model First Object Second Object Third Object Fourth Object Fifth Object

n = 2

SimCO

ViT-H-14 (DFN) 99.86 97.09 - - -
ViT-SO400M-SigLIP 98.67 91.29 - - -
ViT-L-14 (datacomp) 99.76 96.77 - - -
xlm-roberta-large-ViT-H-14 99.03 89.87 - - -
ViT-L-14 (laion2b) 99.70 97.57 - - -
ViT-L-14 (openai) 97.62 91.30 - - -
ViT-B-32 (openai) 96.85 73.00 - - -
NegCLIP 98.19 84.43 - - -

ComCO

ViT-H-14 (DFN) 99.90 96.56 - - -
ViT-SO400M-SigLIP 98.47 93.18 - - -
ViT-L-14 (datacomp) 99.74 96.86 - - -
xlm-roberta-large-ViT-H-14 99.16 91.57 - - -
ViT-L-14 (laion2b) 99.72 96.24 - - -
ViT-L-14 (openai) 97.93 96.69 - - -
ViT-B-32 (openai) 96.86 85.42 - - -
NegCLIP 99.30 92.09 - - -

n = 3

SimCO

ViT-H-14 (DFN) 99.46 60.47 76.99 - -
ViT-SO400M-SigLIP 98.23 71.42 45.80 - -
ViT-L-14 (datacomp) 99.49 45.80 78.66 - -
xlm-roberta-large-ViT-H-14 99.26 49.08 64.07 - -
ViT-L-14 (laion2b) 98.93 56.87 72.37 - -
ViT-L-14 (openai) 91.87 50.75 68.38 - -
ViT-B-32 (openai) 92.55 38.61 52.94 - -
NegCLIP 95.80 44.70 59.11 - -

ComCO

ViT-H-14 (DFN) 99.73 59.80 73.63 - -
ViT-SO400M-SigLIP 96.94 70.26 29.28 - -
ViT-L-14 (datacomp) 99.53 45.13 74.15 - -
xlm-roberta-large-ViT-H-14 99.20 53.34 57.15 - -
ViT-L-14 (laion2b) 99.26 58.58 64.74 - -
ViT-L-14 (openai) 90.86 49.67 83.49 - -
ViT-B-32 (openai) 87.97 45.77 63.13 - -
NegCLIP 56.94 98.03 56.66 - -

n = 4

SimCO

ViT-H-14 (DFN) 99.46 34.57 36.73 62.35 -
ViT-SO400M-SigLIP 98.23 69.91 26.10 6.54 -
ViT-L-14 (datacomp) 99.00 23.76 35.55 60.55 -
xlm-roberta-large-ViT-H-14 99.26 27.97 28.84 48.34 -
ViT-L-14 (laion2b) 98.82 34.21 31.41 54.73 -
ViT-L-14 (openai) 90.48 35.19 30.50 59.29 -
ViT-B-32 (openai) 90.76 22.77 25.36 40.45 -
NegCLIP 96.50 9.33 4.79 15.58 -

ComCO

ViT-H-14 (DFN) 99.76 31.74 35.29 54.82 -
ViT-SO400M-SigLIP 97.27 72.51 33.25 5.79 -
ViT-L-14 (datacomp) 99.46 22.82 32.93 58.18 -
xlm-roberta-large-ViT-H-14 99.60 26.27 26.20 36.51 -
ViT-L-14 (laion2b) 98.89 31.64 20.90 47.76 -
ViT-L-14 (openai) 87.17 30.60 31.69 74.49 -
ViT-B-32 (openai) 88.24 24.23 28.30 49.82 -
NegCLIP 98.73 28.05 30.83 43.82 -

n = 5

SimCO

ViT-H-14 (DFN) 99.00 24.30 22.33 27.23 53.03
ViT-SO400M-SigLIP 97.79 71.67 27.41 6.29 6.48
ViT-L-14 (datacomp) 98.89 16.51 21.29 26.92 48.52
xlm-roberta-large-ViT-H-14 99.46 17.15 16.63 20.18 35.64
ViT-L-14 (laion2b) 98.43 25.51 19.81 23.15 41.07
ViT-L-14 (openai) 89.79 26.33 20.74 24.69 50.29
ViT-B-32 (openai) 92.73 15.67 17.03 19.58 33.62
NegCLIP 96.83 15.50 17.54 22.58 36.40

ComCO

ViT-H-14 (DFN) 99.80 19.44 20.79 24.86 42.38
ViT-SO400M-SigLIP 97.63 70.57 32.34 5.42 5.72
ViT-L-14 (datacomp) 99.13 14.75 19.89 25.72 47.11
xlm-roberta-large-ViT-H-14 99.40 18.21 15.47 18.05 26.12
ViT-L-14 (laion2b) 98.76 20.91 18.11 20.77 33.54
ViT-L-14 (openai) 86.13 22.11 19.43 28.03 68.37
ViT-B-32 (openai) 91.20 15.56 13.31 19.66 39.39
NegCLIP 99.03 16.69 16.51 22.26 34.29

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.3 TEXT-BASED OBJECT RETRIEVAL

A.3.1 OBJECTIVE

The Text-based Object Retrieval (TOR) experiment was designed to assess CLIP’s text encoder’s ability to retrieve
individual objects from multi-object captions. This experiment aimed to investigate potential biases in object retrieval
based on the object’s position within the caption.

Base Text: 
Three Objects Text

Single Object Text which
matching Base Text

CLIP ScoreCLIP ScoreCLIP Score

Other Single Object
Texts

CLIP Score CLIP Score

...

CLIP Score CLIP Score CLIP Score

CLIP Text Encoder

0.3463 0.647 0.481 0.219 0.242 0.236 0.339 0.384

pizza and apple and desk apple pizza desk hat car axe blender giraffe

Figure 9: Visualization of the Text-based Object Retrieval experiment. This diagram illustrates the process of retriev-
ing single-object texts based on multi-object captions using CLIP’s text encoder.

A.4 METHODOLOGY

1. Dataset Preparation:
• We utilized both the SimCO and ComCO datasets, containing captions describing scenes with 2 to 5

objects.
• Each multi-object caption followed the format: “Object1 and Object2 and ... and ObjectN”.
• We also prepared a set of single-object captions for each object class in our datasets.

2. Text Embedding Generation:
• We used CLIP’s text encoder to generate embeddings for all multi-object captions.
• Similarly, we generated embeddings for all single-object captions.

3. Similarity Computation:
• For each multi-object caption, we computed the cosine similarity between its embedding and the em-

beddings of all single-object captions.
4. Object Retrieval:

• For each multi-object caption, we identified the single-object caption with the highest similarity score.
• We recorded which object from the multi-object caption (1st, 2nd, 3rd, etc.) matched this retrieved

single-object caption.
5. Evaluation:

• We calculated the percentage of times each object position (1st, 2nd, 3rd, etc.) was retrieved as the most
similar.

• This percentage represents the retrieval accuracy for each object position.

We repeated the TOR experiment on various models across scenarios with captions containing 2 to 5 objects. This was
done to confirm the presence of the discovered bias. The complete results of this experiment, which was conducted on
both the SIMCO and ComCO datasets, can be observed in Table 9.
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Table 9: Text-based Object Retrieval

Number of Objects Dataset Model First Object Second Object Third Object Fourth Object Fifth Object

n = 2

SimCO

ViT-H-14 (DFN) 69.18 30.82 - - -
ViT-SO400M-SigLIP 68.87 31.13 - - -
ViT-L-14 (datacomp) 69.93 30.07 - - -

xlm-roberta-large-ViT-H-14 78.95 21.05 - - -
ViT-L-14 (laion2b) 68.66 31.34 - - -
ViT-L-14 (openai) 75.82 24.18 - - -
ViT-B-32 (openai) 81.05 18.95 - - -

NegCLIP 77.78 22.22 - - -

ComCO

ViT-H-14 (DFN) 70.87 29.13 - - -
ViT-SO400M-SigLIP 67.56 32.44 - - -
ViT-L-14 (datacomp) 70.37 26.93 - - -

xlm-roberta-large-ViT-H-14 59.15 40.85 - - -
ViT-L-14 (laion2b) 70.84 29.16 - - -
ViT-L-14 (openai) 66.03 33.97 - - -
ViT-B-32 (openai) 61.62 38.38 - - -

NegCLIP 64.13 35.87 - - -

n = 3

SimCO

ViT-H-14 (DFN) 62.05 18.07 19.88 - -
ViT-SO400M-SigLIP 58.05 20.50 21.46 - -
ViT-L-14 (datacomp) 61.68 20.35 17.96 - -

xlm-roberta-large-ViT-H-14 66.75 23.86 9.39 - -
ViT-L-14 (laion2b) 62.31 12.56 25.13 - -
ViT-L-14 (openai) 65.71 16.67 17.62 - -
ViT-B-32 (openai) 74.23 13.62 12.15 - -

NegCLIP 77.43 13.75 8.83 - -

ComCO

ViT-H-14 (DFN) 67.08 22.19 10.73 - -
ViT-SO400M-SigLIP 61.11 23.33 15.56 - -
ViT-L-14 (datacomp) 72.23 19.05 8.72 - -

xlm-roberta-large-ViT-H-14 43.60 31.36 25.05 - -
ViT-L-14 (laion2b) 66.85 23.52 9.63 - -
ViT-L-14 (openai) 57.66 26.75 15.59 - -
ViT-B-32 (openai) 55.73 28.28 15.98 - -

NegCLIP 57.56 29.45 12.99 - -

n = 4

SimCO

ViT-H-14 (DFN) 60.06 12.77 12.03 15.14 -
ViT-SO400M-SigLIP 53.54 14.76 11.43 20.27 -
ViT-L-14 (datacomp) 62.16 15.99 10.41 11.44 -

xlm-roberta-large-ViT-H-14 62.58 22.52 10.91 3.99 -
ViT-L-14 (laion2b) 67.81 8.97 5.80 17.41 -
ViT-L-14 (openai) 66.87 11.59 6.18 15.35 -
ViT-B-32 (openai) 76.37 10.03 7.50 6.55 -

NegCLIP 82.90 10.20 4.61 2.29 -

ComCO

ViT-H-14 (DFN) 64.34 19.25 11.14 5.27 -
ViT-SO400M-SigLIP 58.11 21.16 10.99 9.73 -
ViT-L-14 (datacomp) 71.13 16.26 8.74 3.87 -

xlm-roberta-large-ViT-H-14 44.03 23.73 18.07 14.18 -
ViT-L-14 (laion2b) 63.96 21.59 10.68 3.76 -
ViT-L-14 (openai) 48.20 26.01 10.74 8.74 -
ViT-B-32 (openai) 50.31 20.74 15.45 6.79 -

NegCLIP 51.63 28.92 14.86 4.59 -

n = 5

SimCO

ViT-H-14 (DFN) 60.80 10.61 8.35 9.02 11.22
ViT-SO400M-SigLIP 49.47 13.32 3.39 11.97 21.25
ViT-L-14 (datacomp) 66.43 16.12 6.59 4.99 5.87

xlm-roberta-large-ViT-H-14 60.65 21.03 11.90 5.15 1.28
ViT-L-14 (laion2b) 74.07 9.51 4.48 2.80 9.14
ViT-L-14 (openai) 71.71 10.59 2.99 2.71 12.00
ViT-B-32 (openai) 43.86 26.41 15.44 8.57 5.72

NegCLIP 85.00 10.39 3.12 1.24 0.26

ComCO

ViT-H-14 (DFN) 61.06 17.00 11.98 6.69 3.27
ViT-SO400M-SigLIP 55.77 19.25 10.24 6.73 8.01
ViT-L-14 (datacomp) 68.96 14.61 9.40 4.77 2.25

xlm-roberta-large-ViT-H-14 28.86 26.87 19.42 14.61 10.24
ViT-L-14 (laion2b) 61.93 19.10 11.65 5.11 2.21
ViT-L-14 (openai) 38.40 24.80 18.79 11.04 6.68
ViT-B-32 (openai) 44.71 26.69 16.44 8.37 3.79

NegCLIP 45.70 27.56 17.03 7.57 2.15
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A.5 IMAGE-BASED OBJECT CLASSIFICATION

A.5.1 OBJECTIVE

The Image-based Object Classification (IOC) experiment was designed to evaluate CLIP’s image encoder’s ability
to represent individual objects within multi-object images. This experiment aimed to investigate potential biases in
object classification based on the object’s size within the image.

Three Objects Images
Dataset

CLIP Image Encoder

29.12% 100% 21.50%

Single Layer
Classifier on
First object

Single Layer 
Classifier on

Second object

Single Layer 
Classifier on
Third object

...

Figure 10: Illustration of the Image-based Object Classification experiment with the ComCO dataset. The diagram
shows the process of classifying individual objects in K-object images using CLIP’s image encoder, with a single-layer
classifier trained on the generated image embeddings

A.5.2 METHODOLOGY

1. Dataset Preparation:
• We utilized both the SimCO and ComCO datasets, containing images with 2 to 5 objects.
• In each image, one object was deliberately made larger than the others.
• The position of the larger object was varied across images to avoid position-based biases.

2. Image Embedding Generation:
• For each multi-object image, we used CLIP’s image encoder to generate an image embedding.
• This embedding is a high-dimensional vector representation of the entire image.

3. Classifier Training:
• We trained separate single-layer classifiers for each object position (large object, small object 1, small

object 2, etc.).
• Input: The image embedding of the multi-object image.
• Output: The predicted object class for that specific position/size.

4. Evaluation:
• We tested each classifier on a held-out portion of the dataset.
• For each image, we recorded whether the classifier correctly identified the object at its respective posi-

tion/size.
• We calculated the classification accuracy for each object position/size across all test images.

We conducted the IOC experiment on images from both datasets, focusing on scenarios with one significantly larger
object in varying positions. The experiment was repeated across models, and the average results are shown in Table
10.
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Table 10: Image-based Object Classification

Number of Objects Dataset Model Large Object Small Obj 1 Small Obj 2 Small Obj 3 Small Obj 4

n = 2

SimCO

ViT-H-14 (DFN) 88.1 14.29 - - -
ViT-SO400M-SigLIP 97.62 16.67 - - -
ViT-L-14 (datacomp) 83.33 11.9 - - -
xlm-roberta-large-ViT-H-14 78.57 21.43 - - -
ViT-L-14 (laion2b) 66.67 11.9 - - -
ViT-L-14 (openai) 64.29 0.00 - - -
ViT-B-32 (openai) 61.9 0.00 - - -
NegCLIP 40.48 7.14 - - -

ComCO

ViT-H-14 (DFN) 100.0 26.36 - - -
ViT-SO400M-SigLIP 100.0 33.9 - - -
ViT-L-14 (datacomp) 100.0 42.35 - - -
xlm-roberta-large-ViT-H-14 100.0 40.85 - - -
ViT-L-14 (laion2b) 100.0 31.29 - - -
ViT-L-14 (openai) 99.8 41.29 - - -
ViT-B-32 (openai) 99.8 35.81 - - -
NegCLIP 99.6 41.95 - - -

n = 3

SimCO

ViT-H-14 (DFN) 100.0 35.65 41.57 - -
ViT-SO400M-SigLIP 99.8 42.8 49.03 - -
ViT-L-14 (datacomp) 100.0 39.94 51.28 - -
xlm-roberta-large-ViT-H-14 99.9 48.42 56.28 - -
ViT-L-14 (laion2b) 99.8 45.56 56.08 - -
ViT-L-14 (openai) 98.98 39.73 50.46 - -
ViT-B-32 (openai) 96.12 38.1 51.58 - -
NegCLIP 97.04 42.59 59.35 - -

ComCO

ViT-H-14 (DFN) 100.0 29.12 21.5 - -
ViT-SO400M-SigLIP 100.0 30.94 29.94 - -
ViT-L-14 (datacomp) 100.0 36.56 33.5 - -
xlm-roberta-large-ViT-H-14 100.0 33.69 32.31 - -
ViT-L-14 (laion2b) 100.0 35.44 30.31 - -
ViT-L-14 (openai) 99.94 33.31 34.31 - -
ViT-B-32 (openai) 99.94 29.0 32.94 - -
NegCLIP 99.81 33.88 43.0 - -

n = 4

SimCO

ViT-H-14 (DFN) 100.0 40.06 34.06 41.31 -
ViT-SO400M-SigLIP 100.0 47.0 38.5 41.06 -
ViT-L-14 (datacomp) 100.0 48.94 38.38 45.06 -
xlm-roberta-large-ViT-H-14 100.0 48.19 35.81 46.38 -
ViT-L-14 (laion2b) 100.0 50.5 41.81 43.94 -
ViT-L-14 (openai) 100.0 45.19 38.38 39.0 -
ViT-B-32 (openai) 100.0 38.06 31.5 37.25 -
NegCLIP 100.0 42.0 37.25 46.94 -

ComCO

ViT-H-14 (DFN) 100.0 16.64 14.13 12.38 -
ViT-SO400M-SigLIP 100.0 18.95 15.57 17.57 -
ViT-L-14 (datacomp) 100.0 20.64 21.01 19.01 -
xlm-roberta-large-ViT-H-14 100.0 20.45 18.45 16.51 -
ViT-L-14 (laion2b) 100.0 19.76 17.57 18.89 -
ViT-L-14 (openai) 99.94 19.32 21.89 22.39 -
ViT-B-32 (openai) 100.0 21.58 21.83 22.26 -
NegCLIP 100.0 21.89 23.64 31.33 -

n = 5

SimCO

ViT-H-14 (DFN) 100.0 34.0 30.0 30.38 21.62
ViT-SO400M-SigLIP 100.0 38.5 34.7 27.38 25.62
ViT-L-14 (datacomp) 100.0 40.38 36.12 32.0 24.75
xlm-roberta-large-ViT-H-14 100.0 41.56 39.56 36.69 32.81
ViT-L-14 (laion2b) 100.0 43.88 39.5 34.0 28.94
ViT-L-14 (openai) 100.0 42.19 36.38 32.81 31.94
ViT-B-32 (openai) 98.81 36.25 35.38 33.88 26.06
NegCLIP 99.19 40.88 37.94 37.56 28.94

ComCO

ViT-H-14 (DFN) 100.0 13.88 9.38 9.32 11.94
ViT-SO400M-SigLIP 100.0 15.51 13.88 14.57 14.76
ViT-L-14 (datacomp) 100.0 18.2 15.07 16.07 18.32
xlm-roberta-large-ViT-H-14 99.94 15.38 14.88 15.26 19.14
ViT-L-14 (laion2b) 100.0 15.51 12.32 14.13 17.95
ViT-L-14 (openai) 100.0 15.38 14.76 16.76 20.01
ViT-B-32 (openai) 99.87 17.76 18.64 19.2 23.14
NegCLIP 100 18.89 16.57 23.51 28.77

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.6 IMAGE-BASED OBJECT RETRIEVAL

A.6.1 OBJECTIVE

The Image-based Object Retrieval (IOR) experiment was designed to assess CLIP’s image encoder’s ability to retrieve
individual objects from multi-object images. This experiment aimed to investigate potential biases in object retrieval
based on the object’s size within the image.

Base Image: 
Three Objects Image

Single Object Image
which matching Base

Image

CLIP ScoreCLIP ScoreCLIP Score

Other Single Object
Images

CLIP Score CLIP Score

...

CLIP Score CLIP Score CLIP Score

CLIP Image Encoder

0.705 0.824 0.621 0.527 0.579 0.554 0.553 0.572

Figure 11: Visualization of the Image-based Object Retrieval experiment. This diagram illustrates the process of
retrieving single-object images based on multi-object image inputs using CLIP’s image encoder. The experiment
employs a base image containing three objects of varying sizes. CLIP scores are computed between the embedding of
this multi-object image and embeddings of various single-object images.

A.6.2 METHODOLOGY

1. Dataset Preparation:

• We utilized both the SimCO and ComCO datasets, containing images with 2 to 5 objects.
• In each multi-object image, one object was deliberately made larger than the others.
• The position of the larger object was varied across images to avoid position-based biases.
• We also prepared a set of single-object images for each object class in our datasets.

2. Image Embedding Generation:

• We used CLIP’s image encoder to generate embeddings for all multi-object images.
• Similarly, we generated embeddings for all single-object images.

3. Similarity Computation:

• For each multi-object image, we computed the cosine similarity between its embedding and the embed-
dings of all single-object images.

4. Object Retrieval:
• For each multi-object image, we identified the single-object image with the highest similarity score.
• We recorded whether the retrieved single-object image corresponded to the large object or one of the

small objects in the multi-object image.

5. Evaluation:

• We calculated the percentage of times the large object and each small object were retrieved as the most
similar.

• This percentage represents the retrieval accuracy for each object size category (large object, small object
1, small object 2, etc.).

We conducted the IOR experiment on images from the SimCO and ComCO datasets with 2 to 5 objects, varying the
position of the larger object to avoid location-based biases. The results are shown in Table 11.
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Table 11: Image-based Object Retrieval

Number of Objects Dataset Model Large Object Small Obj 1 Small Obj 2 Small Obj 3 Small Obj 4

n = 2

SimCO

ViT-H-14 (DFN) 99.11 0.89 - - -
ViT-SO400M-SigLIP 91.67 8.33 - - -
ViT-L-14 (datacomp) 91.96 8.04 - - -

xlm-roberta-large-ViT-H-14 94.92 5.08 - - -
ViT-L-14 (laion2b) 92.86 7.14 - - -
ViT-L-14 (openai) 87.88 12.12 - - -
ViT-B-32 (openai) 90.24 9.76 - - -

NegCLIP 94.64 5.36 - - -

ComCO

ViT-H-14 (DFN) 97.35 2.65 - - -
ViT-SO400M-SigLIP 95.13 4.87 - - -
ViT-L-14 (datacomp) 89.85 10.15 - - -

xlm-roberta-large-ViT-H-14 93.89 6.11 - - -
ViT-L-14 (laion2b) 94.84 5.16 - - -
ViT-L-14 (openai) 83.7 16.30 - - -
ViT-B-32 (openai) 86.86 13.14 - - -

NegCLIP 83.3 16.7 - - -

n = 3

SimCO

ViT-H-14 (DFN) 93.80 0.65 5.55 - -
ViT-SO400M-SigLIP 83.27 5.61 11.12 - -
ViT-L-14 (datacomp) 77.16 5.81 17.04 - -

xlm-roberta-large-ViT-H-14 80.21 5.12 14.66 - -
ViT-L-14 (laion2b) 76.57 9.57 13.86 - -
ViT-L-14 (openai) 72.07 8.66 19.27 - -
ViT-B-32 (openai) 61.14 14.69 24.17 - -

NegCLIP 59.13 14.91 25.96 - -

ComCO

ViT-H-14 (DFN) 96.52 1.71 17.8 - -
ViT-SO400M-SigLIP 90.5 5.47 4.03 - -
ViT-L-14 (datacomp) 89.65 6.09 4.26 - -

xlm-roberta-large-ViT-H-14 91.39 4.92 3.69 - -
ViT-L-14 (laion2b) 91.26 3.28 5.46 - -
ViT-L-14 (openai) 74.2 12.79 13.01 - -
ViT-B-32 (openai) 80.6 5.22 14.18 - -

NegCLIP 76.36 10.47 13.18 - -

n = 4

SimCO

ViT-H-14 (DFN) 99.5 0.0 0.0 0.5 -
ViT-SO400M-SigLIP 91.03 1.28 2.99 4.7 -
ViT-L-14 (datacomp) 89.71 3.43 3.61 3.25 -

xlm-roberta-large-ViT-H-14 92.47 2.08 2.60 2.86 -
ViT-L-14 (laion2b) 86.92 4.67 3.74 4.67 -
ViT-L-14 (openai) 70.55 13.01 7.53 8.9 -
ViT-B-32 (openai) 52.17 18.84 13.04 15.94 -

NegCLIP 74.4 10.4 7.2 8.0 -

ComCO

ViT-H-14 (DFN) 95.86 2.55 1.27 0.32 -
ViT-SO400M-SigLIP 94.03 2.24 1.49 2.24 -
ViT-L-14 (datacomp) 93.3 3.91 1.12 16.8 -

xlm-roberta-large-ViT-H-14 90.91 2.02 5.05 2.02 -
ViT-L-14 (laion2b) 91.78 5.48 2.74 0.0 -
ViT-L-14 (openai) 67.86 14.29 7.14 10.71 -
ViT-B-32 (openai) 85.0 0.0 5.0 10.0 -

NegCLIP 79.55 0.0 2.27 18.19 -

n = 5

SimCO

ViT-H-14 (DFN) 100.0 0.0 0.0 0.0 0.0
ViT-SO400M-SigLIP 94.92 3.39 1.69 0.0 0.0
ViT-L-14 (datacomp) 91.3 5.59 1.24 1.24 0.62

xlm-roberta-large-ViT-H-14 77.42 11.83 5.38 3.23 2.15
ViT-L-14 (laion2b) 81.01 8.86 5.06 1.27 0.38
ViT-L-14 (openai) 77.14 8.57 5.71 5.71 2.86
ViT-B-32 (openai) 68.75 25.0 6.25 0.0 0.0

NegCLIP 58.62 17.24 15.52 5.17 3.45

ComCO

ViT-H-14 (DFN) 95.16 1.61 1.61 0.0 1.61
ViT-SO400M-SigLIP 80.0 0.0 0.0 0.0 20.0
ViT-L-14 (datacomp) 90.91 4.55 0.0 0.0 4.55

xlm-roberta-large-ViT-H-14 100.0 0.0 0.0 0.0 0.0
ViT-L-14 (laion2b) 100.0 0.0 0.0 0.0 0.0
ViT-L-14 (openai) 100.0 0.0 0.0 0.0 0.0
ViT-B-32 (openai) 100.0 0.0 0.0 0.0 0.

NegCLIP 50.0 0.0 0.0 50.0 0.0
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A.7 TEXT-BASED OBJECT CLASSIFICATION FOR LONG CAPTION

In this section, we revisited the IOC experiment with a significant modification to the caption structure. Our objective
was to investigate whether the previously observed bias persists in longer, more elaborate captions. We achieved this
by expanding the caption template, incorporating additional descriptive phrases between object mentions.

The extended caption template used in this experiment was as follows:

This vibrant display features a stunning OBJ1 with its radiant glow, a mesmerizing OBJ2 with

bold contours, an enchanting OBJ3 that fits perfectly with its graceful form, a dazzling OBJ4 with

brilliant tones and intricate patterns, and an alluring OBJ5 that completes the ensemble with its

seamless fusion and distinct shape.

Figure 12: Format for Extended Caption Template

This template allowed us to maintain a consistent structure while significantly increasing the caption length and com-
plexity.

The results of this modified IOC experiment are presented in Table 12. Notably, the observed pattern closely resembles
that of the standard IOC experiment. This similarity suggests that the bias identified in shorter captions persists even
in more elaborate textual descriptions.

A.8 TEXT-BASED OBJECT RETRIEVAL FOR LONG CAPTION

In this section, we aimed to examine the performance of various models in the IOR experiment when presented with
longer caption formats. This approach mirrors our previous investigation, allowing us to draw comparisons between
standard and extended caption scenarios.

We utilized the same extended caption template as in the previous section. The results of this experiment are presented
in Table 13. Notably, the observed pattern closely aligns with that of the standard IOR experiment, suggesting a
consistency in model behavior across different caption lengths.
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Table 12: Text-based Object Classification on Long Captions

Number of Objects Dataset Model First Object Second Object Third Object Fourth Object Fifth Object

n = 2

SimCO

ViT-H-14 (DFN) 100.0 89.01 - - -
ViT-SO400M-SigLIP 100.0 93.83 - - -
ViT-L-14 (datacomp) 100.0 63.22 - - -
xlm-roberta-large-ViT-H-14 99.82 51.83 - - -
ViT-L-14 (laion2b) 100.0 85.88 - - -
ViT-L-14 (openai) 99.65 98.26 - - -
ViT-B-32 (openai) 100.0 72.69 - - -
NegCLIP 100 89.59 - - -

ComCO

ViT-H-14 (DFN) 99.99 99.86 - - -
ViT-SO400M-SigLIP 100 99.48 - - -
ViT-L-14 (datacomp) 100 98.89 - - -
xlm-roberta-large-ViT-H-14 99.95 92.84 - - -
ViT-L-14 (laion2b) 100 99.03 - - -
ViT-L-14 (openai) 99.99 99.99 - - -
ViT-B-32 (openai) 99.59 99.45 - - -
NegCLIP 99.94 98.99 - - -

n = 3

SimCO

ViT-H-14 (DFN) 99.34 43.49 89.66 - -
ViT-SO400M-SigLIP 100.0 65.26 49.76 - -
ViT-L-14 (datacomp) 100.0 30.47 37.20 - -
xlm-roberta-large-ViT-H-14 97.78 22.96 27.23 - -
ViT-L-14 (laion2b) 99.65 57.67 35.51 - -
ViT-L-14 (openai) 99.13 86.67 58.22 - -
ViT-B-32 (openai) 96.26 54.19 44.88 - -
NegCLIP 98.30 67.60 65.90 - -

ComCO

ViT-H-14 (DFN) 99.31 78.44 84.15 - -
ViT-SO400M-SigLIP 99.93 67.22 76.89 - -
ViT-L-14 (datacomp) 98.98 85.77 65.64 - -
xlm-roberta-large-ViT-H-14 99.21 38.60 60.10 - -
ViT-L-14 (laion2b) 98.81 82.72 74.31 - -
ViT-L-14 (openai) 99.41 96.44 82.18 - -
ViT-B-32 (openai) 95.59 81.91 76.09 - -
NegCLIP 98.62 74.29 81.70 - -

n = 4

SimCO

ViT-H-14 (DFN) 99.17 24.74 67.00 41.46 -
ViT-SO400M-SigLIP 100.0 46.75 24.40 20.93 -
ViT-L-14 (datacomp) 100.0 15.27 17.79 43.03 -
xlm-roberta-large-ViT-H-14 98.87 13.34 12.67 15.85 -
ViT-L-14 (laion2b) 99.56 36.03 19.23 34.51 -
ViT-L-14 (openai) 98.22 70.29 40.54 50.71 -
ViT-B-32 (openai) 97.47 41.20 25.18 24.31 -
NegCLIP 98.93 49.58 35.89 35.40 -

ComCO

ViT-H-14 (DFN) 98.34 62.49 70.25 42.34 -
ViT-SO400M-SigLIP 99.90 39.28 58.01 32.51 -
ViT-L-14 (datacomp) 97.95 71.61 37.24 48.50 -
xlm-roberta-large-ViT-H-14 99.34 20.38 21.45 25.08 -
ViT-L-14 (laion2b) 98.41 66.90 51.43 38.87 -
ViT-L-14 (openai) 96.39 88.74 62.87 75.1 -
ViT-B-32 (openai) 96.81 62.50 59.19 22.93 -
NegCLIP 98.50 45.93 40.11 68.58 -

n = 5

SimCO

ViT-H-14 (DFN) 97.44 18.82 53.68 26.08 47.45
ViT-SO400M-SigLIP 100.0 20.35 19.30 12.57 18.40
ViT-L-14 (datacomp) 99.74 17.57 19.29 41.34 23.67
xlm-roberta-large-ViT-H-14 99.09 12.51 8.49 8.63 30.25
ViT-L-14 (laion2b) 99.69 60.13 28.18 49.20 54.92
ViT-L-14 (openai) 96.26 70.36 44.68 36.7 48.1
ViT-B-32 (openai) 96.79 30.71 15.25 12.58 41.30
NegCLIP 99.35 32.26 22.22 16.39 62.63

ComCO

ViT-H-14 (DFN) 97.45 43.49 29.20 17.91 1.13
ViT-SO400M-SigLIP 98.46 45.21 32.54 26.64 1.18
ViT-L-14 (datacomp) 92.76 40.83 17.56 9.8 1.05
xlm-roberta-large-ViT-H-14 99.84 13.18 11.02 8.26 45.38
ViT-L-14 (laion2b) 97.39 41.48 19.5 9.4 1.26
ViT-L-14 (openai) 92.81 68.46 31.85 9.8 1.24
ViT-B-32 (openai) 95.85 42.62 22.24 9.18 0.9
NegCLIP 99.16 27.60 19.78 21.80 69.08
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Table 13: Text-based Object Retrieval For long template

Number of Objects Dataset Model Accuracy First Object Second Object Third Object Fourth Object Fifth Object

n = 2

SimCO

ViT-H-14 (DFN) 96.73 62.16 37.84 - - -
ViT-SO400M-SigLIP 5.88 100.0 0.00 - - -
ViT-L-14 (datacomp) 98.04 70.67 29.33 - - -
xlm-roberta-large-ViT-H-14 98.69 76.82 23.18 - - -
ViT-L-14 (laion2b) 51.63 62.03 37.97 - - -
ViT-L-14 (openai) 96.08 39.46 60.54 - - -
ViT-B-32 (openai) 79.74 45.90 54.10 - - -
NegCLIP 99.35 38.82 61.18 - - -

ComCO

ViT-H-14 (DFN) 92.38 71.03 28.97 - - -
ViT-SO400M-SigLIP 3.42 100.0 0.00 - - -
ViT-L-14 (datacomp) 84.32 62.63 37.37 - - -
xlm-roberta-large-ViT-H-14 72.06 63.31 36.69 - - -
ViT-L-14 (laion2b) 58.73 63.01 36.99 - - -
ViT-L-14 (openai) 84.64 61.27 38.70 - - -
ViT-B-32 (openai) 78.38 61.77 37.78 - - -
NegCLIP 82.67 55.63 44.37 - - -

n = 3

SimCO

ViT-H-14 (DFN) 88.6 43.02 30.43 26.56 - -
ViT-SO400M-SigLIP 0.74 100.0 0.00 0.00 - -
ViT-L-14 (datacomp) 88.48 63.02 24.38 12.60 - -
xlm-roberta-large-ViT-H-14 89.83 61.66 22.10 16.23 - -
ViT-L-14 (laion2b) 31.86 56.54 26.15 17.31 - -
ViT-L-14 (openai) 69.73 24.08 39.89 36.03 - -
ViT-B-32 (openai) 38.24 25.96 39.10 34.94 - -
NegCLIP 72.30 23.39 52.71 23.90 - -

ComCO

ViT-H-14 (DFN) 76.75 50.43 22.45 27.12 - -
ViT-SO400M-SigLIP 0.07 100.0 0.00 0.00 - -
ViT-L-14 (datacomp) 56.14 47.80 34.17 18.03 - -
xlm-roberta-large-ViT-H-14 36.78 48.46 28.75 22.79 - -
ViT-L-14 (laion2b) 29.17 48.75 35.78 15.47 - -
ViT-L-14 (openai) 52.38 43.44 37.00 19.53 - -
ViT-B-32 (openai) 49.97 47.58 30.75 21.45 - -
NegCLIP 50.80 38.67 38.16 23.17 - -

n = 4

SimCO

ViT-H-14 (DFN) 66.47 39.82 21.88 24.34 13.96 -
ViT-SO400M-SigLIP 0.49 100.0 0.00 0.00 0.00 -
ViT-L-14 (datacomp) 74.58 61.74 22.17 10.96 5.13 -
xlm-roberta-large-ViT-H-14 65.95 53.96 21.36 19.33 5.35 -
ViT-L-14 (laion2b) 22.42 66.76 17.78 11.22 4.23 -
ViT-L-14 (openai) 58.73 16.30 32.78 26.49 24.37 -
ViT-B-32 (openai) 18.43 35.64 37.77 14.18 12.41 -
NegCLIP 50.78 26.25 49.94 16.73 7.08 -

ComCO

ViT-H-14 (DFN) 52.87 47.87 20.54 22.72 8.87 -
ViT-SO400M-SigLIP 0.01 100.0 0.00 0.00 0.00 -
ViT-L-14 (datacomp) 31.36 39.21 30.74 20.94 9.11 -
xlm-roberta-large-ViT-H-14 14.99 43.03 24.29 19.72 12.96 -
ViT-L-14 (laion2b) 10.19 42.66 34.16 17.09 6.09 -
ViT-L-14 (openai) 28.78 35.25 31.55 19.19 13.86 -
ViT-B-32 (openai) 21.62 43.69 24.57 16.78 14.59 -
NegCLIP 19.41 30.36 30.38 24.39 14.86 -

n = 5

SimCO

ViT-H-14 (DFN) 45.44 43.46 20.45 18.34 11.87 5.88
ViT-SO400M-SigLIP 0.16 100.0 0.00 0.00 0.00 0.00
ViT-L-14 (datacomp) 51.45 59.26 22.46 8.12 8.46 1.70
xlm-roberta-large-ViT-H-14 52.92 54.87 13.81 19.30 8.16 3.86
ViT-L-14 (laion2b) 12.34 75.40 10.31 8.42 4.26 1.61
ViT-L-14 (openai) 29.39 8.98 29.39 28.44 15.97 17.20
ViT-B-32 (openai) 6.69 32.11 38.57 12.22 8.55 8.55
NegCLIP 17.54 23.15 41.18 24.48 7.65 3.53

ComCO

ViT-H-14 (DFN) 23.56 36.07 19.21 22.65 11.90 10.17
ViT-SO400M-SigLIP 0.00 100.0 0.00 0.00 0.00 0.00
ViT-L-14 (datacomp) 12.49 32.55 27.84 23.76 12.73 3.11
xlm-roberta-large-ViT-H-14 9.26 40.26 21.35 18.16 11.99 8.23
ViT-L-14 (laion2b) 4.57 38.49 31.50 17.50 8.31 4.20
ViT-L-14 (openai) 1.75 21.59 18.57 20.25 20.54 19.02
ViT-B-32 (openai) 1.86 32.72 15.62 14.71 18.36 16.26
NegCLIP 1.41 24.30 23.17 22.14 17.64 12.75
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A.9 LAION DATASET ANALYSIS
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Figure 13: Process flow for LAION dataset analysis

To investigate the potential bias in CLIP’s training data, as discussed in Section 4.3, Claim 2, we conducted an analysis
of the LAION dataset. This process, illustrated in Figure 13, consisted of three main stages:

A.9.1 STAGE 1: DATASET SAMPLING

Due to the vast size of the LAION dataset (over 2 billion image-text pairs), we randomly selected a subset of 200,000
samples for our analysis. This subset maintained the diversity of the original dataset while making the analysis com-
putationally feasible.

A.9.2 STAGE 2: OBJECT EXTRACTION

For each image-caption pair in our subset:

1. We used the Llama 3 model to extract object mentions from the captions. This step allowed us to identify the
objects described in each text without relying on manual annotation.

2. We applied the Grounding DINO + SAM (Segment Anything Model) tool to generate object masks for the
corresponding images. This process enabled us to identify and segment individual objects within each image.

A.9.3 STAGE 3: ANALYSIS

With the extracted data, we performed the following analysis:

1. Object Order: We recorded the order in which objects were mentioned in each caption.
2. Object Size: Using the generated masks, we calculated the area of each object in the corresponding image.
3. Correlation: We examined the relationship between an object’s position in the caption and its size in the

image.

AS shown in Figure 14 This distribution strongly suggests a bias in the LAION dataset where larger objects tend to
be mentioned earlier in image captions. This finding supports our hypothesis about the origin of CLIP’s text encoder
bias, as discussed in Section 4.3 of the main paper.

A.10 COCO DATASET ANALYSIS

In this section, we repeated the experiment conducted in Section 4.3 for different scenarios involving 2 to 5 objects.
We divided the captions in the COCO dataset into four subsets: those mentioning 2 objects, 3 objects, 4 objects, and 5
objects. We then analyzed each subset to determine in what percentage of cases the largest object appeared in which
position.

The results of this evaluation are presented in Figure 14. As can be observed, this trend is repeated across all scenarios:
in most cases, the larger object appears earlier in the caption.
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Figure 14: Distribution of larger object positions in captions for objects in COCO and LAION dataset
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A.11 OBJECT CATEGORIES FROM DOMAINNET

The DomainNet dataset objects were categorized into three groups based on their relative sizes: small, medium, and
large. These categories were used to investigate potential bias in CLIP’s text embeddings, as discussed in Section 4.3,
Claim 1. The full list of objects used in each category is presented below:

A.11.1 SMALL OBJECTS

ant anvil apple arm asparagus axe
banana bandage basket bat bee belt
binoculars bird blackberry blueberry book boomerang
bottlecap bowtie bracelet brain bread broccoli
broom bucket butterfly cactus cake calculator
calendar camera candle carrot cat clarinet
clock compass cookie crab backpack crown
cup dog donut drill duck dumbbell
ear envelope eraser eye eyeglasses feather
finger fork frog hammer hat headphones
hedgehog helmet hourglass jacket keyboard key
knife lantern laptop leaf lipstick lobster
lollipop mailbox marker megaphone microphone microwave
mosquito mouse mug mushroom necklace onion
owl paintbrush parrot peanut pear peas
pencil pillow pineapple pizza pliers popsicle
postcard potato purse rabbit raccoon radio
rake rhinoceros rifle sandwich saw saxophone
scissors scorpion shoe shovel skateboard skull
snail snake snorkel spider spoon squirrel
stethoscope strawberry swan sword syringe teapot
telephone toaster toothbrush trombone trumpet umbrella
violin watermelon wheel

A.11.2 MEDIUM OBJECTS

angel bathtub bear bed bench
bicycle camel cannon canoe cello
chair chandelier computer cooler couch
cow crocodile dishwasher dolphin door
dresser drums flamingo guitar horse
kangaroo ladder mermaid motorbike panda
penguin piano pig sheep stereo
stove table television tiger zebra
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A.11.3 LARGE OBJECTS

aircraft carrier airplane ambulance barn bridge
bulldozer bus car castle church
cloud cruise ship dragon elephant firetruck
flying saucer giraffe helicopter hospital hot air balloon
house moon mountain palm tree parachute
pickup truck police car sailboat school bus skyscraper
speedboat submarine sun tent The Eiffel Tower
The Great Wall of China tractor train tree truck
van whale windmill
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