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A B S T R A C T   

Stress has been identified as one of major contributing factors in car crashes due to its negative impact on driving 
performance. It is in urgent need that the stress levels of drivers can be detected in real time with high accuracy 
so that intervening or navigating measures can be taken in time to mitigate the situation. Existing driver stress 
detection models mainly rely on traditional machine learning techniques to fuse multimodal data. However, due 
to the non-linear correlations among modalities, it is still challenging for traditional multimodal fusion methods 
to handle the real-time influx of complex multimodal and high dimensional data, and report drivers’ stress levels 
accurately. To solve this issue, a framework of driver stress detection through multimodal fusion using attention 
based deep learning techniques is proposed in this paper. Specifically, an attention based convolutional neural 
networks (CNN) and long short-term memory (LSTM) model is proposed to fuse non-invasive data, including eye 
data, vehicle data, and environmental data. Then, the proposed model can automatically extract features 
separately from each modality and give different levels of attention to features from different modalities through 
self-attention mechanism. To verify the validity of the proposed method, extensive experiments have been 
carried out on our dataset collected using an advanced driving simulator. Experimental results demonstrate that 
the performance of the proposed method on driver stress detection outperforms the state-of-the-art models with 
an average accuracy of 95.5%.   

1. Introduction 

One of the contributing factors to road traffic crashes which lead to a 
large number of injuries and fatalities, is being stressed while driving. 
Stress can be defined as a nonspecific bodily response to a combination 
of external demands and internal concerns. Stress can be distinguished 
in the concept of eustress (positive stress) and distress (negative stress) 
(Selye, 1974). Generally, there are two types of stress: eustress and 
distress, by which eustress refers to positive correlation with life satis-
faction while distress is the opposite mental state. In daily life, we often 
use the term “stress” to describe negative stress rather than positive 
stress. In this study, the term “stress” also refers only to negative stress. 

According to the World Health Organization (WHO)’s report on road 
safety, the total number of deaths caused by various traffic accidents has 

reached 1.3 million each year (Sauerzapf, 2012). The European Com-
mission estimated that the cost of car accidents in Europe reached 160 
billion euros, of which 60%–80% came from the drivers’ psychophysical 
condition (Vivoli, Bergomi, Rovesti, Bussetti, & Guaitoli, 2006). Stress 
often leads to poor psychophysical condition that can increase the risk of 
crash almost tenfold, according to Virginia Tech Transportation Institute 
(Brown et al., 2016). National crash reports in Australia also show that 
feeling stressed is a critical factor in fatal crashes (Beanland, Fitzharris, 
Young, & Lenné, 2013). Stress increases the risk of crash by weakening 
the cognitive ability of drivers, which would result in undermined 
driving performance (Useche, Ortiz, & Cendales, 2017). Therefore, in 
order to reduce the risk of crashes and improve driving safety, it is 
essential to build a system which can detect drivers’ stress levels 
accurately. 
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It has been shown that the use of multimodal data can substantially 
improve driver stress classification performance (Healey & Picard, 2005; 
Katsis, Katertsidis, Ganiatsas, & Fotiadis, 2008; Rigas, Goletsis, & 
Fotiadis, 2012; Lanata et al., 2015). Different types of data such as eye 
data, vehicle data and environmental parameters are used to monitor 
driver stress (Rastgoo, Nakisa, Rakotonirainy, Chandran, & Tjon-
dronegoro, 2018). Several studies have shown that there is strong cor-
relation between eye data and driver’s behaviour (Haak, Bos, Panic, & 
Rothkrantz, 2009; Palinko, Kun, Shyrokov, & Heeman, 2010; Wu, Zhao, 
Rong, & Ma, 2013; Zhang, Liu, & Tang, 2015). Pupillary response from 
eye data has been shown to be a potential physiological data for 
detecting driver stress (Pedrotti et al., 2014). The autonomic nervous 
system (ANS) can continuously regulate pupil size. When a driver is 
under stress, the pupils are dilated due to sympathetic nervous system 
(SNS) stimulation. Therefore, pupil diameter (PD) can be used in driver 
stress detection. Baltaci and Gokcay (2016) combined the features of PD 
and face temperature to detect driver stress. In addition to PD, blink and 
gaze of eye are also concerned by researchers (Hansen & Ji, 2010; Kübler 
et al., 2014). Some researchers even combined PD, blink and gaze data 
of eye and electroencephalogram (EEG) to perform emotion recognition 
on drivers (Soleymani, Pantic, & Pun, 2012; Liu, Zheng, & Lu, 2016). 

In stressful situations, drivers reacts physically to control the vehicle 
to avoid collisions. Depending on the types of reaction, the reaction time 
can range from milliseconds to seconds (Green, 2000). The drivers’ 
physical reactions can be monitored with vehicle data such as steering 
wheel, acceleration and deceleration data (Bořil, Sadjadi, Kleinschmidt, 
& Hansen, 2010; Rigas et al., 2012; Lanata et al., 2015; Lee, Chong, & 
Lee, 2017). In addition, environmental data have also been shown to be 
helpful in detecting driver stress levels (Hill & Boyle, 2007). The envi-
ronmental data include different information affecting drivers, for 
instance, weather conditions, visibility, time of day, road situations, and 
other driver behaviors. 

Building a multimodal fusion model based on eye data, vehicle data 
and environmental data can improve the performance of driver stress 
detection. The strategies for fusion mainly include sensor-level, feature- 
level and decision-level fusion. At present, feature-level strategies are 
the main fusion approach, which uses handcrafted features or deep 
learning features to build multimodal models (Hu & Li, 2016; Pourba-
baee, Roshtkhari, & Khorasani, 2017; Nakisa, Rastgoo, Rakotonirainy, 
Maire, & Chandran, 2018, 2020). Compared to handcrafted features 
methods, deep learning methods can automatically extract features 
without expertise. Although existing deep learning models perform 
relatively well in driver stress detection (Ngiam, Khosla, Kim, Nam, Lee, 
& Ng, 2011; Kanjo, Younis, & Ang, 2019; Rastgoo, Nakisa, Maire, 
Rakotonirainy, & Chandran, 2019), there is still space for performance 
improvement. This is due to the fact that these methods just learn the 
relationships of features within a single modality and lack proper 
mechanisms to handle the non-linearity across modalities. 

To effectively fuse features from different modalities, attention 
mechanism is introduced in this paper to integrate eye data, vehicle data 
and environmental data. Originally, the attention mechanism was used 
in machine translation, which can quickly extract sparse features for 
natural language processing tasks (Bahdanau et al., 2015). Self-attention 
is an improvement of the attention mechanism, which can reduce the 
dependence on external data and capture the internal relationship of 
longer data or features (Lin et al., 2017). The self-attention mechanism 
can be used to process the hidden states of an LSTM or Gated Recurrent 
Unit (GRU) for classification tasks. For example, an attention-based 
LSTM network was proposed to classify aspect-level sentiment (Wang, 
Huang, Zhao, & Zhu, 2016). To classify documents, a hierarchical 
attentional network was constructed using GRU and attention mecha-
nisms (Yang et al., 2016). In recent years, researchers have begun to 
focus on combining CNN-LSTM network (Sainath, Vinyals, Senior, & 
Sak, 2015) with attention mechanism in a variety of areas. In the script 
recognition problem of scene text images and video scripts, an attention- 
based CNN-LSTM framework was proposed to extract local and global 

features and dynamically weight them (Bhunia et al., 2019). On the 
issue of electrocardiogram (ECG) based arrhythmia classification, Liu 
et al. (2019) proposed an attention-based hybrid LSTM-CNN model to 
extract overall variation trends and local features of ECG. 

In this study, we propose a multimodal fusion model based on an 
attentional CNN-LSTM network to fuse eye data, vehicle data, and 
environmental data. The proposed model first uses convolutional neural 
networks (CNN) and long short-term memory networks (LSTM) to 
extract features, and then allocates different levels of attention to fea-
tures with different modalities using a self-attention mechanism. Thus, it 
can capture the relationship between multimodal data and driver stress 
levels. Here, three driver stress levels are currently considered, namely 
low, medium and high. We have collected a dataset for this study from 
an advanced driving simulator. This dataset contains eye data, vehicle 
dynamics data and environmental data. And the data is sampled from 22 
participants from multiple driving situations designed to induce 
different levels of stress. 

The main contributions of this study are as follows:  

• A framework based on attentional CNN-LSTM network is proposed to 
build an accurate driver stress detection system. This attention-based 
multimodal fusion model can not only automatically extract features 
but also weigh the features from different modalities to improve 
performance on driver stress level classification.  

• A non-invasive multimodal data combination is proposed for driver 
stress detection, which includes eye data, vehicle dynamics data and 
environmental data. The non-invasive characteristics makes it more 
suitable for practical deployment.  

• Extensive experiments have been conducted to validate the proposed 
model. Experimental results show that eye data is a promising data 
for driver stress detection and attention-based multimodal fusion 
model is superior to other non-attention models. 

2. Related work 

Since stress detection tends to utilize multimodal data, a stable and 
reliable stress detection model can be established by analysing and 
fusing multimodal data. There are different modalities that can be used 
to measure driver stress, including stressors that stimulate drivers, the 
driving environment, personal parameters, and the physiological, psy-
chological, and physical responses of drivers under stressors. Since eye 
data and vehicle dynamics data are easy to obtain, researchers have 
studied the relationship between these data and stress (Bořil et al., 2010; 
Pedrotti et al., 2014; Lanata et al., 2015). The studies in the literature 
have mainly used traditional machine learning methods to extract fea-
tures manually from data, and then combine the features to create stress 
detection models. Although the handcrafted features approach has 
yielded positive results, it is always a challenge to accurately extract 
important and representative features (Nakisa, Rastgoo, Tjondronegoro, 
& Chandran, 2017). In addition, the handcrafted features approach re-
quires specialized knowledge and is less robust to noise and data 
variations. 

There are several researchers who have built stress level detection 
models using multimodal data. Benoit et al. (2009) proposed a driver 
simulator that uses multimodal data to monitor stress states, including 
video data (facial activity) and physiological data. The model used facial 
activities such as blinking, yawning and head turning, as well as ECG 
and electrical skin responses, to assess the driver’s stress levels. Rigas, 
Goletsis, Bougia, and Fotiadis (2011) proposed a model to detect driver 
stress levels and predict driving performance. The multimodal data 
include physiological signals, video recordings (eye data, head move-
ment), and environmental data. The model used a support vector ma-
chine (SVM) classifier to distinguish between two stress levels (no stress, 
stress) with an accuracy of 86%. 

Most of the above studies fuse multimodal data at feature-level. The 
traditional feature-level fusion method combines feature data from each 
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modality into a feature vector, which is fed into a classifier. However, 
this approach lacks the ability to handle complex multimodal and high 
dimensional data (Ngiam et al., 2011). To improve the model’s 
robustness and data processing ability, deep learning techniques are 
used to process multimodal data. Deep learning techniques can directly 
process the original data and are widely used in high dimensional signals 
processing, such as speech recognition (Hinton et al., 2012) and time 
series data analysis (Liu, Chen, Peng, & Wang, 2017). 

In deep learning methods, CNN has shown strong performance in the 
field of image recognition (George & Routray, 2016). One-dimensional 
convolutional neural network (1D-CNN) is a type of CNN that is pri-
marily used in sequence modeling and natural language processing 
(Burkert, Trier, Afzal, Dengel, & Liwicki, 2015; Ordóñez & Roggen, 
2016). CNN can extract locally dependent and invariant features of the 
data. Moreover, the deep CNN can extract local features from the orig-
inal data, and then extract the global high dimensional feature repre-
sentation in deeper layers. Some studies proved that CNN surpasses the 
traditional handcrafted features approach in feature extraction (Haidar, 
Koprinska, & Jeffries, 2017; Urtnasan, Park, Joo, & Lee, 2018). He, Li, 
Liao, Zhang, and Jiang (2019) proposed to use CNN to process the heart 
rate variability (HRV) of ECG signals in order to achieve rapid detection 
of acute cognitive stress. 

As an improvement to recurrent neural network (RNN), LSTM 
network can learn long-term dependence information and avoid 
gradient explosion. LSTM has excellent performance in dealing with 
time series problems such as machine translation, emotion recognition 
and speech recognition (Hinton et al., 2012; Yan & Mikolajczyk, 2015; 
Neverova et al., 2016). In addition, some researchers have proposed the 
CNN-LSTM model, which uses CNN for feature extraction on input data 
and LSTM to perform sequence prediction on the feature vectors (Zhang, 
Chan, & Jaitly, 2017; Valiente, Zaman, Ozer, & Fallah, 2019). Donahue 
et al. (2015) combined LSTM and CNN to solve visual recognition 
problems. Rastgoo et al. (2019) proposed a multimodal fusion model 
based on CNN-LSTM network to detect the driver’s stress level. Are-
fnezhad et al. (2020) proposed a CNN-LSTM deep network structure 
using vehicle data on driver drowsiness detection that significantly 
outperforms traditional machine learning methods. 

Although LSTM can handle long time series data, it is still an RNN 
structure, which focuses on time step relationships and lacks extraction 
of global information. Thus, some researchers have begun to focus on 
attention mechanism (Wang et al., 2016; Winata, Kampman, & Fung, 
2018). Attention mechanism was first proposed in machine translation 
and then widely used in text classification and representation learning 
(Bahdanau, Cho, & Bengio, 2015; Yang et al., 2016). Self-attention is an 
improvement on attention mechanism with better performance in 
capturing the internal correlation of data and features. Winata et al. 
(2018) proposed a bidirectional LSTM model based on self-attention 
mechanism using recorded texts to classify psychological stress. 

Recently, the combination of CNN-LSTM network and attention 
mechanism has been concerned by researchers. Peng, Tian, Yu, Lv, and 
Wang (2019) proposed a CNN-LSTM network based on attention, which 
has a good effect on identifying and detecting malicious uniform 
resource locator (URL). Li et al. (2020) proposed an attention-based 
CNN-LSTM model to predict urban PM2.5 concentration. The model 
used the CNN-LSTM network to learn the correlation of multivariate 
time series data related to air quality, and used the attention mechanism 
to weigh the past features to improve the prediction accuracy. There-
fore, for the first time, this paper applies the deep learning model of 
CNN-LSTM combined with the self-attention mechanism in the field of 
driver stress classification. Specifically, the CNN-LSTM model is used to 
extract features from non-invasive multimodal time series data, and the 
self-attention mechanism is used to fuse features of eye, vehicle and 
environment, and weigh features from different modalities to effectively 
detect drivers’ stress levels. 

3. Methodology 

In this section, a multimodal fusion model based on attentional CNN- 
LSTM network is proposed for driver stress detection. The dataset was 
measured in a simulated driving environment. In the following sub-
sections, the dataset acquisition, the experimental design, and the 
multimodal fusion architecture are described one by one. 

3.1. Dataset acquisition 

The dataset was measured by simulating different stressful envi-
ronments using an advanced driving simulator (see Fig. 1). The driving 
simulator consists of SCANeR™ studio software, computers, projectors, 
a real cabin and a six degree of freedom (6DOF) motion platform. The 
driving simulator can move and twist in three-dimensional space to 
approximate the actual driving environment. The simulated environ-
ment includes 180 degree front view, rear view images, engine and 
various environment sounds and vehicle movements. Therefore, the 
driving simulator can simulate real visual scenes, surrounding envi-
ronmental sounds, and vehicle motion feedback, making the driver 
immersed in a virtual environment that is close to real vehicle. More 
information on the advanced driving simulator is available at https://re 
search.qut.edu.au/carrsq/wp-content/uploads/sites/45/2019/02/ 
Simulator.pdf. 

The experiment used SCANeR™ studio software (Scanerstudio, 
2020) and FaceLAB™ (Funke et al., 2016) remote video eye tracker to 
acquire data. FaceLAB™ was used to obtain eye data such as pupil 
diameter, gaze dispersion in X and Y axes and blink frequency, sampled 
at 60 Hz. Vehicle dynamics and environmental data were collected by 
SCANeR™ studio, also sampled at 60 Hz. Vehicle data include steering 
wheel angle, brake pedal and gas pedal. Environmental data include the 
distance to the preceding vehicle, lane width, number of lanes, time of 
day, weather conditions (sunny, rain density) and visibility (fog). In 
particular, all data from FaceLAB™ and SCANeR™ studio were collected 
synchronously. In this study, there were 22 participants involved in data 
collection, aged 21–40 years (55% male). All participants were required 
to have two years of driving experience and qualified driving license. 

3.2. Experimental design 

Before the start of the experiment, participants were asked to get 
familiar with the details and precautions of the experiment, such as 
avoiding alcohol and caffeinated beverages for a week before the 
experiment. 

In this experiment, six driving scenarios were built to collect par-
ticipants’ eye data, vehicle dynamics data and environmental data. 
Firstly, participants were asked to drive on a simple road to become 
familiar with the driving environment and operating methods. After 
that, each participant’s driving data was collected in five driving sce-
narios (Urban1, Urban2, Highway, CBD1 and CBD2) with a random 
order. These operations and the advanced driving simulator can help 
avoid simulator sickness while ensuring high realism rating of the vol-
unteers. And each driving scenario contains several different stressors to 
induce different levels of stress in participants. The data labels were 
obtained through a verbal question and answer. During each scenario, 
the participants were asked every two minutes to provide their re-
sponses (verbally) to a short questionnaire about their average stress 
levels. They were asked to express their stress levels between 0 and 3 (0- 
No stress to 3- High stress) during each scenario. These numbers are then 
mapped into three different stress levels (0.1–1 = Low, 1.1–2 = Medium, 
2.1–3 = High). These mappings allow us to compare our work with other 
existing works (Pedrotti et al., 2014; Wang, Lin, & Yang, 2013; Baltaci & 
Gokcay, 2016). 

In this study, the stressors were designed with reference to different 
studies (Hill & Boyle, 2007; Rodrigues, Kaiseler, Aguiar, Cunha, & 
Barros, 2015; Lee et al., 2017; Rastgoo et al., 2018). There are five main 
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stressors: traffic congestion, driving road situations, the behavior of 
other drivers, weather, and time of day. Table 1 shows the different 
stressors in different driving scenarios. Since traffic congestion creates 
stress (Rastgoo et al., 2018), this study designed different vehicle den-
sities per kilometer under different driving scenarios. Then, narrow 
roads, curvy roads, and sharp bends were used to induce different stress 
levels in drivers. The behaviors of other drivers can also cause varying 
degrees of stress, such as overtaking, lane changing, speeding and tail-
gating. In the Highway, CBD1 and CBD2 scenarios, we set several pa-
rameters (stay on lane, sign observing, priority observing, safety time, 
speed limit risk, and overtake risk) in the simulator to simulate the 
above behaviors. This study designed rain density (0–1) and foggy under 
different driving scenarios, and simulated the driving environment 
during the day and night. 

3.3. Multimodal fusion architecture 

This subsection presents a framework for a multimodal fusion model 
based on attentional CNN-LSTM network. The proposed model extracts 
stress related information by fusing eye data, vehicle dynamics data and 
environmental data to classify drivers’ stress levels. The proposed 
framework consists of four steps: preprocessing, feature extraction, 
feature fusion and classification (see Fig. 2). 

In the first step, to synchronize eye data, vehicle dynamics data and 
environmental data, missing eye data and existing anomalies in the data 
are removed. To reduce the differences in data among participants, all 
data are normalized to zero mean and unit variance. Finally, we use the 
sliding window method to divide each feature of each modality into time 
window with fixed window size and degree of overlap. A new training 
dataset is produced by consisting of generated time windows, of which 

each label is the same as the original dataset. 
Next, the new training dataset for each modality is fed into the 1D- 

CNN and LSTM framework to extract features. Specifically, the 
segmented time window (e.g., window t) from training dataset is first fed 
into the 1D-CNN to automatically learn features. Since the time window 
is time series, one-dimensional convolutional layer is used. This feature 
extraction framework consists of three 1D convolutional layers, three 
max pooling layers, and two-layer LSTMs. The detailed parameter set-
tings are shown in Table 2. The parameter combination and model 
framework with the best detection accuracy are selected through trial 
and error. The convolutional layer uses sliding filters to extract effective 
features. The activation function of the convolution layer is exponential 
linear units (ELU), which can accelerate the convergence speed and 
improve the robustness of the model. Each layer of convolution is fol-
lowed by a max pooling layer. In order to reduce data complexity, the 
max pooling layer reduces the amount of data to half of the original. The 
dropout layer is adopted after the pooling layer to avoid overfitting. In 
each training epoch, a portion of the neurons of dropout layer are 
randomly selected and are not allowed to participate in weight opti-
mization. After three layers of convolution and pooling, the input data 
are transformed into high dimensional feature maps. Since the feature 
maps are extracted from the time window and the operations of 
convolution and pooling do not change their temporal order, the feature 
maps are fed directly into the two-layer LSTMs. The LSTM network 
processes time series by a gating mechanism, which includes forget gate, 
input gate and output gate. They can control the discarding or adding of 
information to enable forgetting and remembering. The feature maps are 
converted to the corresponding hidden states through the LSTM 
network. 

In the fusion step, the generated hidden states from the eye data, 
vehicle dynamics data and environmental data are integrated to create a 
new feature map. There are n hidden states ht in this feature map. The 
feature map is denoted as H: 

H = (h1, h2, ..., hn). (1) 

Since different hidden states have different degrees of impact on 
stress detection, we introduce a self-attention mechanism to weigh all 
hidden states. These hidden states are aggregated into a vector repre-
sentation s by the attention layer, of which the formulas are as follows: 

ut = tanh(Wht + b), (2)  

αt =
exp(uT

t u)
∑n

t=1exp(uT
t u)

, (3)  

s =
∑n

t=1
αtht. (4) 

The hidden state ht is first fed into a fully connected layer with an 

Fig. 1. CARRS-Q’s driving simulator was used to collect data. The simulator consists of a front view (180 degrees), rear view mirror image, real cabin, audio system 
to simulate the driving environment and a six degree of freedom motion platform, as well as the SCANeR™ studio and FaceLAB™ remote video eye tracker. 

Table 1 
Different stressors in different driving scenarios.  

Scenarios Number 
of 
Vehicles 

Road 
situations 

Simulator 
parameters 

Weather Time 

Urban 1 0 – – – Daytime 
Urban 2 30 Narrow, 

Curve 
– – Night 

Highway 50 Curve Stay on 
lane, etc. 

Rain density 
(0.2–1), 
Foggy 

Night 

CBD 1 50 Narrow, 
Curve, 
Tight 
corner 

Stay on 
lane, etc. 

Rain density 
(0.3–0.6), 
Foggy 

Daytime 

CBD 2 60 Curve, 
Tight 
corner 

Stay on 
lane, etc. 

– Daytime  
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activation function of tanh to get ut as a hidden representation of ht. The 
transpose of the output ut is multiplied by the trainable parameter vector 
u to get the alignment coefficient of attention. Then, the softmax func-
tion is used to normalize the alignment coefficient to obtain the sum-
mation weight αt. After that, we compute the vector representation s as a 
weighted sum of hidden states. In the last step of classification, the 
vector representation s can be used as a feature vector to be fed into the 

Softmax layer for stress level classification. The W in the formula (2) is a 
weight matrix. The b is a bias vector of the fully connected layer in the 
attention layer, its dimensions is da. And the u is a trainable parameter 
vector used to represent context information and its dimensions is also 
da. Here, da is an important hyper-parameter. After extensive experi-
mental verification, it has been shown that the larger the dimension of da 

the better the performance (accuracy and false positive) of the model is 
in the 5 s window (Fig. 3). Finally, in order to make the model reach a 
balance between model performance and computational complexity, the 
best dimension of da is set to 64. During the training process, the weight 
matrix W, bias vector b, and the parameter vector u are initialized 
randomly. 

This subsection proposes a new framework to multimodal data 
fusion. Specifically, a self-attention mechanism is used to fuse the hid-
den states of the LSTM output and give different attention to each hidden 
state. It is worth noting that the proposed framework can not only fuse 
eye data, vehicle dynamics data and environment data, but also be 
suitable for processing other multimodal time series data. The proposed 
framework uses an end-to-end approach to training without the need for 

Fig. 2. The multimodal fusion model based on attentional CNN-LSTM network is used to detect driver stress levels. The inputs of the model are eye data, vehicle data 
and environmental data. The outputs of the model are three levels of driver stress: low, medium and high. The preprocessed data for each modality are fed into the 
corresponding 1D-CNN and LSTM to extract features (Feature extraction step). The output of hidden states from the three modalities are concatenated to obtain a 
feature map (h1,h2, ...,hn). The vector representation s is calculated as multiple weighted sums of hidden states from the feature map, where the summation weights 
(α1,α2, ..., αn) are calculated in formulas (2) (3) (Fusion step). Finally, the s is fed into the Softmax layer for stress level classification (Classification step). 

Table 2 
The 1D-CNN and LSTM model parameters.  

1D-CNN and LSTM  

Convolutional layer Filter = 20, Kernel size = (10, 1), Stride = 1 
Max-pooling + Dropout (0.15) Pool-size = (2, 1), Stride = 2 
Convolutional layer Filter = 40, Kernel size = (5, 1), Stride = 1 
Max-pooling + Dropout (0.15) Pool-size = (2, 1), Stride = 2 
Convolutional layer Filter = 80, Kernel size = (3, 1), Stride = 1 
Max-pooling + Dropout (0.15) Pool-size = (2, 1), Stride = 2 
LSTM Hidden-size = 64 
LSTM Hidden-size = 64  

Fig. 3. The average performance (accuracy and false positive) against hyper-parameter da in different dimensions.  
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handcrafted features. 

4. Results 

To validate the proposed multimodal fusion method based on 
attentional CNN-LSTM network, we have conducted comparative ex-
periments in this section. This section also evaluates the performance of 
eye data on stress detection (refer to Section 4.1 for details of eye feature 
analysis). 

In this study, eye data, vehicle dynamics data, and environmental 
data were segmented and synchronized using sliding windows. We used 
different window sizes to verify the performance of the proposed 
method. And, the overlapping degree of sliding windows in this study is 
90%. Since the research goal is to establish a real-time driver stress 
detection system, the 5 s window size is currently selected (Section 4.2). 

For the division of the dataset, we used a 10-fold cross validation 
method to verify the performance of our model. Specifically, the dataset 
is randomly shuffled and divided into 10 parts, and then one part is used 
as the test set and the others as the training set in turn. Finally, the 
experimental results are the average of ten test results. 

4.1. Eye data-based stress detection 

4.1.1. The framework of handcrafted eye features 
The feature extraction framework of eye data mainly includes three 

steps: preprocessing, feature extraction, and classification. 
First of all, maximum-minimum normalization was adopted to 

normalize all data. Since blinking can result in the loss of pupil diameter 
and gaze dispersion data, linear interpolation was used to fill in the 
missing sample data (Soleymani et al., 2012). Then, the average pupil 
diameter of left and right eyes was used as the time series of pupil 
diameter. 

After preprocessing, the power spectrum and time domain features of 
the pupil diameter were analyzed. The mean, standard deviation and 
power spectral density (PSD) were extracted from the pupil diameter. 
The Hippus effect refers to a small amplitude oscillation in the frequency 
domain of the pupil diameter between 0.05 and 0.3 Hz with an ampli-
tude of 1 mm (Pamplona, Oliveira, & Baranoski, 2009; Bouma & 
Baghuis, 1971). It has been shown that the Hippus effect occurs when a 
person is in a relaxed or passive state. As long as there is mental activity 
and psychological stress, this effect will disappear and the pupil diam-
eter will expand. Moreover, the PSD features of pupil diameter were 
computed using the Welch’s method in four frequency bands (0–0.2 Hz, 
0.2–0.4 Hz, 0.4–0.6 Hz, and 0.6–1 Hz) (Soleymani et al., 2012). In 
addition to pupil diameter, the dispersion (mean and standard devia-
tion) of eye gaze in X and Y axes were extracted to detect drivers’ stress 
levels (Zheng, Dong, & Lu, 2014). This eye gaze mainly refers to fixation 
which is a slight deviation of the fixation point. It usually occurs within 
2–5 degrees of central vision, and lasts about 80–100 ms (Hansen & Ji, 
2010). Blink frequency has also been shown to be correlated to anxiety 
and stress (Kanfer, 1960). Ultimately, 11 kinds of eye features were 
extracted from the eye data. A summary of the extracted eye features is 
shown in Table 3. 

Last, all eye features were formed into a feature vector, which was 
fed into a classifier. The LSTM network was adopted as a classifier for 
handcrafted eye features. 

4.1.2. Comparing the performance of handcrafted features and 
automatically extracted features 

In this subsection, we analyze eye features associated with stress 
levels and compare the performance of handcrafted features approach 
with the proposed automatic feature extraction model. The accuracy 
(ACC) and false positive (FP) of pupil diameter, gaze dispersion (X and 
Y), and blink frequency in the 5 s window are shown in Table 4. The 
experimental results are averaged values of ten times. It can be seen that 
the accuracies of all feature groups are higher than the 33% random 

level. Therefore, all feature groups are related to stress. The classifica-
tion accuracies of pupil diameter and gaze dispersion are higher than 
that of the blink frequency. The average accuracy of 11-dimensional 
features reaches 74.3% (FP = 13.3%). This result shows that these eye 
features can effectively distinguish stress levels. 

Based on Table 4, the proposed automatic feature extraction model 
has better performance than handcrafted features approach. Compared 
with the handcrafted features approach, the accuracy of pupil diameter, 
gaze dispersion (X and Y), and blink frequency under the proposed 
model are improved by 24.6%, 34.4%, and 3.5%, respectively. And their 
false positives have dropped significantly. Since the blink frequency is 
calculated at a certain time and is not a continuous time series, its 
improvement is smaller than the other two features. Finally, all eye 
features form a modality that is fed into the proposed model. The 
average accuracy of the proposed model based on all eye features rea-
ches 92.9%, which is nearly twenty percent higher than that of the 
handcrafted features approach. The results show that the proposed 
model is better in identifying driver stress levels in a short window than 
the handcrafted features approach. 

4.2. Performance of multimodal fusion model 

To verify the performance of the proposed multimodal fusion model, 
we collected vehicle dynamics data and environmental data besides eye 
data. For vehicle dynamics data, steering wheel angle, brake pedal, and 
gas pedal indirectly reflect the driver’s instantaneous reaction to stress. 
For environmental data, the distance to the preceding vehicle, lane 
width, number of lanes, time of day, weather conditions (sunny, rain 
density), and visibility (fog) were selected from the advanced driving 
simulator (see Table 3). These features have been verified to be related 
to driver stress (Lee et al., 2017; Lanata et al., 2015; Rigas et al., 2012). 

4.2.1. Attention based fusion model and comparison with other multimodal 
fusion models 

In this subsection, we evaluate the performance of the proposed 
multimodal fusion model of attentional CNN-LSTM in detecting driver 
stress levels against other multimodal fusion models. Meanwhile, the 
performance of the proposed model is validated under different window 
sizes: 5 s, 10 s, and 15 s. 

Similar to handcrafted features approach in subsection 4.1, the 
handcrafted features approach in this subsection combines the features 
from eye data, vehicle dynamics data and environmental data into a 
feature vector, which is fed into the LSTM network. Meanwhile, we use 
the LSTM model with direct input of raw data as a comparison model. 
The multimodal fusion model (CNN-LSTM) adopted by Rastgoo et al. 
(2019) is also compared with the proposed model. 

The comparison results of the proposed model with other fusion 
models are shown in Fig. 4, which indicates that the proposed model has 

Table 3 
Handcrafted features from eye data, vehicle dynamics data and environmental 
data.   

Handcrafted Features 

Eye data Pupil diameter (Mean, standard deviation) 
Pupil diameter (PSD in four bands:0–0.2 Hz, 0.2–0.4 Hz, 
0.4–0.6 Hz, 0.6–1 Hz) 
Dispersion (X and Y) (Mean, standard deviation) 
Blink frequency  

Vehicle dynamics 
data 

Steering wheel angle (Mean, standard deviation) 
Brake pedal data (Mean, standard deviation) 
Gas pedal data (Mean, standard deviation)  

Environmental data Distance to preceding vehicle 
Time of day 
Road situations (Lane width, Number of lanes) 
Visibility (fog) 
Weather conditions (sun, low rain, medium rain, high rain)  
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the highest accuracy rate under different window sizes. The accuracies 
of the multimodal fusion models were obtained through averaging on 10 
times. As the window size increases, the accuracy of the proposed model 
is improved by 0.8% and 1.8% under the 10 s and 15 s windows, 
respectively. The accuracy of LSTM model is not improved with 
increased window size. Although handcrafted features approach and the 
CNN-LSTM model get good results in the 10 s window, their accuracies 
are still lower than the proposed model. Particularly, the average ac-
curacy of the proposed model in the 15 s window reaches 97.3%, which 
is improved by 8%, 29.1%, and 9.4% respectively compared to hand-
crafted features approach, LSTM model, and CNN-LSTM model. 
Although the long window sizes can improve the accuracy of the model, 
we finally chose the 5 s window size data in order to build a real-time 
driver stress detection system. 

Table 5 shows the performance of different fusion models under 
single-modal data and multimodal data in the 5 s window. Obviously, 
the accuracies of the multimodal fusion models are superior to those of 
the single-modal models, which means that the fusion models can 
complement the information of each modality. Since the data of 
different modalities are very different, eye data and vehicle dynamics 
data have a greater influence on the detection results of the stress level, 
while the influence of environmental data is smaller. The self-attention 
mechanism was introduced to deal with features with different degrees 
of influence. Thus, the average accuracy of the proposed model reaches 

95.5%, which is 4.7 percentage points higher than the traditional CNN- 
LSTM model. In multimodal fusion, the average accuracy and false 
positives of multimodal fusion model based on attentional CNN-LSTM 
network have verified its superior performance in driver stress 
detection. 

4.2.2. Comparison of confusion matrices for multimodal fusion models 
In this subsection, the confusion matrix of each multimodal fusion 

model in the 5 s window is shown in Fig. 5, which details the advantages 
and disadvantages of each model at three stress levels. Obviously, the 
accuracy of each model for detecting high stress levels is lower than that 
of low and medium stress levels. This is because the number of high 
stress samples is less than that of low or medium stress, which leads the 
model to misclassify high stress as low or medium stress. 

Among the confusion matrices of the four multimodal fusion models, 
the LSTM model has the worst performance (Fig. 5b). The accuracy of 
the handcrafted features approach is significantly improved, but it is 
only 76% accurate for high stress level (Fig. 5a). The handcrafted fea-
tures approach is less effective than the CNN-LSTM model in detecting 
high stress level (Fig. 5c). Finally, the accuracies of the proposed model 
have been significantly improved at low, medium, and high stress levels 
(Fig. 5d). It can be seen that the introduction of the self-attention 
mechanism strengthens the ability of model to detect three stress 
levels, and significantly improves the detection accuracy of high stress 

Table 4 
The average performance (accuracy and false positive) of handcrafted features and automatically extracted features.  

Approach Pupil diameter Gaze dispersion Blink frequency All eye features 

ACC (%) FP (%) ACC (%) FP (%) ACC (%) FP (%) ACC (%) FP (%) 

Handcrafted  54.7  23.9  56.5  23.4  48.9  27.9  74.3  13.3 
Automatic  79.3  10.7  90.9  4.6  52.4  25.7  92.9  3.6  

Fig. 4. The average accuracy of different fusion models with different window sizes.  

Table 5 
The average performance (accuracy and false positive) of handcrafted features approach, LSTM model, CNN-LSTM model, and attention-based CNN-LSTM model in 
different modalities.  

Approach Environmental data Vehicle data Eye data Fusion 

ACC (%) FP (%) ACC (%) FP (%) ACC (%) FP (%) ACC (%) FP (%) 

Handcrafted  49.9  27.0  49.2  27.7  74.3  13.3  88.8  5.9 
LSTM  50.6  26.6  44.9  30.1  58.1  22.1  71.5  14.7 
CNN-LSTM  51.0  26.4  73.6  13.6  85.8  7.4  90.8  4.8 
Attention  52.6  25.1  85.1  7.8  92.9  3.6  95.5  2.3  
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level. As a result, the attention-based CNN-LSTM model has the best 
capability for driver stress levels among all multimodal fusion models. 

4.2.3. Comparison of attention based fusion model with other works 
In this subsection, the experimental results of the multimodal model 

based on attentional CNN-LSTM network are compared with other 
recent works. Table 6 shows some works using eye data and multimodal 

fusion methods. 
As can be seen, Pedrotti et al. (2014), Wang et al. (2013), and Baltaci 

and Gokcay (2016) mainly used physiological modalities to detect the 
driver’s stress level. Among them, pupil diameter (PD) obtained without 
contact was concerned by researchers. Rigas et al. (2011) combined 
physiological signals (ECG; electrodermal activity, EDA; respiration, 
RSP), video data, and environmental data to classify driver stress into 

Fig. 5. The confusion matrix of multimodal fusion models: (a) handcrafted features approach, (b) LSTM model, (c) CNN-LSTM model, (d) attention-based CNN- 
LSTM model. 

Table 6 
The comparison of the best performance of the multimodal model based on attentional CNN-LSTM network with other recent works.  

Reference No. 
Subjects 

of Method Physiological Used modalities Window 
size 

Performance No. Classes 

Physical Context 

(Pedrotti 
et al., 
2014) 

33 Handcrafted 
features 

PD, EDA – – 80 s Accuracy: 79.2% 4 stress class (low, 
medium, high, very 
high) 

(Wang et al., 
2013) 

17 Handcrafted 
features 

ECG – – 300 s Accuracy: 80% 3 stress class (low, 
medium, high) 

(Baltaci et 11 Handcrafted PD, Face – – 18 s Accuracy: 83.8% 2 stress class 
al., 2016)  features temperature    Sensitivity: 83.9% (no stress, stress)        

Specificity: 83.8%  
(Rigas et al., 

2011) 
1 Handcrafted 

features 
ECG, EDA, 
RSP 

Eye, Head 
movement 

Environmental 
data 

10 s Accuracy: 86% 2 stress class (no 
stress, stress) 

(Rastgoo et 27 Deep learning ECG Vehicle Environmental 5 s Accuracy: 92.8% 3 stress class 
al., 2019)  (CNN-LSTM) 

network  
dynamic data data  Sensitivity: 94.13% 

Specificity: 97.37% 
(low, medium, high)        

Precision: 95.00%  
Our work 22 Attention based PD Eye Environmental 5 s Accuracy: 95.5% 3 stress class   

CNN-LSTM 
network  

movement, 
Vehicle dynamic 
data 

data  Sensitivity: 95.31% 
Specificity: 97.67% 
Precision: 95.34% 

(low, medium, high)  
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two stress levels (no stress, stress). Compared with the work using only 
one modality, the performance of stress detection by multimodalities 
has been improved. The first three works used handcrafted features 
approach, which required a large window size of data, making it difficult 
to monitor driver stress status in real time. Rastgoo et al. (2019) pro-
posed a multimodal deep learning model to fuse physiological signals 
(ECG), vehicle dynamics data and environmental data and achieved 
good stress detection performance, but the applied physiological signals 
were invasive. Our proposed model is non-invasive, and achieves better 
accuracy, and the sensitivity, specificity, and precision of the proposed 
model are improved as well. 

In summary, the comprehensive performance of our proposed model 
outperforms other recent works on driver stress level detection. Spe-
cifically, there are some advantages of the proposed model. Firstly, the 
proposed model uses eye data, vehicle dynamics data and environ-
mental data, which is non-invasive compared with other works using 
traditional physiological data (ECG, EDA, and EEG). In addition, the 
proposed model using a small window size (5 s) of data can detect the 
driver stress in real time. Finally, the self-attention mechanism can 
effectively fuse data from different modalities by assigning different 
weights to different features. 

5. Conclusion 

In this paper, we propose a multimodal fusion model based on 
attentional CNN-LSTM network for driver stress detection. It is charac-
terized by being non-invasive, accurate and real-time. On the dataset 
collected by the advanced driving simulator, extensive experiments 
were carried out to verify the performance of the proposed model. 
Experimental results demonstrate that eye data is highly correlated to 
stress levels and very effective in stress detection. Furthermore, the 
performance of the proposed model is verified as superior to other state- 
of-the-art models under different window sizes. Additionally, the pro-
posed model can effectively complement and weigh the information 
from eye data, vehicle dynamics data and environmental data. There-
fore, the attention-based CNN-LSTM network is a promising method for 
driver stress detection. 

Though the non-invasive multimodal data combination and feature- 
level multimodal fusion model have good application prospects, con-
cerns of its application in real vehicles could be raised. First, limitations 
could be induced by the number and the selection method of partici-
pants. Specifically, the sample size of 22 participants is relatively small 
and the experiment did not consider people over 40 years old. Second, 
the ground truth of driver stress is determined by the participant’s 
subjective assessment. This is completely subjective, even if the partic-
ipants are already familiar with the evaluation method of the stress level 
before the experiment and the subjective assessment is the most reliable 
technique to annotate data. Yet, it may fall short of objectiveness. 

For future work, we will adhere to multimodal fusion method and 
introduce non-invasive physiological data. Our research has shown that 
different modalities can compensate for each other, thus the choice of 
appropriate fusion levels (sensor, feature, score, or decision) could be 
the key to building an optimal model. Next, we will increase the sample 
size and age range of participants to improve the generalization ability 
of the model. Due to the labeling of data relies entirely on subjective 
assessment, we need to improve the ground truth of driver stress 
through combining subjective assessment with expert assessment by 
video or physiological data. Recently, unsupervised learning has made 
great strides in other areas, and has even surpassed supervised learning 
in some areas (He, Fan, Wu, Xie, & Girshick, 2020). Unsupervised 
learning can learn features related to driver stress on unlabeled data, 
which can solve the problem of laborious, tedious, and inaccurate 
labeled data. 

CRediT authorship contribution statement 

Luntian Mou: Investigation, Methodology, Project administration, 
Writing - original draft, Writing - review & editing. Chao Zhou: Meth-
odology, Validation, Writing - original draft, Writing - review & editing. 
Pengfei Zhao: Methodology, Writing - review & editing. Bahareh 
Nakisa: Writing - original draft, Writing - review & editing. Moham-
mad Naim Rastgoo: Writing - review & editing. Ramesh Jain: Super-
vision, Writing - review & editing. Wen Gao: Supervision. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgement 

This work was supported by the National Natural Science Foundation 
of China under grant 61672068. 

References 

Arefnezhad, S., Samiee, S., Eichberger, A., Frühwirth, M., Kaufmann, C., & Klotz, E. 
(2020). Applying deep neural networks for multi-level classification of driver 
drowsiness using vehicle-based measures. Expert Systems with Applications, 162, 
113778. https://doi.org/10.1016/j.eswa.2020.113778 

Bahdanau, D., Cho, K., & Bengio, Y. (2015, May). Neural machine translation by jointly 
learning to align and translate. 3rd International Conference on Learning 
Representations, ICLR 2015, San Diego, SD. 

Baltaci, S., & Gokcay, D. (2016). Stress detection in human-computer interaction: Fusion 
of pupil dilation and facial temperature features. International Journal of Human- 
Computer Interaction, 32(12), 956–966. https://doi.org/10.1080/ 
10447318.2016.1220069 

Beanland, V., Fitzharris, M., Young, K. L., & Lenné, M. G. (2013). Driver inattention and 
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