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Abstract

To understand how strategies used by object detection models compare to those
in human vision, we simulate peripheral vision in object detection models at the
input stage. We collect human data on object change detection in the periphery
and compare it to detection models with a simulated periphery. We find that unlike
humans, models are highly sensitive to the texture-like transformation in peripheral
vision. Not only do models under-perform compared to humans, they do not follow
the same clutter effects as humans even when fixing the model task to closely
mimic the human one. Training on peripheral input boosts performance on the
change detection task, but appears to aid object localization in the periphery much
more than object identification. This suggests that human-like performance is not
attributable to input data alone, and to fully address the differences we see in human
and model detection, farther downstream changes may be necessary. In the future,
improving alignment between object detection models and human representations
could help us build models with more human-explainable detection strategies.

1 Introduction

As object detection deep neural networks (DNNs) become increasingly accurate, attributing perfor-
mance to input data and aspects of downstream processing is important for refining and selecting
models. Currently, attribution in object detection is better understood in humans where texture-like
representations in the periphery are thought to both limit and enable the human ability to locate and
identify objects in a scene [Whitney and Levi, 2011, Rosenholtz, 2016].

Leveraging our understanding of human visual processing, we devise a peripheral vision object
detection task for both humans and models. We ask humans to detect objects in their periphery on
COCO images and then stimulate peripheral vision in object detection models at the input stage
to compare model detection strategies to humans. We simulate peripheral vision with an image
transformation, allowing us to understand how input data effects the similarity between human and
model performance. Our analyses are flexible to any detection DNN that takes images as an input,
allowing us to evaluate a variety of architectures from CNNs to transformers.

Our results reveal key differences in how sensitive models and humans are to a peripheral vision
transformation and uncover that DNN performance is not responsive to the same clutter effects that
humans are. Even though many detection DNNs have better baseline performance on large objects
than small, we do not observe the same pattern when simulating peripheral vision suggesting that
there is a deeper, downstream mis-alignment between human and DNN behavior that cannot be
attributed to input data alone. These patterns hold for a DNN trained with a simulated periphery,
with trained models showing improved object localization in the periphery, but interestingly not
identification. Overall, by quantifying DNN and human alignment on a peripheral vision task, we are
able to better understand strategies used in machine object detection.

ATTRIB: Workshop on Attributing Model Behavior at Scale at NeurIPS 2023.



2 Background

Peripheral vision describes the process in which human vision represents the world with decreasing
fidelity at greater eccentricities, i.e. farther from the point of fixation. Over 99% of the human visual
field is represented by peripheral vision. While it is thought to be a mechanism for dealing with
capacity limits from the size of the optic nerve and visual cortex, peripheral vision has also been
shown to serve as a critical determinant of human performance for a wide range of visual tasks
[Whitney and Levi, 2011, Rosenholtz, 2016]. Peripheral vision has been successfully modeled as a
loss of information in representation space [Rosenholtz et al., 2012b, Freeman and Simoncelli, 2011],
where models like TTM [Rosenholtz et al., 2012b] perform a texture-processing-like computation of
local summary statistics within pooling regions that grow with eccentricity and tile the visual field
(see Fig. 6 for an example). This model has been tested to well predict human performance on an
extensive number of behavioral tasks, including peripheral object recognition, visual search, and a
variety of scene perception tasks [Ehinger and Rosenholtz, 2016].

Properties of peripheral vision have been used to explain representational and behavioral qualities of
models. Notably, prior work has studied the peripheral vision effect of crowding. Crowding is the
degradation of peripheral performance in the face of clutter, often demonstrated as the inability to
identify a target object when flanked (surrounded) by other objects. Crowding in humans is complex,
however, depending not merely on the presence or spacing of nearby objects, but on the features and
complexity of local image regions [Vater et al., 2022]. Standard object recognition CNNs have been
shown to have very different crowding effects compared humans [Lonnqvist et al., 2020], and often
perform worse at recognition under crowded conditions than human-inspired CNNs [Volokitin et al.,
2017]. In addition, robustness to adversarial noise has been linked the texture-like representations of
peripheral vision [Harrington and Deza, 2022], and robustness to occlusion and other biases were
seen in a scene classification model trained on peripheral vision-like images [Deza and Konkle, 2020].
All of these studies, however, are limited to object recognition models. Peripheral vision is critical
for task where visual context matters such as detection. In order to explain model behavior in the
context of peripheral vision, it is critical to use richer datasets and tasks like detection.

3 Object Change Detection Task

3.1 Human Experiment

a. b. c.c.

Figure 1: Example Easy Object Detection. (a) Original image with target object bounding box, and
(b) TTM transform for 15◦ (240 pixels) with extended bounding box (used to perform machine object
detection task). (c) Human accuracy (blue), compared with accuracy for a pre-trained (pink) and
trained on TTM (gray) Faster RCNN R50 model, and a DINO FocalNet model (green). Psychometric
curves are fit with an inverse cumulative normal distribution.

In order to compare human and model detection strategies, we create an object change detection task
that both can perform. We first collected human psychophysics data on an object detection task. We
choose a detection rather than a recognition task because humans can guess object identity quite
well based on context alone, i.e. even when the object itself is occluded [Wijntjes and Rosenholtz,
2018]. In our detection task, we present two images on every trial, identical except for the presence or
absence of a particular object, and ask a human subject to judge which of the two images contained
a target object. For the object present images, we choose 26 images from the COCO validation set
that have one instance of an object. For the absent image, we remove that object via in-painting (see
Appendix Sec. 8.2.1). We selected images with a variety of small-medium objects in different scenes.
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In each trial, 10 eye-tracked subjects fixated at a specified location either 5◦, 10◦, 15◦, or 20◦ away
from the target object, and viewed an object present and absent image in random order. Subjects were
asked to report which image contained the specified object in a two-interval-forced-choice paradigm
(2IFC), viewing 10 present/absent image pairs at each eccentricity (see Appendix Sec. 8.2.2 and 8.2.3
for more details).

We find overall that human object detection performance always degrades progressively with in-
creasing eccentricity (Figure 1, blue line). See Appendix Sec. 8.2.4 for per-image human accuracy.
Detection ability is consistently strong at 5◦. However, for some images observers reach near chance
performance at 20◦ eccentricity, whereas a few image pairs have objects that are easily detected at all
eccentricities. Often, high color contrast between the object and its background and a lack of clutter
from other nearby objects made target objects more easily detected in the periphery, leading to better
performance, which is consistent with the crowding literature.

4 Machine Experiment

{...}

{...}

DNN

Score = 85

Score = 10

present

absent
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Original Images 10 uniform 
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Figure 2: Workflow for Machine Psychophysics Experiment. To simulate trials for detection
DNNs, we generate 10 TTM transform images for each present/absent image in the experiment. We
run inference on the transforms and sum the scores of all box predictions that have an intersection
over area (IOA) greater than 0.75%. If the summed score is greater on the present transform, the
DNN is recorded as correct for that pairing. White boxes indicate the ground truth and padded ground
truth. Green boxes show predictions that meet the area condition, red do not.

To compare human and DNN performance, we have DNN object detection models perform the
same two-alternative/interval forced choice task given to human subjects. We start by stimulating
peripheral vision in a variety of pre-trained DNNs. We use the Texture Tiling Model [Rosenholtz
et al., 2012b], one of the most well tested models of peripheral vision that well predicts human
behavior on a variety of tasks (See Fig. 6). We use TTM to transform the object present and absent
images used the experiment like human peripheral vision. Because TTM is a stochastic model that
is under-constrained compared to image pixel values, we can create 10 different samples of each
experiment image to simulate different viewing or experimental trials. By creating 10 samples, this
gives us 100 unique image pairings to simulate trials.

For each present/absent pairing, we input a transformed image to the object detection model with low
detection threshold (0.01) to get proposed bounding boxes and object scores. We then determine if
the proposed box overlaps with a padded ground truth box of the target object; we pad the ground
truth box by half the width of a pooling region to account for position uncertainty introduced in
human peripheral vision and TTM (see Figure 1 a and b for an example of 15◦ padding). To measure
how strongly the DNN predicts there is an object in padded box region, we sum the total scores of
all objects (regardless of predicted class) that overlap at least 75 percent (intersection of area with
respect to the proposed box). We score the model as correct on a trial if the total object scores for
the present image are greater than the absent. We score incorrect if the absent is greater and give a
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Figure 3: Detection Critical Eccentricity for Humans and DNNs. Fitting a psychometric function
to the psychophysics performance, we report the average fall-off point of performance in the periphery
(µ) over all experiment images.

half score if present and absent are equal. We take the average over all the present-absent pairing
accuracies for each eccentricity. See Appendix Sec. 8.3 for pseudo-code and Figure 2 for the general
workflow.

To keep the comparison between DNNs and humans fair, we do not enforce that the model must
predict the correct object identity when scoring predictions at each trial. Because we use a forced-
choice paradigm, humans subjects can give a correct response by simply detecting the presence of
any object at the approximate right location, rather the specified one. Although we specify an object
class to human subjects, this strategy is likely to happen when peripheral information is poor.

We evaluate a range of object detection DNNs from CNN-based to transformers. These include:
DINO FocalNet[Zhang et al., 2022] , DINO Swin Tiny [Zhang et al., 2022], Faster-RCNN-R50 [Ren
et al., 2015], Faster-RCNN-X101 [Ren et al., 2015], RetinaNet-R50 [Lin et al., 2017], Detr-R50
[Carion et al., 2020].

5 Humans Out-Perform Models at Peripheral Object Detection

Like the human observers, DNNs’ response accuracies are highly image-dependent, with some pairs
resulting in poor performance for all models. While human performance falls gradually for most
images, DNN object detectors can often retain good accuracy for the 5◦ eccentricity TTM transforms,
but many show sharp falloffs in accuracy to chance performance soon after (See Figure 1 for a
representative example).

To quantitatively compare performance, we fit both human and DNN performance data across
eccentricity to a psychometric function for each image. We use a reverse cumulative Gaussian distri-
bution which determines the critical (75% correct, halfway between perfect and chance performance)
threshold eccentricity by the mean of the distribution (µ), and the performance falloff rate by (σ).

For all images tested, humans outperform all object detection models, with critical thresholds more
than 5◦ greater than detection models (Figure 3). We find generally weak correlations between
between DNN and human performance for critical eccentricity (µ) (see Appendix Fig. 12). Among
the pre-trained models, DINO detectors have the closest critical eccentricity to humans and have the
strongest correlation.

5.1 Training on Peripheral Vision Images

To reduce the gap between human and DNN performance and understand the impact of training on
periphery vision inputs, we fine-tune and train a ResNet-50 backbone Faster-RCNN-FPN detection
model on images transformed by a variant of TTM – which we call uniform TTM (see Fig. 6 and
Appendix Sec. 8.1). Uniform TTM removes the need to select a fixation point in a image and
instead models a single distance in the periphery everywhere in an image making it feasible to
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a. b.

Figure 4: Detection vs Recognition. (a) Fine-tuning and training on uniform TTM increases
baseline Faster-RCNN-R50 performance at the object detection psychophysics task. (b) Machine
psychophysics performance on recognition. We pass the classification head of Faster-RCNN models
the groundtruth bounding box and score performance based on recognition in that region.

render the COCO dataset like peripheral vision. For fine-tuning (plotted as All◦ FT RCNN) we start
from detectron2’s [Wu et al., 2019] pre-trained model and use a 3x iteration scheme with a lowered
learning rate. When training from scratch (plotted as All◦ FT RCNN), we use the default 3x training
configuration in detectron2.

We find that training a model from scratch using uniform TTM plus original COCO images (0◦)
produces the best performing model in the psychophysics evaluation (see Fig. 3) and has the highest
average precision on COCO transformed by uniform TTM (see Appendix Fig. 1). The model trained
with uniform TTM has a critical eccentricity of nearly 5◦ greater than the pre-trained baseline (Figure
3) The fine-tuned model, however, under-performs the trained model which we suspect is because of
the lowered learning rate during training and a decrease in baseline AP (See Appendix Table 1).

To better understand the impact training on uniform TTM has on the psychophysics performance,
we additionally evaluate object recognition in the machine psychophysics (Figure 4). We give the
classification head of Faster-RCNN-R50 models the padded ground truth bounding box of the target
object. We then score models based on which image, present or absent, has the highest classification
probability for the target object. Unlike the detection version of the task, we find that training from
scratch performs worse than baseline. This could indicate the trained model improved more at
localizing objects rather identifying them in the periphery.

5.2 Effects of Object Size and Clutter

Since both human and DNN performance strongly varied by image, we looked for image properties
that might predict performance, and asked if these had similar effects for humans and computer vision
DNNs. Examining critical eccentricity as a function of object size, humans have a higher critical
eccentricity for larger objects; that is, human performance increases with progressively larger target
objects (Figure 5 a). Surprisingly, this relationship does not appear to hold for any object detection
model, even the ones trained on uniform TTM.

Human object detection performance in the periphery is known to be strongly mediated by the amount
of clutter. One measure of clutter is the number of objects near the target. To test if this holds true
for detection models in our experiment, we used the number of ground truth COCO annotations in
the image as a proxy for clutter (note clutter can be present in specific sub-regions of an image, and
that COCO annotations do not label all objects in many scenes). As expected, human performance
decreases as images become more cluttered (Fig 5 b). Performance in object detection models does
not show a strong relationship with clutter. This is true even for models trained on uniform TTM,
which should reflect the degrading effect of clutter on the peripheral representation, according to
TTM.

6 Discussion

To compare detection strategies between humans and DNNs under peripheral vision conditions,
we simulate peripheral vision and create a psychophysics experiment. Our results expose a gap
in performance between humans and computer vision DNNs in the periphery. When we restrict
DNNs with human peripheral vision, detection performance is brittle, degrading sharply while human
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a. b.

Figure 5: Object Size and Clutter. a: Object size predicts critical eccentricity for human observers
(blue), but remains low for large objects in all object detection models tested. b: In humans (blue),
critical eccentricity is highest for images with few objects, with performance decreasing as images
become more crowded with objects. This relationship is not observed for tested object detection
models, where critical eccentricities remain low.

performance falls off smoothly. Although we do not test human performance on TTM transform
images, previous work demonstrated that TTM is a close match to human peripheral vision [Ehinger
and Rosenholtz, 2016], so differences in performance cannot be explained by stimuli alone.

In our experiments, we see that DNNs that are more accurate at baseline tend to have a closer detection
fall-off to humans in the periphery. This suggests that working to improve models at baseline is not at
odds with the goal of training detection models that behave more like humans. However, we also see
that even better baseline models like DINO do not display human like performance patterns under
clutter. Our result suggests that to get more human explainable mistake patterns in detection models,
model representations might need to be further constrained downstream during training.

In our experiment training on images transformed to simulate peripheral vision, we see that training
improves DNN performance on the object change detection task. However, the boost in performance
we see appears to primarily be attributable to improved object localization, rather than class identifica-
tion (Fig. 4). Favoring localization over identification aligns with a major goal of peripheral vision –
guiding fixation. Training with transformed inputs alone seems to help align models to human object
localization patterns, but more work is needed to fully understand this relationship.

In the future, it will be interesting to test more biologically inspired detection models to understand
the role those mechanisms play in driving how humans handle clutter and effectively detect objects
in the periphery. While we do not train state-of-the-art models on TTM directly, future work in
that direction could help further understand how detection models perform under restricted viewing
conditions. Overall, by comparing DNNs and humans on a peripheral vision task, our work brings us
closer to understanding how input constraints, architecture, and baseline accuracy influence strategies
used in object detection.

7 Acknowledgements

This work was funded by the Toyota Research Institute, CSAIL MEnTorEd Opportunities in Research
(METEOR) Fellowship, US National Science Foundation under grant number 1955219, and National
Science Foundation Grant BCS-1826757 to PI Rosenholtz. The authors acknowledge the MIT
SuperCloud Reuther et al. [2018] and Lincoln Laboratory Supercomputing Center for providing HPC
resources that have contributed to the research results reported within this paper.

6



References
N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. End-to-end object

detection with transformers. In European conference on computer vision, pages 213–229. Springer,
2020.

A. Deza and T. Konkle. Emergent properties of foveated perceptual systems. arXiv preprint
arXiv:2006.07991, 2020.

K. A. Ehinger and R. Rosenholtz. A general account of peripheral encoding also predicts scene
perception performance. Journal of Vision, 16(2):13–13, 2016.

J. Freeman and E. P. Simoncelli. Metamers of the ventral stream. Nature neuroscience, 14(9):
1195–1201, 2011.

A. Harrington and A. Deza. Finding biological plausibility for adversarially robust features via
metameric tasks. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=yeP_zx9vqNm.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.
Microsoft coco: Common objects in context. In European conference on computer vision, pages
740–755. Springer, 2014.

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection. In
Proceedings of the IEEE international conference on computer vision, pages 2980–2988, 2017.

B. Lonnqvist, A. D. Clarke, and R. Chakravarthi. Crowding in humans is unlike that in convolutional
neural networks. Neural Networks, 126:262–274, 2020.

S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information processing systems, 28, 2015.

A. Reuther, J. Kepner, C. Byun, S. Samsi, W. Arcand, D. Bestor, B. Bergeron, V. Gadepally, M. Houle,
M. Hubbell, M. Jones, A. Klein, L. Milechin, J. Mullen, A. Prout, A. Rosa, C. Yee, and P. Michaleas.
Interactive supercomputing on 40,000 cores for machine learning and data analysis. In 2018 IEEE
High Performance extreme Computing Conference (HPEC), pages 1–6. IEEE, 2018.

R. Rosenholtz. Capabilities and limitations of peripheral vision. Annual review of vision science, 2:
437–457, 2016.

R. Rosenholtz, J. Huang, and K. A. Ehinger. Rethinking the role of top-down attention in vision:
Effects attributable to a lossy representation in peripheral vision. Frontiers in psychology, 3:13,
2012a.

R. Rosenholtz, J. Huang, A. Raj, B. J. Balas, and L. Ilie. A summary statistic representation in
peripheral vision explains visual search. Journal of vision, 12(4):14–14, 2012b.

R. Suvorov, E. Logacheva, A. Mashikhin, A. Remizova, A. Ashukha, A. Silvestrov, N. Kong, H. Goka,
K. Park, and V. Lempitsky. Resolution-robust large mask inpainting with fourier convolutions.
In Proceedings of the IEEE/CVF winter conference on applications of computer vision, pages
2149–2159, 2022.

C. Vater, B. Wolfe, and R. Rosenholtz. Peripheral vision in real-world tasks: A systematic review.
Psychonomic bulletin & review, 29(5):1531–1557, 2022.

A. Volokitin, G. Roig, and T. A. Poggio. Do deep neural networks suffer from crowding? Advances
in neural information processing systems, 30, 2017.

D. Whitney and D. M. Levi. Visual crowding: A fundamental limit on conscious perception and
object recognition. Trends in cognitive sciences, 15(4):160–168, 2011.

M. W. Wijntjes and R. Rosenholtz. Context mitigates crowding: Peripheral object recognition in
real-world images. Cognition, 180:158–164, 2018.

7

https://openreview.net/forum?id=yeP_zx9vqNm
https://openreview.net/forum?id=yeP_zx9vqNm


Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick. Detectron2. https://github.com/
facebookresearch/detectron2, 2019.

H. Zhang, F. Li, S. Liu, L. Zhang, H. Su, J. Zhu, L. M. Ni, and H.-Y. Shum. Dino: Detr with improved
denoising anchor boxes for end-to-end object detection, 2022.

8

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2


8 Appendix

8.1 Texture Tiling Model

a. b. c.TTM Uniform-TTM

Figure 6: The Texture Tiling Model. (a) Original image. (b) TTM transformed image assuming the
green dot is the fixation point. (c) TTM modified to uniformly render an image at one distance in the
periphery. 15◦ is shown here.

Original TTM Uniform TTM

Figure 7: Pooling Regions in Original and Uniform Texture Tiling Models (TTM). Original
TTM [Rosenholtz et al., 2012a] is foveated, so its pooling regions are small around the fixation point
and grow farther from the fixation. We adapt TTM to use a fixed pooling region size everywhere in
the image (Uniform TTM). The size is determined by the distance in the periphery being modeled.

In the original TTM model, the pooling region size is determined by a pooling rate, r, and a distance
from the fovea, d. For the uniform version, we fix d for a certain eccentricity rather than varying it
like the original model. We set the overlap between pooling regions to be 60%, and we arrange the
uniform pooling regions in a rhombic lattice to make it as close as possible to original TTM. We use
the same synthesis procedure as original TTM (matching statistics for each pooling region iteratively
from noise). The uniform TTM transforms take between 2− 3 hours to synthesize on 1 CPU core
(compared to the original TTM transforms, which take 6 hours on 1 core). Closer eccentricities like
5◦ take longer to run than large ones because the pooling region size is small. For training, we create
uniform TTM transforms for 5,10,15, or 20◦. For all TTM transforms, we assume that there are 16
pixels per degree, which is standard for original TTM.

When changing to uniform pooling, we also change the ordering of pooling region optimization from
foveated TTM. Foveated TTM alternates spiraling from fovea to edge of periphery and back. This
caused artifacts in uniformly-tiled TTM. Therefore, we opted for a randomly ordered optimization of
the pooling regions, eliminating the optimization artifacts.

8.2 Human Psychophysics Experiment

8.2.1 Present / Absent Experiment Image Pairs

To create pairs of images where a given object was both present and absent, we used images from the
MS-COCO validation set [Lin et al., 2014] (such that they would be novel to both humans and to
trained networks). We found images in landscape orientation where an object from a COCO object
category appeared and was labeled only once in the image, and the object was detected with at least
50% confidence in the original image with the detectron2 [Wu et al., 2019] object detection model
(faster_rcnn_r50_fpn). From this set, we hand-selected 26 images that spanned a range of conditions
that would affect the difficulty of the peripheral detection task (object identity and size, variation in
luminance and color contrast from background, amount of crowding around object, etc). We then
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Original Mask In-Painted

Figure 8: Example of LaMa [Suvorov et al., 2022] inpainting on COCO validation set image.
We use inpainting to create the object absent version of each image in the psychophysics experiment.
Here, the wine-glass is removed with few artifacts.

400 ms 500 ms 400 ms 500 ms

< 1500 ms

500 ms

Figure 9: Human psychophysics experiment trial. Subjects complete a 2IFC (2 interval forced choice)
task where they determine if a target object appears or disappears in a sequence. Red arrows indicate
the location of the target object. Subjects fixate at a cross that is placed at 5, 10, 15 or 20◦ away from
the object.

used the LaMa image in-painting model to inpaint the chosen object [Suvorov et al., 2022], with
a hand-drawn in-painting mask rather than the entire bounding box, as to avoid in-painting nearby
objects in crowded scenes. In addition to the in-painted images, for each COCO image we also
created a size matched 1/f pink noise mask to eliminate any motion transients and after-image effects
during the experiment. These 26 image pairs were used for our object detection experiments. Note
that figures reflect 24 images, as 2 images were removed from analysis because of poor psychometric
curves fits (see Figures ?? and ?? to view the final image set).

8.2.2 Experimental Setup

All participants provided informed consent prior to participation, in compliance with the Common
Rule (45 CFR 46), and this study was assessed as exempt from review by MIT’s Institutional Review
Board, pursuant to 45 CFR 46.101(b)(2). Participants took approximately 2 hours to complete the
study and were paid a $40 Amazon gift card for their participation.
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Figure 10: Learning Over Experiment. Despite including practice trials before the experiment and
excluding correct/incorrect feedback during the experiment, human responses did exhibit a small
learning effect over the course of the experiment. Accuracy is plotted against x-axis ordered by the
number of times subject had seen any image at a given eccentricity. Bold lines show moving window
averaged accuracy over all subjects, and pale lines show individual subject’s data.

12 subjects participated in the human psychophysics experiment. We discarded the data from
2 subjects due to a computer malfunction and difficulty eye-tracking with a strong contact lens
prescription. The remaining subjects consisted of 4 Male, 5 Female, and 1 Non-binary subjects
ranging in age from 19 to 31. All had self-reported normal or corrected to normal visual acuity with
contact lenses, with no history of eye surgery. 2 subjects had corrective lenses for myopia with a
correction less than -1.25, but did not normally wear glasses or contacts (and did not during the
experiment); We included these subjects as the viewing distance was only 82cm.

Subjects were seated and head placed in the chinrest of an EyeLink 1000 in tower-mount configuration.
Subjects were 82 cm from a monitor screen, and their left eye position tracked. Nine-point calibration
was performed and validated to within 1 degree at each point. The experiment allowed for fixation
within 2 degrees, displaying a small dot on the screen for real-time feedback of measured fixation
location. Subjects were asked to pause the trial block to re-calibrate if measured fixation did not
reflect fixation location, or they had difficulty with the system recognizing their fixation.

8.2.3 Experimental Paradigm

The experiment consisted of a 2IFC (two interval forced choice) task where subjects report which
out of two images contains a target object. Each subject saw 26 image pairs 10 times at 4 different
fixation locations (5, 10, 15, 20◦) away from a target object, where the fixation location was at the
vector computed from the target object location towards the center-point of the image. The order of
each presentation was randomized across the whole experiment. Each subject saw the present/absent
image pair 5 times present-first and 5 times absent-first. No correct/incorrect feedback was given to
the subject.

Subjects maintained fixation on a cross presented at either 5, 10, 15, or 20 degrees from the object
location, and were eye-tracked to ensure fixation was maintained within 2 degrees. Attention was
directed to the object location with latitude/longitude arrows. After presentation, subjects were given
the original COCO object category, and prompted to report which image contained the the object by
reporting if the object ‘appeared’ (was in the 2nd image but not the first) or ’disappeared’ (was in the
1st image but not the second).

Each trial waited to begin until the subject fixated on a cross before proceeding. If the subject
broke fixation anytime an image or mask is shown, the trial was aborted and shuffled to the end of
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experiment. Each image was shown for 400ms, and a size-matched pink noise mask was shown after
for 500ms to eliminate visible flicker of appearance of disappearance. Subjects were given a response
window of 1.5 seconds, and the image pair shuffled to the end of the experiment in a time-out.

The experiment in total was 1040 trials long. Subjects were given a break every 150 trials, re-
calibrating after each break and before starting a new block. Before beginning the experiment,
subjects completed a practice round consisting of 15 trials of very easy image pairs. 2 subjects needed
to do the practice round a second time before they reported being comfortable with the task. The
images in the practice round were much larger than those in the actual experiment to make the task
easier (10+ degrees). This may have contributed to a learning effect we observed in some subjects
where performance improves with the number of trials completed (Figure 10).

8.2.4 Human Psychophysics Results

Figure 11: Per-Image Accuracy over all Subjects. Human performance was very image-dependent,
but decayed as eccentricity increased for all images

Overall, subjects performed well at the task for most images, only reaching chance performance
for approximately 30% of the images (Figure 11). Images 000000009769 and 000000067616 were
removed from downstream analysis due to poor fitting of psychometric function. The difficulty was
extremely image-dependent - subjects reported similar feedback during debriefing that certain images
were extremely difficult and that they were guessing (though results show they often performed better
than chance, despite this), while other images were extremely easy. The hardest and easiest reported
images tended to be those least and most crowded, and those with the most and least background
contrast, respectively.

8.3 Machine Psychophysics Experiment

We provide pseudo-code for the machine psychophysics procedure. We tried a variety of detection
criteria including, enforcing that predictions match the target category, enforcing the size the box
predictions to be no more than half or twice the size of the padded ground truth, and taking the average
score over all boxes that overlap the padded ground truth. We arrived at the summing approach
described in the Algorithm1 because it yielded the highest critical µ scores and showed similar trends
in performance to the other approaches.
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Algorithm 1 For each object present/absent image in the human experiment, we create 100 pairings
of uniform TTM transform images (P and A). We simulate trials by looking at the box predictions
(boxes) of a detection DNN for each pairing (p, a). We sum the total box scores that overlap with the
target object box at least 0.75% IOA (intersection over area). To determine this overlap, we take the
target object ground truth box (gt) and pad it with by half a pooling region (pr). If the total score for
the present image (pprob) is higher than the absent (aprob), we record the DNN model as having a
correct response. We average over all 100 pairings for final accuracy (acc).

procedure GETMODELACCURACY
acc = 0 ▷ initialize accuracy
for p, a ∈ (P,A) do ▷ loop through all present/absent pairings for one object

pprob = GetTargetDetectionScore(p, gt, pr) ▷ get score for target object
aprob = GetTargetDetectionScore(a, gt, pr)
if pprob = aprob then acc = acc+ 0.5 ▷ get per trial accuracy
if pprob > aprob then acc = acc+ 1

acc = acc÷ trials ▷ take average over all trials
function GETTARGETDETECTIONSCORE(im, gt, pr)

gtx = gt+ 0.5× size(pr) ▷ expand ground truth bounding box by half pooling region
boxes, scores = DNN(im) ▷ get box proposals
prob = 0 ▷ initialize total score of overlapping proposals
for b, s ∈ (boxes, scores) do

if ioa(gtx, b) > 0.75 then ▷ check boxes that overlap expanded ground truth
prob = prob+ s

return prob ▷ return sum of overlapping scores

Figure 12: Correlation between Human and Machine Critical Eccentricity using original TTM
in the machine psychophysics.
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8.4 Fine-Tuning Object Detection Models

Model AP 0◦ AP 5◦ AP 10◦ AP 15◦ AP 20◦

Faster-RCNN-R50 36.7 29.4 19.9 5.9 4.2
All ◦ FT Faster-RCNN-R50 36.1 31.8 27.7 13.9 10.8
All ◦ Train Faster-RCNN-R50 33.8 30.5 28.1 15.8 12.7

Table 1: Average Precision (AP) on Uniform TTM-transformed COCO Validation Set. All
models are Faster-RCNN ResNet50 FPN architecture [Ren et al., 2015].

8.5 Training Procedure

We fine-tuned and train from scratch the Faster R-CNN model from the Detectron2 library [Wu
et al., 2019] (faster_rcnn_r50_fpn) using a mixture of original training images, and TTM transforms
for varying eccentricities. We use 55,000 images from each eccentricity along with original COCO
images. Fine-tuning was trained for 180,000 iterations starting from the weights of a pre-trained
R-CNN from [Wu et al., 2019]. We set the solver to step at 120,000 and 160,000. We set the base
learning rate to 3× 10−4. All other training parameters are the same R-CNN training parameters in
[Wu et al., 2019] as the baseline model. To train from scratch, we use the same 3x training schedule
provided in [Wu et al., 2019] for Faster RCNN R50 FPN models (starting from an ImageNet trained
ResNet50 backbone, training for 270,000 iters, 16 images per batch).
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