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Abstract
Electronic health records (EHR) aggregate exten-
sive data critical for advancing patient care and
refining intervention strategies. EHR data is es-
sential for epidemiological study, more commonly
referred to as cohort study, where patients with
shared characteristics or similar diseases are an-
alyzed over time. Unfortunately, existing stud-
ies on cohort modeling are limited, struggling to
derive fine-grained cohorts or effectively utilize
cohort information, which hinders their ability to
uncover intrinsic relationships between cohorts.
To this end, we propose NeuralCohort, a cohort-
aware neural representation learning method that
precisely segments patients into finer-grained co-
horts via an innovative cohort contextualization
mechanism and captures both intra- and inter-
cohort information using a Biscale Cohort Learn-
ing Module. Designed as a plug-in, NeuralCohort
integrates seamlessly with existing backbone mod-
els, enhancing their cohort analysis capabilities
by infusing deep cohort insights into the repre-
sentation learning processes. The effectiveness
and generalizability of NeuralCohort are validated
across extensive real-world EHR datasets. Ex-
perimental results demonstrate that NeuralCohort
consistently improves the performance of vari-
ous backbone models, achieving up to an 8.1%
increase in AUROC.

1. Introduction
Electronic health records (EHR) are systematized collec-
tions of patients’ medical histories, stored electronically
within healthcare systems, which typically consist of patient
demographics and temporal medical features (Johnson et al.,
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Figure 1. Traditional cohort studies and the paradigm of Neural-
Cohort to achieve interpretable cohort intelligence.

2016). EHR data is instrumental in advancing data-driven
approaches within the healthcare sector and facilitating crit-
ical clinical decision-making (Yan et al., 2020; Wynants
et al., 2020; Ooi et al., 2015) for more optimized patient
management, including assisting doctors in assessing pa-
tients’ health conditions, developing treatment plans, and
proactively averting adverse outcomes with heightened effi-
cacy and intelligence (Hou et al., 2020; Li et al., 2025; Lin
et al., 2025), among others.

Contemporary approaches (Huang et al., 2019; Choi et al.,
2017; Shang et al., 2019) primarily focus on extracting
representations from the intrinsic information encapsulated
within EHR data, which are subsequently used to enhance
different downstream healthcare analytic tasks. Unfortu-
nately, one indispensable consideration to achieve effective
EHR representation learning has been largely overlooked
by most existing studies - Patient Cohorts. In healthcare
research, as depicted in Figure 1 (a), patient cohorts pertain
to groups of individuals identified by shared characteristics,
ranging from demographics to specific health conditions.
Patient cohorts are integral to researching and developing
effective medical interventions. For instance, when COVID-
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19 ravages the world, doctors may opt to construct two
distinct patient cohorts: one comprising COVID-19 patients
aged between 20 and 40, and the other encompassing those
aged between 50 and 70. Notably, elderly patients are more
likely to exhibit severe symptoms such as breathing distress,
cognitive decline, and elevated fever, while younger pa-
tients typically present with milder symptoms, such as fever,
cough, and sore throat, or even remain asymptomatic (Al-
imohamadi et al., 2020). In addition, doctors may observe a
consistent pattern among patients with fever symptoms, pre-
dominantly diagnosing them with COVID-19 (Viner et al.,
2021). The former analysis indicates that the elderly pop-
ulation is prone to more severe symptoms, whereas the
latter reveals a discernible association between fever and
COVID-19, which serves as a valuable diagnostic indicator.
Drawing from these insights, a significant optimization goal
of EHR representation learning is to develop an effective
cohort construction approach that advances from individ-
ual intelligence to interpretable cohort intelligence, thereby
unleashing the profound potential of EHR data to facili-
tate EHR analysis and deepen the understanding of patient
insights.

A straightforward approach to cohort division relies exclu-
sively on explicit features and uses either a single feature or
a combination of several features to derive cohorts across
different healthcare analytic tasks. Despite being intuitive,
this approach may not satisfactorily tackle EHR data in
practice, as it fails to achieve the following two crucial
desiderata: (1) Fine-grained Cohort Division. EHR data
records patients’ temporal visits to the hospital for different
reasons, thereby engendering different diagnoses, medica-
tions, etc. Consequently, a coarse-grained cohort division
may place similar patients into different cohorts at varying
time points, potentially introducing noise into the repre-
sentation learning process. This underscores the need for
a fine-grained cohort division that takes into account the
patient similarity in the time dimension, rather than rely-
ing solely on explicit features. (2) Local Intra-cohort
and Global Inter-cohort Information Exploitation. As
previously discussed, the similarity of patients within a co-
hort, i.e., intra-cohort information, is valuable to medical
decisions. Additionally, contrasting the characteristics of a
patient against those from different cohorts, i.e., inter-cohort
information, can provide valuable insights and enhance di-
agnostic accuracy. Therefore, effective EHR representation
learning should comprehensively and jointly leverage both
intra- and inter-cohort information to utilize EHR data to the
utmost. However, existing methods fail to simultaneously
fulfill both desiderata.

To this end, we propose NeuralCohort, a cohort-aware neu-
ral representation learning method for healthcare analytics.
As illustrated in Figure 1 (b), NeuralCohort is structured into
two key modules. Pre-context Cohort Synthesis Module:

an innovative cohort synthesis task to model the temporal
EHR data with pseudo patient similarity, thereby paving
the way for constructing fine-grained cohorts. Biscale Co-
hort Learning Module: synergistically distill the cohort
information both from local intra-cohort and global inter-
cohort perspectives and finally derives the overall cohort
information to enhance EHR data representation learning.
Our contributions are summarized as follows.

• We propose NeuralCohort, a cohort-aware neural rep-
resentation learning method to support fine-grained co-
hort generation and simultaneously exploit local intra-
cohort and global inter-cohort information, which have
been overlooked by prior studies in EHR analysis.

• We design a two-module paradigm for NeuralCohort.
In Pre-context Cohort Synthesis Module, we model
patients’ temporal EHR data with pseudo patient simi-
larity to construct fine-grained cohorts. Subsequently,
in Biscale Cohort Learning Module, we capitalize on
local intra-cohort and global inter-cohort information
and encode them into augmented representations for
prediction.

• NeuralCohort can be seamlessly integrated with vari-
ous backbone models, serving as a versatile plug-in to
incorporate cohort information into healthcare analyt-
ics, thereby enhancing overall performance.

• We evaluate the effectiveness of NeuralCohort on three
real-world EHR datasets across two tasks. The exper-
imental results demonstrate that NeuralCohort, when
integrated with backbone models, outperforms its coun-
terparts by a large margin of up to 8.1% in AUROC,
confirming the efficacy of the comprehensive cohort
information learned by NeuralCohort.

2. Related Work
EHR data encompasses a wide array of information, includ-
ing structured data such as lab results and medications, as
well as unstructured data such as clinical notes (Sauer et al.,
2022). Employing representation learning methods is cru-
cial for comprehending the intricate relationships inherent
within heterogeneous EHR data (Landi et al., 2020; Cai
et al., 2021; Steinberg et al., 2021; Zheng et al., 2021; 2022;
Cai et al., 2022; Cheng et al., 2016; Su et al., 2025). For
instance, CompNet (Wang et al., 2019) uses a graph convolu-
tional model, enhanced by a reinforcement learning method,
to learn the interactions between different medications and
predict medication combinations. Beyond deriving represen-
tations from the EHR data directly, several studies integrate
patient similarity to enhance the efficacy of representation
learning methods. A cosine similarity-based patient graph is
constructed to aggregate the patient similarity information
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Figure 2. Overview of NeuralCohort. NeuralCohort first models patients’ visit-level representations to derive patient-level representations
under a PseudoSim Training task. The derived representations are used to generate cohorts. NeuralCohort fuses the representations of the
intra- and inter-cohort graphs with those derived from the backbones for the final prediction.

for enhancing length of stay prediction (Zang et al., 2023).
GRASP (Zhang et al., 2021) introduces a framework that
characterizes patient similarity through learned inter-cohort
representations for various downstream clinical tasks. Un-
fortunately, these methods predominantly focus on EHR
data without exploiting the potential impact of the similarity
relationships among patients on EHR representation learn-
ing. Further, some restrict their analytics to cohort-level
similarity, and hence fall short of fully capturing the com-
plex similarity relationships among patients. NeuralCohort
mitigates the problem by generating fine-grained cohorts
and leveraging cohort information from both intra- and inter-
cohort perspectives. This dual-module method allows for a
more nuanced understanding and utilization of cohort dy-
namics, significantly enhancing the effectiveness of EHR
data representation learning.

There have been patient similarity prediction proposals (Sun
et al., 2012; Suo et al., 2018; Navaz et al., 2022). For in-
stance, a Mahalanobis distance learning method (Wang &
Sun, 2015) is proposed to integrate human experts’ knowl-
edge and patients’ historical data to measure patient similar-
ity. NeuralCohort differs from these works, which typically
leverage deep learning models to discern intricate patterns
among patients for deriving similarity, in that we employ
pseudo patient similarity to drive the generation of cohorts.
This difference enhances NeuralCohort’s ability to integrate
and leverage cohort dynamics for more robust and contextu-

ally aware EHR representation learning.

For a more comprehensive discussion on traditional cohort
studies and deep clustering, please refer to Appendix B.

3. Methodology
3.1. Problem Formulation

Given an EHR dataset comprising Np patients P =
{p1, p2, · · · , pNp}, each patient p has a temporal se-
quence of visits Vp = {v1, v2, · · · , vNv}, where Nv

is the number of visits for patient p. The features
of each visit v encompass three categories of medical
codes: diagnoses Dv = {d1, d2, · · · , dNd}, medications
Mv = {m1,m2, · · · ,mNm}, and laboratory tests Lv =
{l1, l2, · · · , lN l}, where Nd, Nm and N l denote the num-
bers of diagnosis codes, medication codes and laboratory
test codes associated with visit v, respectively.

Given a backbone model, our objective is to enhance the
representation learning of EHR data by incorporating pa-
tient cohorts. To attain this goal, we propose NeuralCohort,
a cohort-aware neural representation learning method for
healthcare analytics. As depicted in Figure 2, we present
the training pipeline M(P; ΘP ,ΘC) as follows:

M(P; ΘP ,ΘC)︸ ︷︷ ︸
NeuralCohort

= MP (S(P)|P; ΘP )︸ ︷︷ ︸
Pre−context Cohort Synthesis

→ MC(C, R0; ΘC)︸ ︷︷ ︸
Biscale Cohort Learning

(1)

where MP and MC correspond to the modules for the Pre-
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context Cohort Synthesis and Biscale Cohort Learning, re-
spectively, with associated parameters ΘP and ΘC . The
Pre-context Cohort Synthesis Module aims to derive cohorts
C via modeling pair-wise pseudo patient similarity S(P).
The Biscale Cohort Learning Module leverages these co-
horts C alongside the representations from the backbone R0,
resulting in enhanced representations.

3.2. Pre-context Cohort Synthesis Module

The Pre-context Cohort Synthesis Module is geared towards
learning patient-level representations and consequently de-
riving cohorts. In essence, NeuralCohort first constructs a
hierarchical network tailored for processing medical codes
to extract visit-level features Rv from the EHR data. Sub-
sequently, NeuralCohort proceeds to learn the patient-level
features Rp based on both the visit-level features Rv and
the pair-wise pseudo patient-level similarity S(P), serving
as the basis for Biscale Cohort Learning.

Hierarchical Visit Engine. Each visit v contains a set of di-
agnosis codes Dv , medication codes Mv and laboratory test
codes Lv. Notably, diagnosis codes adhere to specific on-
tologies that standardize the classification and interpretation
of medical data. For example, the ICD-9 (International Clas-
sification of Diseases, Ninth Revision) employs a tree-like
structure where each leaf corresponds to a standardized di-
agnosis code and a unique medical term (Quan et al., 2005).
The leaves and their respective ancestors delineate hierar-
chical paths within the ontology. A specific instance of path
Root → 240–279 → 249–259 → 250 → 250.4 represents
the hierarchical path of the leaf 250.4, with 250 designating
Diabetes mellitus and 250.4 denoting Diabetes with renal
manifestations. To distinguish leaves with analogous struc-
tures and derive informative diagnosis code representations,
we partition the ontology into two constituents:

• Path. This component traces the path in the ontology
tree from the Root to a leaf. We construct a graph based
on the tree structure of the ontology and employ a
graph-based method to obtain the representation of the
path. However, certain leaves, such as 250.4 and 250.5,
may share similar paths, which necessitates additional
differentiation strategies.

• Semantics. Each leaf within the ontology embodies a
unique medical term. Ancestors convey board seman-
tics, whereas leaves provide specific semantic details.
Further, the semantic information inherent in the same
ancestor can vary for different children. To tackle this,
we adopt a semantic similarity metric between the text
representations of an ancestor and a leaf as the weight
for aggregating their representations. This combined
consideration of paths and semantics enables the dif-
ferentiation of individual leaves.
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Figure 3. The hierarchy for visit-level features.

Finally, the representation for diagnosis codes is derived
using the hierarchical architecture described above.

RDv = fD(gp(Dv, TO), gs(Dv, TO)) (2)

where Dv is the set of diagnosis codes for visit v, and TO
denotes the medical ontology tree. The functions gp and
gs respectively model the hierarchical path and semantics.
The function fD is responsible for transforming these rep-
resentations into diagnosis-level representations. Further
details regarding the implementations of these functions are
provided in Appendix G.

In addition to the hierarchical ontology structure for diag-
nosis codes, a further code-level hierarchy is discernible
within the patients’ visits. During a hospital visit, diagnosis
codes represent diseases, medications are prescribed to treat
these diseases, and laboratory tests assist in confirming the
diagnoses. Correspondingly, akin to the approach adopted
in MiME (Choi et al., 2018), we establish a code-level hier-
archy for visit-level representation, as illustrated in Figure 3.
The visit-level representation is computed via:

Rv = fV(RDv
, fML(RMv

,RLv
)) (3)

where RDv
is the representation of diagnosis codes calcu-

lated by Equation 2. RMv and RLv denote the representa-
tions of medication codes, and laboratory test codes for visit
v, where RMv

= fM(Mv), RLv
= fL(Lv). The function

fV is employed to generate the visit-level representation
Rv .

To derive patient-level representations, we take the current
visit as the anchor visit and adopt an adapted reverse time
attention mechanism.

αNv , · · · , α1 = softmax(GRU(RvNv , · · · ,Rv1)) (4)

βj = sim(Rvj ,RvNv ), for j = 1, 2, · · · , Nv (5)

Rp =
∑Nv

i=1 αvβv ⊙Rvi (6)

where the attention α for each visit is calculated in reverse
order. We introduce a cosine similarity score β to explicitly

4



NeuralCohort: Cohort-aware Neural Representation Learning for Healthcare Analytics

model the similarity between past visits and the most recent
visit. The combination of α and β enhances the model’s
ability to capture and utilize temporal relationships within
the visit sequence.

PseudoSim Training. The central consideration for cohort
construction is patient similarity. Traditionally, patient simi-
larity is labeled manually by experts, which is a resource-
intensive process demanding substantial human efforts. To
address this challenge, we propose a pseudo patient similar-
ity prediction task, leveraging pseudo labels generated from
patients’ diagnosis codes to facilitate the learning of infor-
mative patient representations , grounded on the fact that
diagnosis codes play a pivotal role as the primary criteria in
medical treatment.

Given the temporal context and diagnosis code frequency,
we utilize a weighted Jaccard Similarity function enhanced
with a time decay factor to determine patient similarity:

S(pi, pj) =

∑
d∈Dpi

∩Dpj

e−(∆ti+∆tj)CFmin(d,Dpi
,Dpj

)∑
d∈Dpi

∪Dpj

CFmax(d,Dpi
,Dpj

) (7)

where Dpi and Dpj are the sets of diagnosis codes across
all visits for patient pi and pj , respectively. ∆ti and ∆tj
represent the time intervals between the last occurrence of
the diagnosis code d and the most recent visit for patients
pi and pj , respectively. CFmin (CFmax) computes the min-
imum (maximum) frequency of the diagnosis code d in Dpi

and Dpj .

Finally, we optimize the representation learning by learn-
ing patient relationships through maximization of Mutual
Information Neural Estimation (Belghazi et al., 2018). For
each patient p, we select the top Kp patients with the high-
est similarity scores as positive samples S+

p , and randomly
choose Kp patients from the remaining pool as negative
samples S−

p . During the training process, we utilize the
learned patient-level representations Rp, positive samples
S+
p and negative samples S−

p for PseudoSim Training.

Lpcs=−Ei∈S+
p
fϕ(Rp,Ri)+logEi∈S+

p
exp(fϕ(Rp,Ri))

+Ej∈S−
p
fϕ(Rp,Rj)−logEj∈S−

p
exp(fϕ(Rp,Rj)) (8)

where the first line represents the mutual information of
positive samples composed of expectation of similarity and
log-normalization, and the second line serves as a penalty
for the negative samples. fϕ is the similarity prediction
network.

The strategy above not only yields valuable information
on patient similarity but also facilitates the construction of
cohorts C from the patient-level representations Rp, which
is subsequently harnessed in downstream tasks.

Cohort Derivation. The patient-level representations could
potentially be utilized with various methods for cohort

derivation; however, it is beyond the primary scope of this
paper. Here, Jensen-Shannon divergence (Lin, 1991) and
student’s t-distribution (Student, 1908) are employed. Please
refer to Appendix G for detailed implementation.

LJS =
∑

p

∑
c tpc log

2tpc
tpc+qpc

+ qpc log
2qpc

qpc+tpc
(9)

where qpc =
(1+∥Rp−µc∥2)

−1∑|C|
i (1+∥Rp−µi∥2)−1

, tpc =
q2pc/

∑
i qic∑|C|

j (q2pj/
∑

i qij)
.

qpc is the soft cohort assignment of patient p, tpc is the
self-training target cohort distribution, |C| is the number
of cohorts and µc is the centroid of cohort c. Finally, the
cohort c for patient p is argmax

c
qpc.

3.3. Biscale Cohort Learning Module

Cohorts play a crucial role in EHR analysis. The Biscale
Cohort Learning Module is employed to encode cohort in-
formation into the representations derived from backbones
and harness local and global cohort information to its fullest
extent for diverse healthcare analytic tasks.

Individual Representation Initialization. We first derive
individual representations from EHR data using established
backbones as the initial representations. For a given pa-
tient p, the initial representation Rp

0 is generated by the
backbones, which will serve as fundamental inputs for Neu-
ralCohort, facilitating its subsequent operations.

Local Intra-cohort Modeling. To effectively capture inter-
actions among patients within a cohort, Local Intra-cohort
Modeling depicts the cohort as a graph in which each patient
is represented as a node. In this graph, each pair of patients
in the same cohort is connected. The weight between two
nodes is calculated based on the similarity between patient
representations Rp computed in the Pre-context Cohort Syn-
thesis Module.

A(i, j) =
RT

i Rj

||Ri||||Rj || (10)

Hk+1 = σ(ÂHkWk + bk) (11)

where A is the adjacency matrix of the graph. Hk is the
node representations at layer k, H0 = R0. Wk and bk are
the trainable weights and bias. Â = D̂− 1

2 (A + I)D̂− 1
2

is the normalized adjacency matrix and D̂ is the degree
matrix. The output of the final layer is the local intra-cohort
representation RL.

Global Inter-cohort Modeling. The global inter-cohort
modeling aims to elucidate the contrasting knowledge across
dissimilar cohorts. The inter-cohort representations should
maintain distinct separation while preserving the semantic
integrity of each cluster. In light of this, we employ an
encoder-decoder architecture and cohort loss function to
reconstruct the representations for cohorts.

Rc
G = fdec(fenc(

1
|c|

∑
p∈c

Rp
0)) (12)
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Patients within the same cohort generally exhibit similar
behaviors, in contrast to those from different cohorts, who
may manifest distinct patterns. To supervise the represen-
tations of both intra- and inter-cohort graphs, we introduce
a cohort loss function composed of reconstruction loss and
contrastive loss:

Lco=
∑
c∈C

||Rc
G− 1

|c|
∑
p∈c

Rp
0||2F −

∑
c∈C

∑
i,j∈c

sim(Ri
L,Rj

L)∑
c,c′∈C

sim(Rc
G,Rc′

G )
(13)

where sim is the cosine similarity function. The first term
is the reconstruction loss and the other term is the cohort
contrastive loss.

Cohort Fusion. To consolidate the information from the
representations generated by the backbones, the intra-cohort
graph, and the inter-cohort graph, we devise a cross-domain
attention mechanism to obtain the augmented EHR data
representation for subsequent healthcare analytic tasks:

αL =
Rp

0 ·R
p
L√

dim(Rp
0)
, αG =

Rp
0 ·R

c
G√

dim(Rp
0)

(14)

Rp
final = fattn(R

p
0, αL ·Rp

L, αG ·Rc
G) (15)

where Rp
L and RCp

G pertain to the representations extracted
from the intra- and inter-cohort graphs, respectively. The
final loss function for NeuralCohort is as follows:

L = λpcsLpcs + λJSLJS + λcoLco + Lds (16)

where λpcs, λJS and λco denote the weights assigned to the
loss of the PseudoSim Training Lpcs, cohort derivation LJS

and the Cohort Loss Lco. Lds signifies the loss associated
with the downstream task.

4. Experiments
4.1. Experimental Setup

We conduct extensive experiments across three widely-
recognized real-world EHR datasets: MIMIC-III (John-
son et al., 2016), MIMIC-IV (Johnson et al., 2020) and
Diabetes130 (Clore John & Beata, 2014), addressing
two pivotal medical tasks, cross-visit Hospital Readmis-
sion Prediction (Huang et al., 2019) and within-visit Long
Length-of-Stay (LOS) Prediction (Alsinglawi et al., 2022).
Through these experiments, we aim to assess the generaliz-
ability and efficacy of NeuralCohort in predicting critical
healthcare outcomes, thereby demonstrating its applicability
across diverse patient populations and clinical scenarios.

To assess the versatility of NeuralCohort as a plug-in for
enhancing the representations derived from various back-
bones, we compare the performance of baselines with their
enhanced counterparts using cohort information provided
by NeuralCohort. We employ well-established backbone
models, namely Med2Vec (Choi et al., 2016), MiME (Choi

Table 1. Overall performance of NeuralCohort against baselines
for readmission prediction on the MIMIC-III dataset.

Model Readmission Task on MIMIC-III
AUPRC AUROC Accuracy

ClinicalBERT 0.630±0.005 0.651±0.006 58.7%±0.5%
+ KNN 0.628±0.002 0.651±0.002 58.6%±0.2%
+ K-Means 0.629±0.001 0.650±0.001 58.4%±0.3%
+ DEC 0.632±0.005 0.654±0.002 58.4%±0.1%
+ DEKM 0.638±0.003 0.659±0.005 58.9%±0.2%
+ GRASP 0.618±0.002 0.617±0.001 56.2%±0.1%
+ DGLoS 0.635±0.003 0.533±0.002 58.0%±0.4%
+ IDC 0.638±0.003 0.657±0.004 59.0%±0.3%
+ NeuralCohort 0.662±0.003 0.681±0.005 61.2%±0.4%

Med2Vec 0.554±0.005 0.614±0.004 54.1%±0.7%
+ KNN 0.541±0.004 0.598±0.003 54.9%±0.5%
+ K-Means 0.544±0.005 0.600±0.004 54.5%±0.4%
+ DEC 0.550±0.003 0.611±0.002 54.3%±0.5%
+ DEKM 0.547±0.004 0.608±0.006 54.6%±0.4%
+ GRASP 0.542±0.003 0.601±0.006 53.8%±0.3%
+ DGLoS 0.559±0.004 0.542±0.002 54.5%±0.5%
+ IDC 0.562±0.004 0.622±0.003 54.5%±0.4%
+ NeuralCohort 0.574±0.003 0.634±0.005 56.9%±0.2%

MiME 0.543±0.006 0.602±0.005 56.8%±0.5%
+ KNN 0.543±0.004 0.610±0.003 56.5%±0.5%
+ K-Means 0.546±0.004 0.605±0.006 56.5%±0.7%
+ DEC 0.549±0.007 0.608±0.004 57.3%±0.9%
+ DEKM 0.548±0.002 0.611±0.003 57.1%±0.5%
+ GRASP 0.530±0.009 0.589±0.010 57.2%±0.9%
+ DGLoS 0.551±0.006 0.543±0.004 57.6%±0.7%
+ IDC 0.542±0.006 0.605±0.003 57.2%±0.4%
+ NeuralCohort 0.568±0.004 0.629±0.003 58.6%±0.3%

et al., 2018), and ClinicalBERT (Huang et al., 2019) to de-
rive initial representation R0. Subsequently, we employ
KNN, K-Means, DEC (Xie et al., 2016), DEKM (Guo et al.,
2021), GRASP (Zhang et al., 2021), DGLoS (Zang et al.,
2023) and IDC (Svirsky & Lindenbaum, 2024) as baselines
for comparison with our proposed NeuralCohort, which are
directly applied to the representations of the backbones to
integrate the cohort information into R0 for enhanced pre-
dictive accuracy. The efficacy of the models on a given
task primarily hinges on the backbones. The objective of
NeuralCohort is to infuse patient similarity information into
these backbones. Therefore, our analysis focuses on assess-
ing the performance enhancements achieved by integrating
NeuralCohort and other baselines into the backbones.

In our experimental setup, we repeat each model across
the datasets five times and compute the average result. We
measure the performance of the models using three metrics:
Area Under the Precision-Recall Curve (AUPRC), Area Un-
der the Receiver Operating Characteristic (AUROC), and
accuracy. Additionally, we conduct an ablation study of
NeuralCohort and a sensitivity study on its key hyperparam-
eters including Kp and the number of cohorts |C|.

Detailed descriptions of the datasets, tasks, backbones, base-
lines, and experimental settings are provided in Appendix
from D to G.
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Table 2. Overall performance of NeuralCohort against baselines
for long LOS prediction on the MIMIC-III dataset.

Model Long LOS Task on MIMIC-III
AUPRC AUROC Accuracy

ClinicalBERT 0.658±0.002 0.590±0.002 59.7%±0.3%
+ KNN 0.659±0.002 0.594±0.001 59.9%±0.4%
+ K-Means 0.655±0.001 0.590±0.002 59.8%±0.3%
+ DEC 0.652±0.008 0.603±0.009 60.2%±0.3%
+ DEKM 0.661±0.003 0.592±0.002 60.1%±0.3%
+ GRASP 0.665±0.002 0.584±0.003 60.0%±0.4%
+ DGLoS 0.685±0.005 0.548±0.004 61.5%±0.9%
+ IDC 0.681±0.004 0.612±0.003 60.2%±0.4%
+ NeuralCohort 0.738±0.003 0.671±0.004 63.7%±0.7%

Med2Vec 0.908±0.001 0.894±0.001 64.4%±0.3%
+ KNN 0.876±0.002 0.876±0.001 75.1%±0.4%
+ K-Means 0.877±0.002 0.875±0.003 74.8%±0.3%
+ DEC 0.886±0.004 0.889±0.006 75.4%±0.7%
+ DEKM 0.903±0.002 0.897±0.004 73.8%±0.4%
+ GRASP 0.903±0.003 0.887±0.002 69.0%±0.5%
+ DGLoS 0.907±0.004 0.837±0.006 75.9%±0.5%
+ IDC 0.906±0.003 0.899±0.003 73.2%±0.4%
+ NeuralCohort 0.919±0.002 0.906±0.004 80.7%±0.3%

MiME 0.913±0.003 0.904±0.003 78.4%±0.5%
+ KNN 0.910±0.002 0.895±0.003 80.2%±0.4%
+ K-Means 0.904±0.003 0.891±0.002 79.0%±0.3%
+ DEC 0.912±0.005 0.907±0.008 79.6%±0.4%
+ DEKM 0.911±0.005 0.908±0.007 79.6%±0.4%
+ GRASP 0.898±0.004 0.896±0.003 81.1%±0.4%
+ DGLoS 0.917±0.002 0.854±0.008 80.7%±0.3%
+ IDC 0.919±0.005 0.910±0.004 80.3%±0.2%
+ NeuralCohort 0.936±0.004 0.923±0.002 82.8%±0.2%

We provide additional experimental evaluations, including a
sensitivity study in Appendix H and an efficiency study in
Appendix J.

4.2. Overall Results

We present the overall results of NeuralCohort and baselines
for the two prediction tasks on MIMIC-III dataset in Ta-
bles 1 and 2, respectively. The conclusions drawn from dif-
ferent datasets are consistent, confirming the robustness of
our findings. Results for MIMIC-IV and Diabetes130
datasets are provided in Appendix I.

As demonstrated by the results, NeuralCohort consistently
attains the best performance, outperforming the baselines
by a significant margin with improvements up to 8.0% in
AUPRC, 8.1% in AUROC, and 16.3% in accuracy. This
considerable performance advantage underscores the ef-
ficacy of NeuralCohort over diverse backbones. Further,
NeuralCohort enhances the performance of each backbone
on both tasks on all evaluated metrics, which substantiates
its capability to derive fine-grained cohorts and effectively
infuse cohort information into the representations, leading
to improved predictive accuracy.

We observe the baselines fail to yield consistent performance
improvements primarily due to their inadequate modeling
of cohort information at a fine-grained level for accurate

Table 3. The ablation study results of NeuralCohort on long
LOS prediction utilizing the ClinicalBERT backbone on the
MIMIC-III dataset. MP , Mintra, and Minter represent Pre-
context Cohort Synthesis Module, Local Intra-cohort Modeling,
and Global Inter-cohort Modeling of Biscale Cohort Learning
Module.

Model Modules MIMIC-III

MP Mintra Minter AUPRC AUROC Accuracy

-MP   0.682 0.613 60.4%
-Mintra   0.675 0.603 59.2%
-Minter   0.714 0.649 61.8%

NeuralCohort    0.738 0.671 63.7%

analysis. Specifically, KNN and K-Means, when applied
directly to backbones, do not operate within a similarity-
aware feature space. Additionally, DGLoS constructs a
coarse-grained global graph, and GRASP focuses exclu-
sively on inter-cohort modeling. DEC, DEKM and IDC
cannot model the medical semantics. As a result, instead of
accurately modeling patient similarity, these baselines may
introduce noise regarding patient similarity into the back-
bones, consequently degrading the overall performance.

Among the backbones, ClinicalBERT demonstrates superior
performance compared to Med2Vec and MiME in the hospi-
tal readmission task, whereas the opposite trend is observed
in the long LOS task. This divergence can be attributed to
the distinct characteristics of the tasks and the underlying
model architectures. Med2Vec and MiME are adept at mod-
eling relationships among a large number of medical codes,
which provide comprehensive information about a patient’s
current visit, thus making them more suitable for within-
visit long LOS prediction. Conversely, clinical notes contain
extensive records of patients’ past medical histories. Clin-
icalBERT, which excels at learning representations from
such data, is better equipped to capture the relationships
across multiple visits and enhance its efficacy for cross-visit
readmission prediction.

4.3. Ablation Study

We conduct an ablation study on the long LOS prediction
task with the ClinicalBERT backbone on the MIMIC-III
dataset, in order to evaluate the impact of each module
and component of NeuralCohort. The experimental results
are presented in Table 3. Comparing NeuralCohort against
NeuralCohort (-MP ) (Row 1 vs. 4), the Pre-context Co-
hort Synthesis Module demonstrates notable contributions,
i.e., 5.6%, 5.8%, and 3.3% improvements in AUPRC, AU-
ROC, and accuracy. This underscores the efficacy of the
Pre-context Cohort Synthesis Module in capturing nuanced
patient similarity, thus emphasizing the importance of ac-
counting for fine-grained cohorts for EHR Representation
Learning. The results in Rows 2 and 3 of Table 3 elucidate

7



NeuralCohort: Cohort-aware Neural Representation Learning for Healthcare Analytics

Table 4. Comparison between traditional cohorts and NeuralCo-
hort on the backbone ClinicalBERT and Med2Vec for readmission
prediction on the MIMIC-III dataset.

Model MIMIC-III

AUPRC AUROC Accuracy

ClinicalBERT 0.630 0.651 58.7%
+ MCG 0.629 0.651 58.5%
+ MCA 0.631 0.651 58.3%
+ MCD 0.629 0.652 58.7%
+ MCH 0.621 0.643 58.1%
+ NeuralCohort 0.662 0.681 61.2%

Med2Vec 0.554 0.614 54.1%
+ MCG 0.546 0.611 54.3%
+ MCA 0.548 0.612 53.4%
+ MCD 0.557 0.619 54.5%
+ MCH 0.551 0.616 53.7%
+ NeuralCohort 0.574 0.634 56.9%

the respective contributions of Local Intra-cohort Modeling
and Global Inter-cohort Modeling. In comparison, the re-
moval of the Local Intra-cohort Modeling results in a more
pronounced decline in performance compared to the re-
moval of Global Inter-cohort Modeling. This highlights the
necessity of unveiling implicit information within similar
patients. In a nutshell, these results affirm the indispens-
able roles played by distinct modules and components in
NeuralCohort in ensuring accurate EHR analysis.

4.4. Traditional Cohorts vs. NeuralCohort

To evaluate NeuralCohort against traditional medical co-
hort construction approaches in effectiveness, we employ a
widely recognized cohort division approach using two dis-
tinct criteria: gender (G), age (A) and two disease-specific
criteria: diabetes diagnosis (D) and hypertension diagno-
sis (H). The results are displayed in Table 4. As shown,
traditional medical cohorts tend to perform comparably to,
and occasionally less accurately than the backbones. This
primarily arises from the reliance of traditional medical
cohort construction on a limited set of features, resulting
in coarse-grained cohorts that are not effective enough for
cohort pattern mining. Consequently, such traditional ap-
proaches will inevitably group highly dissimilar patients
into the same cohort, introducing noise to the model that
adversely affects the overall performance. In stark contrast,
NeuralCohort leverages a patient’s sequential visit-level rep-
resentations from both intra- and inter-cohort perspectives
at a fine-grained level, thereby boosting the prediction accu-
racy.

4.5. Interpretability Analysis
Quantitive Analysis of Cohorts. It is non-trivial to define
patient similarity for comparison in healthcare analytics,

Table 5. Comparison of C-H scores between NeuralCohort and
baselines with the backbones ClinicalBERT and Med2Vec on long
LOS prediction.

Model SC−H Model SC−H

ClinicalBERT 57.6 Med2Vec 18.4
+ KNN 56.8 + KNN 18.5
+ K-Means 59.7 + K-Means 20.1
+ DEC 62.6 + DEC 20.9
+ DEKM 60.2 + DEKM 19.6
+ GRASP 65.5 + GRASP 21.4
+ DGLoS 61.7 + DGLoS 21.5
+ IDC 69.4 + IDC 23.2
+ NeuralCohort 80.3 + NeuralCohort 25.7

(b) GRASP

(d) NeuralCohort

(a) Med2Vec

(c) IDC

Figure 4. t-SNE visualization of the final representations before
prediction for selected eight-cohort points, where backbone is
Med2Vec.

which further results in the absence of ground truth for
evaluating the performance of clustering-based methods
on patient similarity. To address this, we use the Calinski-
Harabasz score (C-H score) (Caliński & Harabasz, 1974) to
quantitatively assess the performance of NeuralCohort and
other baselines. The C-H score SC−H is calculated as:

SC−H = tr(B)∗(m−|C|)
tr(W )∗(|C|−1) (17)

where m is the sample size, |C| is the number of clusters, B
is the cross-cluster variance, W is the within-cluster vari-
ance, and tr is the trace of matrix.

The comparison of C-H scores between NeuralCohort and
baselines with ClinicalBERT and Med2Vec for the long
LOS prediction task is detailed in Table 5. We note that
KNN, DGLoS, along with the bare backbones do not involve
the concept of “clusters” and as a result, we employ K-
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Means to their representations prior to prediction layer to
evaluate C-H scores. The results clearly demonstrate that
integrating a backbone with NeuralCohort yields higher C-
H scores, which indicates that the cohorts generated through
NeuralCohort are more interpretable and effective.

Visualization. The visualization of selected eight cohorts
(clusters) points using t-SNE (Van der Maaten & Hinton,
2008), based on the final representation Rp

final of Med2Vec
for the long LOS prediction task, is illustrated in Figure 4.
Extended visualization of all baselines are shown in Ap-
pendix K. Notably, significant overlaps among the points
from Figure 4 (a) to (c) suggest that the backbone and base-
lines lack robust discriminative capabilities when utilizing
Rp

final. However, the integration of NeuralCohort substan-
tially reduces this overlap, enhancing the distinctness of the
cohorts. This demonstrates that NeuralCohort is capable
of encoding the data into a representation similarity space
and the fine-grained cohort information integrated by Neu-
ralCohort effectively facilitates downstream EHR analysis
tasks.

4.6. Clinical Significance

NeuralCohort identifies cohort-specific features that are
directly linked to clinical outcomes, thereby enhancing
decision-making for patient management. For example,
the distinctive features of the four cohorts visualized in
Figure 4 are provided in Table 6, where the features are
identified through t-test. The detailed descriptions of the
used abbreviations are listed in Table 7. Specifically, Co-
hort #1 includes patients with cardiovascular conditions
and is at high risk for acute cardiac events and extended
hospital stays (Tigabe Tekle et al., 2022). Early identifica-
tion enables the prioritization of telemetry beds, cardiology
consults, and monitoring. Clinically, this enables timely
diuretics, echocardiography, and discharge planning with
heart failure follow-up. Cohort #2 features patients with
chronic metabolic and hematologic conditions that often co-
occur and need interdisciplinary care. Identifying this cohort
allows hospitals to mobilize diabetes educators, lipid clinics,
and anticoagulation monitoring services. Clinically, it en-
ables insulin titration, lipid therapy, and bleeding risk man-
agement to reduce complications and improve outcomes.
Cohort #3 is characterized by renal and urological issues re-
quiring frequent labs, fluid monitoring, and nephrology sup-
port. Early identification allows hospitals to allocate renal
panels, schedule imaging for uropathy, and prepare dialysis
resources—helping manage AKI risk and avoid care escala-
tion. Cohort #4 presents complex chronic and acute condi-
tions, requiring coordination across pulmonology, nephrol-
ogy, endocrinology, and infectious disease. Identifying this
cohort supports planning for respiratory support, hormone
therapy, infection control, and opioid withdrawal. Opera-
tionally, it enables resource allocation for respiratory teams,

Table 6. Distinctive feature of four cohorts

Cohort Distinctive features

#1 HF, Arrhythmia, CHD, Angina
#2 Diabetes, DLM, CD, Obesity
#3 OUA, PSL, UF, F&E Disorders
#4 OPI, CKD, Thyroiditis, Flu

Table 7. Detailed Descriptions of the Abbreviations

Abbreviation Detailed Description

HF Heart Failure
CHD Chronic Heart Disease
DLM Disorders of Lipoid Metabolism
CD Coagulation Defects

OUA Other and Unspecified Anemias
PSL Pneumonitis due to Solids and Liquids
UF Urethral Fistula

F & E Disorders Fluid and Electrolyte Disorders
OPI Other Pulmonary Insufficiency
CKD Chronic Kidney Disease

isolation rooms, and endocrine/renal labs. Such insights
allow clinicians to optimize resource allocation and tailor in-
terventions, thus significantly improving hospital efficiency
and patient care.

5. Conclusions
In EHR representation learning, existing studies primar-
ily focus on deriving informative representations to facili-
tate downstream task predictions. However, two essential
desiderata, fine-grained cohort division and effective ex-
ploitation of both intra- and inter-cohort information, remain
unresolved. To address the problem, we propose NeuralCo-
hort, a cohort-aware neural representation learning method
for EHR representation learning. The core thrust of Neural-
Cohort centers around two pivotal modules: the Pre-context
Cohort Synthesis Module, responsible for cohort deriva-
tion, and the Biscale Cohort Learning Module, dedicated to
capturing and encoding local intra-cohort and global inter-
cohort insights. Extensive experimental results confirm the
superiority of NeuralCohort over baselines across various
backbones, achieving improvements of up to 8.1% in AU-
ROC. More importantly, NeuralCohort contributes valuable
medical insights to EHR analysis.
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A. Notations
To ensure clarity and consistency throughout the paper, a
notation table has been provided. This table serves as a
quick reference for readers to easily understand and recall
the meaning of each symbol.

Table 8. Frequently used notations

Notation Meaning

P The set of all the patients
pi i-th patient in the set of patient P
Np Number of patients
Vp Set of visits for patient p
vi i-th visit in Vp

Nv Number of visits for patient p

di
i-th diagnosis code within a visit
similar to mi and li

Nd Number of diagnosis codes for visit v
similar to Nm and N l

Dv
Diagnosis codes of visit v
similar to Mv and Lv

Dpi the sets of diagnosis codes across all visits for patient pi

fV
network to generate the visit-level representation
similar to other functions fM, fL, fD and fML

fϕ the similarity prediction network in PseudoSim Training
fenc the encoder used in Global Inter-cohort Modeling
fdec the decoder used in Global Inter-cohort Modeling

RDv

Representation of diagnosis codes of visit v
similar to RMv and RLv

Rv Representation of visit v
Rp Representation of patient p based on Rv

S(pi, pj) pseudo similarity between patient pi and pj
S+
p Positive patients for patient pi based on their similarity

S−
p Negative patients for patient pi based on their similarity

TO Medical ontology tree
C Generated cohorts
Rp

0 Initial representation of patient p derived from backbone
Rp

L representation of patient p in Local Intra-cohort Modeling
Rc

G representation of cohort c in Global Inter-cohort Modeling
Kp Number of patients for S+

p or S−
p

αL the attention for Local Intra-cohort Modeling
αG the attention for Global Inter-cohort Modeling

B. Extended Related Work
Traditional Cohort Study. Cohorts have been broadly
applied across various practical domains to analyze group-
based patterns and outcomes (Xiao et al., 2024), with the
help of cohort processing techniques (Jiang et al., 2016;
Xie et al., 2018; Cai et al., 2018; Xie et al., 2020). Among
these domains, healthcare stands out as an especially criti-
cal area where cohort analysis plays a central role. Cohort
studies in healthcare are a type of observational research
design that longitudinally tracks individuals sharing spe-
cific characteristics over time (Eldredge, 2002; Setia, 2016).
The primary objective of these studies is to investigate the
emergence of particular health-related outcomes or events.
Cohort studies hold substantial significance in healthcare
research, as they facilitate the examination of relationships
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Figure 5. Complex EHR data structure from three dimensions.
EHR data consists of time-series medical information that varies
across patients.

between potential risk factors or interventions and various
health outcomes (Paneth & Monk, 2018; Song & Chung,
2010; Cai et al., 2024; Zheng et al., 2024). For example,
a substantial and demographically diverse cohort of HIV-
infected treatment-naı̈ve participants is leveraged to explore
correlations between viral load and amino acid entropy,
considering variables such as sex, age, race, duration of
infection, and HIV population structure (Gabrielaite et al.,
2023). However, such traditional cohort studies in health-
care generally employ a coarse-grained approach, leading
to an insufficient exploration of nuanced patient insights.

Deep Clustering. Clustering is a fundamental technique
to group similar data points together based on their intrin-
sic structure. The clusters provide a comprehensive global
characterization of instances, which could be used for in-
terpretable feature learning (Svirsky & Lindenbaum, 2024),
dimensionality reduction (Ros & Riad, 2024), anomaly de-
tection (Zhu et al., 2022; 2023) and community detection (Li
et al., 2017; Wu et al., 2022). With the rapid development
and remarkable success of deep learning, deep clustering
has emerged as a powerful paradigm to enhance clustering
performance through deep neural networks. DEC (Xie et al.,
2016) refines cluster assignments using an autoencoder with
soft assignment. DIVIDE (Lu et al., 2024) employs high-
order random walks to progressively identify reliable data
pairs. Despite these advancements, interpretability remains
a significant challenge in deep clustering. Unlike traditional
clustering approaches such as K-Means and hierarchical
clustering, where cluster assignment rules are explicitly
defined, deep clustering methods typically operate within
high-dimensional latent spaces, making it difficult to inter-
pret how individual samples are grouped. To address this
issue, X-DC (Watanabe & Kameoka, 2021) interprets deep
clustering as fitting learnable spectrogram templates to an in-
put spectrogram followed by Wiener filtering. IDC (Svirsky
& Lindenbaum, 2024) introduce a self-supervised approach
to enable sample-specific feature selection, thereby refining
cluster assignments. Interpretability is of vital importance
in critical domains such as healthcare, finance, and sci-

entific discovery. As deep clustering continues to evolve,
addressing interpretability concerns will be crucial for their
practical adoption in real-world applications.

C. EHR data
The introduction of EHR data structure is illustrated in Fig-
ure 5. EHR data encapsulates patients’ medical histories,
providing a holistic view of their healthcare journey. As a
centralized and structured repository, EHR data integrates
various aspects of patient care, including detailed records of
hospital admissions, outpatient visits, and emergency depart-
ment encounters. EHR data comprises a diverse set of in-
formation, such as clinical diagnoses, prescribed treatments,
medication history, laboratory test results, imaging reports,
and clinical notes. Furthermore, EHR systems facilitate
longitudinal tracking of patient health, enabling clinicians
to monitor disease progression, assess treatment efficacy,
and support clinical decision-making. EHR data serve as
a critical resource for personalized medicine, healthcare
analytics, and large-scale population health studies.

D. Dataset Descriptions and Statistics
MIMIC-III (Johnson et al., 2016) is a publicly available
medical database, readily available to researchers world-
wide. MIMIC-III encompasses 53,423 distinct hospital
admissions, catering to adult patients aged 16 years or above,
who were admitted to critical care units in the Beth Israel
Deaconess Medical Center between 2001 and 2012. Each
admission comprises a varying number of vital signs, diag-
nosis codes, medication codes, and laboratory test codes.
Further, there are 2,083,180 de-identified notes linked to
these admissions.

MIMIC-IV (Johnson et al., 2020) is an openly accessible
medical database comprising patient admission data col-
lected from 2008 to 2022. It includes contemporary data
and is structured with modular data organization, with an
emphasis on data provenance. Its modular design facilitates
the independent use of disparate data sources as well as their
combined utilization.

Diabetes130 Dataset (Clore John & Beata, 2014) consists
of ten years (1999-2008) of clinical care data from 130
U.S. hospitals and integrated delivery networks. The dataset
is provided for the pattern analysis in historical diabetes
care, with the potential to achieve safe and personalized
healthcare for patients.

The detailed statistics for MIMIC-III, MIMIC-IV and
Diabetes130 datasets, including the numbers of patients,
visits, and medical codes are presented in Table 9.
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Table 9. Data statistics of MIMIC-III and MIMIC-IV.

Dataset MIMIC-III MIMIC-IV Diabetes130

# of P 38,597 299,713 71,518
# of V 53,423 431,231 101,766
# of notes ≈ 2,000,000 ≈ 330,000 -
Avg. # of V per patient 1.38 1.44 1.42

# of unique D 6,984 25,809 915
# of unique M 4,686 6,911 24
# of unique L 726 1,623 2
Avg. # of D per visit 12.2 11 2.98
Avg. # of M per visit 78 36 1.95
Avg. # of L per visit 521 274 0.22

E. Downstream Tasks
Hospital Readmission Prediction Task involves predicting
whether a patient will be readmitted to the hospital within a
30-day timeframe per visit (Huang et al., 2019). This cross-
visit prediction task could provide healthcare professionals
with early insights into patients who are at an elevated risk
of being readmitted, allowing for timely interventions and
improved patient outcomes.

Long Length-of-Stay (LOS) Prediction Task pertains to a
classification task that predicts whether the patient will re-
main hospitalized for a duration exceeding seven days (Als-
inglawi et al., 2022). Within-visit long LOS prediction
could aid in optimizing resource allocation, improving pa-
tient flow, and enhancing patient care planning.

F. Backbones and Baselines
Backbones are employed to derive the initial representa-
tions Rp

0. In the experiments, Med2Vec, MiME, and Clini-
calBERT are employed as baselines for performance evalu-
ation.

• Med2Vec (Choi et al., 2016) not only models the co-
occurrence information of medical codes but also cre-
ates a hierarchical structure based on the sequential
order of visits to learn the representations.

• MiME (Choi et al., 2018) constructs a hierarchical
architecture that decomposes the representations into
treatment level, diagnosis level, visit level, and patient
level, in order to render the learned representations
interpretable and effective.

• ClinicalBERT (Huang et al., 2019) adapts the BERT
model for healthcare, focusing solely on medical notes.
To handle long sequences of medical notes, Clinical-
BERT splits them into fixed-length slices, meaning that
the slices within a visit share the same label. The final
predictions are computed by aggregating the predic-
tions from each slice.

Each dataset contains diverse types of clinical data, and we
tailor data usage to each backbone. Med2Vec and MiME
primarily leverage medical codes while ClinicalBERT uti-
lizes clinical notes to model the representations of EHR
data.

Baselines are used to compare with NeuralCohort for fair
evaluation. KNN, K-Means, DEC, DEKM, GRASP, DGLoS
and IDC are adopted as baseline methods in our evaluation.

• KNN selects the nearest KN nodes for each node as its
candidate neighbors where KN is the neighbor size in
the Local Intra-cohort Modeling. After obtaining the
initial representation R0, KNN is directly employed to
identify the KN neighbors, which are then aggregated
using the mean function to update the representations
of the nodes.

• K-Means groups all the nodes into |C| clusters, where
|C| represents the number of cohorts. The nodes within
the same group share identical neighbors. Follow-
ing the acquisition of the initial representation R0, K-
Means is employed to form |C| clusters. Subsequently,
a random selection of KN neighbors is performed for
mean aggregation, leading to the update of the node’s
representation.

• DEC (Xie et al., 2016) is an unsupervised clustering
method that jointly learns feature representations and
cluster assignments using deep neural networks. DEC
consists of two primary phases: pretraining and clus-
tering. In the pretraining phase, DEC uses a deep au-
toencoder to initialize a low-dimensional latent space
and during the clustering phase, DEC refines both the
latent space and cluster assignments iteratively.

• DEKM (Guo et al., 2021) is a deep clustering method
that trains an autoencoder to generate an embedding
space, transforms the embedding space to a new
space that reveals the cluster-structure information and
optimizes the representation to increase the cluster-
structure information in the new space.

• GRASP (Zhang et al., 2021) is designed to harness
the information from similar patients through the rep-
resentations of backbones via the Gumbel-Max tech-
nique and employs GCN with an inter-cohort graph to
enhance representation learning. However, GRASP
merely considers the relationship between cohorts,
which limits its performance. In our evaluation, we
implement GRASP using its open-source codes with
the original settings adopted.

• DGLoS (Zang et al., 2023) implements a module
grounded in graph representation learning to produce
similarity-aware representations of patients, thereby
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(a) Readmission Task (b) Long LOS Task

Figure 6. Effects of hyperparameters Kp for both tasks on the MIMIC-III dataset.

(a) Readmission Task (b) Long LOS Task

Figure 7. Effects of the cohort numbers for both tasks on MIMIC-III dataset.

enhancing predictive accuracy. In DGLoS, patients
are represented as nodes in the graph, with patient
similarity as the weights of the edges. We adopt the
deep modeling module, graph modeling module and
prediction module with the backbone to achieve fair
comparison.

• IDC (Svirsky & Lindenbaum, 2024) is a deep cluster-
ing model that accurately assigns clusters on tabular
data. IDC employs a self-supervised approach to train
an autoencoder and a gating network, enabling sample-
specific feature selection by learning sparse, local fea-
ture representations that reconstruct data efficiently and
then IDC refines cluster assignments using a clustering
head optimized through a coding rate reduction loss to
achieve compact and well-separated clusters.

G. Experimental Settings
All the experiments are conducted on a server with Intel(R)
Xeon(R) W-2133 CPU @ 3.60GHz, 64G memory, and 3
NVIDIA GeForce RTX 2080 Ti.

All datasets are pre-processed with similar logic to the ex-
perimental settings (Huang et al., 2019). We randomly split
each dataset into training, validation, and test sets with a ra-
tio of 8: 1: 1. For each model, we train 20 epochs (the mod-
els all converge within 20 epochs). The Pre-context Cohort
Synthesis Module and Biscale Cohort Learning Module are
trained in serial. In the Pre-context Cohort Synthesis Mod-
ule, we employ icdcodex (Fisher, 2020) and GloVe (Pen-
nington et al., 2014) as gp and gs in the Path and Semantics
components of Hierarchical Visit Engine to distinguish sim-
ilar paths in the ontology tree and capture the semantics,
respectively. fD, fM, fL, fML, fV , fattn and fϕ are all
standard MLP layers. For cohort derivation, K-Means is
adopted to derive the initial centroid of each cohort. The
dimensions of embedding for diagnosis, medication and
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Table 10. Overall performance of NeuralCohort against baselines
for readmission prediction on the MIMIC-IV dataset.

Model Readmission Task on MIMIC-IV
AUPRC AUROC Accuracy

ClinicalBERT 0.612±0.006 0.629±0.004 56.2%±0.4%
+ KNN 0.614±0.004 0.630±0.003 56.4%±0.2%
+ K-Means 0.614±0.004 0.629±0.003 56.4%±0.2%
+ DEC 0.619±0.006 0.635±0.002 56.5%±0.2%
+ DEKM 0.617±0.004 0.631±0.001 55.9%±0.2%
+ GRASP 0.626±0.005 0.641±0.004 56.9%±0.3%
+ DGLoS 0.623±0.002 0.619±0.004 57.1%±0.3%
+ IDC 0.627±0.007 0.643±0.003 57.5%±0.2%
+ NeuralCohort 0.643±0.006 0.657±0.003 59.0%±0.4%

Med2Vec 0.561±0.007 0.617±0.004 55.4%±0.3%
+ KNN 0.560±0.004 0.618±0.004 55.3%±0.3%
+ K-Means 0.564±0.004 0.619±0.003 55.2%±0.2%
+ DEC 0.557±0.005 0.612±0.001 55.0%±0.3%
+ DEKM 0.562±0.007 0.618±0.005 55.7%±0.6%
+ GRASP 0.558±0.006 0.624±0.002 55.6%±0.2%
+ DGLoS 0.563±0.005 0.573±0.006 56.0%±0.5%
+ IDC 0.566±0.004 0.621±0.004 56.4%±0.5%
+ NeuralCohort 0.579±0.004 0.639±0.005 57.6%±0.2%

MiME 0.572±0.005 0.624±0.004 55.6%±0.2%
+ KNN 0.571±0.003 0.619±0.004 55.4%±0.3%
+ K-Means 0.571±0.002 0.621±0.003 55.5%±0.2%
+ DEC 0.574±0.003 0.623±0.002 55.4%±0.4%
+ DEKM 0.570±0.002 0.619±0.004 55.2%±0.5%
+ GRASP 0.565±0.004 0.617±0.004 55.2%±0.3%
+ DGLoS 0.582±0.006 0.579±0.003 55.9%±0.2%
+ IDC 0.577±0.006 0.624±0.005 56.2%±0.3%
+ NeuralCohort 0.604±0.005 0.641±0.006 57.9%±0.5%

laboratory test, visit and patient is 128, 64, 64, 128 and 128.
The dimensions of R0, RL, RG, and Rfinal are the same
dimension as the setting of the backbone. λpcs, λJS and
λco are set to 0.1 in our experiments. We use the Adam
optimizer with an initial learning rate of lr = 1e−3. Hyper-
parameters Kp = 5, |C| = 1100 remain consistent across
all datasets and downstream tasks.

H. Sensitivity Study
We conduct a sensitivity study to examine the impact of
the key hyperparameters |C| and Kp on the performance of
NeuralCohort for both tasks using the MIMIC-III dataset,
with all the backbones.

Effects of Hyperparameter Kp. In our investigation of the
crucial hyperparameters’ influence on NeuralCohort’s per-
formance, we first focus on the number of positive samples
or negative samples Kp in the Pre-context Cohort Synthesis
Module. The AUPRC results, obtained by varying these
hyperparameters using three datasets for both tasks, are il-
lustrated in Figure 6. From this figure, we observe that the
performance of NeuralCohort fluctuates at the beginning and
subsequently decreases with the increase of Kp. When Kp

Table 11. Overall performance of NeuralCohort against baselines
for long LOS prediction on the MIMIC-IV dataset.

Model Long LOS Task on MIMIC-IV
AUPRC AUROC Accuracy

ClinicalBERT 0.650±0.004 0.578±0.003 58.1%±0.3%
+ KNN 0.654±0.003 0.581±0.005 58.1%±0.4%
+ K-Means 0.651±0.005 0.580±0.004 58.0%±0.4%
+ DEC 0.647±0.004 0.582±0.003 58.3%±0.2%
+ DEKM 0.662±0.003 0.589±0.004 59.2%±0.4%
+ GRASP 0.659±0.004 0.590±0.003 58.8%±0.5%
+ DGLoS 0.671±0.008 0.558±0.006 58.5%±0.4%
+ IDC 0.669±0.005 0.596±0.004 59.2%±0.2%
+ NeuralCohort 0.724±0.003 0.635±0.002 61.8%±0.6%

Med2Vec 0.834±0.005 0.815±0.007 62.5%±0.6%
+ KNN 0.839±0.009 0.820±0.004 65.6%±0.3%
+ K-Means 0.831±0.004 0.814±0.004 61.5%±0.5%
+ DEC 0.827±0.003 0.810±0.002 62.7%±0.7%
+ DEKM 0.841±0.002 0.822±0.006 64.5%±0.4%
+ GRASP 0.839±0.003 0.824±0.005 63.0%±0.3%
+ DGLoS 0.837±0.003 0.784±0.003 64.2%±0.2%
+ IDC 0.842±0.006 0.823±0.008 65.8%±0.2%
+ NeuralCohort 0.855±0.003 0.833±0.004 68.1%±0.3%

MiME 0.867±0.005 0.849±0.007 76.9%±0.4%
+ KNN 0.867±0.002 0.848±0.004 76.9%±0.2%
+ K-Means 0.869±0.004 0.850±0.003 76.8%±0.3%
+ DEC 0.867±0.002 0.856±0.004 77.2%±0.4%
+ DEKM 0.874±0.002 0.842±0.006 76.4%±0.4%
+ GRASP 0.873±0.003 0.859±0.004 77.5%±0.5%
+ DGLoS 0.872±0.004 0.837±0.002 78.2%±0.4%
+ IDC 0.873±0.002 0.853±0.004 77.3%±0.5%
+ NeuralCohort 0.889±0.003 0.868±0.004 80.9%±0.2%

is excessively large, dissimilar patient pairs may be incor-
rectly identified as similar. Conversely, when Kp is small,
NeuralCohort fails to effectively learn representations due
to insufficient maximization of Mutual Information Neural
Estimation. Finally, these figures suggest that the optimal
choice of Kp is approximately 5, either increasing or de-
creasing these values will result in degraded performance.

Effects of Cohort Number |C|. We evaluate the impact
of cohort numbers on both tasks using the MIMIC-III
dataset. The corresponding experimental results are de-
picted in Figure 7. It is clearly shown that the performance
of all evaluated models first increases and then decreases
as the number of cohorts increases. The reason for such
phenomena is related to the target of NeuralCohort, i.e., ex-
tracting cohort information for integration with backbones
to achieve boosted performance. If the number of cohorts
is smaller, it is harder for the Global Inter-cohort Model-
ing to capture the difference between the coarse-grained
cohorts and if the size of cohorts tends to be larger, it is
more likely to aggregate dissimilar patients, which leads
to noisy information when utilizing the Local Intra-cohort
Modeling. Conversely, with the number of cohorts increas-
ing, fewer patients will be assigned to a cohort, which may
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Table 12. Overall performance of NeuralCohort against baselines
for readmission prediction on the Diabetes130 dataset.

Model Readmission Task on Diabetes130
AUPRC AUROC Accuracy

Med2Vec 0.623±0.004 0.628±0.003 59.4%±0.2%
+ KNN 0.625±0.003 0.625±0.004 59.2%±0.3%
+ K-Means 0.622±0.004 0.623±0.003 59.0%±0.2%
+ DEC 0.627±0.002 0.625±0.004 59.3%±0.4%
+ DEKM 0.624±0.004 0.631±0.003 59.7%±0.5%
+ DGLoS 0.629±0.005 0.614±0.007 59.9%±0.5%
+ GRASP 0.628±0.003 0.632±0.003 59.9%±0.4%
+ IDC 0.627±0.006 0.634±0.003 60.1%±0.3%
+ NeuralCohort 0.641±0.003 0.644±0.004 61.5%±0.3%

MiME 0.657±0.002 0.662±0.004 62.7%±0.3%
+ KNN 0.649±0.003 0.657±0.004 62.1%±0.4%
+ K-Means 0.658±0.004 0.664±0.006 63.0%±0.2%
+ DEC 0.662±0.005 0.669±0.002 63.4%±0.4%
+ DEKM 0.658±0.002 0.665±0.003 62.7%±0.2%
+ GRASP 0.656±0.005 0.653±0.002 62.3%±0.5%
+ DGLoS 0.662±0.006 0.649±0.007 63.3%±0.2%
+ IDC 0.664±0.006 0.675±0.003 63.7%±0.4%
+ NeuralCohort 0.676±0.006 0.689±0.004 65.4%±0.7%

Table 13. Overall performance of NeuralCohort against baselines
for long LOS prediction on the Diabetes130 dataset.

Model Long LOS Task on Diabetes130
AUPRC AUROC Accuracy

Med2Vec 0.696±0.006 0.704±0.005 65.4%±0.5%
+ KNN 0.700±0.004 0.706±0.002 65.7%±0.4%
+ K-Means 0.701±0.003 0.709±0.004 65.8%±0.2%
+ DEC 0.700±0.003 0.702±0.004 65.7%±0.2%
+ DEKM 0.692±0.006 0.716±0.005 66.2%±0.4%
+ GRASP 0.693±0.003 0.700±0.003 65.1%±0.4%
+ DGLoS 0.705±0.003 0.681±0.006 66.0%±0.4%
+ IDC 0.717±0.007 0.714±0.004 66.5%±0.4%
+ NeuralCohort 0.732±0.004 0.739±0.003 68.2%±0.2%

MiME 0.719±0.003 0.729 ±0.005 78.3%±0.4%
+ KNN 0.717±0.002 0.725±0.003 78.0%±0.2%
+ K-Means 0.720±0.004 0.732±0.005 78.6%±0.5%
+ DEC 0.724±0.008 0.739±0.004 79.4%±0.2%
+ DEKM 0.718±0.002 0.724±0.005 78.7%±0.2%
+ DGLoS 0.727±0.007 0.704±0.002 78.9%±0.4%
+ GRASP 0.724±0.005 0.731±0.005 78.7%±0.5%
+ IDC 0.732±0.005 0.740±0.002 79.6%±0.6%
+ NeuralCohort 0.745±0.004 0.762±0.007 82.1%±0.3%

result in inadequate intra-cohort information. Therefore, the
number of cohorts exerts a vitally important influence on
both tasks using the MIMIC-III dataset, which means a
suitable value should be selected for the number of cohorts.
In our setting, the best |C| should be about 1100.

Table 14. Parameter Size and Running time of NeuralCohort.

Model Parameter Size (M) Training Time (s) Inference Time (ms)

ClinicalBERT 109.4 4299.6 4.32
+ KNN 109.4 6962.8 6.53
+ K-Means 109.4 5525.2 6.15
+ DEC 114.1 6225.2 5.95
+ DEKM 115.4 6851.7 6.37
+ GRASP 119.5 5292.4 7.29
+ DGLoS 113.6 8418.8 7.93
+ IDC 118.0 6546.2 7.04
+ NeuralCohort 121.3 6432.4 7.16

I. Experimental Results on MIMIC-IV and
Diabetes130 Datasets

Experimental results of MIMIC-IV and Diabetes130
datasets are displayed in Table 10 to Table 13. It should be
noted that there is no clinical text data in Diabetes130
dataset, therefore, backbone ClinicalBERT cannot be em-
ployed in experiments with Diabetes130 dataset. The
results demonstrate that NeuralCohort consistently outper-
forms the baselines, confirming its effectiveness and gener-
alizability.

J. Efficiency Study
Table 14 compares the efficiency of NeuralCohort with back-
bone ClinicalBERT and baselines in terms of parameter
size, training time, and inference time. NeuralCohort ex-
hibits a comparable parameter size but achieves a reasonable
training time, significantly outperforming computationally
intensive methods such as DGLoS. In terms of inference
time, NeuralCohort is competitive with DGLoS, GRASP
and IDC but shows longer inference time than other meth-
ods. However, the trade-off in inference speed is balanced
by the potential gains in modeling accuracy and represen-
tational power offered by NeuralCohort. Overall, the ta-
ble demonstrates that NeuralCohort provides an effective
balance between parameter complexity and computational
efficiency, making it a promising choice for applications
requiring cohort-aware learning.

K. Extened Visualizaion
Extended visualization of all the methods is illustrated in
Figure 8. The significant overlap among the points in Fig-
ure 8 (a) through (h) suggests that both the backbone and
the baselines exhibit limited discriminative power. However,
the incorporation of NeuralCohort substantially reduces this
overlap, thereby enhancing the distinctiveness of the co-
horts. This indicates that NeuralCohort effectively encodes
the data into a representation similarity space.
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(g) DGLoS

(f) GRASP

(c) K-Means(b) KNN

(i) NeuralCohort

(a) Med2Vec

(h) IDC

(d) DEC (e) DEKM

Figure 8. The extended t-SNE visualization of the final representations before prediction for selected eight-cohort points, where the
backbone is Med2Vec.
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