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Abstract

Algorithmic fairness has become a central topic in machine learning, and mitigat-
ing disparities across different subpopulations has emerged as a rapidly growing
research area. In this paper, we systematically study the classification of func-
tional data under fairness constraints, ensuring the disparity level of the classi-
fier is controlled below a pre-specified threshold. We propose a unified frame-
work for fairness-aware functional classification, tackling an infinite-dimensional
functional space, addressing key challenges from the absence of density ratios
and intractability of posterior probabilities, and discussing unique phenomena in
functional classification. We further design a post-processing algorithm Fair Func-
tional Linear Discriminant Analysis classifier (Fair-FLDA), which targets at ho-
moscedastic Gaussian processes and achieves fairness via group-wise threshold-
ing. Under weak structural assumptions on eigenspace, theoretical guarantees on
fairness and excess risk controls are established. As a byproduct, our results cover
the excess risk control of the standard FLDA as a special case, which, to the best
of our knowledge, is first time seen. Our theoretical findings are complemented
by extensive numerical experiments on synthetic and real datasets, highlighting
the practicality of our designed algorithm.

1 Introduction

Driven by technological advancements that enable high-resolution data collection and analysis, func-
tional data analysis (FDA) has gained increasing attention over the past two decades. A wide range
of statistical research has been carried out in this area, and we refer readers to Wang et al. (2016) for
a comprehensive review of recent developments.

Across a variety of statistical tasks, functional classification has emerged as one of the central fo-
cuses, with applications in many areas including neuroscience (e.g. Heinrichs et al., 2023; Lila et al.,
2024), genetics (e.g. Coffey et al., 2014), handwriting recognition (e.g. Hubert et al., 2017) and oth-
ers. Various classifiers have been proposed and thoroughly studied in the literature, among which are
classifiers based on projection (e.g. Delaigle and Hall, 2012; Kraus and Stefanucci, 2019), Radon–
Nikodym derivatives (e.g. Berrendero et al., 2018; Torrecilla et al., 2020), principal component score
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densities (e.g. Dai et al., 2017) and partial least squares (e.g. Preda et al., 2007), to name but a few.
While these classifiers often perform well in terms of accuracy, our real data analysis on NHANES
dataset in Section 4 demonstrates that applying standard functional classification algorithms can lead
to substantial unfairness. Despite the growing recognition of fairness as a critical issue in machine
learning and statistics, to the best of our knowledge, there is no existing work addressing unfairness
in functional data classification. We are to bridge this gap by providing a principled framework for
fairness-aware functional classification.

To date, fair classification for multivariate data has been extensively studied, including Yang et al.
(2020); Jiang et al. (2020); Wei et al. (2021); Zeng et al. (2024a,b); Hou and Zhang (2024). These
algorithms can be classified into pre-, in- and post-processing procedures. Pre-processing meth-
ods aim to modify training data prior to model training, allowing models to learn from debiased
inputs (e.g. Calmon et al., 2017; Johndrow and Lum, 2019). In-processing ones handle fairness con-
straints during the training step. Common strategies include fairness-constrained optimisation (e.g.
Narasimhan, 2018; Celis et al., 2019) and fairness penalised objective functions (e.g. Cho et al.,
2020). Post-processing one, by contrast, seek to reduce disparities by modifying predictions after
training is completed (e.g., Kim et al., 2019; Li et al., 2022).

However, the infinite-dimensional nature of functional data poses unique challenges, rendering the
aforementioned fairness methods developed for multivariate data ineffective, see numerical results
in Appendix A.6. To overcome this, we fully respect the functional nature of the data and derive
the Bayes optimal fair classifier. Furthermore, we establish that the excess risk converges to zero
and provide an explicit convergence rate. The most related work to this paper is Zeng et al. (2024a),
in which they develop a framework for Bayes-optimal fair classifiers under finite-dimensional fea-
ture spaces with a strong reliance on posterior probabilities, which are unfortunately intractable in
functional spaces. This handicaps the direct application of Zeng et al. (2024a) to functional data. In
this paper, we resort to the Radon–Nikodym derivative, which is used naturally as a substitute and
plays a central role in characterising optimal decision rules under fairness constraints in the func-
tional setting. Additional challenges, further comparisons and practical considerations are provided
in Remark 1.

In fact, even without fairness constraints, the characterisation of excess risk for functional classi-
fication is unresolved in general settings with unknown eigenfunctions of the covariance operator.
Addressing fairness in this setting is inherently more challenging, and quantifying the trade-off be-
tween fairness and accuracy is theoretically more demanding and remains largely unexplored.

1.1 List of contributions

In this paper, we study the problem of optimal binary classification for functional data under various
fairness constraints. Specifically, we focus on the case when the sensitive attribute is binary and the
probability measures of two classes of standard features within each sensitive group are mutually
absolutely continuous. The main contributions of this paper are summarised as follows.

Firstly, to the best of our knowledge, this is the first study to explore fair classification for functional
data. We propose a unified framework for constructing the fair Bayes-optimal classifier for func-
tional data, providing a functional data-tailored treatment of fairness-aware classification problems.
Our framework is sufficiently general to accommodate a wide range of extensions, including set-
tings where the sensitive feature is unavailable at test time and multi-class classification problems.
These extensions (detailed in Appendix B) highlight the flexibility of our approach and its potential
to serve as a foundation for future advances in fairness-aware functional data analysis..

Secondly, when the non-sensitive features are assumed to be Gaussian processes, we introduce a
post-processing algorithm, the Fair Functional Linear Discriminant Analysis classifier (Fair-FLDA)
in Algorithm 1, which effectively enforces fairness by group-wise thresholding. Our algorithm
accounts for the most general setting where we assume all model parameters, including group-wise
covariance functions and their eigenvalues and eigenfunctions, to be unknown.

Thirdly, we further establish the finite-sample theoretical guarantee for the proposed algorithm in
terms of both fairness and excess risk control, ensuring our algorithm Fair-FLDA not only adheres to
the specified fairness constraint with high probability, but also achieves a satisfactory classification
performance, with the cost of fairness explicitly quantified. As a byproduct, our results cover the
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special case of functional classification without fairness, which serves as a complement of Wang
et al. (2021) under a more general setting when eigenfunctions are assumed to be unknown.

Finally, the proposed algorithm is validated through extensive numerical experiments on both sim-
ulated and real datasets in Section 5 and Appendix A. The comparisons with existing multivariate
fairness methods to functional data further highlight the superiority and practical necessity of our
method for fair functional classification from a numerical perspective.

further supporting our theoretical findings and highlighting their practicality.

Notation. In this paper, for a ∈ N+, denote [a] = {1, . . . , a}. For a, b ∈ R, let a ∨ b = max{a, b}.
For two sequences of positive numbers {an} and {bn}, denote an . bn (or an = O(bn)) and
an � bn, if there exists some constants c, C > 0 such that an/bn ≤ C and c ≤ an/bn ≤ C. Write
an � bn, if an/bn → 0 as n→ ∞. For a sequence of random variables {Xn} and positive numbers
{an}, denote Xn = Op(an) if limM→∞ lim supn P(|Xn| ≥ Man) = 0. For any two σ-finite
measures µ and ν, denote µ � ν if µ is absolutely continuous with respect to ν and write dµ/dν
the Radon–Nikodym derivative; write µ ∼ ν if they are equivalent. Let L2([0, 1]) be the space of
square-integrable functions on [0, 1]. For f ∈ L2([0, 1]), denote ‖f‖2L2 =

∫ 1

0
f2(s) ds. For f, g ∈

L2([0, 1]), denote the inner product by 〈f, g〉L2 =
∫ 1

0
f(s)g(s) ds. For any bivariate kernel function

K : [0, 1]2 → R+, let H(K) denote the reproducing kernel Hilbert spaces (RKHS) generated by K.
For f ∈ H(K), denote ‖f‖2K =

∑∞
j=1〈f, φj〉2L2/λj its RKHS norm, where {φj}∞j=1 and {λj}∞j=1

are obtained by Mercer’s decomposition of K: K(s, t) =
∑∞
j=1 λjφj(s)φj(t), s, t ∈ [0, 1].

2 Fair Bayes optimal classifier

2.1 Problem setup

Suppose that we have n independent and identically distributed samples D = {(Xi, Ai, Yi), i ∈
[n]}, where Xi ∈ L2([0, 1]) is the standard (non-sensitive) functional feature, Ai ∈ {0, 1} is
the sensitive feature (e.g. gender or race) and Yi ∈ {0, 1} is the binary label. Let F be the
class of measurable functions f : L2([0, 1]) × {0, 1} → [0, 1] and our goal is to identify a
randomised classifier f? ∈ F , as defined in Definition 1, such that the misclassification error
R(f?) = P(Ŷf?(X,A) 6= Y ) is minimised subject to a specified fairness constraint.

Definition 1 (Randomised classifier). For any x ∈ L2([0, 1]) and a ∈ {0, 1}, a randomised clas-
sifier f ∈ F is a measurable function such that f(x, a) = P(Ŷf = 1|X = x,A = a), where
Ŷf = Ŷf (x, a) is the predicted label, i.e. Ŷf |{X = x,A = a} ∼ Bernoulli (f(x, a)).

For a, y ∈ {0, 1}, let Pa,y be the distribution of the random process X given (A, Y ) = (a, y).
Assume that Pa,1 ∼ Pa,0, thus the Radon–Nikodym derivative ηa(X) = dPa,1(X)/dPa,0 is well
defined. Let πa,y = P(A = a, Y = y) and πa = P(A = a), then for each sensitive group, the Bayes
rule that minimises the misclassification error is given by

f∗(x, a) = 1{ηa(X) ≥ πa,0/πa,1}, (1)

where 1{·} denotes the indicator function (e.g. Berrendero et al., 2018). However, the above clas-
sifier does not take fairness into account. To address this, in order to mitigate bias across groups,
existing literature proposed various notions of parity, some of which are listed below.

Definition 2. A classifier f is said to satisfy (i) equality of opportunity (e.g. Hardt et al., 2016) if the
true positive rates are the same among protected groups, i.e. P(Ŷf = 1|A = 0, Y = 1) = P(Ŷf =
1|A = 1, Y = 1), (ii) predictive equality (e.g. Corbett-Davies et al., 2017) if the false positive rates
are the same among protected groups. i.e. P(Ŷf = 1|A = 0, Y = 0) = P(Ŷf = 1|A = 1, Y = 0),
and (iii) demographic parity (e.g. Cho et al., 2020) if its prediction Ŷf is independent of the sensitive
attribute A, i.e. P(Ŷf = 1|A = a) = P(Ŷf = 1), for a ∈ {0, 1}.

Enforcing exact parity may lead to a substantial loss in accuracy. In the literature, one popular
approach is to instead control the disparity measure, D : F → [−1, 1], i.e. upper bounding the dif-
ference in quantities of interest between the sensitive groups. The disparity measures corresponding
to the notions of parity in Definition 2 are presented in Definition 3 for completeness.
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Definition 3. For a given classifier f ∈ F , the disparity of opportunity (DO), predictive disparity
(PD) and demographic disparity (DD) are defined as DO(f) = P{Ŷf (X, 1) = 1|A = 1, Y =

1}−P{Ŷf (X, 0) = 1|A = 0, Y = 1}, PD(f) = P{Ŷf (X, 1) = 1|A = 1, Y = 0}−P{Ŷf (X, 0) =
1|A = 0, Y = 0} and DD(f) = P{Ŷf (X, 1) = 1|A = 1} − P{Ŷf (X, 0) = 1|A = 0}.

For any disparity measure D, tolerance level δ ≥ 0, we seek the δ-fair Bayes optimal classifier f?D,δ ,
such that the misclassification error is minimised over all classifiers that satisfy the δ-disparity, i.e.

f?D,δ ∈ argmin
f∈F

{
R(f) : |D(f)| ≤ δ

}
. (2)

2.2 Unified framework for fairness-aware functional classification

To characterise the δ-fair Bayes optimal classifier defined in (2), in this section, we apply the gen-
eralised Neyman–Pearson lemma (see Lemma 43 in Appendix H) and exploit Radon–Nikodym
derivatives, providing a unified framework for fairness-aware functional classification.

Applying the generalised Neyman–Pearson lemma is possible when both objective function and
constraint in (2) are linear in the classifier. For the objective function, it follows from Lemma 8 in
Appendix C.4 that R(f) =

∑
a∈{0,1}

∫
X f(x, a){πa,0 − πa,1

dPa,1

dPa,0
(x)}dPa,0(x) + P(Y = 1) is

linear in f . For the constraint, we consider the class of bilinear disparity measures defined below.
Definition 4. For all probability measures P and f ∈ F , a disparity measure D : F → [−1, 1]
is bilinear in the classifiers f and dPa,1/dPa,0 if there exist sD,a, bD,a ∈ R such that D(f) =∑
a∈{0,1}

∫
X f(x, a){sD,a

dPa,1

dPa,0
(x) + bD,a}dPa,0(x).

Definition 4 is also considered in Zeng et al. (2024a) and holds for many commonly used disparity
measures in the existing literature, including those defined in Definition 3.
Proposition 1. The disparity measures DO,PD and DD defined in Definition 3 are bilinear with
sDO,a = 2a − 1, bDO,a = 0; sPD,a = 0, bPD,a = 2a − 1; and sDD,a = (2a − 1)πa,1/πa,
bDD,a = (2a− 1)πa,0/πa, for a ∈ {0, 1}.

With both misclassification error and disparity measures being linear in the classifier, the generalised
Neyman–Pearson lemma unlocks f?D,δ , a closed-form solution to the δ-fair Bayes optimal classifier.

Theorem 2. Assume that dPa,1/dPa,0 is a continuous random variable for a ∈ {0, 1}. For any
τ ∈ R and a given bilinear disparity measure D in Definition 4, denote the classifier gD,τ (x, a) =
1{(πa,1− τsD,a)dPa,1

dPa,0
(x) ≥ πa,0+ τbD,a} and D(τ) = D(gD,τ ). Then, for δ ≥ 0, the δ-fair Bayes

optimal classifier is f?D,δ = gD,τ?
D,δ

, where

τ?D,δ = argmin
τ∈R

{
|τ | : |D(τ)| ≤ δ

}
. (3)

The proof of Theorem 2 is in Appendix C.2. We remark that our analysis can be easily extended
to the case when dPa,1/dPa,0 is discontinuous, by including a randomised decision rule on the set
where (πa,1 − τsD,a)dPa,1(x)/dPa,0 = πa,0 + τbD,a.

At a high level, Theorem 2 states that the δ-fair Bayes optimal classifier is shifted from the Bayes
classifier (1) by linear factors sD,a and bD,a. The linear shift is ensured from the bilinearity of the
disparity measure D and the shift level τ is further optimised in (3). The optimisation in (3), at the
core is to minimise the misclassification error among all that satisfy the fairness constraints. The
detailed form is a consequence of behaviours of the misclassification error R(gD,τ ) and disparity
measure D(gD,τ ) as functions of τ . We show in Proposition 7 in Appendix C.4 that the disparity is
continuous and non-increasing, while the misclassification error is non-decreasing in |τ |. As a result,
finding an optimal threshold τ that minimises the misclassification error reduces to minimising |τ |.
For D ∈ {DO,PD,DD} in Definition 3, it holds that πa,1 − τ?D,δsD,a > 0 and πa,0 + τ?D,δbD,a > 0
(see Lemma 9 in Appendix C.4). Consequently, we rewrite the fair Bayes-optimal classifier f?D,δ as

f?D,δ(x, a) = 1

{
dPa,1
dPa,0

(x) ≥
πa,0 + τ?D,δbD,a

πa,1 − τ?D,δsD,a

}
. (4)
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Compared to the Bayes classifier without fairness constraints in (1), mitigating disparity is achieved
by adjusting the classification thresholds, from πa,0/πa,1 to (πa,0 + τ?D,δbD,a)/(πa,1 − τ?D,δsD,a),
with the shift determined by the chosen disparity measure and the underlying population distribu-
tions. When τ?D,δ = 0, i.e. |D(0)| ≤ δ, we recover the Bayes classifier f?(x, a) in (1), which is, in
this case, automatically fair. We write the classifier in (1) as f?D,∞ in the rest of the paper.
Remark 1. Our framework is inspired by the one in Zeng et al. (2024a), which is also an application
of the generalised Neyman–Pearson lemma. The key difference between Zeng et al. (2024a) and
Theorem 2 lies in the generalisation of the classifier to a functional feature space. When moving to
infinite-dimensional spaces, the absence of a default base measure leads to the use of the Radon–
Nikodym derivative dPa,1(x)/dPa,0. It is a more natural functional used for functional classifica-
tion, rather than posterior probabilities P(Y = 1|A = a,X = x) considered in Zeng et al. (2024a).
In particular, in important cases such as when functions are Gaussian processes, dPa,1(x)/dPa,0 is
analytically tractable but not the posterior. In the cases when dPa,1(x)/dPa,0 is not tractable, there
are ample tools for its approximation (e.g. Bongiorno and Goia, 2016; Dai et al., 2017).

2.3 Fair functional linear discriminant analysis classifier for Gaussian processes

As a concrete and important example, we focus on a specific setting when the functional features
are Gaussian processes. We propose the Fair Functional Linear Discriminant Analysis classifier in
Algorithm 1, featuring a plug-in estimator built on f?D,δ in Theorem 2 and, specifically, in (4).

Additionally to the problem setup in Section 2.1, for any collection of (X,A, Y ) ∈ D, we assume
that the functional feature X is a Gaussian process, i.e. {X|A = a, Y = y} ∼ GP(µa,y,Ka,y),
where µa,y(t) = E{X(t)|A = a, Y = y} and Ka,y(s, t) = E[{X(s) − µa,y(s)}{X(t) −
µa,y(t)}|A = a, Y = y] are mean and covariance functions, s, t ∈ [0, 1] and a, y ∈ {0, 1}.
For simplicity, we consider a homoscedastic setting within each group, i.e. Ka,0 = Ka,1 =
Ka. The covariance function Ka, consequently, admits the spectral expansion Ka(s, t) =∑∞
j=1 λa,jφa,j(s)φa,j(t), where λa,1 ≥ λa,2 ≥ · · · ≥ 0 are eigenvalues and {φa,j}j∈N+

are eigen-
functions. Without fairness constraints, the functional linear discriminant analysis (FLDA) classifier
in (1) is known to be optimal to minimise the misclassification error (e.g. Berrendero et al., 2018).

To account for fairness and construct a plug-in type classifier for f?D,δ , it is essential to evalu-
ate the Radon–Nikodym derivative dPa,1/dPa,0, which plays a central role in the decision rule
and analytically available under Gaussian settings. By standard results of Gaussian measures
(e.g. Theorem 1 in Berrendero et al., 2018), the distributions Pa,0 and Pa,1 are mutually con-
tinuous if and only if the mean difference µa,1 − µa,0 belongs to the RKHS space H(Ka). It

then holds that dPa,1

dPa,0
(X) = exp{

∑∞
j=1

(ζa,j−θa,0,j)(θa,1,j−θa,0,j)
λa,j

− 1
2

∑∞
j=1

(θa,1,j−θa,0,j)
2

λa,j
}, where

ζa,j = 〈X,φa,j〉L2 is the principal component scores of X and θa,y,j = 〈µa,y, φa,j〉L2 are the
coefficients of the mean functions projected onto the eigenfunctions of Ka.

To estimate dPa,1/dPa,0 in practice, we assume the availability of an additional training dataset,
D̃ = {(X̃i, Ãi, Ỹi)}, which is drawn independently from the same distribution as D and used to
estimate η̂a in the initial classifier. We refer D as the calibration data, subsequently used to post-
process the initial classifier by selecting the adjusted threshold τ̂D,δ .

We decompose the calibration data as D = D0,1 ∪ D0,0 ∪ D1,1 ∪ D1,0, where for a, y ∈ {0, 1},
let Da,y = {(Xi, Ai = a, Yi = y)}, na,y = |Da,y| and n =

∑
a,y na,y . For notational clarity, we

denote the i-th feature in Da,y as Xi
a,y for i ∈ [na,y]. The notation for D̃ follows similarly. The

resulting classifier is detailed in Algorithm 1, with its theoretical guarantees discussed in Section 3.
Remark 2 (Perfect classification). For functional classification without fairness, the intrinsic infinite-
dimensional nature of functional data gives rise to vanishing misclassification errors under certain
scenarios. This is first discussed in Delaigle and Hall (2012) and known as perfect classification in
the existing literature. As discussed in Berrendero et al. (2018), for homogeneous Gaussian pro-
cesses, perfect classification arises when the class distributions Pa,1 and Pa,0 are mutually singular,
i.e. µa,1−µa,0 /∈ H(Ka), in which case the Radon–Nikodym derivative dPa,1/dPa,0 does not exist.
In this paper, we restrict our theoretical analysis to the more challenging regime of imperfect clas-
sification with non-vanishing classification error. Notably, in the perfect classification regime, the
optimal FLDA classifier is automatically fair when the disparity measure D ∈ {DO,PD}. When
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Algorithm 1 Fair Functional Linear Discriminant Analysis classifier.

INPUT: Training data D̃0,1∪D̃0,0∪D̃1,1∪D̃1,0, calibration data D0,0∪D0,1∪D1,0∪D1,1, disparity
level δ, level of truncation J .
S1. Estimating Radon–Nikodym derivatives ηa and class probabilities πa,y using training data.

1: For a, y ∈ {0, 1}, calculate π̂a,y =
ña,y

ñ , µ̂a,y(t) = 1
ña,y

∑ña,y

i=1 X̃
i
a,y(t) and K̂a(s, t) =∑

y∈{0,1}
ña,y

ña,0+ña,1

1
ña,y−1

∑ña,y

i=1 {X̃i
a,y(s)− µ̂a,y(s)}{X̃i

a,y(t)− µ̂a,y(t)}
2: Estimate eigenvalues {λ̂a,j}Jj=1, eigenfunctions {φ̂a,j}Jj=1 of K̂a by spectral expansion.
3: Estimate projection coefficients θ̂a,y,j =

∫ 1

0
µ̂a,y(t)φ̂a,j(t) dt. For any function X , denote

η̂a(X) = exp{
∑J
j=1

(θ̂a,1,j−θ̂a,0,j)(
∫ 1
0
X(t)φ̂a,j(t) dt−θ̂a,0,j)

λ̂a,j
− 1

2

∑J
j=1

(θ̂a,1,j−θ̂a,0,j)
2

λ̂a,j
}.

S2. Estimating the optimal threshold using calibration data.
4: Let ĝD,τ (x, a) = 1

{
(π̂a,1 − τsD,a)η̂a(x) > π̂a,0 + τbD,a

}
.

5: Calculate D̂(τ) =
∑
a∈{0,1}{

∫
X ĝD,τ (x, a)sD,a dP̂a,1(x)+

∫
X ĝD,τ (x, a)bD,a dP̂a,0(x)},

where
∫
X f(x, a) dP̂a,y = n−1

a,y

∑na,y

i=1 f(X
i
a,y, a). Set τ̂D,δ = argminτ∈R{|τ | : |D̂(τ)| ≤ δ}.

OUTPUT: f̂D,δ(x, a), with f̂D,δ(x, a) = 1{(π̂a,1 − τ̂D,δsD,a)η̂a(x) > π̂a,0 + τ̂D,δbD,a}.

D = DD, (1) is automatically fair if |P(Y = 1|A = 1) − P(Y = 1|A = 0)| ≤ δ. Further insights
into the phenomenon of automatic fair are supported by numerical experiments in Appendix A.4.

3 Theoretical Properties

For a general bilinear disparity measure (Definition 4), we provide the theoretical guarantees on the
fairness and excess risk control of the Fair-FLDA algorithm (Algorithm 1) in Theorems 3 and 5,
with a special case regarding the disparity of opportunity in Corollary 6. We start with assumptions.

Assumption 1 (Class probabilities). Assume that there exist absolute constants 0 < Cp ≤ C ′
p < 1,

such that the class probabilities satisfy 0 < Cp ≤ πa,y ≤ C ′
p < 1, a, y ∈ {0, 1}.

Assumption 2 (Gaussian processes). Assume that the standard features {X̃i
a,y}i∈[ña,y ] ∪

{Xi
a,y}i∈[na,y] are collections of Gaussian processes GP(µa,y,Ka) with continuous trajectories,

a, y ∈ {0, 1}. In addition, assume the following holds for any a ∈ {0, 1}: a. (Covariance function)
The covariance function Ka is continuous and there exist absolute constants Cλ, C ′

λ > 0 such that
the eigenvalues of the covariance operator are decreasing with j−α ≥ Cλλa,j ≥ C ′

λλa,j+1+j
−α−1

for α > 1 and j ∈ N+; b. (Signal-to-noise ratio) There is an absolute constant CK > 0 such that
‖µa,1 − µa,0‖2Ka

≥ CK; and c. (Mean difference) There exists a constant Cµ > 0 such that for any
j ∈ N+, it holds that |〈µa,1 − µa,0, φa,j〉L2 | ≤ Cµj

−β with β > (α+ 1)/2.

In Assumption 1, we assume that the class probabilities are bounded away from 0 and 1, essen-
tial to ensure that a sufficient number of samples for each group can be observed. Assumption 2
characterises the properties of the functional features. Assumption 2a specifies the decaying rate
of eigenvalues and quantifies the spacings between two consecutive eigenvalues. This is commonly
seen in the FDA literature (e.g. Hall and Horowitz, 2007; Dou et al., 2012) involving eigenfunc-
tion estimations. Assumption 2b imposes a lower bound on the magnitude of the signal-to-noise
ratio ‖µa,1 − µa,0‖2Ka

. We thus exclude the trivial classification regime and preclude the clas-
sifier from degenerating into random guessing. Assumption 2c enforces the alignment between
the mean difference and eigenspace, with larger values of β indicating better alignment. As-
sumptions 2a, 2b and 2c jointly imply that ‖µa,1 − µa,0‖2Ka

� 1 with the tail sum satisfying∑∞
j=J+1(θa,1,j−θa,0,j)2/λj . Jα−2β+1, J ∈ N+. Note that decay rates α and β are assumed to be

invariant for a ∈ {0, 1}, but this can be easily generalised to different decaying rates between groups.

Theorem 3 (Fairness guarantee). For any δ > 0 and bilinear disparity measure D in Definition 4, let
f̂D,δ denote the classifier output by Algorithm 1, we have, for any η ∈ (0, 1/2), that P{|D(f̂D,δ)| ≤
δ + C

√
log(1/η)/n} ≥ 1− η, where C > 0 is an absolute constant.
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Theorem 3 is proved in Appendix D and shows that with probability at least 1− η, after calibration
step, the disparity level of f̂D,δ does not exceed the pre-specified level δ by a small offset term up to
O(

√
log(1/η)/n). The magnitude is quantified by the high probability upper bound on |D̂(τ̂D,δ)−

D(τ̂D,δ)|, measuring the deviation of the empirical distribution from its population counterpart.

If insisting on controlling the population unfairness D(f̂D,δ) below δ, then provided that√
log(1/η)/n . δ, it suffices to adjust the input δ to δ − C

√
log(1/η)/n, i.e. set τ̂D,δ =

argminτ∈R{|τ | : |D̂(τ)| ≤ δ − C
√
log(1/η)/n} in S2 of Algorithm 1. We refer to the re-

sulting method as the Fair Functional Linear Discriminant Analysis classifier with Calibration
(Fair-FLDAc). Numerical results comparing the performances are presented in Section 4.

To present the excess risk control of our method, as a preliminary step, we establish the misclassifi-
cation error of the oracle classifier in Proposition 4.

Proposition 4 (Misclassification error). Under the model setup in Section 2.3, for any
δ ≥ 0 and bilinear disparity measure D such that πa,1 − τ?D,δsD,a > 0 and πa,0 +
τ?D,δbD,a > 0, the corresponding misclassification error for f?D,δ defined in Theorem 2 is

given by R(f?D,δ) =
∑
a∈{0,1} πa,0Φ[−

‖µa,1−µa,0‖Ka

2 − log{(πa,0+τ
?
D,δbD,a)/(πa,1−τ?

D,δsD,a)}
‖µa,1−µa,0‖Ka

] +∑
a∈{0,1} πa,1Φ[−

‖µa,1−µa,0‖Ka

2 +
log{(πa,0+τ

?
D,δbD,a)/(πa,1−τ?

D,δsD,a)}
‖µa,1−µa,0‖Ka

], where Φ is the cumulative
distribution function of the standard normal distribution.

See Appendix C.3 for the proof of Proposition 4. Compared to the standard excess risk without
fairness constraints, R(f?D,∞) (e.g. Theorem 2 in Berrendero et al., 2018), the cost of fairness con-
straints is quantified by the logarithmic term involving τ?D,δ , resulted from the adjusted group-wise
thresholds in (4). As shown in Proposition 7 in Appendix C.4, a decrease in δ, i.e. stronger fairness
constraints, leads to an increase in |τ?D,δ|, hence a larger misclassification errorR(f?D,δ). When f?D,∞
is automatically fair, i.e. τ∗D,δ = 0, Proposition 4 recovers Theorem 2 in Berrendero et al. (2018).

Moving towards excess risk controls, as discussed in Zeng et al. (2024b), for any f ∈ F , the
traditional excess risk R(f) − R(f?D,δ) may be negative as f?D,δ does not necessarily minimise the
excess risk. To make a meaningful control of the misclassification error, we resort to the quantity
|R(f)−R(f?D,δ)|, which can be further decomposed as the non-negative fairness-aware excess risk
dE(f, f

?
D,δ) (defined in Definition 5) and a disparity cost τ?D,δ{D(f?D,δ) − D(f)}, that |R(f) −

R(f?D,δ)| = |dE(f, f?D,δ) + τ?D,δ{D(f?D,δ)−D(f)}| ≤ dE(f, f
?
D,δ) + |τ?D,δ||D(f?D,δ)−D(f)|. The

derivation above is directly via the definition below.

Definition 5 (Fairness-aware excess risk). For δ ≥ 0, let f?D,δ be a δ-fair Bayes optimal classifier
defined in (2), recalling τ?D,δ in (3) and sD,a, bD,a in Definition 4. For any classifier f : X ×
{0, 1} → [0, 1], define the fairness-aware excess risk as dE(f, f?D,δ) =

∑
a∈{0,1}

∫
X {f(x, a) −

f?D,δ(x, a)}[(πa,0 + τ?D,δbD,a)− (πa,1 − τ?D,δsD,a)
dPa,1

dPa,0
(x)] dPa,0(x).

We are now ready to present the excess risk control for Algorithm 1 in Theorem 5.

Theorem 5. Denote επ , εη and εD the estimation error related to π̂a,y , η̂a and D̂, i.e. for any small
η ∈ (0, 1/2), a, y ∈ {0, 1} and X ∼ GP(µa,y,Ka), it holds with probability at least 1 − η/3 that
|π̂a,y − πa,y| ≤ επ , | log{η̂a(X)} − log{ηa(X)}| ≤ εη and supτ∈R |D̂(τ)−D(τ)| ≤ εD.

Suppose that Assumptions 1 and 2 hold; and for δ ≥ 0, bilinear disparity measure D (Definition 4),
satisfying that (i) D(0) /∈ (δ−εD, δ]∪[−δ,−δ+εD), (ii) πa,1−τ?D,δsD,a ≥ c1, πa,0+τ?D,δbD,a ≥ c1,

with max{|sD,a|, |bD,a|} ≤ c2, and (iii) |D(τ?D,δ) − D(τ?D,δ + ξ)| ≥ CD|ξ|
1
γ for any ξ in the small

neighbourhood of 0 and some γ > 0, where c1, c2, CD > 0 are absolute constants.

Then, it holds with probability at least 1 − η, η ∈ (0, επ + εη + ετ ), that the classifier f̂D,δ output
by Algorithm 1 satisfies that

|R(f̂D,δ)−R(f?D,δ)| . dE(f, f
?
D,δ) + |τ?D,δ|

√
log(1/η)/n, (5)

where dE(f̂D,δ, f?D,δ) . (επ + εη + ετ )
2 with ετ = |τ̂D,δ − τ?D,δ| . εγD1{τ?D,δ 6= 0}.

7



Theorem 5 provides a general characterisation of fairness-aware excess risk and traditional excess
risk when D(0) is not too close to δ, i.e. when f?D,∞ is either sufficiently fair or unfair. We impose
two extra assumptions on D, with the first one controlling the behaviours of τ?D,δ near the bound-
aries. This condition is used to ensure that τ̂D,δ lies within the range of its estimated counterparts,
i.e. π̂a,1 − τ̂D,δsD,a > 0 and π̂a,0 + τ̂D,δbD,a > 0. This guarantees that the misclassification error
R(f̂D,δ) retains a well-structured form, analogous to that in Proposition 4. The second assumption
controls the steepness of D in a small neighbourhood of τ?D,δ , with larger values of γ corresponding
to greater steepness. In the fair-impacted case, i.e. τ?D,δ 6= 0, if D is potentially very flat near τ?D,δ ,
i.e. γ is small, the estimation problem becomes more challenging, resulting in a larger estimation
error ετ (as illustrated in Figure 1). We remark that when D is explicitly given, both of the above
assumptions can be verified in most of the cases, see Corollary 6 as an example.

0.1

0.2

0.3

0.4

0 τ*τ̂ 0.2
τ

D

0.1

0.2

0.3

0.4

0 τ*τ̂ 0.2
τ

D

Figure 1: Effects of steepness of disparity levels on the estimation error of τ?D,δ . Left and right
panels illustrate steep and flat D(·). Red solid line: D(·). Blue dotted line: D̂(·).

The disparity cost in the right-hand side of (5) is a direct consequence of the fairness guarantees
in Theorem 3. The fairness-aware excess risk, dE(f̂D,δ, f?D,δ), consists of two components, with
(επ + εη)

2 capturing the intrinsic excess risk and ε2γD reflecting the cost of fairness. This is the
first time seen in the FDA literature, echoing the same spirit in the finite-dimensional classification
literature (Zeng et al., 2024b; Hou and Zhang, 2024). When D is chosen as one of the disparity
measures in Definition 3, εD can be explicitly controlled as εD � επ + εη + ( log(1/η)n )

1
2 .

To further illustrate Theorem 5, we apply the framework when D = DO, the disparity of opportunity.
The corresponding results up to poly-logarithmic factors are summarised in Corollary 6.
Corollary 6 (Excess risk under DO). Under Assumptions 1 and 2, for any δ ≥ 0, β ≥ 3α+2

2 , it holds

for any J satisfying J2α+2 . ñ that dE(f̂DO,δ, f
?
DO,δ) = Op(

J
ñ + Jα−2β+1 +

1{τ?
D,δ 6=0}
n ), if we

additionally assume that DO(0) /∈ (δ− (Jñ ∨J
α−2β+1∨ 1

n )
1
2 , δ]∪ [−δ,−δ+(Jñ ∨J

α−2β+1∨ 1
n )

1
2 ).

Additionally, if we further assume n � ñ � N and pick J � N
1

2β−α , it holds dE(f̂DO,δ, f
?
DO,δ) =

Op(N
α−2β+1
2β−α ) and |R(f̂DO,δ)−R(f?DO,δ)| ≤ dE(f̂DO,δ, f

?
DO,δ) + |τ?DO,δ|Op(N

− 1
2 ).

Corollary 6 is a shorter version of Corollary 11 in Appendix E.2, presenting only the case when
β ≥ 3α+2

2 . Detailed results for the case when α+1
2 < β ≤ 3α+2

2 are deferred to Corollary 11.

At a high level, Corollary 6 shows the upper bound is of the form : dE(f̂DO,δ, f
?
DO,δ) ≤

variance to estimate ηa+ squared bias due to truncation+ cost of fairness, which highlights the role
of truncation parameter J in determining the final convergence rate through the underlying bias-
variance trade-off. Moreover, shown in Corollary 11, as the mean difference aligns more strongly
with the eigenspace, i.e. as β increases, a smaller estimation variance is observed. Note that the cost
of fairness is masked when n � ñ � N , which shares the same finding as Hou and Zhang (2024).

Corollary 6 is the first time providing finite-sample guarantees for functional classification under
fairness constraints. There is no existing work in FDA with fairness constraints, and even for the
FDA work without fairness, such detailed characterisation is novel in the literature. Without any
predecessors regarding the former, we list some relevant works with the latter point.

Excess risk control for functional classification has previously been considered in Meister (2016)
and Wang et al. (2021), with the former relying on smoothness assumptions of functional densities
and decay rates of the metric entropy of functional space, and the latter assuming that eigenfunctions

8



of the covariance operator are explicitly known. Instead, our result in Equation (5) is established
requiring only weak structural assumptions on the eigenspace. When τ?D,δ = 0, our result in Corol-
lary 6 recovers the excess risk rate established in Wang et al. (2021), provided that J2α+2 . ñ. We
would like to remark that the upper bound on J arises from estimating eigenfunctions; similar con-
dition is also in Hall and Horowitz (2007) and Dou et al. (2012). Another relevant work is Cai and
Zhang (2019), studying the linear discriminant analysis (LDA) classifier for J-dimensional Gaus-
sian random variables. Our key variance term J

ñ , resulting from estimating the first J leading terms
in ηa, aligns with the minimax optimal result derived in Cai and Zhang (2019). At a high level, f?D,δ
can be viewed as applying LDA to an infinite number of principal component scores. By focusing
only on the first J scores in Fair-FLDA, we recover the variance term in J-dimensional LDA.

4 Numerical experiments

In this section, we demonstrate some key numerical evidence via simulated and real data analysis.

Simulation. Generate (Y,A) ∈ {0, 1}⊗2 according to the distributions P(A = 1) = 0.7,P(Y =
1|A = 0) = 0.4 and P(Y = 1|A = 1) = 0.7. Given Y = y and A = a, generate the functional
covariate Xa,y(t) as Xa,y(t) = µa,y(t) +

∑50
k=1 ζa,kφk(t), where φk(t) =

√
2 cos(kπt), ζa,k ∼

N(0, λa,k), λ0,k = k−2, λ1,k = 2k−2, and the mean functions are specified as follows,

µ0,0 = µ1,0 = 0, µ0,1(t) =

50∑
k=1

0.8(−1)kk−βφk(t), µ1,1(t) =

50∑
k=1

√
2(−1)kk−βφk(t).

Let β = 1.5 and n = 1000. To conserve space, we defer detailed settings, implementation details,
more numerical results on effects of sample sizes (n), alignment of mean difference (β), model mis-
specification (non-Gaussianity) and perfect classification, and comparisons with multivariate base-
lines to Appendix A.

Figure 2 reports the medians across 500 times of the classification error and disparity measures
of our proposed methods Fair-FLDA and its calibrated version Fair-FLDAc (in Section 3), with the
classical functional linear discriminant classifier (FLDA) and oracle Bayes classifiers as competitors.

The classification errors of Fair-LDA and Fair-FLDAc exhibit a non-increasing trend as δ grows,
mirroring the behaviour of the oracle Bayes classifier. The error of FLDA remains constant across
different values of δ, as it does not incorporate any fairness constraint. When δ is small, correspond-
ing to fair-impacted regimes, the classification errors of our methods decrease with increasing δ, due
to the less stringent fairness constraints. Once δ exceeds a certain threshold, the fairness constraint
becomes inactive, and the classification errors of the fairness-aware classifiers converge to that of
the unconstrained FLDA. As for the disparity control, the FLDA consistently fails to meet fairness
requirements, but the Fair-FLDA maintains the desired median disparity level and the Fair-FLDAc

typically achieves median disparity levels strictly below δ. As established in Theorem 3, the em-
pirical 95% quantile of disparity of Fair-FLDA may slightly exceed δ, whereas the Fair-FLDAc

effectively corrects for this offset, achieving probabilistic control of the disparity below δ with prob-
ability at least 95%. As δ increases beyond a critical threshold, both fairness-aware classifiers grad-
ually reduce to the unconstrained classifier FLDA, and their corresponding disparity levels stabilise
accordingly. Both Fair-FLDA and Fair-FLDAc satisfy their respective fairness criteria without sig-
nificant compromise in classification accuracy.

Real data. For the real dataset, we use the 2005-2006 National Health and Nutrition Examina-
tion Survey data (CDC, 2006), where the sensitive attribute is race and the classification task is
to determine if an individual is under 20 or over 50 years old based on the quantile function of
intensity values. Results are plotted in the 4-6th columns in Figure 2, with details and additional
experiments presented in Appendices A.1 and A.5. It shows that the FLDA exhibits substantial un-
fairness, whereas the Fair-FLDA effectively controls the median disparity. In terms of probabilistic
disparity control, the 95% empirical quantile of the disparity for Fair-FLDAc slightly exceeds δ
with the default choice of the calibration constant under DO. We recommend tuning the calibration
parameter to achieve more reliable probabilistic disparity control (Appendix A.5). The classification
errors of Fair-FLDA and Fair-FLDAc remain comparable to that of the FLDA, demonstrating that
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Figure 2: From left to right: medians of classification errors, medians and 95% quantiles of the
disparity measures, in the simulated (1st-3rd columns) and real data (4-6th columns). Orange dots:
FLDA; blue stars: Fair-FLDA; pink triangles: Fair-FLDAc; red solid line: oracle Bayes classifier;
grey dashed line: y = x.

our fairness-aware classifiers effectively mitigate unfairness while maintaining competitive classifi-
cation accuracy.

5 Discussions

In this paper, we use the publicly available NHANES dataset as a representative data example to
demonstrate the effectiveness of our method. It is worth noting that our approach is broadly appli-
cable to a wide range of functional data classification problems where fairness is a concern. For
example, the Siena Scalp EEG dataset in the PhysioNet database contains EEG recordings from
male and female subjects and can serve as a natural application of our fair functional classifier,
where the response variable can be defined as the occurrence of a seizure. Overall, our method
offers a principled and broadly applicable tool for fair classification in functional data analysis.

We envisage several potential extensions. Firstly, our framework and Fair-FLDA algorithm depend
on the availability of the sensitive features, which may be restricted in certain practical settings
due to privacy concerns. When sensitive features A are available during training but not available
during prediction, we provide necessary steps to extend our algorithm in Appendix B. However,
when A is not available even during the training process, more refined methods for inferring the
sensitive features would be necessary, see Appendix B for additional discussion. Secondly, in many
scenarios, the Radon–Nikodym derivatives dPa,1/dPa,0 are not explicitly known and easy to work
with. To address this, a natural strategy during implementation is to approximate it using the density
ratios of projection scores (e.g. Bongiorno and Goia, 2016; Dai et al., 2017). Thirdly, in reality,
functions can only be discretely observed over sampling grids. Investigating the effect of sparsity
on the excess risk under fairness constraints remains an intriguing area.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction, we claim that we provide a fair Bayes opti-
mal classifier for functional data, with a by-product being some finite-sample analysis for
the functional classification problems without fairness constraints. Our methods are pro-
posed in Section 2.3, with theoretical justifications in Section 3 and numerical evidence in
Section 4 and Appendix A.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We explained our assumptions right after the assumption statements in Sec-
tion 3, with discussions on some simplification due to notational simplicity and how to
relax them. A main limitation of our method is the reliance on the Radon–Nikodym deriva-
tive. We explained how our method proceeds when it is not tractable in Remark 1 and
demonstrates the numerical performances in Appendix A.3.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We collect assumptions in Assumptions 1 and 2 and the proofs for all theo-
retical results are presented in Appendices C to H.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In this paper we proposed a classifier, with numerical justification done in
a wide range of simulations and a real data analysis. The code producing all numerical
results is included in the submission. In particular, both the paper and the code include
clear description on how to reproduce the algorithm.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have submitted code including those generating all the numerical results
in this paper. The real dataset is obtained from https://wwwn.cdc.gov/nchs/nhanes/
ContinuousNhanes/Default.aspx?BeginYear=2005.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 4 and Appendix A.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
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Answer: [Yes]

Justification: To conserve space, we report the medians over 500 Monte Carlo trials in each
simulation settings, rather than mean accompanied with error bars. However, all results can
be obtained from the submitted code.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix A.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper fully conforms with the NeurIPS Code
of Ethics.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper proposed a fairness-aware classifier, which aims to tackle the
issues when the classification is partially based on sensitive traits, leading to inequality in
society. This paper however stays as a methodological and theoretical paper, we hence do
not envisage negative societal impacts.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We believe that the paper poses no such risk.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper does not use existing assets.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: We provide the full implementation code in the Supplementary Material, with
a README file that outlines the usage instructions and implementation details.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are only used to polish some texts.
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Technical Appendices and Supplementary Material

All technical details and additional numerical results are collected in the Appendices. Detailed
simulation settings and additional experimental results are collected in Appendix A. We present
proofs and properties related to the Bayes optimal classifier f?D,δ in Appendix C. The proof of
Theorem 3 is collected in Appendix D, with the proofs of Theorems 5 and 6 presented in Appendix E.
All results related to class probability and eigenspace estimation can be found in Appendices F and
G. For completeness, necessary technical lemmas are included in Appendix H.

Throughout the appendix, with a slight abuse of notation, unless specifically stated otherwise, let
c1, C1, c2, C2, . . . > 0 denote absolute constants whose values may vary from place to place. For
a, b ∈ R, write a ∧ b = min{a, b}. For an R-valued random variable X and k ∈ [2], let ‖X‖ψk

denote the Orlicz-ψk norm, i.e. ‖X‖ψk
= inf{t > 0 : E[exp({|X|/t}k)] ≤ 2}.

A Further details of numerical experiments

The figure labels are consistent with those used in Figure 2 in the main text, unless otherwise spec-
ified. We implemented all methods in R (version 4.3.1). Experiments were conducted on a server
equipped with an Intel(R) Xeon(R) Platinum 8280 CPU @ 2.70GHz (28 cores) and 503GB of RAM.
The source code is provided in the Supplementary Material.

A.1 Detailed setup of Section 4

Simulation. For the simulation results, we generate (Y,A) ∈ {0, 1}⊗2 according to the distribu-
tions P(A = 1) = 0.7,P(Y = 1|A = 0) = 0.4 and P(Y = 1|A = 1) = 0.7. Given Y = y and
A = a, generate the functional covariate Xa,y(t) as Xa,y(t) = µa,y(t) +

∑50
k=1 ζa,kφk(t), where

φk(t) =
√
2 cos(kπt), ζa,k ∼ N(0, λa,k), λ0,k = k−2, λ1,k = 2k−2, and the mean functions are

specified as follows,

µ0,0 = µ1,0 = 0, µ0,1(t) =

50∑
k=1

0.8(−1)kk−βφk(t), µ1,1(t) =

50∑
k=1

√
2(−1)kk−βφk(t).

Let n denote the size of the training sample. We implement the proposed fairness-aware classifier
under two calibration settings,

• Fair-FLDA: calibration constant set to 0;
• Fair-FLDAc: calibration constant set to min{

√
2 log(1/ρ)/n, δ}, with ρ = 0.05.

Truncation levels are selected via 5-fold cross-validation, specifically by minimising the average
classification error associated with the unconstrained classifier.

During implementation, the training set D is randomly split into two equal-sized subsets, D1 ∪ D2.
One subset is used to estimate η̂a and π̂a,y , while the other is used to estimate the threshold τ̂ . Let
f̂1 denote the classifier estimated using D1 for model estimation and D2 for threshold calibration,
and let f̂2 denote the classifier constructed with the roles of D1 and D2 reversed. To mitigate
the randomness caused by random splitting, we adopt a cross-fitting approach and define the final
probabilistic classifier as the average f̂ = (f̂1 + f̂2)/2.

Real data. For the real data analysis, we apply the proposed method to data from the 2005-2006
National Health and Nutrition Examination Survey (CDC, 2006). Further details about this dataset
can be found in Lin et al. (2023). Following the preprocessing steps in Lin et al. (2023), we exclude
observations with questionable data reliability according to NHANES protocol, remove observations
with intensity values higher than 1000 or equal to 0, and retain subjects with at least 100 remaining
observations. The response variable is whether an individual is under 20 or over 50 years old, with
the quantile function of intensity values as the functional covariate. The sensitive attribute refers
to race, categorised as non-Hispanic white and non-Hispanic black. The final dataset consists of
3252 instances, which we randomly split into equal-sized training and test subsets. The methods are
implemented following the same procedures described for simulation experiments.
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A.2 Additional simulation results under Gaussian models

Results under varying sample sizes. We evaluate the model from Appendix A.1 under vary-
ing sample sizes. As shown in Figures 3-5, the excess risk of both Fair-FLDA and Fair-FLDAc

decreases with increasing n. Moreover, with larger n, the difference between Fair-FLDA and
Fair-FLDAc in disparity control becomes less significant.

Error-unfairness trade-off. We illustrate the error-unfairness trade-off in Figures 6-8. There is
only a single point in each figure for FLDA, as it does not incorporate any fairness correction.
Both Fair-FDA and Fair-FLDAc demonstrate comparable trade-offs between classification error
and unfairness, since they are both derived from the Bayes optimal fair classifier.

Results under β = 2. We evaluate the methods under the Gaussian model with β = 2, while
keeping other model parameters consistent with those in Appendix A.1. The patterns of disparity
control are similar to those observed under β = 1.5. As illustrated in Figures 9-11, the classification
errors are generally higher compared to the case of β = 1.5, due to the lower signal-to-noise ratio.
Nonetheless, the excess risk decreases more rapidly with increasing n for larger values of β, aligning
well with our theoretical results.
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Figure 3: Disparity DO results under the Gaus-
sian model, β = 1.5. Top: n = 1000; middle:
n = 2000; bottom: n = 5000.
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Figure 4: Disparity PD results under the Gaussian
model, β = 1.5. Top: n = 1000; middle: n =
2000; bottom: n = 5000.

A.3 Simulation results under non-Gaussian models

Although the proposed fairness-aware classifier is established based on the explicit form of the
Radon–Nikodym derivative under Gaussian assumptions, it remains applicable in more general sce-
narios. However, when the Gaussian assumption is violated, the proposed classifier may no longer
be Bayes optimal. To assess its performance beyond the Gaussian setting, we generate non-Gaussian
stochastic processes by sampling ζa,k ∼ λ

1/2
a,kUnif(−

√
3,
√
3), while keeping all other model pa-

rameters identical to those in Section A.1.

The results are presented in Figures 12-14. Despite the lack of Bayes optimality guarantees in this
setting, the Fair-FLDA and Fair-FLDAc continue to exhibit effective disparity control and satisfac-
tory classification accuracy. This robustness highlights the practical utility of our approach in more
general, non-Gaussian scenarios.

A.4 Results under perfect classification

Functional data exhibit a unique property known as perfect classification, where the classification
error can vanish, a phenomenon that does not typically arise in multivariate data. To evaluate the
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Figure 5: Disparity DD results under the Gaus-
sian model, β = 1.5. Top: n = 1000; middle:
n = 2000; bottom: n = 5000.
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Figure 6: Error-unfairness trade-off for DO under
the Gaussian model, β = 1.5. Left: n = 1000;
middle: n = 2000; right: n = 5000.
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Figure 7: Error-unfairness trade-off for PD under
the Gaussian model, β = 1.5. Left: n = 1000;
middle: n = 2000; right: n = 5000.
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Figure 8: Error-unfairness trade-off for DD under
the Gaussian model, β = 1.5. Left: n = 1000;
middle: n = 2000; right: n = 5000.
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Figure 9: Disparity DO results under the Gaus-
sian model, β = 2. Top: n = 1000; middle:
n = 2000; bottom: n = 5000
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Figure 10: Disparity PD results under the Gaus-
sian model, β = 2. Top: n = 1000; middle:
n = 2000; bottom: n = 5000.
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Figure 11: Disparity DD results under the Gaus-
sian model, β = 2. Top: n = 1000; middle:
n = 2000; bottom: n = 5000.
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Figure 12: Disparity DO results under the non-
Gaussian model, β = 1.5. Top: n = 1000; mid-
dle: n = 2000; bottom: n = 5000.
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Figure 13: Disparity PD results under the non-
Gaussian model, β = 1.5. Top: n = 1000; mid-
dle: n = 2000; bottom: n = 5000.
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Figure 14: Disparity DD results under the non-
Gaussian model, β = 1.5. Top: n = 1000; mid-
dle: n = 2000; bottom: n = 5000.

performance of our algorithm in such scenarios, we consider the Gaussian model in Appendix A.1
with β = 0.5, under which the signal-to-noise ratio is sufficiently high to mimic the perfect classifi-
cation regime. For class probabilities, we examine two settings: (I) P(Y = 1|A = 0) = 0.4,P(Y =
1|A = 1) = 0.7; and (II) P(Y = 1|A = 0) = P(Y = 1|A = 1) = 0.5, while keeping all other
model parameters in Appendix A.1 unchanged.

As discussed in Remark 2, under setting (I), the classical unconstrained Bayes classifier is automat-
ically fair with respect to DO and PD. In setting (II), it is automatically fair with respect to all the
three disparity measures DO, PD and DD. To visualise this difference, we plot DD as a function of
τ in Figure 15.

The results are presented in Figures 16-19. Under the disparity measures DO and PD in setting
(I), the classification errors of the fairness-aware classifiers are nearly zero, and the median disparity
levels converge to zero across all values of δ as n increases. This confirms that our approach naturally
reduces to the classical FLDA classifier in such automatically fair cases. In contrast, under DD in
setting (I), the fact that |DD(τ)| ≡ 0.3 indicates that it is infeasible to achieve lower disparity levels
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in this setting. By comparison, in setting (II), the unconstrained Bayes classifier is automatically fair
under DD, and the empirical results exhibit a similar pattern to those observed for DO and PD in
setting (I).

Overall, in perfect classification cases, our proposed algorithm continues to perform comparably to
the oracle fairness-aware Bayes optimal classifier, further highlighting its effectiveness and adapt-
ability.
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Figure 15: Oracle disparity DD versus τ . Left: (I); right: (II).
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Figure 16: Disparity DO results under (I). Top:
n = 1000; middle: n = 2000; bottom: n =
5000.
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Figure 17: Disparity PD results under (I). Top:
n = 1000; middle: n = 2000; bottom: n =
5000.

A.5 Additional results for real data

In practice, we recommend tuning the calibration parameter κ in Fair-FLDAc to achieve more re-
liable probabilistic disparity control. Specifically, we select the smallest value of κ such that the
empirical 1 − ρ quantile of the disparity remains below the pre-specified threshold δ. To estimate
this empirical quantile, we resort to random splitting. The data are randomly divided into two sub-
sets, with one used to estimate the fairness-aware classifier, and the other to evaluate the resulting
disparity. We repeat the process multiple times, e.g, 100 times, and the empirical 1 − ρ quantile is
then computed from the empirical distribution of observed disparities.

The results obtained using the tuned calibration levels are reported in Figure 20. As shown, the
tuned Fair-FLDAc consistently maintains disparity below δ with probability at least 1 − ρ, except
for a slight violation under one small δ under DO. This demonstrates the overall effectiveness of the
proposed tuning strategy.

A.6 Numerical comparisons with multivariate baselines

To the best of our knowledge, our work is the first to derive the Bayes optimal fair classifier and
to establish explicit convergence rates in the context of functional data. There are no existing fair
functional classifiers available for direct comparison.
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Figure 18: Disparity DD results under (I). Top:
n = 1000; middle: n = 2000; bottom: n =
5000.
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Figure 19: Disparity DD results under (II). Top:
n = 1000; middle: n = 2000; bottom: n =
5000.
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Figure 20: Results under NHANES with tuned calibration parameters over 100 Monte Carlo runs.

For comparison, we have incorporated additional baselines following a “dimension reduction + stan-
dard fair classification” strategy. Specifically, we first apply functional principal component analysis
to extract features, and then employ fair classification methods designed for multivariate data. These
include three post-processing methods FPIR (Zeng et al., 2024a), PPF (Chen et al., 2024) and PPOT
(Xian et al., 2023), and one pre-processing approach FUDS (Zeng et al., 2024a), with default pa-
rameters as in the open source code of Zeng et al. (2024a).

Results in Tables 1 and 2 show that our proposed fair classifier, Fair-FLDA, consistently achieves
the lowest classification errors while effectively controlling disparity under the pre-specified levels.
In contrast, the other four baseline methods exhibit higher classification errors. In particular, PPF
shows poor disparity control when δ = 0, and FUDS fails to adequately control disparity on the
NHANES dataset. These extensive numerical results highlight the superiority and practical necessity
of our method for fair functional classification.

A.7 Results on effects of eigenspace estimation and data splitting

Eigenspace estimation. Eigenspace estimation plays a fundamental role in FDA. We justify the
performance of eigenspace estimation from both theoretical and numerical perspectives. In our
paper, the theoretical guarantees for eigenfunction and eigenvalue estimations have been established
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Table 1: Median classification error and DD over 500 runs under Gaussian β = 1.5, n = 1000.

δ 0.00 0.05 0.10 0.15 0.20

Err UDD,50 Err UDD,50 Err UDD,50 Err UDD,50 Err UDD,50

Fair-FLDA 0.234 0.022 0.227 0.048 0.219 0.098 0.213 0.149 0.208 0.197

FPIR 0.276 0.024 0.269 0.039 0.264 0.080 0.258 0.122 0.253 0.168

PPF 0.240 0.323 0.269 0.039 0.264 0.080 0.258 0.121 0.253 0.167

PPOT 0.275 0.023 0.269 0.040 0.264 0.080 0.258 0.122 0.253 0.168

FUDS 0.276 0.030 0.269 0.040 0.263 0.087 0.256 0.142 0.251 0.195

Table 2: Median classification error and DD over 500 runs under NHANES.

δ 0.00 0.05 0.10 0.15 0.20

Err UDD,50 Err UDD,50 Err UDD,50 Err UDD,50 Err UDD,50

Fair-FLDA 0.314 0.021 0.305 0.048 0.297 0.099 0.289 0.149 0.285 0.200

FPIR 0.385 0.016 0.377 0.050 0.369 0.101 0.360 0.151 0.354 0.200

PPF 0.343 0.722 0.378 0.047 0.369 0.097 0.361 0.144 0.355 0.193

PPOT 0.385 0.016 0.377 0.050 0.369 0.101 0.360 0.150 0.353 0.200

FUDS 0.403 0.157 0.371 0.189 0.358 0.254 0.351 0.317 0.346 0.349

in Lemmas 35 and 36, respectively. These results are optimal, matching the minimax rate established
in Wahl (2022) up to poly-logarithmic factors.

To support our theory, we provide further simulation results in Table 3, where Fair-FLDA refers
to the proposed classifier in Section 4; Truth uses true eigenfunctions and eigenvalues; Fourier
replaces estimated eigenfunctions with Fourier basis and eigenvalues with covariance projection
scores. Overall, disparity control is comparable across methods, with all meeting their fairness
criteria. Comparing the results of Fair-FLDA with Truth, we see that the misclassification errors of
the proposed classifiers are even smaller than those obtained without eigenspace estimation. This
improvement is attributed to the data-adaptive nature of the estimated eigenfunctions, which captures
more variance than the fixed true basis. Substituting the estimated eigenfunctions with the pre-
specified Fourier basis leads to a noticeable increase in misclassification errors.

Data splitting. The calibration data are primarily introduced for technical convenience to bring
independence among samples in our theoretical studies. In practice, our Algorithm 1 can be imple-
mented by executing both steps S1 and S2 on the whole dataset. In all numerical experiments in
Section 4, we mimic the effect of sample splitting via a cross-fitting approach detailed in Appendix

Table 3: Median classification error and DO over 500 runs under Gaussian β = 1.5, n = 1000.

δ Fair-FLDA Truth Fourier

Error UDO,50 Error UDO,50 Error UDO,50

0.00 0.221 0.029 0.235 0.028 0.274 0.027

0.05 0.213 0.049 0.228 0.055 0.266 0.053

0.10 0.207 0.099 0.223 0.101 0.261 0.101

0.15 0.203 0.150 0.220 0.140 0.256 0.151

0.20 0.200 0.191 0.218 0.172 0.253 0.200
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Table 4: Effects of data splitting for Fair-FLDA in the real and simulated (Gaussian with n =
1000, β = 1.5) datasets. Results are reported as the median over 500 iterations. NoSplit: the results
of Fair-FLDA applied without data splitting.

δ Fair-FLDA NoSplit

Error UDO,50 Error UDO,50

Simulated data

0.00 0.221 0.029 0.211 0.029

0.05 0.213 0.049 0.203 0.059

0.10 0.207 0.099 0.198 0.110

0.15 0.203 0.150 0.195 0.164

0.20 0.200 0.191 0.193 0.208

Real data

0.00 0.291 0.034 0.284 0.039

0.05 0.286 0.054 0.281 0.056

0.10 0.284 0.099 0.278 0.101

0.15 0.282 0.148 0.277 0.152

0.20 0.281 0.196 0.276 0.205

A.1, where two classifiers are trained by alternating the roles of data used for model estimation and
threshold calibration, and then averaged. To further illustrate the effect of sample splitting, we in-
clude additional numerical results on both simulated and real datasets in Table 3 below. Although
the reduction in sample size from data splitting slightly increases the misclassification error, the un-
fairness measure under NoSplit is usually higher than the threshold δ due to the dependence of the
data used in training and calibration.

B Extensions of our method

Our framework in Section 2.2 can be naturally extended to settings where the sensitive feature is
unavailable at testing, as well as to multi-class classification problems.

Extension to missing sensitive attributes. The extension to missing sensitive attributes during
testing stage consists of three steps.

Step 1. A key ingredient in our framework, when sensitive features are available, is that both the
misclassification error R and disparity measure D are linear in classifiers f : X × A → [0, 1]. To
extend the framework to settings where sensitive attributes are unavailable at testing, it is necessary
to show that R and D remain linear to classifiers f : X → [0, 1], which is solely defined on X .
Following a similar idea as the proof of Proposition 1, it can be verified that DO, PD and DD are
still linear and of the form D(f) =

∫
X f(x)wX,D(x)dPX|Y=0(x), where wX,D : X → R is a

weight function.

Step 2. By the generalised Neyman–Pearson lemma and a similar argument to the one used in the
proof of Theorem 2, we can derive an explicit formula for δ-fair Bayes optimal classifier of the form
f?D(x) = 1[π1

dPX|Y =1

dPX|Y =0
(x)− π0 ≥ τ?wx,D(x)].

Step 3. Construct a plug-in classifier. Further to the estimation in Algorithm 1, an additional non-
parametric estimator can be used to estimate the probability of A given X and Y.

When sensitive information is not available in training time, the fair classification is a challenging
problem because, without direct access to sensitive information, it is difficult to learn and correct for
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the potential biases. Relatively few works have studied this issue. Existing approaches (Lahoti et al.,
2020; Zhao et al., 2022; Veldanda et al., 2024) generally rely on the assumption that standard features
X are sufficiently informative, allowing bias mitigation through indirect inference for protected
attributes. In Kallus et al. (2022), it is further shown that various disparities remain unidentifiable
when X lacks sufficient information.

In our work, we focus on developing a principled framework for achieving fairness in functional data
classification when sensitive features are available, either during both training and testing or at least
in the training stage. Extending our framework to settings where sensitive attributes are completely
unavailable is an important direction for future research.

Extension to multi-class classification. Consider predictive disparity as an example. For a multi-
class sensitive attribute a ∈ A = [1, . . . , |A|], motivated by the proof of Theorem 2 in our paper
and Theorem 4.8 in Zeng et al. (2024a), we conjecture that the generalised Neyman-Pearson lemma
leads to f?PD(x, a) = 1[

dPa,1

dPa,0
(x) ≥ πa,0+τ

?
a

πa,1
], where the threshold τ?a is selected in a way similar to

Equation (3).

C Proofs for Bayes optimal fairness-aware classifier

C.1 Proof of Proposition 1

Proof of Proposition 1.

• For DO, we are to show that sDO,a = 2a − 1 and bDO,a = 0. It can be seen from the
following that

DO(f) = P{Ŷf (X, 1) = 1|A = 1, Y = 1} − P{Ŷf (X, 0) = 1|A = 0, Y = 1}

=

∫
X
f(x, 1)

dP1,1

dP1,0
(x) dP1,0(x)−

∫
X
f(x, 0)

dP0,1

dP0,0
(x) dP0,0(x).

• For PD, we are to show that sPD,a = 0 and bPD,a = 2a − 1. It can be seen from the
following that

PD(f) = P{Ŷf (X, 1) = 1|A = 1, Y = 0} − P{Ŷf (X, 0) = 1|A = 0, Y = 0}

=

∫
X
f(x, 1) dP1,0(x)−

∫
X
f(x, 0) dP0,0(x).

• For DD, we are to show that sDD,a = (2a− 1)πa,1/πa and bDD,a = (2a− 1)πa,0/πa. It
can be seen from the following that

DD(f) = P{Ŷf (X, 1) = 1|A = 1} − P{Ŷf (X, 0) = 1|A = 0}

=

∫
X
f(x, 1)

π1,1
π1

dP1,1

dP1,0
(x) dP1,0(x) +

∫
X
f(x, 1)

π1,0
π1

dP1,0(x)

−
∫
X
f(x, 0)

π0,1
π0

dP0,1

dP0,0
(x) dP0,0(x)−

∫
X
f(x, 0)

π0,0
π0

dP0,0(x)

=

∫
X
f(x, 1)

(
π1,1
π1

dP1,1

dP1,0
(x) +

π1,0
π1

)
dP1,0(x)

−
∫
X
f(x, 0)

(
π0,1
π0

dP0,1

dP0,0
(x) +

π0,0
π0

)
dP0,0(x).
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C.2 Proof of Theorem 2

Proof of Theorem 2. If |D(0)| ≤ δ, the unconstrained Bayes optimal classifier satisfies the fairness
constraint. Therefore, we have τ?D,δ = 0 and the δ-fair Bayes optimal classifier is given by f?D,δ =
gD,0.

If D(0) > δ, by Proposition 7, we have D(τ?D,δ) = δ. Moreover, τ?D,δ > 0. By Lemma 10,

gD,τ?
D,δ

= argmin
f∈F

{
R(f) : |D(f)| ≤

τ?D,δD(τ?D,δ)

|τ?D,δ|

}
= argmin

f∈F

{
R(f) : |D(f)| ≤ δ

}
.

Analogously, we can establish the claim when D(0) < −δ. This completes the proof.

C.3 Proof of Proposition 4

Proof of Proposition 4. Let

Λa = 〈X − µa,0, µa,1 − µa,0〉Ka
=

∞∑
j=1

(ζa,j − θa,0,j)(θa,1,j − θa,0,j)

λa,j
.

Then, by standard properties of Gaussina processes, we have that

Λa|{A = a, Y = 0} ∼ N

(
0,

∞∑
j=1

(θa,1,j − θa,0,j)
2

λa,j

)
,

Λa|{A = a, Y = 1} ∼ N

( ∞∑
j=1

(θa,1,j − θa,0,j)
2

λa,j
,

∞∑
j=1

(θa,1,j − θa,0,j)
2

λa,j

)
.

The proposition then follows by a similar argument as the one used in the proof of Theorem 2 in
Berrendero et al. (2018) and the format of f?D,δ in (4).

C.4 Auxiliary results

Proposition 7. Recall that D(τ) = D(gD,τ ), where gD,τ is defined as

gD,τ (x, a) = 1

{
(πa,1 − τsD,a)

dPa,1
dPa,0

(x) ≥ πa,0 + τbD,a

}
.

Then, under the assumptions in Theorem 2, the following properties hold.

(i) The disparity D(τ) is continuous and non-increasing.

(ii) The misclassification R(gD,τ ) is non-increasing on (−∞, 0) and non-decreasing on
(0,+∞).

Proof of Proposition 7.

(i) Note that by Definition 4,

D(τ) =
∑

a∈{0,1}

∫
X
gD,τ (x, a)

{
sD,a

dPa,1
dPa,0

(x) + bD,a

}
dPa,0(x).

Since dPa,1/dPa,0(x) is a continuous random variable given A = a ∈ {0, 1} and Y =
y ∈ {0, 1}, we have that the function τ 7→ PX|A=a,Y=y

(
(πa,1− τsD,a)dPa,1/dPa,0(x) >

πa,0 + τbD,a
)

is continuous for a ∈ {0, 1} and y ∈ {0, 1}. Thus, the function τ 7→ D(τ)
is continuous.

Define

Ea,+ =

{
x ∈ X : sD,a

dPa,1
dPa,0

(x) + bD,a > 0

}
,
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and

Ea,− =

{
x ∈ X : sD,a

dPa,1
dPa,0

(x) + bD,a < 0

}
.

Let τ1 < τ2. For a ∈ {0, 1} and x ∈ X ,

gD,τ1(x, a)− gD,τ2(x, a) =


1

{
τ1 <

πa,1
dPa,1
dPa,0

(x)−πa,0

sD,a
dPa,1
dPa,0

(x)+bD,a

≤ τ2

}
, x ∈ Ea,+;

−1
{
τ1 ≤

πa,1
dPa,1
dPa,0

(x)−πa,0

sD,a
dPa,1
dPa,0

(x)+bD,a

< τ2

}
, x ∈ Ea,−;

0, otherwise.

We then have

D(τ1)−D(τ2)

=
∑

a∈{0,1}

∫
X
{gD,τ1(x, a)− gD,τ2(x, a)}

{
sD,a

dPa,1
dPa,0

(x) + bD,a

}
dPa,0(x)

=
∑

a∈{0,1}

∫
x∈Ea,+

1

{
τ1 <

πa,1
dPa,1

dPa,0
(x)− πa,0

sD,a
dPa,1

dPa,0
(x) + bD,a

≤ τ2

}

·
{
sD,a

dPa,1
dPa,0

(x) + bD,a

}
dPa,0(x)

−
∑

a∈{0,1}

∫
x∈Ea,−

1

{
τ1 ≤

πa,1
dPa,1

dPa,0
(x)− πa,0

sD,a
dPa,1

dPa,0
(x) + bD,a

< τ2

}
{
sD,a

dPa,1
dPa,0

(x) + bD,a

}
dPa,0(x)

≥ 0.

Consequently, the function τ 7→ D(τ) is non-increasing.

(ii) We first consider τ1 < τ2 < 0. If x ∈ Ea,+,

1

{
τ1 <

πa,1
dPa,1

dPa,0
(x)− πa,0

sD,a
dPa,1

dPa,0
(x) + bD,a

≤ τ2

}{
πa,0 − πa,1

dPa,1
dPa,0

(x)

}

≥ −τ2
{
sD,a

dPa,1
dPa,0

(x) + bD,a

}
1

{
τ1 <

πa,1
dPa,1

dPa,0
(x)− πa,0

sD,a
dPa,1

dPa,0
(x) + bD,a

≤ τ2

}
≥ 0.

If x ∈ Ea,−,

1

{
τ1 ≤

πa,1
dPa,1

dPa,0
(x)− πa,0

sD,a
dPa,1

dPa,0
(x) + bD,a

< τ2

}{
πa,0 − πa,1

dPa,1
dPa,0

(x)

}

≤ −τ2
{
sD,a

dPa,1
dPa,0

(x) + bD,a

}
1

{
τ1 ≤

πa,1
dPa,1

dPa,0
(x)− πa,0

sD,a
dPa,1

dPa,0
(x) + bD,a

< τ2

}
≤ 0.

Then, by Lemma 8, it holds that

R(gD,τ1)−R(gD,τ2)
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=
∑

a∈{0,1}

∫
X
{gD,τ1(x, a)− gD,τ2(x, a)}

{
πa,0 − πa,1

dPa,1
dPa,0

(x)

}
dPa,0(x)

=
∑

a∈{0,1}

∫
x∈Ea,+

1

{
τ1 <

πa,1
dPa,1

dPa,0
(x)− πa,0

sD,a
dPa,1

dPa,0
(x) + bD,a

≤ τ2

}

·
{
πa,0 − πa,1

dPa,1
dPa,0

(x)

}
dPa,0(x)

−
∑

a∈{0,1}

∫
x∈Ea,−

1

{
τ1 ≤

πa,1
dPa,1

dPa,0
(x)− πa,0

sD,a
dPa,1

dPa,0
(x) + bD,a

< τ2

}

·
{
πa,0 − πa,1

dPa,1
dPa,0

(x)

}
dPa,0(x)

≥ 0.

Therefore, τ 7→ R(gD,τ ) is non-increasing on (−∞, 0).

Consider 0 ≤ τ1 < τ2. If x ∈ Ea,+,

1

{
τ1 <

πa,1
dPa,1

dPa,0
(x)− πa,0

sD,a
dPa,1

dPa,0
(x) + bD,a

≤ τ2

}{
πa,0 − πa,1

dPa,1
dPa,0

(x)

}

≤ −τ1
{
sD,a

dPa,1
dPa,0

(x) + bD,a

}
1

{
τ1 <

πa,1
dPa,1

dPa,0
(x)− πa,0

sD,a
dPa,1

dPa,0
(x) + bD,a

≤ τ2

}
≤ 0.

If x ∈ Ea,−,

1

{
τ1 ≤

πa,1
dPa,1

dPa,0
(x)− πa,0

sD,a
dPa,1

dPa,0
(x) + bD,a

< τ2

}{
πa,0 − πa,1

dPa,1
dPa,0

(x)

}

≥ −τ1
{
sD,a

dPa,1
dPa,0

(x) + bD,a

}
1

{
τ1 ≤

πa,1
dPa,1

dPa,0
(x)− πa,0

sD,a
dPa,1

dPa,0
(x) + bD,a

< τ2

}
≥ 0.

Then, we have

R(gD,τ1)−R(gD,τ2)

=
∑

a∈{0,1}

∫
X
{gD,τ1(x, a)− gD,τ2(x, a)}

{
πa,0 − πa,1

dPa,1
dPa,0

(x)

}
dPa,0(x)

=
∑

a∈{0,1}

∫
x∈Ea,+

1

{
τ1 <

πa,1
dPa,1

dPa,0
(x)− πa,0

sD,a
dPa,1

dPa,0
(x) + bD,a

≤ τ2

}

·
{
πa,0 − πa,1

dPa,1
dPa,0

(x)

}
dPa,0(x)

−
∑

a∈{0,1}

∫
x∈Ea,−

1

{
τ1 ≤

πa,1
dPa,1

dPa,0
(x)− πa,0

sD,a
dPa,1

dPa,0
(x) + bD,a

< τ2

}

·
{
πa,0 − πa,1

dPa,1
dPa,0

(x)

}
dPa,0(x)
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≤ 0.

Therefore, τ 7→ R(gD,τ ) is non-decreasing on [0,+∞).

Lemma 8. For any classifier f : X ×A → [0, 1], we have

R(f) =
∑

a∈{0,1}

∫
X
f(x, a)

{
πa,0 − πa,1

dPa,1
dPa,0

(x)

}
dPa,0(x) + P(Y = 1).

Proof. By definition, we have that

R(f) =
∑

a,y∈{0,1}

P{Ŷf (X, a) 6= y|A = a, Y = y}P (A = a, Y = y)

=
∑

a∈{0,1}

[
E{1− f(X, a)|A = a, Y = 1}P (A = a, Y = 1)

+ E{f(X, a)|A = a, Y = 0}P (A = a, Y = 0)
]

=
∑

a∈{0,1}

{∫
X
f(x, a)dPa,0(x)πa,0 −

∫
X
f(x, a)dPa,1(x)πa,1

}

+
∑

a∈{0,1}

P(A = a, Y = 1)

=
∑

a∈{0,1}

∫
X
f(x, a)

{
πa,0 − πa,1

dPa,1
dPa,0

(x)

}
dPa,0(x) + P(Y = 1).

Lemma 9. For the bilinear disparity measures DO, PD and DD, it holds that

πa,1 − τ?D,δsD,a > 0, and πa,0 + τ?D,δbD,a > 0,

with sD,a and bD,a defined in Definition 4.

Proof.

1. DO: In this case, it suffices to show that −π0,1 < τ?DO,δ < π1,1. If τ = π1,1, then
gDO,π1,1(x, 1) = 0 for all x ∈ X , and,

DO(π1,1) = DO(gDO,π1,1
) = −P

{(
π0,1 + π1,1

)dP0,1

dP0,0
(x) > π0,0

∣∣∣A = 0, Y = 1
}
≤ 0.

If τ = −π0,1, then gDO,−π0,1(x, 0) = 0 for all x ∈ X . Then

DO(gDO,−π0,1
) = P

{(
π1,1 + π0,1

)dP1,1

dP1,0
(x) > π1,0

∣∣∣A = 1, Y = 1
}
≥ 0.

Note that if |DO(0)| ≤ δ, then τ?DO,δ = 0. By Proposition 7(i), if DO(0) > δ, then
0 < τ?DO,δ < π1,1. If DO(0) < −δ, then −π0,1 < τ?DO,δ < 0. Therefore, we conclude
that −π0,1 < τ?DO,δ < π1,1.

2. PD In this case, it suffices to show that −π1,0 < τ?PD,δ < π0,0. Note that if τ = −π1,0, we
have gPD,−π1,0

(x, 1) = 1 for all x ∈ X . Then,

PD(gPD,−π1,0
) = 1− P

{
π0,1

dP0,1

dP0,0
(x) > π0,0 + π1,0

∣∣∣A = 0, Y = 0
}
≥ 0.
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If τ = π0,0, we have gPD,π0,0(x, 0) = 1 for all x ∈ X . Then,

PD(gPD,π0,0) = P
{
π1,1

dP1,1

dP1,0
(x) > π1,0 + π0,0

∣∣∣A = 1, Y = 0
}
− 1 ≤ 0.

Note that if |PD(0)| ≤ δ, then τ?PD,δ = 0. By Proposition 7 (i), if PD(0) > δ, then
0 < τ?PD,δ < π0,0. If PD(0) < −δ, then −π1,0 < τ?PD,δ < 0. Therefore, we conclude
that −π1,0 < τ?PD,δ < π0,0.

3. DD: In this case, it suffices to show that |τ?DD,δ| < min{π0, π1}. Note that if τ = π1 then
gDD,π1

(x, 1) = 0 for all x ∈ X . Also,

DD(π1) = −P
{(
π0,1 +

π1π0,1
π0

)dP0,1

dP0,0
(x) > π0,0 −

π1π0,0
π0

∣∣∣A = 0
}

{
= −1, π1 ≥ π0,

≤ 0, π1 < π0.

If τ = π0, then gDD,π0
(x, 0) = 1 for all x ∈ X . Then

DD(π0) = P
{(
π1,1 −

π0π1,1
π1

)dP1,1

dP1,0
(x) > π1,0 +

π0π1,0
π1

∣∣∣A = 1
}
− 1 ≤ 0.

Moreover, if τ = −π0, then gDD,−π0
(x, 0) = 0 for all x ∈ X . And,

DD(−π0) = P
{(
π1,1 +

π0π1,1
π1

)dP1,1

dP1,0
(x) > π1,0 −

π0π1,0
π1

∣∣∣A = 1
}

{
≥ 0, π1 ≥ π0,

= 1, π1 < π0.

If τ = −π1, then gDD,−π1(x, 1) = 1 for all x ∈ X . Then,

DD(−π1) = 1− P
{(
π0,1 −

π1π0,1
π0

)dP0,1

dP0,0
(x) > π0,0 +

π1π0,0
π0

∣∣∣A = 0
}
≥ 0.

If |DD(0)| ≤ δ, then τ?DD,δ = 0. By Proposition 7 (i), if DD(0) > δ, then 0 < τ?DD,δ <

min{π0, π1}. If DD(0) < −δ, then max{−π0,−π1} < τ?DD,δ < 0. Therefore, we have
|τ?DD,δ| < min{π0, π1}.

Lemma 10. Recall that gD,τ is defined in Theorem 2 and D(τ) = D(gD,τ ). For any fixed τ ∈ R,

gD,τ = argmin
f∈F

{
R(f) :

τD(f)

|τ |
≤ τD(τ)

|τ |

}
.

Moreover, for all classifiers f ′ ∈ argminf∈F
{
R(f) : τD(f)/|τ | ≤ τD(τ)/|τ |

}
, f ′ = gD,τ

almost surely with respect to PX,A. In addition, if τ ∈ [min(0, τ?D,0),max(0, τ?D,0)],

gD,τ = argmin
f∈F

{
R(f) : |D(f)| ≤ τD(τ)

|τ |

}
.

Proof. If τ = 0, then the result follows because gD,0 is the unconstrained Bayes optimal classifier.

If τ 6= 0, take φ0(x, a) = πa,1dPa,1/dPa,0(x)− πa,0 and φ1(x, a) = sD,adPa,1/dPa,0(x) + bD,a
in Lemma 43.

Write

gD,τ (x, a) = 1

{
φ0(x, a) > |τ |τφ1(x, a)

|τ |

}
.
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Define

Acc(f) = 1−R(f) =
∑

a∈{0,1}

∫
X
f(x, a)

{
πa,1

dPa,1
dPa,0

(x)− πa,0

}
dPa,0(x) + P(Y = 0),

D̃τ (f) =
∑

a∈{0,1}

∫
X
f(x, a)

τ

|τ |
φ1(x, a)dPa,0(x).

Let

Fτ,= =

{
f ∈ F : D̃τ (f) =

τD(τ)

|τ |

}
; Fτ,|·|,≤ =

{
f ∈ F : |D̃τ (f)| ≤

τD(τ)

|τ |

}
;

Fτ,≤ =

{
f ∈ F : D̃τ (f) ≤

τD(τ)

|τ |

}
.

Since |τ | ≥ 0, by Lemma 43,
gD,τ ∈ argmax

f∈Fτ,≤

Acc(f).

Moreover, since dPa,1/dPa,0(x) is a continuous random variable given A = a ∈ {0, 1} and Y =
y ∈ {0, 1}, we have PX|A=a,Y=y

(
πa,1dPa,1/dPa,0(x)−πa,0 = τ{sD,adPa,1/dPa,0(x)+bD,a}

)
=

0. Thus, for all f ′ ∈ argmaxf∈Fτ,≤
Acc(f), f ′ = gD,τ almost surely with respect to PX,A.

By Lemma 43, we have gD,τ ∈ argmaxf∈Fτ,=
Acc(f). By result (i) of Proposition 7, if τ?D,0 ≥ 0,

then we have D(τ) ≥ 0 for τ ∈ [0, τ?D,0]. If τ?D,0 ≤ 0, then D(τ) ≤ 0 for τ ∈ [τ?D,0, 0]. Therefore,
when τ ∈ [min(0, τ?D,0),max(0, τ?D,0)], we have τD(τ) ≥ 0. Consequently, gD,τ ∈ Fτ,= ⊆
Fτ,|·|,≤ ⊆ Fτ,≤, we have

max
f∈Fτ,≤

Acc(f) = Acc(gD,τ ) = max
f∈Fτ,=

Acc(f) ≤ max
f∈Fτ,|·|,≤

Acc(f) ≤ max
f∈Fτ,≤

Acc(f).

Thus, we conclude that

gD,τ = argmax
f∈Fτ,|·|,≤

Acc(f) = argmin
f∈F

{
R(f) : |D(f)| ≤ τD(τ)

|τ |

}
.

D Proof of Theorem 3

Proof of Theorem 3. Conditioning on the training data D̃, by the Dvoretzky–Kiefer–Wolfowitz in-
equality (Dvoretzky et al., 1956; Massart, 1990), we have, for any a ∈ {0, 1}, that

P

[
sup
τ

∣∣∣ ∫
X
ĝD,τ (x, a)

{
sD,a

dP̂a,1

dP̂a,0
(x) + bD,a

}
dP̂a,0(x)

−
∫
X
ĝD,τ

{
sD,a

dPa,1
dPa,0

(x) + bD,a

}
dPa,0(x)

∣∣∣ ≥ ε

]
. exp{−(na,1 ∧ na,0)ε2},

where ĝD,τ is given in Algorithm 1. Thus, by taking ε �
√
log(1/η)/(na,1 ∧ na,0) and applying

a union bound argument over a ∈ {0, 1} and the event in Lemma 32, the theorem holds by taking
another expectation with respect to D̃.

E Proofs for excess risk control

To simplify the notation, we write τ̂ = τ̂D,δ and τ? = τ?D,δ in this section. For a ∈ {0, 1}, denote

Ta(X) =
∞∑
j=1

{ (ζa,j − θa,0,j)(θa,1,j − θa,0,j)

λa,j
− (θa,1,j − θa,0,j)

2

2λa,j

}
− log

{ πa,0
πa,1 − τ?(2a− 1)

}
,

(6)
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and

T̂a(X) =

∞∑
j=1

{ (ζ̂a,j − θ̂a,0,j)(θ̂a,1,j − θ̂a,0,j)

λ̂a,j
− (θ̂a,1,j − θ̂a,0,j)

2

2λ̂a,j

}
− log

{ π̂a,0
π̂a,1 − τ̂(2a− 1)

}
.

We further let

Ha(X) =

∞∑
j=1

{ (ζa,j − θa,0,j)(θa,1,j − θa,0,j)

λa,j
− (θa,1,j − θa,0,j)

2

2λa,j

}
, (7)

and

Ĥa(X) =

J∑
j=1

{ (ζ̂a,j − θ̂a,0,j)(θ̂a,1,j − θ̂a,0,j)

λ̂a,j
− (θ̂a,1,j − θ̂a,0,j)

2

2λ̂a,j

}
. (8)

With the above notation, we can rewrite Ta(X) and T̂a(X) as

Ta(X) = Ha(X)− log
{ πa,0
πa,1 − τ?(2a− 1)

}
,

and

T̂a(X) = Ĥa(X)− log
{ π̂a,0
π̂a,1 − τ̂(2a− 1)

}
.

E.1 Proof of Theorem 5

Proof of Theorem 5. Theorem 5 is a general version of Corollary 6. Most of the proof follows from
a similar argument to the one used in the proof of Corollary 6. We only include the difference here.

Upper bound on |τ̂ − τ?|. Consider the following event, ED = {supτ∈R |D̂(τ) − D(τ)| ≤ εD}.
Then, condition on ED happening, by the argument in the proof of Lemma 14, we have that with
probability at least 1− η that

CD|τ̂ − τ?|
1
γ . εD1{τ? 6= 0}.

Thus, it holds that |τ̂ − τ?| . εγD1{τ?D 6= 0}.

Upper bound on dE(f̂D,δ, f?D,δ). The proof follows from a similar argument leading to (11) and
it suffices to verify P{Eτ} ∧ P(ET0

∩ ET1
) ≥ 1 − η, with Eτ , ET0

and ET1
defined in the proof of

Corollary 6. To control Eτ , since by assumption, it holds that πa,1−τ?sD,a ≥ c and πa,0+τ?bD,a ≥
c, we have

π̂a,1 − τ̂ sD,a ≥ πa,1 − επ − τ?sD,a − |sD,a|ετ ≥ c

2
,

where the first inequality follows from the fact that τ? and τ̂ share the same sign, and the last
inequality follows from the fact that |sD,a| � 1 and επ, ετ � 1. Similarly, we can verify that
π̂a,0 + τ̂ bD,a > c/2. To control ETa

for a ∈ {0, 1}, by a similar argument as the one in Lemma 12,
pick εTa

. εη+επ+ετ , then by a union bound argument, we have that P{Eτ}∧P{ET0
∩ET1

} ≥ 1−η.
(11) thus leads to dE(f̂D,δ, f?D,δ) . (εη + επ + ετ )

2.

Upper bound on |R(f̂D,δ)−R(f?D,δ)|. This follows directly from the fact that

|R(f)−R(f?D,δ)| = dE(f, f
?
D,δ) + |τ?{D(f?D,δ)−D(f)}|

. dE(f, f
?
D,δ) + |τ?|

√
log(1/η)

n
.
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E.2 Proof of Corollary 6

Corollary 11 (Excess risk control under disparity of opportunity). Suppose that the training and
calibration data D ∪ D̃ are generated under Assumptions 1 and 2. For any δ ≥ 0, the classifier
f̂DO,δ output by Algorithm 1 satisfies the following properties.

1. For any truncation level J ∈ N+ in S1 in Algorithm 1 such that

J & log2(J) and J2α+2 log2(J) log(ñ/η̃) . ñ, (9)

and any arbitrarily small constants η ∈ (0, n−1/2 ∧ ñ(α−2β+1)/(2β−α)), denote

εη =



√
Jα−2β+4 log(ñ/η) log(1/η)

ñ +
√
Jα−2β+1 log(1/η), α+1

2 < β ≤ α+2
2 ,√

J2 log(ñ/η) log(1/η)
ñ +

√
Jα−2β+1 log(1/η), α+2

2 < β ≤ α+3
2 ,√

J log(ñ/η) log(1/η)
ñ +

√
Jα−2β+1 log(1/η), β > α+3

2 .

Then, it holds with probability at least 1− η that

dE(f̂DO,δ, f
?
DO,δ) . ε2η +

log(1/η)1{τ?D,δ 6= 0}
n

,

if we additionally assume that DO(0) /∈ (δ − εη −
√

log(1/η)/n, δ] ∪ [−δ,−δ + εη +√
log(1/η)/n).

2. If we further assume that n � ñ � N up to poly-logrithmic factors and select the trunca-
tion level J in Algorithm 1 as

J � N
1

2α+2 · 1
{α+ 1

2
< β <

3α+ 2

2

}
+N

1
2β−α · 1

{
β ≥ 3α+ 2

2

}
,

then it holds that

dE(f̂DO,δ, f
?
DO,δ) =

Op

(
N

α−2β+1
2α+2

)
, α+1

2 < β < 3α+2
2 ,

Op

(
N

α−2β+1
2β−α

)
, β ≥ 3α+2

2 ,

and
|R(f̂DO,δ)−R(f?DO,δ)| ≤ dE(f̂DO,δ, f

?
DO,δ) + |τ?DO,δ|Op

(
N− 1

2

)
.

Proof of Corollary 11. For any classifier f : X × {0, 1} → [0, 1], by Proposition 1, the fairness-
aware excess risk under DO is defined as

dDOE (f, f?D,δ) =
∑

a∈{0,1}

∫
X

{
f(x, a)− f?D,δ(x, a)

}
·
[
πa,0 +

{
τ?(2a− 1)− πa,1

}dPa,1
dPa,0

(x)
]
dPa,0(x).

With the notation in (6), we have that

dPa,1
dPa,0

=
πa,0

πa,1 − τ?(2a− 1)
exp

{
Ta(X)

}
.

In addition, consider the following event Eτ̂ = {τ̂ ∈ (−π̂0,1, π̂1,1)}. When Eτ̂ holds, we can then
control the fairness-aware excess risk dDOE (f̂ , f?) by

dDOE (f̂ , f?)

=

∫
T̂1(x)≥0

π1,0 +
(
τ? − π1,1

)dP1,1

dP1,0
(x) dP1,0(x)

33



−
∫
T1(x)≥0

π1,0 +
(
τ? − π1,1

)dP1,1

dP1,0
(x) dP1,0(x)

+

∫
T̂0(x)≥0

π0,0 +
(
− τ? − π0,1

)dP0,1

dP0,0
(x) dP0,0(x)

−
∫
T0(x)≥0

π0,0 +
(
− τ? − π0,1

)dP0,1

dP0,0
(x) dP0,0(x)

≤
∫
T̂1(x)≥0,T1(x)<0

π1,0 +
(
τ? − π1,1

)dP1,1

dP1,0
(x) dP1,0(x)

+

∫
T̂0(x)≥0,T0(X)<0

π0,0 +
(
− τ? − π0,1

)dP0,1

dP0,0
(x) dP0,0(x)

= π1,0 ·
∫
T1(x)−T̂1(x)≤T1(x)<0

1− eT1(x) dP1,0(x)

+ π0,0 ·
∫
T0(x)−T̂0(x)≤T0(x)<0

1− eT0(x) dP0,0(x)

= π1,0 · EP1,0

[{
1− eT1(X)

}
1
{
T1(X)− T̂1(X) ≤ T1(X) < 0

}]
+ π0,0 · EP0,0

[{
1− eT0(X)

}
1
{
T0(X)− T̂0(X) ≤ T0(X) < 0

}]
= π1,0 · EP1,0

[{
1− eT1(X)

}
1
{
T1(X)− T̂1(X) ≤ T1(X) < 0

}
1
{
|T1(X)− T̂1(X)| ≤ εT1

}]

+ π1,0 · EP1,0

[{
1− eT1(X)

}
1
{
T1(X)− T̂1(X) ≤ T1(X) < 0

}
1
{
|T1(X)− T̂1(X)| > εT1

}]

+ π0,0 · EP0,0

[{
1− eT0(X)

}
1
{
T0(X)− T̂0(X) ≤ T0(X) < 0

}
1
{
|T0(X)− T̂0(X)| ≤ εT0

}]

+ π0,0 · EP0,0

[{
1− eT0(X)

}
1
{
T0(X)− T̂0(X) ≤ T0(X) < 0

}
1
{
|T0(X)− T̂0(X)| > εT0

}]
.

For any a ∈ {0, 1}, write Xa ∼ GP(µa,0,Ka). We further denote

ETa
=

{
|T̂a(Xa)− Ta(Xa)| ≤ εT

}
. (10)

Consequently, we can further upper bound the fairness-aware excess risk by

dDOE (f̂ , f?) ≤ π1,0 · εT · EP1,0

[
1
{
− εT ≤ T1(X) < 0

}]
+ π0,0 · εT · EP0,0

[
1
{
− εT ≤ T0(X) < 0

}]
+ π0,0P(EcT0

) + π1,0P(EcT1
)

≤ ε2T ·
(

sup
−εT≤t<0

f0,T1
(t)

)
+ ε2T ·

(
sup

−εT≤t<0
f0,T0

(t)
)
+ P(EcT0

) + P(EcT1
)

. ε2T · 1

‖µ1,1 − µ1,0‖K1

exp
{
−

‖µ1,1 − µ1,0‖4K1
∨ 1

‖µ1,1 − µ1,0‖2K1

}

+ ε2T · 1

‖µ0,1 − µ0,0‖K0

exp
{
−

‖µ0,1 − µ0,0‖4K0
∨ 1

‖µ0,1 − µ0,0‖2K0

}
+ P(EcT0

) + P(EcT1
)
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. ε2T + P(EcT0
∪ EcT1

). (11)

where for a ∈ {0, 1}, f0,Ta
denotes the density for Ta given Y = 0, the first inequality holds

as 1 − exp{Ta(x)} ≤ −Ta(X) ≤ T̂a(X) − Ta(X) ≤ εTa and the last inequality follows from
Lemma 17 and the fact that

Ta(Xa)|Y = 0 ∼ N
(
−

‖µa,1 − µa,0‖2Ka

2
− log

{ πa,0
πa,1 − τ?(2a− 1)

}
, ‖µa,1 − µa,0‖2Ka

)
.

In the rest of the proof, it suffices to control the probability for Eτ , ET1
, ET0

happening. By Lemmas
14, 17, 31 and a union bound argument, it holds with probability at least 1− η/4 that

π̂1,1 − τ̂ ≥ π1,1 − τ? −
{√ log(1/η)

ñ
+ εH +

√
log(1/η)

n

}
≥ c− c

2
=
c

2
.

Analogously, we can also show that with probability at least 1− η/4 that, when τ̂ < 0,

π̂0,1 + τ̂ ≥ π0,1 + τ? −
{√ log(1/η)

ñ
+ εH +

√
log(1/η)

n

}
≥ c

2
.

Moreover, taking εT = εH +
√

log(1/η)/n · 1{|DO(0)| > δ − εH −
√
log(1/η)/n} in (10), by

Lemma 12 and an additional union bound argument, it holds that P{Eτ} ∧ P(ET0 ∩ ET1) ≥ 1 − η.
Thus, conditioning on Eτ happening, we have with probability at least 1− η that

dDOE (f̂ , f?) .

{
εH +

√
log(1/η)

n
· 1

{
|DO(0)| > δ − εH −

√
log(1/η)

n

}}2

+ η

.

{
εH +

√
log(1/η)

n
· 1

{
|DO(0)| > δ − εH −

√
log(1/η)

n

}}2

,

whenever η ∈ (0, n−1/2 ∧ ñ(α−2β+1)/(2β−α)).

E.3 Control of |T̂a(X)− Ta(X)|

Lemma 12. Suppose the training and calibration data D ∪ D̃ are generated under Assumptions 1
and 2. Then for any a ∈ {0, 1}, J ∈ N+ such that

J & log2(J) and J2α+2 log2(J) log(ñ/η̃) . ñ,

and any constant η ∈ (0, 1/2), it holds that

Pa,0

[
|T̂a(X)− Ta(X)| . εH +

√
log(1/η)

n
· 1

{
|DO(0)| > δ − εH −

√
log(1/η)

n

}]
≥ 1− η,

where εH is defined in (12).

Proof. It follows from the triangle inequality that

|T̂a(X)− Ta(X)| ≤ |Ĥa(X)−Ha(X)|+ | log(π̂a,0)− log(πa,0)|

+ | log{π̂a,1 − τ̂(2a− 1)} − log{πa,1 − τ?(2a− 1)}|.
For X ∼ GP(µa,0,Ka), consider the following events,

Eπ =
{
|π̂a,y − πa,y| .

√
log(1/η)

ñ
, a, y ∈ {0, 1}

}
,

EH =
{
|Ĥa(X)−Ha(X)| . εH , a ∈ {0, 1}

}
,

and

Eτ =

{
|τ̂ − τ?| .

{
εH +

√
log(1/η)

n

}
· 1

{
|DO(0)| > δ − εH −

√
log(1/η)

n

}}
.
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By Lemmas 13, 14, 31 and a union bound argument, we have that for any a ∈ {0, 1}, Pa,0(Eπ ∩
EH ∩ Eτ ) ≥ 1 − η. The rest of the proof is constructed conditioning on Eπ ∩ EH ∩ Eτ happening.
Therefore, we have that

|T̂a(X)− Ta(X)| . |Ĥa(X)−Ha(X)|+ |π̂a,0 − πa,0|+ |π̂a,1 − πa,1|+ |τ̂ − τ?|

. εH +

√
log(1/η)

n
· 1

{
|DO(0)| > δ − εH −

√
log(1/η)

n

}
.

E.4 Control of |Ĥa(X)−Ha(X)|

Lemma 13. Under the same condition of Lemma 12, for any a, y ∈ {0, 1} and small constant
η ∈ (0, 1/2), it holds that

Pa,y
{
|Ĥa(X)−Ha(X)| . εH

}
≥ 1− η,

where

εH =



√
Jα−2β+4 log(ñ/η) log(1/η)

ñ +
√
Jα−2β+1 log(1/η) when α+1

2 < β ≤ α+2
2 ,√

J2 log(ñ/η) log(1/η)
ñ +

√
Jα−2β+1 log(1/η), when α+2

2 < β ≤ α+3
2 ,√

J log(ñ/η) log(1/η)
ñ +

√
Jα−2β+1 log(1/η), when β > α+3

2 .

(12)

Proof. Note that

|Ĥa(X)−Ha(X)|

≤
∣∣∣ J∑
j=1

(ζa,j − θa,0,j)(θa,1,j − θa,0,j)

λa,j
−

J∑
j=1

(ζ̂j − θ̂a,0,j)(θ̂a,1,j − θ̂a,0,j)

λ̂a,j

∣∣∣
+
∣∣∣ ∞∑
j=J+1

(ζa,j − θa,0,j)(θa,1,j − θa,0,j)

λa,j

∣∣∣
+
∣∣∣ J∑
j=1

(θa,1,j − θa,0,j)
2

2λa,j
− (θ̂a,1,j − θ̂a,0,j)

2

2λ̂a,j

∣∣∣
+
∣∣∣ ∞∑
j=J+1

(θa,1,j − θa,0,j)
2

2λa,j

∣∣∣.
In the case whenX ∼ GP(µa,0,Ka), a ∈ {0, 1}, the lemma thus follows by applying a union bound
argument to the results in Lemmas 19, 20 and 30, together with the fact that under Assumptions 2a
and 2c, we have ∣∣∣ ∞∑

j=J+1

(θa,1,j − θa,0,j)
2

2λa,j

∣∣∣ . Jα−2β+1.

The case when X ∼ GP(µa,1,Ka), a ∈ {0, 1} can be justified similarly, hence is omitted here.

E.5 Control of |τ̂ − τ?|

Lemma 14. Under the same condition as Lemma 12, for any small constant η ∈ (0, 1/2), it holds
with probability at least 1− η that

|τ̂ − τ?| .
{
εH +

√
log(1/η)

n

}
· 1

{
|DO(0)| > δ − εH −

√
log(1/η)

n

}
,

where εH is explicitly defined in (12).
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Proof. Denote EDO = {supτ∈R |D̂O(τ)−DO(τ)| ≤ εDO}. Taking

εDO � εH +

√
log(1/η)

n
,

it holds from Lemma 15 that P(EcDO) ≤ η. The rest of the proof is divided into four cases.

Case 1: When |DO(0)| ≤ δ − εDO. In this case, we have that τ? = 0. Moreover, under the event
EDO, |D̂O(0)| ≤ δ, then τ̂ = 0. Consequently, |τ̂ − τ?| = 0.

Case 2 : When τ? = 0 and δ − εDO < |DO(0)| ≤ δ. In this case, we have that

P(τ̂ − τ? > ε) = P(τ̂ > ε)

≤ P(τ̂ > ε, EDO) + P(EcDO)

≤ P(τ̂ > ε, D̂O(0) > δ, EDO) + P(EcDO)

≤ P
(
D̂O(ε) > δ, EDO

)
+ P(EcDO)

≤ P
(
D̂O(ε)−DO(ε) > δ −DO(0) + c1ε, EDO

)
+ P(EcDO)

≤ P(EcDO),
where the second inequality follows as τ̂ > 0, the third inequality follows from Lemma 18, the
fourth inequality follows as DO(ε) ≤ DO(0) − c1ε by Lemma 16 and the last inequality follows
by taking ε > εDO/c1. Analogously,

P(τ̂ < τ? − ε) = P(τ̂ < −ε)

≤ P(τ̂ < −ε, EDO) + P(EcDO)

= P(τ̂ < −ε, D̂O(0) < −δ, EDO) + P(EcDO)

≤ P
(
D̂O(−ε) < −δ, EDO

)
+ P(EcDO)

≤ P
(
D̂O(−ε)−DO(−ε) < −δ −DO(0)− c1ε, EDO

)
+ P(EcDO)

≤ P(EcDO),
where the second inequality follows from Lemma 18, the third inequality follows from the fact that
DO(−ε) ≥ DO(0) + c1ε by Lemma 16 and the last inequality follows by taking ε > εDO/c1.

Case 3: When DO(τ?) = δ and τ? > 0. In this case, by Proposition 7, it holds that DO(0) > δ .
Hence,

P(τ̂ > τ? + ε) ≤ P
(
τ̂ > τ? + ε, EDO

)
+ P(EcDO)

= P
(
τ̂ > τ? + ε, D̂O(0) > δ, EDO

)
+ P(EcDO)

≤ P
(
D̂O(τ? + ε) > δ, EDO

)
+ P(EcDO)

= P
(
D̂O(τ? + ε)−DO(τ? + ε) > DO(τ?)−DO(τ? + ε), EDO

)
+ P(EcDO)

≤ P(εDO > c1ε) + P(EcDO) = P(EcDO),

where the first equality follows as P(τ̂ > τ? + ε, D̂O(0) ≤ δ) = 0, the second inequality follows
from Lemma 18, the third inequality follows from Lemma 16 and the last equality follows by taking
ε > εDO/c1. Similarly, by taking ε > εDO/c1, it also holds that

P(τ̂ < τ? − ε)

≤ P(τ̂ < τ? − ε, EDO) + P(EcDO)

≤ P
(
D̂O(τ? − ε) ≤ δ, EDO

)
+ P(EcDO)
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= P
(
DO(τ? − ε)− D̂O(τ? − ε) ≥ DO(τ? − ε)−DO(τ?), EDO

)
+ P(EcDO)

≤ P(εDO > c1ε) + P(EcDO)

≤ P(EcDO).

Case 4: When DO(τ?) = −δ and τ? < 0. In this case, it holds that DO(0) < −δ. The rest of the
proof follows similarly to the proof for Case 3, we include them for completeness. For ε > εDO/c1,

P(τ̂ > τ? + ε)

≤ P(τ̂ > τ? + ε, EDO) + P(EcDO)

≤ P(D̂O(τ? + ε) ≥ −δ, EDO) + P(EcDO)

= P(D̂O(τ? + ε)−DO(τ? + ε) ≥ DO(τ?)−DO(τ? + ε), EDO) + P(EcDO)

≤ P(EcDO).

Since P(τ̂ < τ? − ε, D̂O(0) ≥ −δ) = 0, for ε > εDO/c1,

P(τ̂ < τ? − ε) ≤ P(τ̂ < τ? − ε, EDO) + P(EcDO)

= P(τ̂ < τ? − ε, D̂O(0) < −δ, EDO) + P(EcDO)

≤ P(D̂O(τ? − ε) < −δ, EDO) + P(EcDO)

= P(D̂O(τ? − ε)−DO(τ? − ε) < −δ −DO(τ? − ε), EDO) + P(EcDO)

≤ P(EcDO).

The lemma thus follows by combining results from all cases together.

E.6 Control of |D̂O(τ)−DO(τ)|

Lemma 15. Under the same condition of Lemma 12, for any small constant η ∈ (0, 1/2), it holds
with probability at least 1− η that

sup
τ∈R

|D̂O(τ)−DO(τ)| . εH +

√
log(1/η)

n
,

where εH is explicitly defined in (12).

Proof. Note that, by triangle inequality,

sup
τ∈R

|D̂O(τ)−DO(τ)|

≤ sup
τ∈R

|D̂O(τ)− E{D̂O(τ)|D̃}|+ sup
τ∈R

|E{D̂O(τ)|D̃} −DO(τ)|

= (I) + (II). (13)

Step 1: Upper bound on (I). To control (I), by the Dvoretzky–Kiefer–Wolfowitz inequality
(Dvoretzky et al., 1956; Massart, 1990), we have that

P
[
sup
τ∈R

∣∣∣∣ 1

n1,1

n1,1∑
i=1

1
{
(π̂1,1 − τ)η̂1(X1,1,i) > π̂1,0

}
− P

{
(π̂1,1 − τ)η̂1(X1,1,i) > π̂1,0|D̃

}∣∣∣∣ ≥ ε

∣∣∣∣D̃]
≤ 2 exp{−2n1,1ε

2},
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P
[
sup
τ∈R

∣∣∣∣ 1

n0,1

n0,1∑
i=1

1
{
(π̂0,1 + τ)η̂0(X0,1,i) > π̂0,0

}
− P

{
(π̂0,1 + τ)η̂0(X0,1,i) > π̂0,0|D̃

}∣∣∣∣ ≥ ε

∣∣∣∣D̃]
≤ 2 exp{−2n0,1ε

2}.
Thus, by a union bound argument, it holds with probability at least 1− η/2 that

sup
τ∈R

|D̂O(τ)− E{D̂O(τ)|D̃}| .

√
log(1/η)

n1,1
+

√
log(1/η)

n0,1
.

√
log(1/η)

n
, (14)

where the last inequality follows by further conditioning on the event in Lemma 32 and a union
bound argument.

Step 2: Upper bound on (II). Note that

E{D̂O(τ)|D̃}

= P1,1

{
(π̂1,1 − τ)η̂1(X) > π̂1,0|D̃

}
− P0,1

{
(π̂0,1 + τ)η̂0(X) > π̂0,0|D̃

}

=



P1,1

[
log{η̂1(X)} > log(

π̂1,0

π̂1,1−τ )
∣∣D̃]

− P0,1

[
log{η̂0(X)} > log(

π̂0,0

π̂0,1+τ
)
∣∣D̃]

,

τ ∈ (−π̂0,1, π̂1,1),
P1,1

[
log{η̂1(X)} > log(

π̂1,0

π̂1,1−τ )
∣∣D̃]

,

τ ≤ −π̂0,1,
−P0,1

[
log{η̂0(X)} > log(

π̂0,0

π̂0,1+τ
)
∣∣D̃]

,

τ ≥ π̂1,1.

We denote Π = (−min(π0,1, π̂0,1),min(π1,1, π̂1,1)). In the rest of the proof, to control (II), we
will consider various cases.

Step 2-Case 1: τ ∈ Π. Note that for τ ∈ Π,

E{D̂O(τ)|D̃}

= P
{
(π̂1,1 − τ)η̂1(X1,1,i) > π̂1,0|D̃

}
− P

{
(π̂0,1 + τ)η̂0(X0,1,i) > π̂0,0|D̃

}
= P1,1

{
(π̂1,1 − τ)η̂1(X) > π̂1,0|D̃

}
− P0,1

{
(π̂0,1 + τ)η̂0(X) > π̂0,0|D̃

}
=

∫
Ĥ1(x)−log{π̂1,0/(π̂1,1−τ)}>0

dP1,1(x)−
∫
Ĥ0(x)−log{π̂0,0/(π̂0,1+τ)}>0

dP0,1(x),

with Ĥa defined in (8). Similarly, we can rewrite DO(τ) as

DO(τ) =

∫
H1(x)−log{π1,0/(π1,1−τ)}>0

dP1,1(x)−
∫
H0(x)−log{π0,0/(π0,1+τ)}>0

dP0,1(x),

with Ha defined in (7). For a ∈ {0, 1} and X ∼ GP(µa,1,Ka), consider the following event,

EHa
=

{
sup
τ∈Π

∣∣∣Ĥa(X)− log
( π̂a,0
π̂a,1 + (1− 2a)τ

)
−Ha(X)+ log

( πa,0
πa,1 + (1− 2a)τ

)∣∣∣
≤ εH , a ∈ {0, 1}

}
.

Note that

sup
τ∈Π

∣∣∣Ĥa(X)− log
( π̂a,0
π̂a,1 + (1− 2a)τ

)
−Ha(X) + log

( πa,0
πa,1 + (1− 2a)τ

)∣∣∣
= sup

τ∈Π

{
|Ĥa(X)−Ha(X)|+ | log(π̂a,0)− log(πa,0)|
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+ | log(π̂a,1 + (1− 2a)τ)− log(πa,1 + (1− 2a)τ)|
}

. |Ĥa(X)−Ha(X)|+ |π̂a,0 − πa,0|+ |π̂a,1 − πa,1|.

Thus, picking εH as the one in Equation (12), by Lemmas 13, 31 and a union bound argument, we
have that P0,1(EH0

) + P1,1(EH1
) ≥ 1− η/2.

For any τ ∈ Π, it holds that

E{D̂O(τ)|D̃} −DO(τ)

=

∫
Ĥ1(x)−log{π̂1,0/(π̂1,1−τ)}>0

dP1,1(x)−
∫
H1(x)−log{π1,0/(π1,1−τ)}>0

dP1,1(x)

+

∫
H0(x)−log{π0,0/(π0,1+τ)}>0

dP0,1(x)−
∫
Ĥ0(x)−log{π̂0,0/(π̂0,1+τ)}>0

dP0,1(x)

≤
∫
0>H1(x)−log{π1,0/(π1,1−τ)}>H1(x)−log{π1,0/(π1,1−τ)}−Ĥ1(x)+log{π̂1,0/(π̂1,1−τ)}

dP1,1(x)

+

∫
0<H0(x)−log{π0,0/(π0,1+τ)}<H0(x)−log{π0,0/(π0,1+τ)}−Ĥ0(x)+log{π̂0,0/(π̂0,1+τ)

dP0,1(x)

≤ εH

[
1

‖µ1,1 − µ1,0‖K1

exp
{
−

‖µ1,1 − µ1,0‖4K1
∨ 1

‖µ1,1 − µ1,0‖2K1

}

+
1

‖µ0,1 − µ0,0‖K0

exp
{
−

‖µ0,1 − µ0,0‖4K0
∨ 1

‖µ0,1 − µ0,0‖2K0

}]
(15)

� εH , (16)

where the last inequality follows from a similar argument as the one leading to (11). Using a similar
argument, we can also achieve a same (up to constant order) upper bound forDO(τ)−E{D̂O(τ)|D̃}
as the one in (16).

Step 2-Case 2: When −π0,1 < τ ≤ −π̂0,1. Note that in this case, by standard calculation, we have
that

DO(τ) =

∫
H1(x)−log{π1,0/(π1,1−τ)}>0

dP1,1(x)−
∫
H0(x)−log{π0,0/(π0,1+τ)}>0

dP0,1(x),

and

E{D̂O(τ)|D̃} =

∫
Ĥ1(x)−log{π̂1,0/(π̂1,1−τ)}>0

dP1,1(x).

Consequently,

sup
−π0,1<τ≤−π̂0,1

∣∣E{D̂O(τ)|D̃} −DO(τ)
∣∣

≤ sup
−π0,1<τ≤−π̂0,1

∣∣∣ ∫
Ĥ1(x)−log{π̂1,0/(π̂1,1−τ)}>0

dP1,1(x)−
∫
H1(x)−log{π1,0/(π1,1−τ)}>0

dP1,1(x)
∣∣∣

+ sup
−π0,1<τ≤−π̂0,1

∣∣∣ ∫
H0(x)−log{π0,0/(π0,1+τ)}>0

dP0,1(x)
∣∣∣

= (A) + (B).

Note that (A) can be controlled using a similar argument as the one used in Step 1 and we
only present the upper bound on (B) in the sequel. Consider the event Eπ = {|π0,1 − π̂0,1| .
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√
log(1/η)/ñ}. By Lemma 31, it holds that P(Eπ) ≥ 1− η/2. The rest of the proof is constructed

conditioning on the event Eπ happening. Therefore, we have that

(B) = sup
−π0,1<τ≤−π̂0,1

P0,1

{
H0(X) > log

( π0,0
π0,1 + τ

)}
≤ P0,1

{
H0(X) > log

( π0,0
π0,1 − π̂0,1

)}

≤ P0,1

{
H0(X) > log

(√ C2
p ñ

log(1/η)

)}

= P0,1

{
H0(X)− EP0,1{H0(X)} > log

(√ C2
p ñ

log(1/η)

)
−

‖µ0,1 − µ0,0‖2K0

2

}

. exp
[
− 1

‖µ0,1 − µ0,0‖2K0

log2
(√ ñ

log(1/η)

)]
≤ (17) . εH , (17)

where the third inequality follows from the standard property of Gaussian random variables.

The proof for the other cases follows a similar argument as the one used in Step2-Case 2, hence it is
omitted here. The lemma thus follows by substituting the results in (14) and (16) (or (17)) into (13)
and a union bound argument.

E.7 Behaviour of DO around τ?

Lemma 16. Recall DO given in Definition 3. Under Assumption 2, for any ε in a small neighbour-
hood of 0, there exists absolute constants c1, c2 > 0 such that

c1ε ≤ DO(τ?)−DO(τ? + ε) ≤ c2ε, c1ε ≤ DO(τ? − ε)−DO(τ?) ≤ c2ε.

Proof. Note that for any τ ∈ R,
DO(τ)

= P
{
π1,1η1(X)− π1,0 > τη1(X)|A = 1, Y = 1

}
− P

{
π0,1η0(X)− π0,0 > −τη0(X)|A = 0, Y = 1

}

=


P1,1

[
log{η1(X)} > log(

π1,0

π1,1−τ )
]
− P0,1

[
log{η0(X)} > log(

π0,0

π0,1+τ
)
]
,

−π0,1 < τ < π1,1,

P1,1

[
log{η1(X)} > log(

π1,0

π1,1−τ )
]
, τ ≤ −π0,1,

−P0,1

[
log{η0(X)} > log(

π0,0

π0,1+τ
)
]
, τ ≥ π1,1.

=



Φ

[
‖µ1,1−µ1,0‖K1

2 − log
{
π1,0/(π1,1−τ)

}
‖µ1,1−µ1,0‖K1

]
− Φ

[
‖µ0,1−µ0,0‖K0

2 − log
{
π0,0/(π0,1+τ)

}
‖µ0,1−µ0,0‖K0

]
,

−π0,1 < τ < π1,1,

Φ

[
‖µ1,1−µ1,0‖K1

2 − log
{
π1,0/(π1,1−τ)

}
‖µ1,1−µ1,0‖K1

]
,

τ ≤ −π0,1,

−Φ

[
‖µ0,1−µ0,0‖K0

2 − log
{
π0,0/(π0,1+τ)

}
‖µ0,1−µ0,0‖K0

]
,

τ ≥ π1,1.

By standard calculation, the derivative of DO with respect to τ is

DO′(τ) = − 1

‖µ1,1 − µ1,0‖K1
(π1,1 − τ)

· φ
[
‖µ1,1 − µ1,0‖K1

2
−

log
{
π1,0/(π1,1 − τ)

}
‖µ1,1 − µ1,0‖K1

]
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− 1

‖µ0,1 − µ0,0‖K0(π0,1 + τ)
· φ

[
‖µ0,1 − µ0,0‖K0

2
−

log
{
π0,0/(π0,1 + τ)

}
‖µ0,1 − µ0,0‖K0

]
, (18)

where φ is the standard normal pdf. For any ε in a small right neighborhood of 0, by Lemma 17, it
holds that −π0,1 + c < τ? − ε, τ?, τ? + ε < π1,1 − c, where c > 0 is a small constant. Thus, by
(18), we have that −c2 ≤ DO′(τ?− ε), DO′(τ?), DO′(τ?+ ε) ≤ −c1 for some universal constants
c1, c2 > 0. Hence, by the mean value theorem, we have that

c2ε ≥ DO(τ?)−DO(τ? + ε) ≥ c1ε, c2ε ≥ DO(τ? − ε)−DO(τ?) ≥ c1ε.

E.8 Auxiliary results

In this subsection, without loss of generality, we assume that X ∼ GP(µa,0,K) for a ∈ {0, 1}. The
case when X ∼ GP(µa,1,K) can be justified similarly.

Lemma 17. Recall the definition of τ? in (3) with D chosen as DO. Under Assumptions 1 and 2,
there exists a small absolute constant 0 < c < min{π0,1, π1,1} such that

−π0,1 + c ≤ τ? ≤ π1,1 − c.

Proof of Lemma 17. By the definition of DO, we have that

DO(τ)

= P
{
π1,1η1(X)− π1,0 > τη1(X)|A = 1, Y = 1

}
− P

{
π0,1η0(X)− π0,0 > −τη0(X)|A = 0, Y = 1

}

=


P1,1

[
log{η1(X)} > log(

π1,0

π1,1−τ )
]
− P0,1

[
log{η0(X)} > log(

π0,0

π0,1+τ
)
]
,

−π0,1 < τ < π1,1,

P1,1

[
log{η1(X)} > log(

π1,0

π1,1−τ )
]
, τ ≤ −π0,1,

−P0,1

[
log{η0(X)} > log(

π0,0

π0,1+τ
)
]
, τ ≥ π1,1.

=



Φ

[
‖µ1,1−µ1,0‖K1

2 − log
{
π1,0/(π1,1−τ)

}
‖µ1,1−µ1,0‖K1

]
− Φ

[
‖µ0,1−µ0,0‖K0

2 − log
{
π0,0/(π0,1+τ)

}
‖µ0,1−µ0,0‖K0

]
,

−π0,1 < τ < π1,1,

Φ

[
‖µ1,1−µ1,0‖K1

2 − log
{
π1,0/(π1,1−τ)

}
‖µ1,1−µ1,0‖K1

]
,

τ ≤ −π0,1,

−Φ

[
‖µ0,1−µ0,0‖K0

2 − log
{
π0,0/(π0,1+τ)

}
‖µ0,1−µ0,0‖K0

]
,

τ ≥ π1,1.

In the case when |DO(0)| ≤ δ, the lemma holds trivially as τ? = 0, and it is automatically bounded
away from the boundary by a small constant. We will divide the following proof by conditioning on
different assumptions.

Let τ0 denote the value such that DO(τ0) = 0. Then in the case when DO(0) > δ, it holds that
τ? > 0 and DO(τ?) = δ. By Proposition 7 and the fact that DO(π1,1) < 0, it must be the case that
0 < τ? < τ0 < π1,1. Consequently, we write τ0 = π1,1 − ε where 0 < ε1 < π1,1, and in the rest of
the proof it suffices to prove that ε1 � 1. By the fact that DO(τ0) = 0 and Φ is a strictly increasing
function, it holds that

‖µ1,1 − µ1,0‖K1

2
−

log
{
π1,0/(π1,1 − τ0)

}
‖µ1,1 − µ1,0‖K1

=
‖µ0,1 − µ0,0‖K0

2
−

log
{
π0,0/(π0,1 + τ0)

}
‖µ0,1 − µ0,0‖K0

,

42



hence implies

‖µ1,1 − µ1,0‖K1

2
−

log
(
π1,0/ε1

)
‖µ1,1 − µ1,0‖K1

=
‖µ0,1 − µ0,0‖K0

2
−

log
{
π0,0/(π0,1 + π1,1 − ε1)

}
‖µ0,1 − µ0,0‖K0

. (19)

Suppose that ε1 is a function of n and ñ such that ε1 ≺ 1. However, in this case log
(
π1,0/ε

)
�

log
{
π0,0/(π0,1+π1,1−ε)

}
� 1, hence (19) never holds when ‖µ0,1−µ0,0‖K0

� ‖µ1,1−µ1,0‖K1
�

1. Thus, we achieve a contradiction, and it must be the case that ε1 = c1 where c1 > 0 is an absolute
constant. Therefore, we have that τ? > 0 and π1,1 − τ? > π1,1 − τ0 = ε1 = c1.

Similarly, when DO(0) < −δ, we have τ? < 0 and DO(τ?) = −δ. With the same notation as
above, by Proposition 7, it must be the case that −π0,1 < −π0,1 + ε2 = τ0 < τ? < 0, where
0 < ε2 < −π0,1. Using a similar argument as above, it holds that

‖µ1,1 − µ1,0‖K1

2
−

log
{
π1,0/(π1,1 + π0,1 − ε2)

}
‖µ1,1 − µ1,0‖K1

=
‖µ0,1 − µ0,0‖K0

2
−

log
(
π0,0/ε2

)
‖µ0,1 − µ0,0‖K0

. (20)

Suppose that ε2 is a function of n and ñ such that ε2 ≺ 1. However, in this case, we have that
log

(
π0,0/ε2

)
� log

{
π1,0/(π1,1+π0,1− ε2)}. Thus (20) never holds and we reach a contradiction.

Hence, we conclude that ε2 = c2 and τ? + π0,1 ≥ τ0 + π0,1 = ε2 = c2. The lemma thus follows by
combining the results in the three cases above.

Lemma 18. Recall the empirical estimator for Disparity of Opportunity

D̂O(τ) =
1

n1,1

n1,1∑
i=1

1
{
(π̂1,1 − τ)η̂1(X1,1,i) > π̂1,0

}
− 1

n0,1

n0,1∑
i=1

1
{
(π̂0,1 + τ)η̂0(X0,1,i) > π̂0,0

}
.

It holds that D̂O is a non-increasing function. Moreover, D̂O(π̂1,1) ≤ 0 and D̂O(−π̂0,1) ≥ 0.

Proof of Lemma 18. Recall that sDO,a = 2a − 1 and bDO,a = 0. Then {τ ∈ R : π̂a,0 + τbD,a ≥
0, π̂a,1 − τsD,a ≥ 0,∀a ∈ {0, 1}} = {τ ∈ R : −π̂0,1 ≤ τ ≤ π̂1,1}. The estimated disparity
function is

D̂O(τ) =
1

n1,1

n1,1∑
i=1

1
{
(π̂1,1 − τ)η̂1(X1,1,i) > π̂1,0

}
− 1

n0,1

n0,1∑
i=1

1
{
(π̂0,1 + τ)η̂0(X0,1,i) > π̂0,0

}

=



1
n1,1

∑n1,1

i=1 1

{
η̂1(X1,1,i) >

π̂1,0

π̂1,1−τ

}
− 1

n0,1

∑n0,1

i=1 1

{
η̂0(X0,1,i) >

π̂0,0

π̂0,1+τ

}
,

τ ∈ (−π̂0,1, π̂1,1),
1
n1,1

∑n1,1

i=1 1

{
η̂1(X1,1,i) >

π̂1,0

π̂1,1−τ

}
,

τ ∈ (−∞,−π̂0,1],

− 1
n0,1

∑n0,1

i=1 1

{
η̂0(X0,1,i) >

π̂0,0

π̂0,1+τ

}
,

τ ∈ [π̂1,1,+∞).

For −π̂0,1 ≤ τ1 < τ2 ≤ π̂1,1,

D̂O(τ1)− D̂O(τ2)

=
1

n1,1

n1,1∑
i=1

1

{
π̂1,0

π̂1,1 − τ1
< η̂1(X1,1,i) ≤

π̂1,0
π̂1,1 − τ2

}

+
1

n0,1

n0,1∑
i=1

1

{
π̂0,0

π̂0,1 + τ2
< η̂0(X0,1,i) ≤

π̂0,0
π̂0,1 + τ1

}
≥ 0.
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For τ1 < τ2 < −π̂0,1,

D̂O(τ1)− D̂O(τ2)

=
1

n1,1

n1,1∑
i=1

1

{
π̂1,0

π̂1,1 − τ1
< η̂1(X1,1,i) ≤

π̂1,0
π̂1,1 − τ2

}
≥ 0.

For π̂1,1 < τ1 < τ2,

D̂O(τ1)− D̂O(τ2)

=
1

n0,1

n0,1∑
i=1

1

{
π̂0,0

π̂0,1 + τ2
< η̂0(X0,1,i) ≤

π̂0,0
π̂0,1 + τ1

}
≥ 0.

Hence, D̂O(τ) is a non-increasing function. Therefore, if |D̂O(0)| ≤ δ, then τ̂ = 0. If D̂O(0) > δ,
then τ̂ ≥ 0. If D̂O(0) < −δ, τ̂ ≤ 0. Moreover, a straight calculation leads to

D̂O(π̂1,1) ≤ 0 and D̂O(−π̂0,1) ≥ 0.

Lemma 19. Conditioning on the training data D̃, under the same condition as the one in Lemma 12,
for any small constant η ∈ (0, 1/2), it holds with probability at least 1− η that∣∣∣ J∑

j=1

(ζ̂a,j − θ̂a,0,j)(θ̂a,1,j − θ̂a,0,j)

λ̂a,j
−

J∑
j=1

(ζa,j − θa,0,j)(θa,1,j − θa,0,j)

λa,j

∣∣∣

.



√
Jα−2β+4 log(ñ/η) log(1/η)

ñ when α+1
2 < β ≤ α+2

2 ,√
J2 log(ñ/η) log(1/η)

ñ , when α+2
2 < β ≤ α+3

2 ,√
J log(ñ/η) log(1/η)

ñ , when β > α+3
2 .

Proof. Note that
J∑
j=1

(ζ̂a,j − θ̂a,0,j)(θ̂a,1,j − θ̂a,0,j)

λ̂a,j
−

∞∑
j=1

(ζa,j − θa,0,j)(θa,1,j − θa,0,j)

λa,j

=

J∑
j=1

(ζ̂a,j − θ̂a,0,j)(θ̂a,1,j − θ̂a,0,j)

λ̂a,j
−

J∑
j=1

(ζa,j − θa,0,j)(θ̂a,1,j − θ̂a,0,j)

λ̂a,j

+

J∑
j=1

(ζa,j − θa,0,j)(θ̂a,1,j − θ̂a,0,j)

λ̂a,j
−

J∑
j=1

(ζa,j − θa,0,j)(θa,1,j − θa,0,j)

λa,j

=

J∑
j=1

(ζ̂a,j − θ̂a,0,j − ζa,j + θa,0,j)(θ̂a,1,j − θ̂a,0,j)

λ̂a,j

+

J∑
j=1

(ζa,j − θa,0,j)
( θ̂a,1,j − θ̂a,0,j

λ̂a,j
− θa,1,j − θa,0,j

λa,j

)
= (I) + (II). (21)

When X ∼ GP(µa,0,K), by standard properties of Gaussian process, it holds that
(ζa,1, . . . , ζa,j)

> ∼ N(0,Λ) where Λ = diag(λ1, . . . , λa,j) and for any j, k ∈ [J ] such that j 6= k,
var(ζa,j) = λa,j ,

var
(
ζ̂a,j − θ̂a,0,j − ζa,j + θa,0,j

)
=

∫ ∫
Ka(s, t)

{
φ̂a,j(s)− φa,j(s)

}{
φ̂a,j(t)− φa,j(t)

}
ds dt,

44



and
cov

(
ζ̂a,j − θ̂a,0,j − ζa,j + θa,0,j , ζ̂a,k − θ̂a,0,k − ζk + θa,0,k

)
=

∫ ∫
Ka(s, t)

{
φ̂a,j(s)− φa,j(s)

}{
φ̂a,k(t)− φa,k(t)

}
ds dt.

Therefore, it holds that
J∑
j=1

(ζ̂a,j − θ̂a,0,j − ζa,j + θa,0,j)(θ̂a,1,j − θ̂a,0,j)

λ̂a,j
∼ N

(
Q1, Q2

)
,

and
J∑
j=1

(ζa,j − θa,0,j)
( θ̂a,1,j − θ̂a,0,j

λ̂a,j
− θa,1,j − θa,0,j

λa,j

)
∼ N

(
0, Q3

)
,

where

Q1 =

J∑
j=1

(θ̂a,1,j − θ̂a,0,j)

λ̂a,j

∫ {
µa,0(t)− µ̂a,0(t)

}
φ̂a,j(t) dt,

Q2 =

J∑
j=1

(θ̂a,1,j − θ̂a,0,j)
2

λ̂2a,j

∫ ∫
Ka(s, t)

{
φ̂a,j(s)− φa,j(s)

}{
φ̂a,j(t)− φa,j(t)

}
ds dt

+ 2
∑

1≤j<k≤J

θ̂a,1,j − θ̂a,0,j

λ̂a,j
· θ̂a,1,k − θ̂a,0,k

λ̂a,k

·
∫ ∫

Ka(s, t)
{
φ̂a,j(s)− φa,j(s)

}{
φ̂a,k(t)− φa,k(t)

}
ds dt,

and

Q3 =

J∑
j=1

λa,j

( θ̂a,1,j − θ̂a,0,j

λ̂a,j
− θa,1,j − θa,0,j

λa,j

)2

.

Consequently, by standard Gaussian tail properties (e.g. Proposition 2.1.2 in Vershynin, 2018), it
holds with probability at least 1− η that

|(I)| . |Q1|+
√
Q2 log(1/η), and |(II)| .

√
Q3 log(1/η). (22)

Substituting (22) into (21), the lemma thus follows by applying a union bound argument to the
results in Lemmas 21, 23, 24 and 27.

Lemma 20. Under Assumptions 1 and 2, if we assume thatX ∼ GP(µa,0,K) for a ∈ {0, 1}, then
for any small constant η ∈ (0, 1/2), it holds with probability at least 1− η that∣∣∣ ∞∑

j=J+1

(ζa,j − θa,0,j)(θa,1,j − θa,0,j)

λa,j

∣∣∣ . √
Jα−2β+1 log(1/η).

Proof. When X ∼ GP(µa,0,K), it holds that
∞∑

j=J+1

(ζa,j − θa,0,j)(θa,1,j − θa,0,j)

λa,j
∼ N

(
0,

∞∑
j=J+1

(θa,1,j − θa,0,j)
2

λa,j

)
.

Consequently, by standard Gaussian tail properties (e.g. Proposition 2.1.2 in Vershynin, 2018), we
have with probability at least 1− η that∣∣∣ ∞∑

j=J+1

(ζa,j − θa,0,j)(θa,1,j − θa,0,j)

λa,j

∣∣∣ .
√√√√log(1/η)

∞∑
j=J+1

(θa,1,j − θa,0,j)2

λa,j

.
√
Jα−2β+1 log(1/η),

where the last inequality follows from Assumptions 2a and 2c. The lemma thus follows.
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Lemma 21. Under the same condition of Lemma 12, for any small constant η ∈ (0, 1/2), it holds
with probability at least 1− η that

Q1 =
∣∣∣ J∑
j=1

(θ̂a,1,j − θ̂a,0,j)

λ̂a,j

∫ {
µa,0(t)− µ̂a,0(t)

}
φ̂a,j(t) dt

∣∣∣
.


√

J log(ñ/η)
ñ , when α+1

2 < β ≤ α+2
2 ,√

log(ñ/η)
ñ , when β > α+2

2 .

Proof. By Lemmas 30 and 22, the event in (44) and a union bound argument, we have with proba-
bility at least 1− η/2 that∣∣∣ J∑

j=1

(θ̂a,1,j − θ̂a,0,j)

λ̂a,j

∫ {
µa,0(t)− µ̂a,0(t)

}
φ̂a,j(t) dt

∣∣∣
≤

J∑
j=1

∣∣∣ θ̂a,1,j − θ̂a,0,j

λ̂a,j

∣∣∣ · ∣∣∣ ∫ {
µa,0(t)− µ̂a,0(t)

}
φ̂a,j(t) dt

∣∣∣
.

J∑
j=1

∣∣∣∣∣ θ̂a,1,j − θ̂a,0,j√
λa,j

∣∣∣∣∣ 1√
λa,j

√
j−α log(ñ/η)

ñ

.
J∑
j=1

|θ̂a,1,j − θ̂a,0,j |√
λa,j

√
log(ñ/η)

ñ
. (23)

To further control (23), we will consider three different cases.

Case 1: When (α+ 1)/2 < β ≤ (α+ 2)/2. In this scenario, by a union bound argument, we have
with probability at least 1− η that

(23) .

√√√√ J∑
j=1

(θ̂a,1,j − θ̂a,0,j)2

λ̂a,j

√√√√ J∑
j=1

log(ñ/η)

ñ

.

√
J log(ñ/η)

ñ

{
1 ∨

(J2 log2(J) log(ñ/η)

ñ

) 1
4
}

.

√
J log(ñ/η)

ñ
,

where the first inequality follows from Cauchy–Schwarz inequality, the second inequality follows
from Lemma 30 and the last inequality follows from the fact that√

J2 log2(J) log(ñ/η)

ñ
. 1.

Case 2: When (α+ 2)/2 < β ≤ (3α+ 2)/2. In this case, by Lemma 39, we have with probability
at least 1− η/2 that, for any j ∈ [J ], |θ̂a,1,j − θ̂a,0,j | . j−β . Therefore, we have that

(23) .

√
log(ñ/η)

ñ

J∑
j=1

j
α
2 −β .

√
log(ñ/η)

ñ
,

where the last inequality follows as α/2− β < −1.

Case 3: When β > (3α + 2)/2. In this case, by Lemma 39, we have that with probability at least
1− η/2 that, for any j ∈ [J ],

|θ̂a,1,j − θ̂a,0,j | . j−β +

√
j−α log(ñ/η)

ñ
.
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Therefore, we have that

(23) .

√
log(ñ/η)

ñ

{ J∑
j=1

j
α
2 −β +

J∑
j=1

√
log(ñ/η)

ñ

}

.

√
log(ñ/η)

ñ
+
J log(ñ/η)

ñ

.

√
log(ñ/η)

ñ
,

where the second inequality follows as α/2 − β < −1 and the last inequality follows as
J2 log(ñ/η) . ñ.

The lemma thus follows by combining results in three cases together.

Lemma 22. Under Assumptions 1 and 2a, for any small constant η ∈ (0, 1/2), it holds with proba-
bility at least 1− η that, for any a, y ∈ {0, 1} and j ∈ [J ] such that J2α+2 log(ñ/η) . ñ,∣∣∣ ∫ {

µa,y(t)− µ̂a,y(t)
}
φ̂a,j(t) dt

∣∣∣ . √
j−α log(ñ/η)

ñ
.

Proof. Consider the following events,

E1 =
{
‖µ̂a,y(t)− µa,y(t)‖L2 .

√
log(1/η)

ñ
, for a, y ∈ {0, 1}

}
,

E2 =
{
‖φ̂a,j − φa,j‖L2 .

√
j2 log(ñ/η)

ñ
, for a ∈ {0, 1}, j ∈ [J ]

}
,

and

E3 =
{∣∣∣ 1

ña,y

ña,y∑
i=1

∫ {
X̃i
a,y(t)−µa,y(t)

}
φa,j(t) dt

∣∣∣ . √
j−α log(ñ/η)

ñ
, for a ∈ {0, 1}, j ∈ [J ]

}
.

By Lemmas 32, 33, 35 and 40, it holds from a union-bound argument that P(E1 ∩E2 ∩E3) ≥ 1− η.
The rest of the proof is constructed conditioning on the events happening. Note that∣∣∣ ∫ {

µa,y(t)− µ̂a,y(t)
}
φ̂a,j(t) dt

∣∣∣
=

∣∣∣ ∫ {
µ̂a,y(t)− µa,y(t)

}{
φ̂a,j(t)− φa,j(t)

}
dt
∣∣∣+ ∣∣∣ ∫ {

µ̂a,y(t)− µa,y(t)
}
φa,j(t) dt

∣∣∣
= (I) + (II), (24)

and in the rest of the proof, we will control (I) and (II) individually.

To control (I), it holds from Cauchy–Schwarz inequality that

|(I)| ≤

√∫ {
µa,y(t)− µ̂a,y(t)

}2
dt

∫ {
φ̂a,j(t)− φa,j(t)

}2
dt

.

√
log(1/η)

ñ

j2 log(ñ/η)

ñ
=

√
j2 log(ñ/η) log(1/η)

ñ2
, (25)

where the last inequality follows from E1 and E2.

To control (II), it holds that

|(II)| =
∣∣∣ 1

ña,y

ña,y∑
i=1

∫ {
X̃i
a,y(t)− µa,y(t)

}
φa,j(t) dt

∣∣∣
47



.

√
j−α log(ñ/η)

ñ
, (26)

where the inequality holds from E3. Substituting the results in (25) and (26) into (24), we have that
for any j ∈ [J ],∣∣∣ ∫ {

µa,y(t)− µ̂a,y(t)
}
φ̂a,j(t) dt

∣∣∣ . √
j2 log(ñ/η) log(1/η)

ñ2
+

√
j−α log(ñ/η)

ñ

.

√
j−α log(ñ/η)

ñ
,

whenever Jα+2 log(1/η) . ñ. Thus, the lemma follows.

Lemma 23. Under the same condition of Lemma 12, for any small constant η ∈ (0, 1/2), it holds
with probability at least 1− η that∣∣∣ J∑

j=1

(θ̂a,1,j − θ̂a,0,j)
2

λ̂2a,j

∫ ∫
Ka(s, t)

{
φ̂a,j(s)− φa,j(s)

}{
φ̂a,j(t)− φa,j(t)

}
ds dt

∣∣∣

.


Jα−2β+3 log(ñ/η)

ñ , when α+1
2 < β ≤ α+2

2 ,

J log(ñ/η)
ñ , when α+2

2 < β ≤ α+3
2 ,

log(ñ/η)
ñ , when β > α+3

2 .

Proof. Consider the following event

E1 =
{
λa,j/2 ≤ λ̂a,j ≤ 3λa,j/2, for j ∈ [J ], a ∈ {0, 1}

}
. (27)

By a similar argument as the one used to control (44), we have that P(E1) ≥ 1 − η. The rest of the
proof is constructed conditioning on E1. Note that, by triangle inequality, we have that∣∣∣ J∑

j=1

(θ̂a,1,j − θ̂a,0,j)
2

λ̂2a,j

∫ ∫
Ka(s, t)

{
φ̂a,j(s)− φa,j(s)

}{
φ̂a,j(t)− φa,j(t)

}
ds dt

∣∣∣
≤

J∑
j=1

(θ̂a,1,j − θ̂a,0,j)
2

λ̂2a,j

∣∣∣ ∫ ∫
Ka(s, t)

{
φ̂a,j(s)− φa,j(s)

}{
φ̂a,j(t)− φa,j(t)

}
ds dt

∣∣∣. (28)

We divide the following proof into three cases depending on the value of β. For any α > 1, by
Lemma 25, we have with probability at least 1− η that∣∣∣ ∫ ∫

Ka(s, t)
{
φ̂a,j(s)− φa,j(s)

}{
φ̂a,j(t)− φa,j(t)

}
ds dt

∣∣∣ . j2−α log(ñ/η)

ñ
.

Case 1: When (α+1)/2 < β ≤ (α+2)/2. In this scenario, by Lemma 39, we have with probability
at least 1− η/2 that, for any j ∈ [J ], |θ̂a,1,j − θ̂a,0,j | . j−β . Therefore, we have that

(28) .
log(ñ/η)

ñ

J∑
j=1

j−2β+2α+2−α =
log(ñ/η)

ñ

J∑
j=1

j−2β+α+2 ≤ Jα−2β+3 log(ñ/η)

ñ
,

where the last inequality follows from the fact that α− 2β + 2 ≥ 0.

Case 2: When (α + 2)/2 < β ≤ (α + 3)/2. In this scenario, by Lemma 39, we still have with
probability at least 1− η/2 that, for any j ∈ [J ], |θ̂a,1,j − θ̂a,0,j | . j−β . Therefore, we have that

(28) .
log(ñ/η)

ñ

J∑
j=1

j−2β+α+2 ≤ J log(ñ/η)

ñ
,
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where the last inequality follows from the fact that −1 ≤ −2β + α+ 2 < 0.

Case 3: When β > (α + 3)/2. In this case, by Lemma 39, we have that with probability at least
1− η/2 that, for any j ∈ [J ],

|θ̂a,1,j − θ̂a,0,j | . j−β +

√
j−α log(ñ/η)

ñ
.

Therefore, we have that

(28) .
log(ñ/η)

ñ

J∑
j=1

{j−2β ∨ j−α log(ñ/η)

ñ
}j2+α ≤ log(ñ/η)

ñ

{ J∑
j=1

jα−2β+2 +

J∑
j=1

j2

ñ

}

≤ log(ñ/η)

ñ

{
1 ∨ J3 log(ñ)

ñ

}
≤ log(ñ/η)

ñ
,

where the third inequality follows from the fact that α − 2β + 2 < −1 in this case and the last
inequality follows from the assumption on J .

The lemma thus follows by combining the results for all six cases above.

Lemma 24. Under the same condition of Lemma 12, for any small constant η ∈ (0, 1/2), it holds
with probability at least 1− η that∣∣∣ ∑

1≤j<k≤J

θ̂a,1,j − θ̂a,0,j

λ̂a,j
· θ̂a,1,k − θ̂a,0,k

λ̂a,k

·
∫ ∫

Ka(s, t)
{
φ̂a,j(s)− φa,j(s)

}{
φ̂a,k(t)− φa,k(t)

}
ds dt

∣∣∣

.



Jα−2β+4 log(ñ/η)
ñ , when α+1

2 < β ≤ α+2
2 ,

J2 log(ñ/η)
ñ , when α+2

2 < β ≤ α+3
2 ,

J log(ñ/η)
ñ , when α+3

2 < β ≤ α+4
2 ,

log(ñ/η)
ñ , when β > α+4

2 .

Proof. Note that by the triangle inequality, we have that∣∣∣ ∑
1≤j<k≤J

θ̂a,1,j − θ̂a,0,j

λ̂a,j
· θ̂a,1,k − θ̂a,0,k

λ̂a,k

·
∫ ∫

Ka(s, t)
{
φ̂a,j(s)− φa,j(s)

}{
φ̂a,k(t)− φa,k(t)

}
ds dt

∣∣∣
≤

∑
1≤j<k≤J

|θ̂a,1,j − θ̂a,0,j |
λ̂a,j

· |θ̂a,1,k − θ̂a,0,k|
λ̂a,k

·
∣∣∣ ∫ ∫

Ka(s, t)
{
φ̂a,j(s)− φa,j(s)

}{
φ̂a,k(t)− φa,k(t)

}
ds dt

∣∣∣
=

J−1∑
j=1

J∑
k=j+1

|θ̂a,1,j − θ̂a,0,j |
λ̂a,j

· |θ̂a,1,k − θ̂a,0,k|
λ̂a,k

·
∣∣∣ ∫ ∫

Ka(s, t)
{
φ̂a,j(s)− φa,j(s)

}{
φ̂a,k(t)− φa,k(t)

}
ds dt

∣∣∣
(29)
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The rest of the proof then follows a similar argument as the one used in the proof of Lemma 23.
The proof below is constructed conditioning on the event in (27) and we will divide the proof into
various cases. For any α > 1, by Lemma 26, we have with probability at least 1− η that∣∣∣ ∫ ∫

Ka(s, t)
{
φ̂a,j(s)− φa,j(s)

}{
φ̂a,k(t)− φa,k(t)

}
ds dt

∣∣∣ .
√
j2−αk2−α log2(ñ/η)

ñ2
.

Case 1: When (α+1)/2 < β ≤ (α+2)/2. In this scenario, by Lemma 39, we have with probability
at least 1− η/2 that, for any j ∈ [J ], |θ̂a,1,j − θ̂a,0,j | . j−β . Therefore, we have that

(29) .
log(ñ/η)

ñ

J−1∑
j=1

j1−
α
2
|θ̂a,1,j − θ̂a,0,j |

λ̂a,j

J∑
k=j+1

k1−
α
2
|θ̂a,1,k − θ̂a,0,k|

λ̂a,k

.
log(ñ/η)

ñ

J−1∑
j=1

j
α
2 −β+1

J∑
k=j+1

k
α
2 −β+1 ≤ log(ñ/η)

ñ

J−1∑
j=1

j
α
2 −β+1 · J α

2 −β+2

≤ Jα−2β+4 log(ñ/η)

ñ
,

where the third inequality follows as α/2− β + 1 > 0.

Case 2: When (α + 2)/2 < β ≤ (α + 3)/2. In this scenario, by Lemma 39, we still have with
probability at least 1− η/2 that, for any j ∈ [J ], |θ̂a,1,j − θ̂a,0,j | . j−β . Therefore, we have that

(29) .
log(ñ/η)

ñ

J−1∑
j=1

j
α
2 −β+1

J∑
k=j+1

k
α
2 −β+1 ≤ J log(ñ/η)

ñ

J−1∑
j=1

jα−2β+2 ≤ J2 log(ñ/η)

ñ
,

where the second inequality follows as
∑J
k=j+1 k

α/2−β+1 ≤ Jjα/2−β+1 as −1 < α/2−β+1 < 0
and the last inequality follows as −1 ≤ α− 2β + 2 < 0.

Case 3: When (α + 3)/2 < β ≤ (α + 4)/2. In this scenario, by Lemma 39, we still have with
probability at least 1− η/2 that, for any j ∈ [J ], |θ̂a,1,j − θ̂a,0,j | . j−β . Therefore, we have that

(29) .
log(ñ/η)

ñ

J−1∑
j=1

j
α
2 −β+1

J∑
k=j+1

k
α
2 −β+1 ≤ J log(ñ/η)

ñ

J−1∑
j=1

jα−2β+2 ≤ J log(ñ/η)

ñ
,

where the second inequality follows as −1 ≤ α/2 − β + 1 < 0 and the last inequality follows as
α− 2β + 2 < −1.

Case 4: When β > (α+ 4)/2. In this case, we have that with probability at least 1− η/2 that, for
any j ∈ [J ],

|θ̂a,1,j − θ̂a,0,j | . j−β +

√
j−α log(ñ/η)

ñ
.

Therefore, we have that

(29) .
log(ñ/η)

ñ

J−1∑
j=1

{
j

α
2 −β+1 ∨

√
j2 log(ñ/η)

ñ

} J∑
k=j+1

{
k

α
2 −β+1 ∨

√
k2 log(ñ/η)

ñ

}

≤ log(ñ/η)

ñ

J−1∑
j=1

{
j

α
2 −β+1 ∨

√
j2 log(ñ/η)

ñ

}{
1 ∨

√
J4 log(ñ/η)

ñ

}

≤ log(ñ/η)

ñ

{ J−1∑
j=1

j
α
2 −β+1 ∨

J−1∑
j=1

√
j2 log(ñ/η)

ñ

}
≤ log(ñ/η)

ñ
,

where the second inequality follows as α/2− β +1 < −1 and the third inequality follows from the
assumption of J .

The lemma thus follows by combining results for all cases together.
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Lemma 25. Under Assumptions 1 and 2a, for a ∈ {0, 1} and any small constant η ∈ (0, 1/2), it
holds with probability at least 1− η that, for any j ∈ [J ] such that J2α+2 log(1/η) . ñ,∣∣∣ ∫ ∫

Ka(s, t)
{
φ̂a,j(s)− φa,j(s)

}{
φ̂a,j(t)− φa,j(t)

}
ds dt

∣∣∣ . j2−α log(ñ/η)

ñ
.

Proof. By Lemma 46, we have that∣∣∣ ∫ ∫
Ka(s, t)

{
φ̂a,j(t)− φa,j(t)

}{
φ̂a,j(s)− φa,j(s)

}
ds dt

∣∣∣
≤

∣∣∣ ∫ {
φ̂a,j(m)− φa,j(m)

}
φa,j(m) dm ·

∫ ∫
Ka(s, t)φa,j(t)

{
φ̂a,j(s)− φa,j(s)

}
ds dt

∣∣∣
+
∣∣∣ ∑
l:l 6=j

(λ̂a,j − λa,l)
−1

∫ ∫
Ka(s, t)φa,l(t)

{
φ̂a,j(s)− φa,j(s)

}
ds dt

·
∫ ∫ {

K̂a(m, `)−Ka(m, `)
}
φ̂a,j(m)φa,l(`) dm d`

∣∣∣,
(30)

and for any l ∈ N+, it holds that∫ ∫
Ka(s, t)φa,l(t)

{
φ̂a,j(s)− φa,j(s)

}
ds dt

=

∫ ∫
Ka(s, t)φa,l(t)φa,j(s) ds dt

∫ {
φ̂a,j(m)− φa,j(m)

}
φa,j(m) dm

+
∑
r:r 6=j

(λ̂a,j − λa,r)
−1

∫ ∫
Ka(s, t)φa,l(t)φa,r(s) ds dt

·
∫ ∫ {

K̂a(m, `)−Ka(m, `)
}
φ̂a,j(m)φa,r(`) dm d`

=


(λ̂a,j − λa,l)

−1λa,l
∫ ∫ {

K̂a(m, `)−Ka(m, `)
}
φ̂a,j(m)φa,l(`) dm d`, when l 6= j,

λa,j
∫ {

φ̂a,j(m)− φa,j(m)
}
φa,j(m) dm when l = j.

(31)

Substituting the results in (31) into (30), we have that∣∣∣ ∫ ∫
Ka(s, t)

{
φ̂a,j(t)− φa,j(t)

}{
φ̂a,j(s)− φa,j(s)

}
ds dt

∣∣∣
≤

∣∣∣λa,j{∫ {
φ̂a,j(m)− φa,j(m)

}
φa,j(m) dm

}2∣∣∣
+

∣∣∣ ∑
l:l 6=j

λa,j(λ̂a,j − λa,l)
−2

{∫ ∫ {
K̂a(m, `)−Ka(m, `)

}
φ̂a,j(m)φa,l(`) dm d`

}2∣∣∣
= (I) + (II). (32)

Consider the following events,

E1 =
{
(λ̂a,j − λa,k)

−2 ≤ 2(λa,j − λa,k)
−2, for k ∈ N\{j}, j ∈ [J ], a ∈ {0, 1}

}
,

E2 =
{
‖K̂a −Ka‖L2 .

√
log(1/η)

ñ
, a ∈ {0, 1}

}
,
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E3 =
{
‖φ̂a,j − φa,j‖L2 .

√
j2 log(ñ/η)

ñ
, for j ∈ [J ], a ∈ {0, 1}

}
,

and

E4 =
{∣∣∣ ∫ ∫ {

K̂a(m, `)−Ka(m, `)
}
φa,j(m)φa,k(`) dm d`

∣∣∣ . √
j−αk−α log(ñ/η)

ñ
,

k, j ∈ [J ], a ∈ {0, 1}
}
.

By Lemmas 32, 34, 35, 37 and a similar argument as the one leads to (51), it holds from a union-
bound argument that P(E1∩E2∩E3∩E4) ≥ 1−η. The rest of the proof is constructed conditioning
on these events happening. To control (I), we have that

(I) ≤ j−α
∫ {

φ̂a,j(m)− φa,j(m)
}2

dm ·
∫
φ2a,j(m) dm .

j2−α log(ñ/η)

ñ
, (33)

where the first inequality follows from Cauchy–Schwarz inequality. To control (II), note that by
the triangle inequality, we have that

(II) ≤
∣∣∣ ∑
l:l 6=j

λa,l(λ̂a,j − λa,l)
−2

{∫ ∫ {
K̂a(m, `)−Ka(m, `)

}
φa,j(m)φa,l(`) dm d`

}2∣∣∣
+
∣∣∣ ∑
l:l 6=j

λa,l(λ̂a,j − λa,l)
−2

·
{∫ ∫ {

K̂a(m, `)−Ka(m, `)
}{
φ̂a,j(m)− φa,j(m)

}
φa,l(`) dm d`

}2∣∣∣
= (II)1 + (II)2.

To control (II)1 in a separate large probability event, by a similar argument as Steps 2 and 3 in the
proof of Lemma 41, we have that

(II)1 .
∑
l:l 6=j

λa,l(λ̂a,j − λa,l)
−2 · j

−αl−α log(ñ/η)

ñ

≤ j−α log(ñ/η)

ñ

∑
l:l 6=j

(λa,j − λa,l)
−2l−2α .

j2−α log(ñ/η)

ñ
, (34)

where the last inequality follows from Lemma 44. Similarly, to control (II)2 in a large probability
event, we have that

(II)2 .
∑
l:l 6=j

λa,l(λa,j − λa,l)
−2‖K̂a −Ka‖2L2‖φ̂a,j − φa,j‖2L2‖φa,l‖2L2

.
log(ñ/η) log(1/η)

ñ2

∑
l:l 6=j

(λa,j − λa,l)
−2j2l−α

.
j4+α log(ñ/η) log(1/η)

ñ2
.
j2−α log(ñ/η)

ñ
, (35)

where the first inequality follows from Cauchy–Schwarz inequality, the third inequality follows from
Lemma 44 and the last inequality follows from the assumption that J2α+2 . ñ. The lemma thus
follows by substituting the results in (33), (34) and (35) into (32).

Lemma 26. Under Assumptions 1 and 2a, for any a ∈ {0, 1} and small constant η ∈ (0, 1/2),
it holds with probability at least 1 − η that, for any j, k ∈ [J ] such that 1 ≤ j < k ≤ J ,
J2α+2 log(1/η) . ñ,∣∣∣ ∫ ∫

Ka(s, t)
{
φ̂a,j(s)− φa,j(s)

}{
φ̂a,k(t)− φa,k(t)

}
ds dt

∣∣∣ .
√
j2−αk2−α log2(ñ/η)

ñ2
.
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Proof. By Lemma 46, we have that∣∣∣ ∫ ∫
Ka(s, t)

{
φ̂a,j(t)− φa,j(t)

}{
φ̂a,k(s)− φa,k(s)

}
ds dt

∣∣∣
=

∣∣∣ ∫ {
φ̂a,j(m)− φa,j(m)

}
φa,j(m) dm ·

∫ ∫
Ka(s, t)φa,j(t)

{
φ̂a,k(s)− φa,k(s)

}
ds dt

∣∣∣
+
∣∣∣ ∑
l:l 6=j

(λ̂a,j − λa,l)
−1

∫ ∫
Ka(s, t)φa,l(t)

{
φ̂a,k(s)− φa,k(s)

}
ds dt

·
∫ ∫ {

K̂a(m, `)−Ka(m, `)
}
φ̂a,j(m)φa,l(`) dm d`

∣∣∣,
(36)

and for any l ∈ N+,∫ ∫
Ka(s, t)φa,l(t)

{
φ̂a,k(s)− φa,k(s)

}
ds dt

=

∫ ∫
Ka(s, t)φa,l(t)φa,k(s) ds dt

∫ {
φ̂a,k(m)− φa,k(m)

}
φa,k(m) dm

+
∑
r:r 6=k

(λ̂a,k − λa,r)
−1

∫ ∫
Ka(s, t)φa,l(t)φa,r(s) ds dt

·
∫ ∫ {

K̂a(m, `)−Ka(m, `)
}
φ̂a,k(m)φa,r(`) dm d`. (37)

Substituting the results in (37) into (36) and using the property of eigenfunctions, we have that∣∣∣ ∫ ∫
Ka(s, t)

{
φ̂a,j(t)− φa,j(t)

}{
φ̂a,k(s)− φa,k(s)

}
ds dt

∣∣∣
=

∣∣∣ ∫ {
φ̂a,j(m)− φa,j(m)

}
φa,j(m) dm · (λ̂a,k − λa,j)

−1λa,j

·
∫ ∫ {

K̂a(m, `)−Ka(m, `)
}
φ̂a,k(m)φa,j(`) dm d`

∣∣∣
+
∣∣∣(λ̂a,j − λa,k)

−1λa,k

∫ {
φ̂a,k(m)− φa,k(m)

}
φa,k(m) dm

·
∫ ∫ {

K̂a(m, `)−Ka(m, `)
}
φ̂a,j(m)φa,k(`) dm d`

∣∣∣
+
∣∣∣ ∑
l:l 6=j,k

(λ̂a,j − λa,l)
−1(λ̂a,k − λa,l)

−1λa,l

·
∫ ∫ {

K̂a(m, `)−Ka(m, `)
}
φ̂a,k(m)φa,l(`) dm d`

·
∫ ∫ {

K̂a(m, `)−Ka(m, `)
}
φ̂a,j(m)φa,l(`) dm d`

∣∣∣
= (I) + (II) + (III). (38)

Consider the following events,

E1 =
{
|λ̂a,j − λa,k|−1 ≤

√
2|λa,j − λa,k|−1, for k ∈ N\{j}, j ∈ [J ], a ∈ {0, 1}

}
,

E2 =
{
‖K̂a −Ka‖L2 .

√
log(1/η)

ñ
, for a ∈ {0, 1}

}
,
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E3 =
{
‖φ̂a,j − φa,j‖L2 .

√
j2 log(ñ/η)

ñ
, for j ∈ [J ], a ∈ {0, 1}

}
,

and

E4 =
{∣∣∣ ∫ ∫ {

K̂a(m, `)−Ka(m, `)
}
φa,j(m)φa,k(`) dm d`

∣∣∣
.

√
j−αk−α log(ñ/η)

ñ
, k, j ∈ [J ], a ∈ {0, 1}

}
.

By Lemmas 32, 34, 35, 37 and a similar argument as the one leads to (51), it holds from a union-
bound argument that P(E1∩E2∩E3∩E4) ≥ 1−η. The rest of the proof is constructed conditioning
on these events happening, and we will control the three terms in (38) above separately in three large
probability events below.

Step 1: Upper bound on (I). Note that by triangle inequality, we have that

(I) ≤
∣∣∣ ∫ {

φ̂a,j(m)− φa,j(m)
}
φa,j(m) dm · (λ̂a,k − λa,j)

−1λa,j

·
∫ ∫ {

K̂a(m, `)−Ka(m, `)
}{
φ̂a,k(m)− φa,k(m)

}
φa,j(`) dm d`

∣∣∣
+
∣∣∣ ∫ {

φ̂a,j(m)− φa,j(m)
}
φa,j(m) dm · (λ̂a,k − λa,j)

−1λa,j

·
∫ ∫ {

K̂a(m, `)−Ka(m, `)
}
φa,k(m)φa,j(`) dm d`

∣∣∣
= (I)1 + (I)2.

Note that the control of (I)1 is similar to the argument in (35) and will be dominated by the upper
bound we give on (I)2. We omit the proof here. To control (I)2, we have that

(I)2 ≤ λa,j |λa,k − λa,j |−1
∣∣∣ ∫ {

φ̂a,j(m)− φa,j(m)
}
φa,j(m) dm

∣∣∣
·
∣∣∣ ∫ ∫ {

K̂a(m, `)−Ka(m, `)
}
φa,k(m)φa,j(`) dm d`

∣∣∣
≤ j−α|λa,k − λa,j |−1‖φ̂a,j − φa,j‖L2‖φa,j‖L2

√
j−αk−α log(ñ/η)

ñ

≤ |λa,k − λa,j |−1

√
j2−3αk−α log2(ñ/η)

ñ2
,

where the second inequality follows from Cauchy–Schwarz inequality. Therefore, we have that

(I) . |λa,k − λa,j |−1

√
j2−3αk−α log2(ñ/η)

ñ2
. (39)

Step 2: Upper bound on (II). The argument to control (II) is similar to the one used in Step 1.
We omit the proof here and we have that

(II) . |λa,k − λa,j |−1

√
k2−3αj−α log2(ñ/η)

ñ2
. (40)

Step 3: Upper bound on (III). To control (III), by Cauchy–Schwarz inequality, we have that

(III)
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≤
√ ∑
l:l 6=j,k

λa,l(λ̂a,j − λa,l)−2
{∫ ∫ {

K̂a(m, `)−Ka(m, `)
}
φ̂a,j(m)φa,l(`) dm d`

}2

·
√ ∑
l:l 6=j,k

λa,l(λ̂a,k − λa,l)−2
{∫ ∫ {

K̂a(m, `)−Ka(m, `)
}
φ̂a,k(m)φa,l(`) dm d`

}2

=
√
(III)1 ·

√
(III)2.

To control (III)1, note that

(III)1

.
∑
l:l 6=j,k

λa,l(λa,j − λa,l)
−2

·
{∫ ∫ {

K̂a(m, `)−Ka(m, `)
}{
φ̂a,j(m)− φa,j(m)

}
φa,l(`) dm d`

}2

+
∑
l:l 6=j,k

λa,l(λa,j − λa,l)
−2

{∫ ∫ {
K̂a(m, `)−Ka(m, `)

}
φa,j(m)φa,l(`) dm d`

}2

= (A) + (B).

Similarly, the upper bound we provide on (A) will be masked off by the upper bound we provide on
(B), and we focus on the upper bound on (B) below. We have, from a similar argument as the one
used in Steps 2 and 3 in the proof of Lemma 41, that

(B) ≤
∑
l:l 6=j,k

λa,l(λa,j − λa,l)
−2 · j

−αl−α log(ñ/η)

ñ

=
j−α log(ñ/η)

ñ

∑
l:l 6=j,k

(λa,j − λa,l)
−2l−2α .

j2−α log(ñ/η)

ñ
,

where the last inequality follows from Lemma 44. Similarly, we can show that

(III)2 .
k2−α log(ñ/η)

ñ
.

Therefore, we have that

(III) .

√
j2−α log(ñ/η)

ñ
· k

2−α log(ñ/η)

ñ
.

√
j2−αk2−α log2(ñ/η)

ñ2
. (41)

Step 4: Combine results together. Substituting results in (39), (40) and (41) into (38) and applying
a union bound argument, we have that for any 1 ≤ j < k ≤ J

(41) . |λa,k − λa,j |−1

√
j2−3αk−α log2(ñ/η)

ñ2

+ |λa,k − λa,j |−1

√
k2−3αj−α log2(ñ/η)

ñ2
+

√
j2−αk2−α log2(ñ/η)

ñ2

. |λa,k − λa,j |−1

√
j2−3αk−α log2(ñ/η)

ñ2
+

√
j2−αk2−α log2(ñ/η)

ñ2

.


√

j4−αk−α log2(ñ/η)
ñ2 +

√
j2−αk2−α log2(ñ/η)

ñ2 when j < k ≤ {2j ∧ J}

√
j2−αk−α log2(ñ/η)

ñ2 +

√
j2−αk2−α log2(ñ/η)

ñ2 when k > {2j ∧ J}
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.

√
j2−αk2−α log2(ñ/η)

ñ2
,

where the second and the last inequality follows from the fact that j < k, the third inequality follows
from the fact that

|λa,j − λa,k| &
{
|j − k|j−α−1, if j/2 ≤ k ≤ 2j,

j−α, if k > 2j.

The lemma thus follows.

Lemma 27. Under the same condition of Lemma 12, for any small constant η ∈ (0, 1/2), it holds
with probability at least 1− η that

Q3 =
J∑
j=1

λa,j

( θ̂a,1,j − θ̂a,0,j

λ̂a,j
− θa,1,j − θa,0,j

λa,j

)2

.

{
Jα−2β+3 log2(J) log(ñ/η)

ñ , when α+1
2 < β ≤ α+2

2 ,
J log(ñ/η)

ñ , when β > α+2
2 .

Proof. To control Q3, we have that
J∑
j=1

λa,j

( θ̂a,1,j − θ̂a,0,j

λ̂a,j
− θa,1,j − θa,0,j

λa,j

)2

=

J∑
j=1

λa,j

( θ̂a,1,j − θ̂a,0,j

λ̂a,j
− θa,1,j − θa,0,j

λ̂a,j
+
θa,1,j − θa,0,j

λ̂a,j
− θa,1,j − θa,0,j

λa,j

)2

.
J∑
j=1

λa,j

λ̂2a,j
(θ̂a,1,j − θ̂a,0,j − θa,1,j + θa,0,j)

2 +

J∑
j=1

(θa,1,j − θa,0,j)
2λa,j

∣∣∣ 1

λ̂a,j
− 1

λa,j

∣∣∣2

.
J∑
j=1

λa,j

λ̂2a,j
(θ̂a,1,j − θ̂a,0,j − θa,1,j + θa,0,j)

2 +

J∑
j=1

(θa,1,j − θa,0,j)
2

λa,j
· |λ̂a,j − λa,j |2

λ̂2a,j
.

The lemma thus follows by applying a union bound argument to results in Lemmas 28 and 29.

Lemma 28. Under the same condition of Lemma 12, for any small constant η ∈ (0, 1/2), it holds
with probability at least 1− η that

J∑
j=1

λa,j

λ̂2a,j
(θ̂a,1,j − θ̂a,0,j − θa,1,j + θa,0,j)

2

.

{
Jα−2β+3 log2(J) log(ñ/η)

ñ , when α+1
2 < β ≤ α+2

2 ,
J log(ñ/η)

ñ , when β > α+2
2 .

Proof. Consider the following events

E1 =
{
λa,j/2 ≤ λ̂a,j ≤ 3λa,j/2 and

∣∣∣ 1

λ̂a,j
− 1

λa,j

∣∣∣ . 1

λ2a,j

√
j−2α log(ñ/η)

ñ
,

j ∈ [J ], a ∈ {0, 1}
}
,

E2 =

{
|θ̂a,1,j − θa,1,j + θ̂a,0,j − θa,0,j | .

√
j2−2β log2(j) log(ñ/η)

ñ
,
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j ∈ [J ], a ∈ {0, 1}, α+ 1

2
< β ≤ α+ 2

2

}
,

and

E3 =

{
|θ̂a,1,j − θa,1,j + θ̂a,0,j − θa,0,j | .

√
j−α log(ñ/η)

ñ
, j ∈ [J ], a ∈ {0, 1}, β > α+ 2

2

}
.

By Lemma 39, a similar argument used to control (44) and a union bound argument, it holds that
P(E1∩E2∩E3) ≥ 1−η. The rest of the proof is constructed conditioning on E1∩E2∩E3 happening
and we have that

J∑
j=1

λa,j

λ̂2a,j
(θ̂a,1,j − θ̂a,0,j − θa,1,j + θa,0,j)

2 ≤ 4

J∑
j=1

1

λa,j
(θ̂a,1,j − θ̂a,0,j − θa,1,j + θa,0,j)

2. (42)

In the rest of the proof, we will present upper bounds on (42) in several cases depending on the
relationship between α and β.

Case 1: When (α+ 1)/2 < β ≤ (α+ 2)/2. In this case we have that

(42) .
J∑
j=1

jα · j
2−2β log2(j) log(ñ/η)

ñ
≤ log2(J) log(ñ/η)

ñ

J∑
j=1

jα−2β+2

≤ Jα−2β+3 log2(J) log(ñ/η)

ñ
,

where the last inequality follows as α− 2β + 2 ≥ 0.

Case 2: When β > (α+ 2)/2. In this case we have that

(42) .
J∑
j=1

jα · j
−α log(ñ/η)

ñ
.
J log(ñ/η)

ñ
.

Lemma 29. Under Assumptions 1 and 2, for any small constant η ∈ (0, 1/2) and J ∈ N+ such
that J2α+2 log2(J) log(ñ/η) . ñ, it holds with probability at least 1− η that

J∑
j=1

(θa,1,j − θa,0,j)
2λa,j

∣∣∣ 1

λ̂a,j
− 1

λa,j

∣∣∣2 .
log(ñ/η)

ñ
.

Proof. Consider the following event,

E1 =
{
λa,j/2 ≤ λ̂a,j ≤ 3λa,j/2 and

∣∣∣ 1

λ̂a,j
− 1

λa,j

∣∣∣ . 1

λ2a,j

√
j−2α log(ñ/η)

ñ
,

for j ∈ [J ], a ∈ {0, 1}
}
.

By a similar argument used to control (44), we have that P(E1) ≥ 1 − η. The rest of the proof is
constructed conditioning on E1 happening. We thus have that

J∑
j=1

(θa,1,j − θa,0,j)
2λa,j

∣∣∣ 1

λ̂a,j
− 1

λa,j

∣∣∣2 .
J∑
j=1

(θa,1,j − θa,0,j)
2λa,j ·

1

λ4a,j

j−2α log(ñ/η)

ñ

.
log(ñ/η)

ñ

J∑
j=1

(θa,1,j − θa,0,j)
2

λa,j
� log(ñ/η)

ñ
.

The lemma thus follows.

57



Lemma 30. Under the same condition of Lemma 12, for any small constant η ∈ (0, 1/2), it holds
with probability at least 1− η that∣∣∣ J∑

j=1

(θ̂a,1,j − θ̂a,0,j)
2

λ̂a,j
−

J∑
j=1

(θa,1,j − θa,0,j)
2

λa,j

∣∣∣
.


√

J2 log2(J) log(ñ/η)
ñ , when α+1

2 < β ≤ α+2
2 ,√

log(ñ/η)
ñ , when β > α+2

2 .

Proof. By triangle inequality, we have that∣∣∣ J∑
j=1

(θ̂a,1,j − θ̂a,0,j)
2

λ̂a,j
−

J∑
j=1

(θa,1,j − θa,0,j)
2

λa,j

∣∣∣
.

∣∣∣ J∑
j=1

(θ̂a,1,j − θ̂a,0,j)
2 − (θa,1,j − θa,0,j)

2

λ̂a,j

∣∣∣
+
∣∣∣ J∑
j=1

(θa,1,j − θa,0,j)
2

λ̂a,j
−

J∑
j=1

(θa,1,j − θa,0,j)
2

λa,j

∣∣∣
=

∣∣∣ J∑
j=1

(θ̂a,1,j − θ̂a,0,j + θa,1,j − θa,0,j)(θ̂a,1,j − θ̂a,0,j − θa,1,j + θa,0,j)

λ̂a,j

∣∣∣
+
∣∣∣ J∑
j=1

(θa,1,j − θa,0,j)
2

λ̂a,j
−

J∑
j=1

(θa,1,j − θa,0,j)
2

λa,j

∣∣∣
.

J∑
j=1

(|θ̂a,1,j − θ̂a,0,j |+ |θa,1,j − θa,0,j |) · |θ̂a,1,j − θ̂a,0,j − θa,1,j + θa,0,j |
λ̂a,j

+
∣∣∣ J∑
j=1

(θa,1,j − θa,0,j)
2

λ̂a,j
−

J∑
j=1

(θa,1,j − θa,0,j)
2

λa,j

∣∣∣. (43)

Consider the events

E1 =
{
λa,j/2 ≤ λ̂a,j ≤ 3λa,j/2 and

∣∣∣ 1

λ̂a,j
− 1

λa,j

∣∣∣ . 1

λ2a,j

√
j−2α log(ñ/η)

ñ
,

for j ∈ [J ], a ∈ {0, 1}
}
, (44)

E2 =
{
|θ̂a,1,j − θ̂a,0,j | ≤ j−β , for j ∈ [J ], a ∈ {0, 1}, α+ 1

2
< β ≤ 3α+ 2

2

}
,

and

E3 =
{
|θ̂a,1,j − θ̂a,0,j | .

√
j−α log(ñ/η)

ñ
, for j ∈ [J ], a ∈ {0, 1}, β > 3α+ 2

2

}
.

Note that by (58), it holds with probability at least 1− η/6 that

λa,j
2

. λa,j −
√
j−2α log(ñ/η)

ñ
≤ λ̂a,j . λa,j +

√
j−2α log(ñ/η)

ñ
≤ 3λa,j

2
,

where the first and the fourth inequality follow from the fact that√
j−2α log(ñ/η)

ñ
. j−α ≤ λa,j

2
.
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By Lemma 36, we also have with probability at least 1− η/6 that for all j ∈ [J ],∣∣∣ 1

λ̂a,j
− 1

λa,j

∣∣∣ = |λa,j − λ̂a,j |
λa,j λ̂a,j

.
1

λ2a,j

√
j−2α log(ñ/η)

ñ
.

1

λa,j

√
log(ñ/η)

ñ
.

Additionally, by Lemma 39, we have with probability at least 1− η/3 that for all j ∈ [J ],

|θ̂a,1,j − θ̂a,0,j | .

|θa,1,j − θa,0,j |+
√

j2−2β log2(j) log(ñ/η)
ñ , when α+1

2 < β ≤ α+2
2 ,

|θa,1,j − θa,0,j |+
√

j−α log(ñ/η)
ñ , when β > α+2

2 ,

.

{
j−β , when α+1

2 < β ≤ 3α+2
2 ,

j−β ∨
√

j−α log(ñ/η)
ñ , when β > 3α+2

2 ,

where the second inequality follows from the fact that

• When α+1
2 < β ≤ α+2

2 , it holds that√
j2−2β log2(j) log(ñ/η)

ñ
� j−β

√
j2 log2(j) log(ñ/η)

ñ
. j−β . (45)

• When α+2
2 < β ≤ 3α+2

2 , it holds that√
j−α log(ñ/η)

ñ
� j−β

√
j2β−α log(ñ/η)

ñ
. j−β

√
j3α+2−α log(ñ/η)

ñ
. j−β .

• When β > 3α+2
2 , different term dominates depending on the value of j ∈ [J ].

Therefore, by a union bound argument, we have that P(Ek) ≥ 1 − η/3 for any k ∈ {1, 2, 3}. In
addition, consider the following disjoint events,

E4 =

{
|θ̂a,1,j − θa,1,j + θ̂a,0,j − θa,0,j | .

√
j2−2β log2(j) log(ñ/η)

ñ
,

j ∈ [J ], a ∈ {0, 1}, α+ 1

2
< β ≤ α+ 2

2

}
,

E5 =

{
|θ̂a,1,j − θa,1,j + θ̂a,0,j − θa,0,j | .

√
j−α log(ñ/η)

ñ
, j ∈ [J ], a ∈ {0, 1}, β > α+ 2

2

}
,

and by Lemma 39, we have that for each k ∈ {4, 5}, P(Ek) ≥ 1− η/3. In the rest of the proof, we
will consider 3 different cases conditioning on various events happening based on the range of β.

Case 1: When (α + 1)/2 < β ≤ (α + 2)/2. In this case, the proof is constructed conditioning on
E1 ∩ E2 ∩ E4 happening and by a union bound argument we have that P(E1 ∩ E2 ∩ E4) ≥ 1 − η.
Consequently, it holds that

(43) .
J∑
j=1

j−β

λa,j

√
j2−2β log2(j) log(ñ/η)

ñ
+

J∑
j=1

∣∣∣ 1

λ̂a,j
− 1

λa,j

∣∣∣(θa,1,j − θa,0,j)
2

.

√
log2(J) log(ñ/η)

ñ

J∑
j=1

jα−2β+1 +

√
log(ñ/η)

ñ

J∑
j=1

(θa,1,j − θa,0,j)
2

λa,j

.

√
J2 log2(J) log(ñ/η)

ñ
,
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where the last inequality follows from the fact that −1 ≤ α− 2β + 1 < 0.

Case 2: When (α + 2)/2 < β ≤ (3α + 2)/2. In this case, the proof is constructed conditioning
on E1 ∩ E2 ∩ E5 happening and by a union bound argument we have that P(E1 ∩ E2 ∩ E5) ≥ 1− η.
Consequently, it holds that

(43) .
J∑
j=1

j−β

λa,j

√
j−α log(ñ/η)

ñ
+

√
log(ñ/η)

ñ

J∑
j=1

(θa,1,j − θa,0,j)
2

λa,j

=

√
log(ñ/η)

ñ

J∑
j=1

j
α
2 −β +

√
log(ñ/η)

ñ

.

√
log(ñ/η)

ñ
,

where the last inequality follows from the fact that α/2− β < −1.

Case 3: When β > (3α+ 2)/2. In this case, the proof is constructed conditioning on E1 ∩ E3 ∩ E5
happening and by a union bound argument we have that P(E1 ∩ E3 ∩ E5) ≥ 1− η. Consequently, it
holds that

(43) .
J∑
j=1

1

λa,j

{
j−β ∨

√
j−α log(ñ/η)

ñ

}√j−α log(ñ/η)

ñ
+

√
log(ñ/η)

ñ

=

J∑
j=1

1

λa,j

{√j−2β−α log(ñ/η)

ñ
∨ j−α log(ñ/η)

ñ

}
+

√
log(ñ/η)

ñ

.
J∑
j=1

j
α
2 −β

√
log(ñ/η)

ñ
+

J∑
j=1

log(ñ/η)

ñ
+

√
log(ñ/η)

ñ

.
J log(ñ/η)

ñ
+

√
log(ñ/η)

ñ
.

√
log(ñ/η)

ñ
,

where the third inequality follows from the fact that α/2 − β < −1 and the last inequality follows
whenever J2α+2 log2(J) log(ñ/η) . ñ.The lemma thus follows by combining results from three
cases.

F Proofs for class probability estimation

In this section, we present auxiliary lemmas related to class probabilities. Results below holds for
any a, y ∈ {0, 1}.

Lemma 31. Under Assumption 1, for any small ε > 0 and a, y ∈ {0, 1}, it holds that

P
(
|π̂a,y − πa,y| ≥ ε

)
. exp

(
− ñε2

)
.

Proof. Consider the sequence of bounded random variables {1{Yj = y,Aj = a}}ñj=1, then it
holds that

π̂a,y =
ña,y
ñ

=
1

ñ

ñ∑
i=1

1{Yj = y,Aj = a}.

Therefore, the lemma follows by applying Hoeffdings inequality for general bounded random vari-
ables (e.g. Theorem 2.2.6 in Vershynin, 2018)

Note that in the lemma below, the constant 1/5 is arbitrary.
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Lemma 32. With 0 < Cp, C
′
p < 1/5 being the absolute constants in Assumption 1, consider the

following events,

E1 =
{(Cp

2
∧

(1− C ′
p)

2

)
ñ ≤ ña,y ≤ ñ, for all a, y ∈ {0, 1}

}
,

and

E2 =
{(Cp

2
∧

(1− C ′
p)

2

)
n ≤ na,y ≤ n, for all a, y ∈ {0, 1}

}
.

We have that P(E1 ∩ E2) ≥ 1− η for some small η ∈ (0, 1/2) whenever {ñ ∧ n} & log(1/η).

Proof. For y ∈ {0, 1} and a ∈ {0, 1}, consider the sequence of bounded random variables {1{Yi =
y,Ai = a}}ñi=1. By Hoeffdings inequality for general bounded random variables (e.g. Theorem
2.2.6 in Vershynin, 2018), we have that for any ε1, ε2 > 0,

P
{∣∣∣ ñ∑

i=1

1{Yi = 1, Ai = 1} − π1,1ñ
∣∣∣ ≥ ε1

}
≤ exp

(
− ε21
ñ

)
,

and

P
{∣∣∣ ñ∑

i=1

1{Yi = 0, Ai = 1} − (1− π1,1)ñ ≥ ε2

∣∣∣} ≤ exp
(
− ε22
ñ

)
.

Therefore, we have that with probability at least 1− η/4 that

n1,1 =

ñ∑
i=1

1{Yi = 1, A = 1} ≥ π1,1ñ−
√
ñ log(1/η) ≥ Cpñ− Cp

2
ñ ≥ Cpñ

2
,

whenever ñ ≥ 4 log(1/η)/C2
p . Similarly, we also have with probability at least 1− η/4 that

n1,0 =

ñ∑
i=1

1{Yi = 0, A = 1} ≥ (1− π0 − π1,1)ñ−
√
ñ log(1/η)

≥ (1− 3C ′
p)ñ−

(1− 5C ′
p)

2
ñ ≥

(1− C ′
p)ñ

2
,

whenever ñ ≥ 4 log(1/η)/(1 − 5C ′
p)

2. The other cases can be justified similarly. The lemma thus
follows from a union bound argument.

G Proofs for functional data estimation

In this section, we present auxiliary lemmas related to mean, covariance, eigenvalue, eigenfunction
and score estimation for the training data D̃. Denote ña = ña,0+ ña,1 and the group-wise mean and
covariance function by

µ̂a,y(t) =
1

ña,y

ña,y∑
i=1

X̃i
a,y(t),

and

K̂a(s, t) =
∑

y∈{0,1}

ña,y
ña,0 + ña,1

1

ña,y − 1

ña,y∑
i=1

{X̃i
a,y(s)− µ̂a,y(s)}{X̃i

a,y(t)− µ̂a,y(t)}.

We further let {λ̂a,j}j≥1 and {φ̂a,j}j≥1 denote the eigenvalues and eigenfunctions of K̂a obtained
by spectral expansion. The lemmas in the rest of the section holds for all a ∈ {0, 1} and y ∈ {0, 1}.
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G.1 Mean and covariance function

Lemma 33 (Lemma 1 in Zapata et al., 2022). Assume Assumptions 1 and 2a hold. For any small
ε1, ε2 > 0, it holds that

P
(
‖µ̂a,y − µa,y‖L2 ≥ ε1

)
. exp(−ña,yε21) and P

(
‖K̂a,y −Ka‖L2 ≥ ε2

)
. exp(−ña,yε22),

where K̂a,y = 1/(ña,y − 1)
∑ña,y

i=1 {X̃i
a,y(s)− µ̂a,y(s)}{X̃i

a,y(t)− µ̂a,y(t)}.

Proof. By standard properties of Gaussian processes and Assumption 2a, Assumption 2 in Zapata
et al. (2022) is automatically satisfied. Hence, the lemma follows.

Lemma 34. Assume Assumptions 1 and 2a hold. It holds for any small 0 < ε . 1 that

P
(
‖K̂a −Ka‖L2 ≥ ε

)
. exp(−ñaε2).

Proof. Note that

K̂a(s, t)−Ka(s, t)

� 1

ña

∑
y∈{0,1}

na,y∑
i=1

[{
X̃i
a,y(s)− µa,y(s)

}
−

{
µ̂a,y(s)− µa,y(s)

}]

·
[{
X̃i
a,y(t)− µa,y(t)

}
−
{
µ̂a,y(t)− µa,y(t)

}]
− E

{{
X̃i
a,y(s)− µa,y(s)

}{
X̃i
a,y(t)− µa,y(t)

}}
� 1

ña

∑
y∈{0,1}

na,y∑
i=1

[{
X̃i
a,y(s)− µa,y(s)

}{
X̃i
a,y(t)− µa,y(t)

}
− E

{{
X̃i
a,y(s)− µa,y(s)

}{
X̃i
a,y(t)− µa,y(t)

}}]
− 1

ña

∑
y∈{0,1}

ña,y
{
µ̂a,y(s)− µa,y(s)

}{
µ̂a,y(t)− µa,y(t)

}
. (46)

Therefore, triangle inequality implies that

‖K̂a(s, t)−Ka(s, t)‖L2

.
∥∥∥ 1

ña

∑
y∈{0,1}

na,y∑
i=1

[{
X̃i
a,y(s)− µa,y(s)

}{
X̃i
a,y(t)− µa,y(t)

}
− E

{{
X̃i
a,y(s)− µa,y(s)

}{
X̃i
a,y(t)− µa,y(t)

}}]∥∥∥
L2

+
1

ña

∑
y∈{0,1}

ña,y

√∫ ∫ {
µ̂a,y(s)− µa,y(s)

}2{
µ̂a,y(t)− µa,y(t)

}2
ds dt

=
∥∥∥ 1

ña

∑
y∈{0,1}

na,y∑
i=1

[{
X̃i
a,y(s)− µa,y(s)

}{
X̃i
a,y(t)− µa,y(t)

}
− E

{{
X̃i
a,y(s)− µa,y(s)

}{
X̃i
a,y(t)− µa,y(t)

}}]∥∥∥
L2

+
1

ña

∑
y∈{0,1}

ña,y‖µ̂a,y − µa,y‖2L2
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= (I) + (II). (47)

To control (I), note we have for any `, k ∈ N+ that∫ ∫ [{
X̃i
a,y(s)− µa,y(s)

}{
X̃i
a,y(t)− µa,y(t)

}
− E

{{
X̃i
a,y(s)− µa,y(s)

}{
X̃i
a,y(t)− µa,y(t)

}}]
φa,`(s)φa,k(t) ds dt

=
1

ña

∑
y∈{0,1}

na,y∑
i=1

(
ξia,y,`ξ

i
a,y,k − λa,`1{` = k}

)
,

where for ` ∈ N+, ξia,y,` =
∫
{X̃i

a,y(s)−µa,y(s)}φa,`(s) ds. Therefore, by Lemma 45 and a similar
argument as the one in Lemma 1 in Zapata et al. (2022) or Lemma 6 in Qiao et al. (2019), we have
that for some small 0 < ε . 1,

P
(
(I) ≥ ε

)
. exp(−ñaε2). (48)

To control (II), by Lemma 33, it holds that for y ∈ {0, 1},

P
(
‖µ̂a,y − µa,y‖L2 ≥

√
ñaε2

ña,y

)
. exp(−ñaε2). (49)

Applying a union bound argument and substituting (48) and (49) into (47), we have that with prob-
ability at least 1− exp(−ñε2),

‖K̂a −Ka‖L2 . ε+
1

ña

∑
y∈{0,1}

ña,yñaε
2

ña,y
= ε+

2ñaε
2

ña
. ε+ ε2 . ε,

where the last inequality follows from the fact that ε . 1. Thus, the Lemma follows.

G.2 Eigenfunction

Lemma 35. Assume Assumptions 1 and 2a hold. For any j ∈ N+ such that j ≤ Jñ where Jñ > 0

is a function of ñ and any small 0 < ε . jJ
−(α+1)
ñ , we have that

P
(
‖φ̂a,j − φa,j‖L2 ≥ ε

)
. exp

(
− ñaε

2

j2

)
.

Proof. Note that by Lemma 46 and (5.16) in Hall and Horowitz (2007), it holds that

‖φ̂a,j − φa,j‖L2

≤
√
2
∥∥∥ ∑
k:k 6=j

φa,k(·)(λ̂a,j − λa,k)
−1

∫ ∫ {
K̂a(s, t)−Ka(s, t)

}
φ̂a,j(s)φa,k(t) ds dt

∥∥∥
L2

≤
√
2
∥∥∥ ∑
k:k 6=j

φa,k(·)(λ̂a,j − λa,k)
−1

∫ ∫ {
K̂a(s, t)−Ka(s, t)

}
φa,j(s)φa,k(t) ds dt

∥∥∥
L2

+
√
2
∥∥∥ ∑
k:k 6=j

φa,k(·)(λ̂a,j − λa,k)
−1

·
∫ ∫ {

K̂a(s, t)−Ka(s, t)
}{
φ̂a,j(s)− φa,j(s)

}
φa,k(t) ds dt

∥∥∥
L2
,

(50)

where the second inequality follows from the triangle inequality. Next, consider the event E1 =

{‖K̂a −Ka‖L2 ≤ ε/j} and we have that P(E1) & 1 − exp(−ñε2/j2) by Lemma 34. The rest of
the proof is constructed conditioning on E1. Construct another event

E2 =
{
(λ̂a,j − λa,k)

−2 ≤ 2(λa,j − λa,k)
−2 . J

2(α+1)
ñ , for k ∈ N\{j}, j ∈ [Jñ]

}
. (51)
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We want to show E2 holds. By Weyl’s inequality, it holds that |λ̂a,j − λa,j | ≤ ‖K̂a −Ka‖L2 ≤ ε/j
for any j ∈ N+. This then implies that

|λ̂a,j − λa,k| ≥ |λa,k − λa,j | − |λ̂a,j − λa,j | ≥ |λa,k − λa,j | − ε/j

≥ |λa,k − λa,j | − (1− 2−1/2)|λa,k − λa,j | ≥ 2−1/2|λa,k − λa,j |, (52)

where the first inequality follows from triangle inequality and the third inequality follows from
Assumption 2a,

|λa,j − λa,k| &


k−α, if k < j/2,

|j − k|j−α−1, if j/2 ≤ k ≤ 2j,

j−α, if k > 2j,

& J
−(α+1)
ñ ,

and the fact that for 0 < ε ≤ (1− 2−1/2)jJ
−(α+1)
ñ , we have that

ε

j
≤ (1− 2−1/2)J

−(α+1)
ñ . (1− 2−1/2)|λa,k − λa,j |.

Thus, from (52), we have that conditioning on E1, E2 holds with probability 1. The rest of the proof
is constructed conditioning on both E1 and E2. To control (50), we can further upper bound it by

(50)

=
√
2
[ ∑
k:k 6=j

(λ̂a,j − λa,k)
−2

{∫ ∫ {
K̂a(s, t)−Ka(s, t)

}
φa,j(s)φa,k(t) ds dt

}2] 1
2

+
√
2
[ ∑
k:k 6=j

(λ̂a,j − λa,k)
−2

{∫ ∫ {
K̂a(s, t)−Ka(s, t)

}
·
{
φ̂a,j(s)− φa,j(s)

}
φa,k(t) ds dt

}2] 1
2

≤ 2
[ ∑
k:k 6=j

(λa,j − λa,k)
−2

{∫ ∫ {
K̂a(s, t)−Ka(s, t)

}
φa,j(s)φa,k(t) ds dt

}2] 1
2

+ 2
[ ∑
k:k 6=j

(λa,j − λa,k)
−2

{∫ ∫ {
K̂a(s, t)−Ka(s, t)

}
·
{
φ̂a,j(s)− φa,j(s)

}
φa,k(t) ds dt

}2] 1
2

= 2
∥∥∥ ∑
k:k 6=j

φa,k(·)(λa,j − λa,k)
−1

∫ ∫ {
K̂a(s, t)−Ka(s, t)

}
φa,j(s)φa,k(t) ds dt

∥∥∥
L2

+ 2
∥∥∥ ∑
k:k 6=j

φa,k(·)(λa,j − λa,k)
−1

∫ ∫ {
K̂a(s, t)−Ka(s, t)

}
·
{
φ̂a,j(s)− φa,j(s)

}
φa,k(t) ds dt

∥∥∥
L2

= 2(I) + 2(II),

where the last inequality follows from E2 and the orthogonality of eigenfunctions. In the rest of the
proof, we construct large probability events to control upper bounds on (I) and (II).

Step 1: upper bound on (I). Using the result in (46), we can further write (I) as

(I) .
∥∥∥ 1

ña

∑
y∈{0,1}

ña,y∑
i=1

∑
k:k 6=j

φa,k(·)(λa,j − λa,k)
−1
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·
∫ ∫ [{

X̃i
a,y(s)− µa,y(s)

}{
X̃i
a,y(t)− µa,y(t)

}
− E

{{
X̃i
a,y(s)− µa,y(s)

}{
X̃i
a,y(t)− µa,y(t)

}}]
φa,j(s)φa,k(t) ds dt

∥∥∥
L2

+
∥∥∥ 1

ña

∑
y∈{0,1}

∑
k:k 6=j

φa,k(·)(λa,j − λa,k)
−1ña,y

·
∫ ∫ {

µ̂a,y(s)− µa,y(s)
}{
µ̂a,y(t)− µa,y(t)

}
φa,j(s)φa,k(t) ds dt

∥∥∥
L2

=
∥∥∥ 1

ña

∑
y∈{0,1}

ña,y∑
i=1

∑
k:k 6=j

φa,k(·)(λa,j − λa,k)
−1ξia,y,jξ

i
a,y,k

∥∥∥
L2

+
∥∥∥ 1

ña

∑
y∈{0,1}

∑
k:k 6=j

φa,k(·)(λa,j − λa,k)
−1ña,y ξ̄a,y,j ξ̄a,y,k

∥∥∥
L2

= (I)1 + (I)2

where for k ∈ N+, ξia,y,k =
∫
{X̃i

a,y(s) − µa,y(s)}φa,k(s) ds ∼ N(0, λa,k), ξ̄a,y,k =

ñ−1
a,y

∑ña,y

i=1 ξ
i
a,y,k.

Step 1-1: upper bound on (I)1. Denote {{zi,j}ña
i=1}j∈N+ and {{zi,k}ña

i=1}k∈N+ two collections of
independent standard Gaussian random variables. With the above notation, by Lemma 45, to control
(I)1, it suffices to control

ña∑
i=1

E
{∥∥∥ ∑

k:k 6=j

φa,k(·)(λa,j − λa,k)
−1

√
λa,jλa,kzi,jzi,k

∥∥∥b
L2

}
.

Note that for any i ∈ [ña], we have that

E
{∥∥∥ ∑

k:k 6=j

φa,k(·)(λa,j − λa,k)
−1

√
λa,jλa,kzi,jzi,k

∥∥∥b
L2

}

= E
[{ ∑

k:k 6=j

(λa,j − λa,k)
−2λa,jλa,kz

2
i,jz

2
i,k

} b
2
]

. j−
bα
2 E

[{ ∑
k:k 6=j

(λa,j − λa,k)
−2k−αz2i,jz

2
i,k

} b
2
]

= j−
bα
2

{ ∑
k:k 6=j

(λa,j − λa,k)
−2k−α

} b
2E

[{∑
k:k 6=j(λa,j − λa,k)

−2k−αz2i,jz
2
i,k∑

k:k 6=j(λa,j − λa,k)−2k−α

} b
2
]

≤ j−
bα
2

{ ∑
k:k 6=j

(λa,j − λa,k)
−2k−α

} b
2

∑
k:k 6=j(λa,j − λa,k)

−2k−αE
(
zbi,jz

b
i,k

)∑
k:k 6=j(λa,j − λa,k)−2k−α

. j−
bα
2 (1 + jα+2)

b
2−1

∑
k:k 6=j

(λa,j − λa,k)
−2k−αE

(
zbi,jz

b
i,k

)
. j−

bα
2 (1 + jα+2)

b
2−1

∑
k:k 6=j

(λa,j − λa,k)
−2k−α

√
E
(
z2bi,j

)
E
(
z2bi,k

)
. j−

bα
2 (1 + jα+2)

b
2−12bb!(1 + jα+2) = 2bb!j2jb−2,
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where the first equality follows from the orthogonality of {φa,k}k∈N+ , the first inequality follows
from Assumption 2a, the second inequality follows from Jensen’s inequality, the third inequality
follows from Lemma 44, the fourth inequality follows from Cauchy–Schwartz inequality and the
fifth inequality follows from Lemma 44 and the fact that

E
(
z2bi,j

)
= π−1/22bΓ

(2b+ 1

2

)
≤ 2bb!.

Therefore, pick L1 � j2 and L2 � j, we have that
ña∑
i=1

E
{∥∥∥ ∑

k:k 6=j

φa,k(·)(λa,j − λa,k)
−1

√
λa,jλa,kzi,jzi,k

∥∥∥b
L2

}
. 4b!Nj2(2j)b−2 . b!NL1L

b−2
2 .

Hence, it holds from Lemma 45 that

P
{
(I)1 ≥ ε

}
≤ 2 exp

(
− ñaε

2

2j2 + 2jε

)
. exp

(
− ñaε

2

j2

)
, (53)

whenever ε . j.

Step 1-2: upper bound on (I)2. To control (I)2, it holds that

(I)2 ≤
∑

y∈{0,1}

ña,y
ña

∥∥∥ ∑
k:k 6=j

φa,k(·)(λa,j − λa,k)
−1ξ̄a,y,j ξ̄a,y,k

∥∥∥
L2

=
∑

y∈{0,1}

ña,y
ña

√ ∑
k:k 6=j

(λa,j − λa,k)−2ξ̄2a,y,j ξ̄
2
a,y,k, (54)

where the first inequality follows from triangle inequality and the last equality follows from the
orthonormality of {φa,k}k∈N+

. Also, since for any k ∈ N+ and a, y ∈ {0, 1}, we have that ξia,y,k
i.i.d.∼

N(0, λa,k) by the independence property. Then, by standard property of independent Gaussian
random variables, this implies that ξ̄a,y,k ∼ N(0, λa,k/ña,y).

Moreover, by standard properties of sub-Gaussian variables and Lemma 47, we have that∑
k:k 6=j(λa,j − λa,k)

−2ξ̄2a,y,j ξ̄
2
a,y,k follows a sub-Weibull distribution with parameter 1/2. We next

upper bound its sub-Weibull norm. Note that∥∥∥ ∑
k:k 6=j

(λa,j − λa,k)
−2ξ̄2a,y,j ξ̄

2
a,y,k

∥∥∥
ψ1/2

≤
∑
k:k 6=j

(λa,j − λa,k)
−2

∥∥ξ̄2a,y,j ξ̄2a,y,k∥∥ψ1/2

≤
∑
k:k 6=j

(λa,j − λa,k)
−2

∥∥ξ̄a,y,j∥∥2ψ2

∥∥ξ̄a,y,k∥∥2ψ2
≤

∑
k:k 6=j

(λa,j − λa,k)
−2λa,kλa,j

ñ2a,y

≤ j−α

ñ2a,y

∑
k:k 6=j

(λa,j − λa,k)
−2k−α .

j2

ñ2a,y
,

where the first inequality follows from triangle inequality, the second inequality follows from stan-
dard property of sub-Gaussian random variables (e.g. Lemma 2.7.7 in Vershynin, 2018), the third
inequality follows from the fact that for any k ∈ N0, ‖ξ̄a,y,k

∥∥
ψ2

.
√
λa,k/ña,y , the fourth in-

equality follows from Assumption 2a and the last inequality follows from Lemma 44. Therefore, by
Lemma 47.1, it holds for any small δ > 0 that

P
(∣∣∣ ∑

k:k 6=j

(λa,j − λa,k)
−2ξ̄2a,y,j ξ̄

2
a,y,k

∣∣∣ ≥ δ
)
. exp

{
−

( ñ2a,yδ
j2

) 1
2
}
.

Pick δ = ñ2aε
4/(ñ2a,yj

2), we have that

P
(∣∣∣ ∑

k:k 6=j

(λa,j − λa,k)
−2ξ̄2a,y,j ξ̄

2
a,y,k

∣∣∣ ≥ ñ2aε
4

ñ2a,yj
2

)
. exp

(
− ñaε

2

j2

)
. (55)
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Substituting the result in (55) into (54), we have that with probability at least 1 − exp(−ñaε2/j2)
that

(I)2 .
∑

y∈{0,1}

ña,y
ña

√
ñ2aε

4

ñ2a,yj
2
.
ε2

j
≤ ε, (56)

where the last inequality follows from the fact that j ≥ 1 and ε < 1.

Step 2: upper bound on (II). To control (II), we have that

(II)2 =
∑
k:k 6=j

(λa,j − λa,k)
−2

·
[ ∫ ∫ {

K̂a(s, t)−Ka(s, t)
}{
φ̂a,j(s)− φa,j(s)

}
φa,k(t) ds dt

]2
. J

2(α+1)
ñ

∞∑
k=1

[ ∫ {∫ {
K̂a(s, t)−Ka(s, t)

}{
φ̂a,j(s)− φa,j(s)

}
ds

}
φa,k(t) dt

]2
= J

2(α+1)
ñ

∫ [ ∫ {
K̂a(s, t)−Ka(s, t)

}{
φ̂a,j(s)− φa,j(s)

}
ds

]2
dt

≤ J
2(α+1)
ñ

[ ∫ {
φ̂a,j(s)− φa,j(s)

}2
ds

][ ∫ ∫ {
K̂a(s, t)−Ka(s, t)

}2
ds dt

]
= J

2(α+1)
ñ ‖φ̂a,j − φa,j‖2L2‖K̂a −Ka‖2L2

≤ J
2(α+1)
ñ

ε2

j2
‖φ̂a,j − φa,j‖2L2 ≤ (1− 2−1/2)2‖φ̂a,j − φa,j‖2L2 ,

where the first inequality follows from E2 in (51), the first equality follows from Parseval’s identity,
the second inequality follows from Cauchy–Schwartz inequality, the third inequality follows from
E1 and the last inequality follows for all ε such that 0 < ε . jJ

−(α+1)
ñ . Therefore, we have that

P
{
(II) ≥ (1− 2−1/2)‖φ̂a,j − φa,j‖L2

}
. exp

(
− ñaε

2

j2

)
. (57)

Step 3: Combine results together. Substituting the results in (53), (56) and (57) into (50) and
applying a union bound argument, it holds with probability at least 1− exp(−ñaε2/j2) that

‖φ̂a,j − φa,j‖L2 ≤ ε+ ε+ (1− 2−1/2)‖φ̂a,j − φa,j‖L2 ,

which implies that ‖φ̂a,j − φa,j‖L2 . ε and the lemma thus follows.

G.3 Eigenvalue

Lemma 36. Under Assumptions 1 and 2a, for any small constant η ∈ (0, 1/2), it holds with proba-
bility at least 1− η that, for any j ∈ [J ] such that J2α+2 log(ñ/η) . ña,

|λ̂a,j − λa,j | .

√
j−2α log(ña/η)

ña
.

Proof. By Lemma 46 and the triangle inequality, for any j ∈ [J ], it holds that(
1− ‖φ̂a,j − φa,j‖L2

)
|λ̂a,j − λa,j |

≤
∣∣∣ ∫ ∫ {

K̂a(s, t)−Ka(s, t)
}
φa,j(s)φa,j(t) ds dt

∣∣∣
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+ ‖φ̂a,j − φa,j‖L2

∥∥∥∫ {
K̂a(s, t)−Ka(s, t)

}
φa,j(s) ds

∥∥∥
L2

≤
∣∣∣ ∫ ∫ {

K̂a(s, t)−Ka(s, t)
}
φa,j(s)φa,j(t) ds dt

∣∣∣+ ‖φ̂a,j − φa,j‖L2

∥∥∥K̂a −Ka

∥∥∥
L2
,

where the last inequality follows from the fact that

sup
j∈[J]

∥∥∥∫ {
K̂a(s, t)−Ka(s, t)

}
φa,j(s) ds

∥∥∥
L2

≤
∥∥∥K̂a −Ka

∥∥∥
L2
.

Therefore, by Lemmas 34, 35 and 37 and a union bound argument, we have that with probability at
least 1− 3η,

|λ̂a,j − λa,j | .

√
j−2α log(ña/η)

ña
+

√
j2 log2(ña/η)

ñ2a
.

√
j−2α log(ña/η)

ña
, for all j ∈ [J ],

(58)

where the last inequality follows since J2α+2 log(ña/η) . ña.

G.4 Projection of difference between covariance function and its estimator

Lemma 37. Assume Assumptions 1 and 2a hold. Then for `, k ∈ N+ and 0 < ε .√
ña,y(`k)−α/ña, it holds that

P
{∣∣∣ ∫ ∫ {

K̂a(s, t)−Ka(s, t)
}
φa,`(s)φa,k(t) ds dt

∣∣∣ ≥ ε
}
. exp

(
− ñaε

2

(`k)−α

)
.

Proof. Note that

K̂a(s, t)−Ka(s, t) =
1

ña

∑
y∈{0,1}

na,y∑
i=1

{
X̃i
a,y(s)− µ̂a,y(s)

}{
X̃i
a,y(t)− µ̂a,y(t)

}
− E

{{
X̃i
a,y(s)− µa,y(s)

}{
X̃i
a,y(t)− µa,y(t)

}}
We have that for any k, ` ∈ N+,∫ ∫ {

K̂a(s, t)−Ka(s, t)
}
φa,`(s)φa,k(t) ds dt

� 1

ña

∑
y∈{0,1}

na,y∑
i=1

(ξia,y,` − ξ̄a,y,`)(ξ
i
a,y,k − ξ̄a,y,k)− λa,`1{` = k}

�
∑

y∈{0,1}

ña,y
ña

{ 1

ña,y

na,y∑
i=1

(
ξia,y,`ξ

i
a,y,k − λa,`1{` = k}

)}

−
∑

y∈{0,1}

ña,y
ña

{ 1

ña,y

ña,y∑
i=1

ξia,y,`

}{ 1

ña,y

ña,y∑
j=1

ξja,y,k

}
, (59)

where for ` ∈ N+, ξia,y,` =
∫
{X̃i

a,y(s) − µa,y(s)}φa,`(s) ds ∼ N(0, λa,`), ξ̄a,y,` =

ñ−1
a,y

∑ña,y

i=1 ξ
i
a,y,`. By standard properties of sub-Gaussian random variables (e.g. Lemma 2.7.7 in

Vershynin, 2018) and Assumption 2a, we have that ‖ξia,y,`ξia,y,k‖ψ1
≤

√
λa,`λa,k � (`k)−α/2 for

any y ∈ {0, 1} and i ∈ [ña,y]. Using the standard property of the covariance operator, it holds that

E
(
ξia,y,`ξ

i
a,y,k

)
= E

[ ∫ ∫
{X̃i

a,y(s)− µa,y(s)}{X̃i
a,y(t)− µa,y(t)}φa,`(s)φa,`(t) ds dt

]
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=

∫ ∫
Ka(s, t)φa,`(t) ds dt = λa,`1{` = k}.

Hence, for y ∈ {0, 1} it holds from Bernsteins inequality (e.g. Theorem 2.8.1 in Vershynin, 2018),
we have that for any δ1,y > 0,

P
{∣∣∣ 1

ña,y

na,y∑
i=1

(
ξia,y,`ξ

i
a,y,k − λa,`1{` = k}

)∣∣∣ ≥ δ1,y

}
. exp

{
−
( ña,yδ21,y
(`k)−α

∧ ña,yδ1,y
(`k)−α/2

)}
.

Moreover, it holds from General Hoeffding inequality (e.g. Theorem 2.6.2 in Vershynin, 2018) that
for any δ2,y, δ3,y > 0,

P
{∣∣∣ 1

ña,y

ña,y∑
i=1

ξia,y,`

∣∣∣ ≥ δ2,y

}
. exp

(
−
ña,yδ

2
2,y

`−α

)
,

and

P
{∣∣∣ 1

ña,y

ña,y∑
i=1

ξia,y,k

∣∣∣ ≥ δ3,y

}
. exp

(
−
ña,yδ

2
3,y

k−α

)
.

Pick

δ1,y = ε

√
ña
ña,y

, δ2,y = ε

√
ña

ña,yk−α
, and δ3,y = ε

√
ña

ña,y`−α
,

and by a union-bound argument, we have that

P
{∣∣∣ ∫ ∫ {

K̂a(s, t)−Ka(s, t)
}
φa,`(s)φa,k(t) ds dt

∣∣∣ ≤ ∑
y∈{0,1}

ña,y
ña

(
δ1,y + δ2,yδ3,y

)}

& 1− exp
(
− ñaε

2

(`k)−α

)
.

Note that ∑
a,y∈{0,1}

ña,y
ña

(
δ1,y + δ2,yδ3,y

)
=

∑
a,y∈{0,1}

ña,y
ña

{
ε

√
ña
ña,y

+ ε2
ña
ña,y

√
1

(`k)−α

}

. ε+ ε3/2
√

ε

(`k)−α
. ε,

where the last inequality follows from the fact that ε .
√
ña,y(`k)−α/ña, hence√

ε

(`k)−α
.

√
ña,y
ña

. 1

and the lemma follows.

Lemma 38. Assume Assumptions 1 and 2a hold. For j ∈ N+ and 0 < ε . j−α/2, we have that

P
{∥∥∥∫ {

Ka(s, t)− K̂a(s, t)
}
φa,j(t) dt

∥∥∥
L2

≥ ε
}
. exp

(
− ñaε

2

j−α

)
.

Proof. The proof follows from a similar and even simpler argument as the one used in Step 1-1 in
the proof of Lemma 35. We only include the difference in the following. With the same notation as
the one used in the proof of Lemma 35, it holds that

E
{∥∥∥{X̃i

a,y(·)− µa,y(·)
}
ξia,y,j − λa,jφa,j(·)

∥∥∥b
L2

}
= E

[{ ∞∑
`=1

(
ξia,y,`ξ

i
a,y,j − λa,j1{` = j}

)2} b
2
]
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= E
[{ ∞∑

`=1

λa,jλa,`
(
Zi`Zij − 1{` = j}

)2} b
2
]

≤ j−
αb
2

( ∞∑
`=1

λa,`

) b
2−1 ∞∑

`=1

E
{(
Zi`Zij − 1{` = j}

)b}
. b!j−α(j−

α
2 )b−2.

Therefore, by picking L1 = j−α and L2 = j−
α
2 in Lemma 45, we have that

P
{∥∥∥∫ {

Ka(s, t)− K̂a(s, t)
}
φa,j(t) dt

∥∥∥
L2

≥ ε
}
. exp

(
− ñaε

2

j−α + j−
α
2 ε

)
.

The lemma thus holds by picking ε satisfying j−α & j−
α
2 ε.

G.5 Projection score

Lemma 39. Under Assumptions 1 and 2a, we have with probability at least 1 − η that, for any
j ∈ [J ] such that J2α+2 log2(J) log(ñ/η) . ñ,

|θ̂a,1,j − θ̂a,0,j − (θa,1,j − θa,0,j)| .


√

j2−2β log2(j) log(ñ/η)
ñ , when α+1

2 < β ≤ α+2
2 ,√

j−α log(ñ/η)
ñ , when β > α+2

2 .

Proof. Applying a union bound argument to the arguments in Lemmas 40, 41 and 42, we have with
probability at least 1− η that

|θ̂a,1,j − θ̂a,0,j − (θa,1,j − θa,0,j)|

≤
∣∣∣ ∫ {

µ̂a,1(t)− µa,1(t)− µ̂a,0(t) + µa,0(t)
}
φa,j(t) dt

∣∣∣
+
∣∣∣ ∫ {

µ̂a,1(t)− µ̂a,0(t)
}{
φ̂a,j(t)− φa,j(t)

}
dt
∣∣∣

≤
∑

y∈{0,1}

∣∣∣ 1

ña,y

ña,y∑
i=1

∫ {
X̃i
a,y(t)− µa,y(t)

}
φa,j(t) dt

∣∣∣
+

∑
y∈{0,1}

∣∣∣ 1

ña,y

ña,y∑
i=1

∫ {
X̃i
a,y(t)− µa,y(t)

}{
φ̂a,j(t)− φa,j(t)

}
dt
∣∣∣

+
∣∣∣ ∫ {

µa,1(t)− µa,0(t)
}{
φ̂a,j(t)− φa,j(t)

}
dt
∣∣∣

.

√
j2−2β log(ñ/η)

ñ
+

√
j2 log(ñ/η) log(1/η)

ñ2
{
1 ∨ j1+α−β log(j)

}
+

√
j−α log(ñ/η)

ñ

{
1 ∨ j α

2 −β+1 log(j)
}
.

whenever J2 log2(J) log(ñ/η) . ñ. Thus, the result follows.

Lemma 40. Under Assumptions 1 and 2a, for any small ε > 0, we have that

P
{∣∣∣ 1

ña,y

ña,y∑
i=1

∫ {
X̃i
a,y(t)− µa,y(t)

}
φa,j(t) dt

∣∣∣ ≥ ε
}
. exp

(
− ña,yε

2

j−α

)
.
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Proof. By the standard property of Gaussian processes, we have that for each i ∈ [ña,y],∫ {
X̃i
a,y(t)− µa,y(t)

}
φa,j(t)dt

i.i.d.∼ N(0, λa,j).

Therefore, the lemma follows by Assumption 2a and General Hoeffding inequality (e.g. Theorem
2.6.2 in Vershynin, 2018).

Lemma 41. Under Assumptions 1 and 2a, for any small constant η ∈ (0, 1/2), it holds with proba-
bility at least 1− η that

∣∣∣ 1

ña,y

ña,y∑
i=1

∫ {
X̃i
a,y(t)− µa,y(t)

}{
φ̂a,j(t)− φa,j(t)

}
dt
∣∣∣ .

√
j2−α log2(j) log2(ñ/η)

ñ2
,

for any j ∈ [J ], a, y ∈ {0, 1}, with J2α+2 log(1/η) . ñ.

Proof. Consider the following events:

E1 =
{
|λ̂a,j − λa,k|−1 ≤

√
2|λa,j − λa,k|−1, for a ∈ {0, 1}, k ∈ N\{j}, j ∈ [J ]

}
,

E2 =
{
‖K̂a −Ka‖L2 .

√
log(1/η)

ñ
, a ∈ {0, 1}

}
,

E3 =
{
‖φ̂a,j − φa,j‖L2 .

√
j2 log(ñ/η)

ñ
, for j ∈ [J ], a ∈ {0, 1}

}
,

E4 =
{∣∣∣ 1

ña,y

ña,y∑
i=1

∫ {
X̃i
a,y(t)− µa,y(t)

}
φa,j(t) dt

∣∣∣ . √
j−α log(ñ/η)

ñ
,

for j ∈ [J ], a, y ∈ {0, 1}
}
,

and

E5 =
{
ña,y � ñ, for any a, y ∈ {0, 1}

}
.

Applying a union bound argument, it holds from Lemmas 32, 34, 35 and 40 and a similar argument
as the one leads to (51) that P(E1 ∩E2 ∩E3 ∩E4 ∩E5) ≥ 1− η/4, for some small η ∈ (0, 1/2). The
rest of the proof is constructed conditioning on E1 ∩ E2 ∩ E3 ∩ E4 ∩ E5 happening.

Note that by Lemma 46, we have that

1

ña,y

ña,y∑
i=1

∫ {
X̃i
a,y(t)− µa,y(t)

}{
φ̂a,j(t)− φa,j(t)

}
dt

=
1

ña,y

ña,y∑
i=1

∫ {
X̃i
a,y(t)− µa,y(t)

}
φa,j(t) dt

∫ {
φ̂a,j(s)− φa,j(s)

}
φa,j(s) ds

+
∑
k:k 6=j

(λ̂a,j − λa,k)
−1

{ 1

ña,y

ña,y∑
i=1

∫ {
X̃i
a,y(t)− µa,y(t)

}
φa,k(t) dt

}

·
∫ ∫ {

K̂a(s, `)−Ka(s, `)
}
φ̂a,j(s)φa,k(`) ds d`

=
1

ña,y

ña,y∑
i=1

∫ {
X̃i
a,y(t)− µa,y(t)

}
φa,j(t) dt

∫ {
φ̂a,j(s)− φa,j(s)

}
φa,j(s) ds
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+
∑
k:k 6=j

(λ̂a,j − λa,k)
−1

{ 1

ña,y

ña,y∑
i=1

∫ {
X̃i
a,y(t)− µa,y(t)

}
φa,k(t) dt

}

·
∫ ∫ {

K̂a(s, `)−Ka(s, `)
}{
φ̂a,j(s)− φa,j(s)

}
φa,k(`) ds d`

+
∑
k:k 6=j

(λ̂a,j − λa,k)
−1

{ 1

ña,y

ña,y∑
i=1

∫ {
X̃i
a,y(t)− µa,y(t)

}
φa,k(t) dt

}

·
∫ ∫ {

K̂a(s, `)−Ka(s, `)
}
φa,j(s)φa,k(`) ds d`

= (I) + (II) + (III). (60)
In the rest of the proof, we construct seperate large probability events which give control to upper
bounds on terms (I), (II) and (III).

Step 1 : upper bound on (I). To control (I), we have that with probability at least 1 − η/4 that,
for any j ∈ [J ],

|(I)| ≤
∣∣∣ 1

ña,y

ña,y∑
i=1

∫ {
X̃i
a,y(t)− µa,y(t)

}
φa,j(t) dt

∣∣∣ · ∣∣∣ ∫ {
φ̂a,j(s)− φa,j(s)

}
φa,j(s) ds

∣∣∣
≤

∣∣∣ 1

ña,y

ña,y∑
i=1

∫ {
X̃i
a,y(t)− µa,y(t)

}
φa,j(t) dt

∣∣∣
·

√∫ {
φ̂a,j(s)− φa,j(s)

}2
ds

√∫
φ2a,j(s) ds

.

√
j−α log(ñ/η)

ñ

√
j2 log(ñ/η)

ñ
�

√
j2−α log2(ñ/η)

ñ2
, (61)

where the second inequality follows from Cauchy–Schwarz inequality and the last inequality follows
from E3 and E4.

Step 2: upper bound on (II). To control (II), we have that

|(II)| ≤ ‖φ̂a,j(s)− φa,j(s)‖L2
‖K̂a −Ka‖L2

∑
k:k 6=j

|λ̂a,j − λa,k|−1
∣∣∣ 1

ña,y

·
ña,y∑
i=1

∫ {
X̃i
a,y(t)− µa,y(t)

}
φa,k(t) dt

∣∣∣
. ‖φ̂a,j(s)− φa,j(s)‖L2‖K̂a −Ka‖L2

·
∑
k:k 6=j

|λa,j − λa,k|−1
∣∣∣ 1

ña,y

ña,y∑
i=1

∫ {
X̃i
a,y(t)− µa,y(t)

}
φa,k(t) dt

∣∣∣, (62)

where the first inequality follows from Cauchy–Schwarz inequality and the second inequality fol-
lows from E1. Note that by the standard property of Gaussian process, we have that

1

ña,y

ña,y∑
i=1

∫ {
X̃i
a,y(t)− µa,y(t)

}
φk(t)dt

i.i.d.∼ N
(
0,

λa,k
ña,y

)
.

Therefore, it holds from standard properties of sub-Gaussian norms that∥∥∥ ∑
k:k 6=j

|λa,j − λa,k|−1
∣∣∣ 1

ña,y

ña,y∑
i=1

∫ {
X̃i
a,y(t)− µa,y(t)

}
φa,k(t) dt

∣∣∣∥∥∥
ψ2
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≤
∑
k:k 6=j

|λa,j − λa,k|−1
∥∥∥ 1

ña,y

ña,y∑
i=1

∫ {
X̃i
a,y(t)− µa,y(t)

}
φa,k(t) dt

∥∥∥
ψ2

≤
∑
k:k 6=j

|λa,j − λa,k|−1

√
λa,k
ña,y

.

√
1

ña,y

∑
k:k 6=j

|λa,j − λa,k|−1k−α/2 .

√
j2+α log2(j)

ña,y
,

where the last inequality follows from Lemma 44. Thus, by standard properties of sub-Gaussian
random variables (e.g. Proposition 2.5.2 in Vershynin, 2018), we have that for any δ1 > 0,

P
{ ∑
k:k 6=j

|λa,j − λa,k|−1
∣∣∣ 1

ña,y

ña,y∑
i=1

∫ {
X̃i
a,y(t)− µa,y(t)

}
φa,k(t) dt

∣∣∣ ≥ δ1

}

. exp
(
− δ21ña,y

j2+α log2(j)

)
.

Pick δ1 =
√
j2+α log2(j) log(ñ/η)/ña,y �

√
j2+α log2(j) log(ñ/η)/ñ, we then have that with

probability at least 1− η/4 that

∑
k:k 6=j

|λa,j − λa,k|−1
∣∣∣ 1

ña,y

ña,y∑
i=1

∫ {
X̃i
a,y(t)− µa,y(t)

}
φa,k(t) dt

∣∣∣
.

√
j2+α log2(j) log(ñ/η)

ñ
. (63)

Substituting (63) into (62), it holds from a union-bound argument that with probability at least
1− η/4 that

|(II)| .
√
j2 log(ñ/η)

ñ

√
log(1/η)

ñ

√
j2+α log2(j) log(ñ/η)

ñ

�

√
j4+α log2(j) log2(ñ/η) log(1/η)

ñ3
, (64)

for any j ∈ [J ].

Step 3: Upper bound on (III). To control (III), firstly, note that under E1, it holds that

|(III)| .
∑
k:k 6=j

|λ̂a,j − λa,k|−1
∣∣∣ 1

ña,y

ña,y∑
i=1

∫ {
X̃i
a,y(t)− µa,y(t)

}
φa,k(t) dt

∣∣∣
·
∣∣∣ ∫ ∫ {

K̂a(s, `)−Ka(s, `)
}
φa,j(s)φa,k(`) ds d`

∣∣∣
.

∑
k:k 6=j

|λa,j − λa,k|−1
∣∣∣ 1

ña,y

ña,y∑
i=1

∫ {
X̃i
a,y(t)− µa,y(t)

}
φa,k(t) dt

∣∣∣
·
∣∣∣ ∫ ∫ {

K̂a(s, `)−Ka(s, `)
}
φa,j(s)φa,k(`) ds d`

∣∣∣.
Next, we control its ψ1-orcliz norm and we have that

‖(III)‖ψ1
≤

∑
k:k 6=j

(λa,j − λa,k)
−1

∥∥∥ 1

ña,y

ña,y∑
i=1

∫ {
X̃i
a,y(t)− µa,y(t)

}
φa,k(t) dt

∥∥∥
ψ2
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·
∥∥∥∫ ∫ {

K̂a(s, `)−Ka(s, `)
}
φa,j(s)φa,k(`) ds d`

∥∥∥
ψ2

.
∑
k:k 6=j

(λa,j − λa,k)
−1

√
k−α

ñ

√
j−αk−α

ñ
.
j−

α
2

ñ

∑
k:k 6=j

|λa,j − λa,k|−1k−α

.
j1−

α
2 log(j)

ñ
,

where the first inequality follows from the triangle inequality and Lemma 2.7.7 in Vershynin
(2018), the second inequality follows from Lemmas 37 and 40 and the last inequality follows from
Lemma 44. Consequently, by standard properties of sub-Exponential random variables (e.g. Propo-
sition 2.7.1 in Vershynin, 2018), it holds for any δ2 > 0 that

P
{
|(III)| ≥ δ2

}
. exp

{
− δ2ñ

j1−
α
2 log(j)

}
By a union bound argument and by picking δ2 = j1−α/2 log(j) log(ñ/η)/ñ, we have that with
probability at least 1− η/4 that

|(III)| . j1−
α
2 log(j) log(ñ/η)

ñ
, (65)

for any j ∈ [J ].

Step 4: Combine results. Substituting the results in (61), (64) and (65) into (60) and applying a
union bound argument, we have with probability at least 1− η that

1

ña,y

ña,y∑
i=1

∫ {
X̃i
a,y(t)− µa,y(t)

}{
φ̂a,j(t)− φa,j(t)

}
dt

.

√
j2−α log2(ñ/η)

ñ2
+

√
j4+α log2(j) log3(ñ/η)

ñ3
+
j1−

α
2 log(j) log(ñ/η)

ñ

.

√
j2−α log2(j) log2(ñ/η)

ñ2
,

for any j ∈ [J ] such that J2α+2 log(1/η) . ñ.

Lemma 42. Under Assumptions 1 and 2a, for any small constant η ∈ (0, 1/2), it holds with proba-
bility at least 1− η that∣∣∣ ∫ {

µa,1(t)− µa,0(t)
}{
φ̂a,j(t)− φa,j(t)

}
dt
∣∣∣

.

√
j2−2β log(ñ/η)

ñ
+

√
j2 log(ñ/η) log(1/η)

ñ2
{
1 + j1+α−β log(j)

}
+

√
j−α log(ñ/η)

ñ

{
1 + j

α
2 −β+1 log(j)

}
for any j ∈ [J ] with J2α+2 .log ñ.

Proof. The proof follows using a similar and simpler argument as the one used in the proof of
Lemma 41. We only include the difference here.

By Lemma 46, we have that∫ {
µa,1(t)− µa,0(t)

}{
φ̂a,j(t)− φa,j(t)

}
dt
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=

∫ {
µa,1(t)− µa,0(t)

}
φa,j(t) dt

∫ {
φ̂a,j(s)− φa,j(s)

}
φa,j(s) ds

+
∑
k:k 6=j

(λ̂a,j − λa,k)
−1

∫ {
µa,1(t)− µa,0(t)

}
φa,k(t) dt

·
∫ ∫ {

K̂a(s, `)−Ka(s, `)
}
φ̂a,j(s)φa,k(`) ds d`

=

∫ {
µa,1(t)− µa,0(t)

}
φa,j(t) dt

∫ {
φ̂a,j(s)− φa,j(s)

}
φa,j(s) ds

+
∑
k:k 6=j

(λ̂a,j − λa,k)
−1

∫ {
µa,1(t)− µa,0(t)

}
φa,k(t) dt

·
∫ ∫ {

K̂a(s, `)−Ka(s, `)
}{
φ̂a,j(s)− φa,j(s)

}
φa,k(`) ds d`

+
∑
k:k 6=j

(λ̂a,j − λa,k)
−1

∫ {
µa,1(t)− µa,0(t)

}
φa,k(t) dt

·
∫ ∫ {

K̂a(s, `)−Ka(s, `)
}
φa,j(s)φa,k(`) ds d`

= (I) + (II) + (III). (66)

Step 1: Upper bound on (I) Using a similar argument as the one used in Step 1 in the proof of
Lemma 41, we have with probability at least 1− η/3 that

|(I)| ≤
∣∣∣ ∫ {

µa,1(t)− µa,0(t)
}
φa,j(t) dt

∣∣∣ · ∣∣∣ ∫ {
φ̂a,j(s)− φa,j(s)

}
φa,j(s) ds

∣∣∣
≤

∣∣∣ ∫ {
µa,1(t)− µa,0(t)

}
φa,j(t) dt

∣∣∣√∫ {
φ̂a,j(s)− φa,j(s)

}2
ds

√∫
φ2a,j(s) ds

. j−β
√
j2 log(ñ/η)

ñ
�

√
j2−2β log(ñ/η)

ñ
, (67)

where the third inequality follows from Assumption 2c.

Step 2: Upper bound on (II) To control (II), then using a similar argument as the one used in
Step 2 in the proof of Lemma 41, we have with probability at least 1− η/3 that

|(II)| . ‖φ̂a,j(s)− φa,j(s)‖L2
‖K̂a −Ka‖L2

·
∑
k:k 6=j

|λa,j − λa,k|−1
∣∣∣ ∫ {

µa,1(t)− µa,0(t)
}
φa,k(t) dt

∣∣∣
.

√
j2 log(ñ/η) log(1/η)

ñ2

∑
k:k 6=j

|λa,j − λa,k|−1k−β

.

√
j2 log(ñ/η) log(1/η)

ñ2
{
1 + j1+α−β log(j)

}
. (68)

Step 3: Upper bound on (III) To control (III), then using a similar argument as the one used in
Step 3 in the proof of Lemma 41, we have with probability at least 1− η/3 that

|(III)| .
∑
k:k 6=j

|λa,j − λa,k|−1
∣∣∣ ∫ {

µa,1(t)− µa,0(t)
}
φa,k(t) dt

∣∣∣
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·
∣∣∣ ∫ ∫ {

K̂a(s, `)−Ka(s, `)
}
φa,j(s)φa,k(`) ds d`

∣∣∣
.

√
j−α log(ñ/η)

ñ

{
1 + j

α
2 −β+1 log(j)

}
. (69)

Step 4: Combine results. Substituting the results in (67), (68) and (69) into (66) and applying a
union bound argument, it holds with probability at least 1− η that∣∣∣ ∫ {

µa,1(t)− µa,0(t)
}{
φ̂a,j(t)− φa,j(t)

}
dt
∣∣∣

.

√
j2−2β log(ñ/η)

ñ
+

√
j2 log(ñ/η) log(1/η)

ñ2
{
1 + j1+α−β log(j)

}
+

√
j−α log(ñ/η)

ñ

{
1 + j

α
2 −β+1 log(j)

}
.

H Technical lemmas

For completeness, we provide all technical lemmas in this section.
Lemma 43 (Generalized Neyman–Pearson lemma, e.g. Lemma 3.1 in Zeng et al., 2024a). Let
φ0, φ1, . . . , φm be m + 1 real-valued functions defined on a Euclidean space X . Assume they are
ν-integrable for a σ-finite measure ν. Let f∗ ∈ F be any function of the form

f∗(x) =


1, φ0(x) >

∑m
i=1 ciφi(x),

τ(x), φ0(x) =
∑m
i=1 ciφi(x),

0, φ0(x) <
∑m
i=1 ciφi(x),

where 0 ≤ τ(x) ≤ 1 for all x ∈ X . For given constants t1, . . . , tm ∈ R, let F≤ be the class of
measurable functions f : X → R satisfying∫

X
fφi dν ≤ ti, i ∈ {1, 2, . . . ,m}, (70)

and let F= be the set of functions in F≤ satisfying (70) with all inequalities replaced by equalities.

(1) If f∗ ∈ F=, then

f∗ ∈ arg max
f∈F=

∫
X
fφ0 dν.

Moreover, if ν({x : φ0(x) =
∑m
i=1 ciφi(x)}) = 0, for all f ′ ∈ argmaxf∈F=

∫
X fφ0 dν,

f ′ = f∗ almost everywhere with respect to ν.

(2) Moreover, if ci ≥ 0 for all i = 1, . . . ,m, then

f∗ ∈ arg max
f∈F≤

∫
X
fφ0 dν.

Moreover, if ν({x : φ0(x) =
∑m
i=1 ciφi(x)}) = 0, for all f ′ ∈ argmaxf∈F≤

∫
X fφ0 dν,

we have f ′(x) = f∗(x) almost everywhere with respect to ν.

Lemma 44 (Lemma 7 in Dou et al., 2012). Under Assumption 2a, for each r ≥ 1, there exists a
constant Cr > 0 depending on r such that∑

k∈N
1{j 6=k}

k−γ

|λa,j − λa,k|r
≤

{
Cr(1 + jr(1+α)−γ), if r > 1,

C1(1 + j1+α−γ log j), if r = 1,

for all a ∈ {0, 1} and j ∈ N+.
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Lemma 45 (Theorem 2.5 in Bosq, 2000). Let {Xi}ni=1 be independent random variables in a sep-
arable Hilbert space with norm ‖ · ‖. If E[Xi] = 0 for all i ∈ [n] and

n∑
i=1

E(‖Xi‖b) ≤
b!

2
nL1L

b−2
2 , for b = 2, 3, . . . ,

with L1, L2 > 0 being two constants, then for all ε > 0, it holds that

P
(∥∥∥ 1
n

n∑
i=1

Xi

∥∥∥ ≥ ε
)
≤ 2 exp

(
− nε2

2L1 + 2L2ε

)
.

Lemma 46 (Lemma 5.1 in Hall and Horowitz, 2007). If we can write

K(s, t) =

∞∑
j=1

λjφj(s)φj(t) and K̂(s, t) =

∞∑
j=1

λ̂j φ̂j(s)φ̂j(t),

then it holds for any j ∈ N+ that∣∣∣λ̂j − λj −
∫ ∫ {

K̂(s, t)−K(s, t)
}
φj(s)φj(t) ds dt

∣∣∣
≤ ‖φ̂j − φj‖L2

(
|λ̂j − λj |+

∥∥∥∫ {
K̂(s, t)−K(s, t)

}
φj(s) ds

∥∥∥
L2

)
.

Moreover, if infk 6=j |λ̂j − λk| > 0, it holds for ` ∈ [0, 1] that

φ̂j(`)− φj(`) = φj(`)

∫ {
φ̂j(s)− φj(s)

}
φj(s) ds

+
∑
k:k 6=j

φk(`)(λ̂j − λk)
−1

∫ ∫ {
K̂(s, t)−K(s, t)

}
φ̂j(s)φk(t) ds dt.

Lemma 47 (Wong et al., 2020, Sub-Weibull properties). Let X be a random variable. Then the
following statements are equivalent for every α > 0. The constants C1, C2, C3 > 0 differ at most
by a constant depending only on α.

1. The tail of X satisfies

P
{
|X| > t

}
≤ 2 exp

{
− (t/C1)

α
}
, for all t ≥ 0.

2. The moments of X satisfy

‖X‖p :=
(
E
[
|X|p

])1/p ≤ C2p
1/α, for all p ≥ 1 ∧ α.

3. The moment generating function of |X|α is finite at some point; namely

E
[
exp(|X|/C3)

α
]
≤ 2.

We further call a random variable X which satisfies any of the properties above a sub-Weibull
random variable with parameter α.
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