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ABSTRACT

Black-box optimization aims to find the optima through building a model close
to the black-box objective function based on function value evaluation. However,
in many real-world tasks, such as design of molecular formulas and mechanical
structures, it is perilous, costly, or even infeasible to evaluate the objective function
value of an actively sampled solution. In this situation, optimization can only
be conducted via utilizing offline historical data, which yields offline black-box
optimization. Different from the traditional goal that is to pursue the optimal
solution, this paper at first discloses that the goal of offline optimization is to stably
surpass the offline dataset during optimization procedure. Although benchmarks
called Design-Bench already exist in this emerging field, it can hardly evaluate the
stability of offline optimization, and mainly provides real-world offline tasks and
the corresponding offline datasets. To this end, this paper proposes benchmarks
named SOO-Bench (i.e., Stable Offline Optimization Benchmarks) for offline
black-box optimization algorithms, so as to evaluate the stability of surpassing the
offline dataset under different data distributions. Along with SOO-Bench, we also
propose a stability indicator to measure the degree of stability. Specifically, SOO-
Bench includes various real-world offline optimization tasks and offline datasets
under different data distributions, involving the fields of satellites, materials science,
structural mechanics and automobile manufacturing. Empirically, baseline and
state-of-the-art algorithms are tested and analyzed on SOO-Bench. Hopefully,
SOO-Bench is expected to serve as a catalyst for rapid developments of more
novel and stable offline optimization methods. The code is available at https:
//anonymous.4open.science/r/SOO-Bench-9025.

1 INTRODUCTION

Black-box optimization (BBO) is widely used in scientific and engineering fields, for example,
hyper-parameter tuning (Snoek et al., 2012). BBO only needs function evaluation and does not
require explicit function expression. To search for the optimal solution, a fundamental ingredient in
model-based BBO is constructing a surrogate model to approximate the black-box objective function
based on actively sampled solutions and their evaluated function values. However, in many real-world
tasks, such as exploring drug molecular structures (Gaulton et al., 2012) and designing hardware
mechanical structures (Yazdanbakhsh et al., 2021; Reagen et al., 2017), it is perilous, costly or even
infeasible to actively sample solutions and evaluate their objective function values. In these cases,
optimization can only be conducted via utilizing a limited number of offline historical data. That is to
say, optimization algorithms need to make full use of offline dataset in hand to learn the surrogate
model and determine the good solution. This yields offline model-based black-box optimization,
abbreviated as offline optimization (Kumar & Levine, 2020; Trabucco et al., 2021).

A significant challenge in offline optimization is the narrow distribution of data within the offline
dataset (Trabucco et al., 2021; Brookes et al., 2019; Fannjiang & Listgarten, 2020; Chen et al., 2022;
2023; Yu et al., 2021; Qi et al., 2022; Fu & Levine, 2021). In many real-world situations, we can only
use narrow data distributions for offline optimization due to data collection strategies. For instance,
when adjusting mechanical structure parameters, the offline dataset typically includes only the test
data that the experimenter already possesses. However, these test data may be influenced by the
subjective opinions of the experimenters and may not evenly cover the solution space.
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Current research on offline optimization algorithms primarily focuses on finding the optima of a
black-box function (Trabucco et al., 2021; Brookes et al., 2019; Fannjiang & Listgarten, 2020; Chen
et al., 2022; 2023; Yu et al., 2021; Qi et al., 2022; Fu & Levine, 2021; Yuan et al., 2023). However,
the surrogate model in offline optimization can be increasingly misled in the area uncovered by the
offline dataset due to the narrow distribution issue. It means that the surrogate model could greatly
overestimate the objective value of optima far from the offline dataset covered regions (Trabucco et al.,
2021), and results in degradation during optimization procedure (Lu et al., 2023). Under this observa-
tion, we point out that stability is equally important as optimality for a comprehensive evaluation of
offline algorithms. Herein, stability refers to the algorithm’s ability to consistently surpass the offline
dataset as much as possible during the optimization process without being misled by the narrow
data distribution. To the best of our knowledge, this paper is the first work to disclose stability as
one of the core objectives in offline black-box optimization. Moreover, in real-world scenarios, the
degree of narrow distribution varies and is difficult to be estimated beforehand. Therefore, assessing
an algorithm’s stability and optimality under different levels of narrow distributions is also crucial.
Unfortunately, existing benchmarks for offline optimization called Design-Bench (Trabucco et al.,
2022) have limitations and inabilities in these aspects. The narrow distribution in Design-Bench is
artificially constructed and fixed, and there is no established indicator for evaluating the stability of
offline optimization algorithms. The field of offline optimization urgently requires a benchmark capa-
ble of comprehensive algorithm evaluation in stability and optimality, so as to boost the developments
of stable offline optimization (SOO) approaches.

In response to the aforementioned demands, this paper further proposes benchmarks named SOO-
Bench to evaluate offline optimization algorithms’ stability and optimality. Specifically, SOO-Bench
provides (1) real-world offline optimization tasks including satellites, materials science, structural
mechanics and so on, (2) customizable narrow distribution levels to tailor the difficulty levels of
offline optimization datasets, (3) a novel stability indicator called stability improvement (SI) to
measure the stability of algorithms. Besides, SOO-Bench also introduces the constrained offline
optimization problems. Empirically, baseline and state-of-the-art (SOTA) algorithms are tested and
analyzed on SOO-Bench. By incorporating these features, SOO-Bench is able to provide a more
comprehensive evaluation of offline optimization algorithms. The codes of SOO-Bench can be found
at https://anonymous.4open.science/r/SOO-Bench-9025.

The subsequent sections respectively recap the related work, present the preliminaries, introduce the
proposed SOO-Bench, depict the tasks and datasets in benchmarks, show the empirical analysis and
finally conclude the paper.

2 RELATED WORK

Although offline BBO has received widespread attention due to its application in real-world problems,
there is currently only one comprehensive benchmark suite in this emerging field. Specifically, a
benchmark platform called Design-Bench (Trabucco et al., 2022), which is unfortunately no longer
maintained now, provides basic environments for offline optimization testing. It covers offline black-
box optimization tasks in multiple fields, such as neural architecture search (Zoph & Le, 2017), DNA
sequence design (A et al., 2016), drug discovery (Gaulton et al., 2012) and robot design (Ahn et al.,
2019; Brockman et al., 2016). Although Design-Bench was launched as the first comprehensive
benchmark suite, it only provides the basic interfaces for offline optimization, fails to analyze the
narrow distribution of offline datasets fully, and does not provide a corresponding test environment.
Besides, SDDObench (Zhong et al., 2024) evaluates streaming data-driven evolutionary algorithms,
focusing on the need for standardized test suites in dynamic optimization, which distinguishes it from
our approach. So it is urgent to propose a new benchmark to address the aforementioned issues.

In order to address the narrow distribution of offline datasets, various offline black-box optimization
algorithms are proposed to handle it. For example, COMs (Trabucco et al., 2021) proposes a conser-
vative model to penalize the proxy function value far from the offline dataset solution. IOM (Qi et al.,
2022) adds an inertial regularization term to force the optimized model to maintain similar represen-
tations under different data distributions, thereby alleviating the model’s performance degradation
on the data far from the offline dataset. CbAS (Brookes et al., 2019) models the generative model
and uses a variational autoencoder (Kingma & Welling, 2014) to build a model to find the optimal
solution in the trust region within an acceptable uncertainty region. CL-DDEA (Huang & Gong,
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Figure 1: The process of offline black-box optimization. The left sub-figure shows the process of
collecting offline data from a real black-box objective function. The right sub-figure shows the
process of an offline optimization algorithm finding a satisfied solution for online application.

2022) introduces a contrastive learning model to enhance data-driven evolutionary algorithms by
focusing on pairwise comparisons rather than absolute fitness values, while CC-DDEA (Gong et al.,
2023) employs a hierarchical surrogate model and cooperative coevolution to address. Although
relevant algorithms are designed to address the narrow distribution of offline datasets and attempt to
find better solutions in areas near the offline datasets, there is currently no comprehensive benchmark
suite available to test these algorithms comprehensively.

3 OFFLINE BLACK-BOX OPTIMIZATION

3.1 PROBLEM STATEMENT

Let f : X → R be a black-box function, where X ⊆ Rd is a d-dimensional solution space. In
black-box optimization, the target is to find an optimal solution x∗ that maximizes f , which can be
written as x∗ = argmaxx∈X⊆Rd f(x). f is called objective function and X is called solution space.
However, in the offline optimization scenario, direct interaction with the objective function is not
allowed, and optimization can only be performed by accessing a static offline datasetD = {xi, yi}Ni=1
containing N solutions and their objective values. As shown in Figure 1, most offline optimization
methods use D to train a model f̂θ(x) to fit the objective function via supervised learning: θ∗ ←
argminθ

∑
i(f̂θ(xi)− yi)

2, where θ represents the parameters of the model. Subsequently, the
solution xapp for online optimization is found by the learned model f̂θ∗(x). For example, use
gradient ascent iterated T times to find the optima of the surrogate model, i.e.,

x(t+1) ← x(t) + η∇xf̂θ∗(x)|x=xt
, t = 1, 2, . . . , T , (1)

where xapp = x(T ) is the solution output at the terminating condition set by a certain time step T for
the online application. Since the exact value of T at which the optimization should stop in practical
applications is unknown, and in order to avoid repeatedly adjusting the number of optimization steps
for different datasets, it is important that all offline black-box optimization algorithms are designed
to remain stable throughout the process. This stability ensures that the worst value of the online
evaluation remains relatively favorable during the optimization process.

An offline BBO method gradually learns the characteristics of the offline dataset by training a model
and then infers the online objective function. Thus, even if the offline dataset contains only local
optimal solutions, the offline optimization algorithms can take advantage of the information within
the dataset, identify relations among variables, especially analyze the characteristics of these local
optima, and subsequently discover new solutions that surpass the best solution in the dataset.

3.2 NARROW DISTRIBUTION OF OFFLINE DATASETS

In offline BBO, the data distribution of offline datasets usually does not cover the entire solution space.
In real-world tasks, experimenters often obtain offline datasets through expensive real experiments.
For some reasons, such as experimenters’ subjectivity when constructing offline datasets—where
personal biases, preferences for certain parameter settings, or prior knowledge might lead to uneven
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Figure 2: The illustrations of narrow data distribution issue considered and addressed in SOO-Bench
and the motivation of stability indicator.

sampling—the data distribution of offline datasets cannot evenly cover all solution values in the
entire solution space. For example, as shown in “Sample” of Figure 1, the black curve represents the
distribution of evaluation values of solutions uniformly sampled from the solution space, while the
blue curve represents the distribution of evaluation values of the offline dataset. It can be observed
that the solutions in the offline dataset mainly lie in a narrow region, which results in the out-of-
distribution (OOD) issue (Kumar & Levine, 2020; Trabucco et al., 2021; Brookes et al., 2019; Chen
et al., 2023) studied in previous work. As a result, some areas of the solution space lack prior data
information, which causes the algorithm to be unable to model these areas accurately. This narrow
distribution of offline datasets presents the greatest challenge for offline optimization problems.

Therefore, when the offline BBO methods select a solution far from the offline dataset as the optimal
solution in the solution space, it must exercise extreme caution. Specifically, when providing the
optimal solution, the algorithm should consider the trade-off between attempting to find a better
solution to surpass the optima of offline dataset and not moving too far away from the offline
dataset to ensure stability. Hence, the data distribution of the offline dataset directly determines the
difficulty level of the offline optimization stability. Controlling the distribution of the offline dataset is
particularly significant for comprehensively testing the stability of offline BBO algorithms.

4 THE PROPOSED SOO-BENCH

This section introduces SOO-Bench, a more comprehensive benchmark suite to evaluate the stability
of offline black-box optimization algorithms. Compared with previous work, SOO-Bench considers
the customized distribution of offline datasets, allowing it to construct offline optimization tasks
of different difficulties. SOO-Bench for the first time introduces the stability indicator, enabling
quantitative evaluation of algorithmic stability.

4.1 CUSTOMIZED NARROW DISTRIBUTIONS OF OFFLINE DATASETS

The core issue of offline optimization is that the data distribution of offline datasets is usually narrow.
The narrower the data distribution covers the entire objective function search space, the more difficult
the offline optimization is. To offer a benchmark suite for comprehensive algorithmic stability and
optimality performance evaluation, SOO-Bench provides offline optimization tasks with adjustable
difficulty, achieved by customizing the distribution of offline datasets.

First, we provide a black-box ground-truth oracle objective function for each task. An initial dataset
is obtained by uniformly sampling and evaluating the objective function. Then, the initial dataset
is sorted by the value of the objective function to obtain its distribution, as shown in the curve in
Figure 2 (a). Finally, datasets of different difficulty levels are constructed based on this sorted initial
dataset. Specifically, the top-n% solutions by objective function value are removed to increase the
difficulty of finding high-quality solutions, and the bottom-m% solutions are removed to increase the
sparsity of the dataset. Through the above steps, an offline dataset with a narrow distribution in real
tasks is constructed by removing solutions, as illustrated in Figure 2 (a).
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4.2 THE PROPOSED INDICATOR FOR MEASURING STABILITY

Another problem in offline BBO is the lack of indicators to evaluate algorithm stability, which
directly affects the performance of the optimal solution found by the algorithm. We point out that the
stability of an offline algorithm is reflected by its ability to continuously and stably optimize solutions
that exceed the best solution in the offline dataset throughout the entire optimization process. For
example, algorithms A and B can find solutions surpassing the offline dataset’s optimal solution, as
shown in Figure 2 (b). However, due to the poor stability of Algorithm B, although it found a better
solution at the end of the optimization process, it failed to maintain this solution throughout the entire
optimization process. In reality, when an offline BBO algorithm provides an online solution, it is often
unclear which step of the optimization process should be considered. Therefore, the requirement
for the algorithm to maintain a stable and high-quality solution throughout the entire optimization
process becomes a critical factor affecting its effectiveness.

SOO-Bench first introduce the Stability Improvement (SI) indicator to measure algorithm stability.
Specifically, for a task with an offline optimal solution x∗

OFF (i.e., the best solution in the offline
dataset), after N optimization steps, the online evaluation value of the optimal solution provided by
the algorithm is denoted as f(xi), where i = 1, 2, . . . , N , and SI is then defined as follows:

SI =


S−S1

S2−S1
, if the algorithm can find solutions exceeding f(x∗

OFF) ,

0 , if the algorithm can only find solutions same with f(x∗
OFF) ,

−∞ , otherwise ,
(2)

where S =
∑

i f(xi) represents the cumulative sum of the evaluation values curve, S1 = Nf(x∗
OFF)

represents the product of the evaluation value of the optimal offline solution and optimization steps
N , and S2 = maxi Nf(xi) represents the product of the evaluation value of the optimal solution
found by the algorithm and optimization steps N .

Remark. Intuitively, as shown in Figure 2 (b), the SI indicator represents the ratio of the area under
the algorithm’s evaluation value curve and above the offline optimal solution to the area between
the offline optimal solution and the best value found by the algorithm. When the evaluation values
remain relatively stable and approach the optimal value that the algorithm can find, the SI value will
be closer to 1, indicating better algorithm stability. Conversely, if the evaluation values fluctuate
significantly or deviate greatly from the optimal value, the SI value will be lower or even negative. A
special case occurs when the algorithm fails to find any solution that surpasses the offline optimal
value. In this case, the algorithm is ineffective for offline optimization, making discussion on stability
meaningless. In this scenario, we define the SI as negative infinity, as shown in Equation (2).

4.3 EXTENSIVE TASKS, DATASETS AND BASELINES FOR EVALUATING STABILITY

SOO-Bench provides an extensive real-world benchmark environment, and all task details are
introduced in Section 5. Besides, SOO-Bench reproduces a variety of baseline algorithms and tests
their performance through experiments, which are introduced in Section 6. It is worth noting that our
benchmark suite is the first to provide constrained offline optimization tasks. We provide users with
more customizable APIs. In addition to controlling task difficulty by adjusting the distribution of
offline datasets, users can also create noisy offline datasets to test algorithm performance specifically.

5 TASKS AND DATASETS DESCRIPTION

This section presents the details of all tasks and datasets. An overview is shown in Table 1. Despite
the tasks vary a lot, we provide a unified API on our datasets. Each task in SOO-Bench provides
a ground-truth oracle objective function f(x). In addition to offering basic offline datasets, it also
includes an API for constructing offline datasets, allowing users to create datasets with different
difficulties. We provide a detailed description of the tasks in the four benchmarks in Appendix A,
which is placed in the supplementary material. Our benchmarks and example implementations are
available at https://anonymous.4open.science/r/SOO-Bench-9025.

GTOPX: Space Mission Optimization (Schlueter et al., 2021). This paper addresses a set of
real-world space mission trajectory problems (European Space Agency and Advanced Concepts
Team, 2020), designed as numerical black-box optimization problems. The objective is to minimize

5

https://anonymous.4open.science/r/SOO-Bench-9025


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: An overview of the tasks in the proposed SOO-Bench. SOO-Bench includes several tasks,
which are divided into four benchmarks. These tasks have discrete and continuous design spaces, and
constrained and unconstrained situations to suit offline black-box optimization. Nvar indicates the
number of variables and Ncon means the number of constraints. The symbol “/” means that the global
optimal function value of the real-world black-box function is unknown.

Benchmarks Tasks Nvar Ncon Optimum

GTOPX

gtopx 1 Cassini 1 6 4 4.9307
gtopx 2 Cassini 2 22 0 8.383
gtopx 3 Messenger (reduced) 18 0 8.6299
gtopx 4 Messenger (full) 26 0 1.9579
gtopx 5 GTOC 1 8 6 -1581950
gtopx 6 Rosetta 22 0 -1.3433
gtopx 7 Cassini 1-MINLP 10 4 3.5007

CEC

cec 1 Optimal operation 7 14 -4.52912
cec 2 Process flow 3 3 1.07654
cec 3 Process synthesis 2 2 2
cec 4 Three-bar 2 3 2.63896
cec 5 Welded beam 4 5 1.67022

HYBRID hybrid 0 Constraint task 115 2 /
hybrid 1 Unconstraint task 115 0 /

PROTEIN protein 1 TF Bind 8 8 0 /
protein 2 TF Bind 10 10 0 /

the total velocity variation during interplanetary space missions. Our benchmark consists of seven
GTOPX tasks. Satellite missions are particularly challenging, especially when the oracle evaluation
encounters an invalid value, which returns as NaN, we indicate it as the worst value in the offline
dataset. If the solution found by the offline optimization algorithm results in such a value, the true
objective function value is poor, and the algorithm proves to be very unstable. The license for this
dataset is GNU General Public License.

CEC Task: Industrial and Design Optimization (Kumar et al., 2020). We selected five real-world
constrained problems, which are maximization tasks with constraints that are feasible when they
are greater than or equal to zero. Constrained tasks are crucial in real life. When normalizing or
denormalizing these tasks, the solutions found may exceed the variable boundaries. If some methods
are applied to set bounds, the solutions may be suboptimal. Even if the algorithm demonstrates good
stability, if the optimization results are poor, the overall outcome is still considered unsatisfactory. We
aim for the offline optimization algorithm to find high-quality solutions while maintaining stability
throughout the optimization process. The license for this dataset is CC-BY 4.0 License.

HYBRID: Vehicle Calibration Optimization. The Offline Hybrid Vehicle Calibration Optimization
task involves developing a control strategy for hybrid vehicles to minimize fuel consumption. We
utilize real-world test data to construct a simulation environment where control strategies are deployed.
This environment outputs fuel consumption, battery residual energy, and mode switching counts after
running a virtual vehicle over a test track. The evaluation metric is fuel consumption, with constraints
on battery residual energy and mode switching counts. Each control strategy is uniquely defined
by 115 parameters, and the evaluation environment generates and tests these strategies to assess
performance and constraint adherence. We provide two types of tasks: constrained and unconstrained.
Unconstrained tasks are implemented by adding constraints to the objective function. For high-
dimensional optimization tasks, the search space is vast. When the offline optimization algorithm
overestimates, it can lead to significant deviations, resulting in unstable optimization performance.
The license for this dataset is CC-BY 4.0 License.

PROTEIN: DNA Sequence Optimization (Trabucco et al., 2022). The variable space comprises
sequences of four categorical variables. The objective of the two tasks is to identify the optimal
8-nucleotide DNA sequence that exhibits the highest binding affinity to a specific transcription factor.
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Discrete tasks play a crucial role in offline optimization. However, in these tasks, offline optimization
may identify non-existent molecules. The license for this dataset is MIT License.

6 EXPERIMENT

To simulate a more realistic data distribution, we choose a dataset size that is 1000 times the variable
dimension. At the same time, to further simulate the narrow distribution, the missing m% near the
worst value and the missing n% near the optimal value are used to ensure that the data volume is small
and missing near the optimal value, as shown in Figure 2 (a). In this paper, we select the middle 50%
of the data (i.e., m%− n% = 50%) to construct a simulated dataset as a reasonable baseline without
leveraging any prior knowledge. Since the proposed benchmark is highly flexible and customizable,
it enables users to modify the data volume, m% and n% as needed. At the same time, we designed an
experiment with gradual missing data near the optimal value, aiming to construct datasets of different
difficulty levels, see the Appendix C for details. Through these settings, we hope to systematically
analyze and evaluate the impact of different data distributions on the performance of different offline
optimization algorithms.

6.1 OFFLINE OPTIMIZATION ALGORITHMS

We test a range of baseline and SOTA offline optimization algorithms on each of task. Specifically,
we compare with two categories of algorithms: (1) those that address unconstrained problems,
including classic baselines: BO-qEI (Wilson et al., 2017), CMA-ES (Hansen, 2006), and Offline
BBO methods: autofocusing CbAS (Fannjiang & Listgarten, 2020), TTDDEA (Huang et al., 2021),
ARCOO (Lu et al., 2023), Tri-mentoring (Chen et al., 2023), and (2) those that address constrained
problems, including CARCOO, CCOMs, DDEA-PF, DDEA-SPF (Huang & Wang, 2021a). Since
classical methods lack specific methodologies for offline optimization problems, they cannot be
directly applied to such problems. Therefore, we introduce a guided training agent model to provide
optimization guidance through agent prediction, thereby indirectly solving the offline optimization
problem. In this section, we briefly discuss these algorithms and evaluate them in the next section.
Due to page limitation, the implementation codes links are listed in Appendix B.

BO-qEI: Offline Bayesian optimization is performed to minimize a learned surrogate function
f̂(x) by training an ensemble of neural network models. Candidate solutions were generated with
a Gaussian Process model and labeled with values from f̂(x). We employed the quasi-expected
Improvement (qEI) acquisition function within the BoTorch framework (Balandat et al., 2019). CMA-
ES: We compute the value of learned surrogate function f̂(x) on the samples xt, which is obtained
from the distribution N (µt,Σt) at an iteration t. We then adapted the covariance matrix to refine the
belief distribution, repeating this process multiple times. Autofocusing CbAS: Autofocusing CbAS
learns a density model p0(x) of x to approximate the data distribution, then gradually use importance
sampling to re-training f̂(x) under current distribution pt(x), and adapts it towards the optimized
solution. ARCOO: ARCOO constructs the surrogate model f̂(x) combined with the energy model,
which is used to characterize the risk of degradation. After construction, a risk suppression factor
is applied to control the risk. Tri-mentoring: This approach constructs three surrogate models and
uses ranking supervision signals for mutual mentoring. After that, adaptive soft-labeling to learn
more accurate labels. TTDDEA: By dividing the offline dataset into three equal parts randomly,
we build three surrogate models respectively. We selected a high-confidence pseudo-label to fill
in each other’s datasets, then retrained the surrogate model, generated offspring, and repeated this
multiple times. CCDDEA: CCDDEA designs a hierarchical surrogate-joint learning model to be
able to guide the evolving population to search at different granularities, and then optimizes at the
global and local subspace levels in a cooperatively coordinated evolutionary manner. CARCOO:
This is a simple constrained version of ARCOO. We incorporate the degree of constraint violation
into the risk assessment and consider solutions that violate the constraints as high risk. CCOMs:
This is a reproduction version of the PRIME (Kumar et al., 2022) method. Since we did not find
its codes, we simply implemented PRIME according to the paper, that is, making the objective
function value that violates the constraint as bad as possible. DDEA-PF & DDEA-SPF: It combines
common constraint processing techniques with offline data-driven evolutionary algorithms to handle
constrained optimization problems. This is achieved by constructing proxy models for constraints

7
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Table 2: Overall results in GTOPX unconstrianed scenario. Results are averaged over five times, and
“±” indicates the standard deviation. f(x∗

OFF) means the optimal objective function value in the
offline dataset. FS (i.e., final score) means the function value that an offline optimization algorithm
finds in the final step during optimization process. FS measures optimality while SI measures stability.

Tasks GTOPX 2 GTOPX 3 GTOPX 4 GTOPX 6

f(x∗
OFF) 196.21 151.68 216.34 112.11

Metrics FS ↓ SI ↑ FS ↓ SI ↑ FS ↓ SI ↑ FS ↓ SI ↑
BO 95.45±18.43 0.69±0.02 75.78±29.38 0.7±0.03 117.39±17.11 0.68±0.04 58.11±8.25 0.63±0.04
CMAES 196.21±1.18 0.00±0.00 151.68±0.53 0.00±0.00 216.34±0.61 0.00±0.00 112.11±0.38 0.00±0.00
CBAS 196.21±1.18 0.00±0.00 86.51±3.97 0.71±0.06 208.8±15.50 0.14±0.02 87.08±31.05 0.34±0.09
TTDDEA 224.17±53.87 −∞ 156.92±91.05 −∞ 260.4±54.89 −∞ 148.76±50.67 −∞
ARCOO 90.73±10.98 0.78±0.05 65.88±13.12 0.85±0.01 102.84±21.76 0.79±0.04 65.17±13.30 0.74±0.08
Tri-mentoring 129.47±54.75 −∞ 140.23±22.88 −∞ 176.31±37.30 0.86±0.18 112.11±0.38 −∞
CCDDEA 197.25±3.70 −∞ 152.71±4.01 −∞ 216.18±3.29 −∞ 112.46±1.88 −∞

Table 3: Overall results in GTOPX constrianed scenario. Details are the same as Table 2. The symbol
“-” means that the algorithm cannot work because of too few solutions that satisfly the constraints.

Tasks GTOPX 1 GTOPX 5 GTOPX 7

f(x∗
OFF) 75.3 5.41 346.2

Metrics FS ↓ SI ↑ FS ↓ SI ↑ FS ↓ SI ↑
CARCOO 72.97±5.64 0.34±0.04 1.08±5.85 −∞ 189.14±118.59 0.64±0.06
CCOMs 68.61±108.20 −∞ − −∞ 307.81±19.07 0.99±0.00
DDEA-PF 282.57±35.59 −∞ 0.00±0.00 −∞ 953.59±27.33 −∞
DDEA-SPF 282.57±35.59 −∞ 0.00±0.00 −∞ 953.59±27.33 −∞

and objective functions respectively, and using constraint processing techniques to process constraint
proxy models and objective proxy models.

6.2 RESULTS AND ANALYSIS

This scenario represents normal settings in real-world conditions where the maximum and minimum
values of the objective values are proportionally missing. In the unconstrained optimization case, we
have four tasks in GTOPX. As shown in Table 2, we can obtain two key observations:

• Baselines like BO-qEI are competitive with offline BBO methods in both FS and SI, but CMA-ES
performs differently. This is in contrast to Design-Bench, which might be due to the lower optimiza-
tion dimension in GTOPX, and that the objective function is non-smooth, making it unsuitable for
methods like CMA-ES that rely on guidance through a covariance matrix.

• Existing offline BBO methods (e.g., CBAS, ARCOO, Tri-mentoring) perform well across different
benchmarks, except for TTDDEA. This is because TTDDEA, being an evolutionary-based method,
relies on high-confidence data augmentation without considering the narrow distribution problem.
Notably, ARCOO achieves the best stability performance by evaluating the risk of generated solutions
during optimization through a learned energy model, thereby controlling the step size during gradient
ascent. This highlights the significant role of risk control in the stability of optimization results.

In the constrained optimization case, we have three tasks in GTOPX. As shown in Table 3, we can
obtain two key observations:

• Experimental results show that simply constructed offline BBO methods for handling constraint
problems are successful on both unconstrained and constrained tasks. However, we find that DE-PF
and DE-SPF perform poorly on satellite missions. This result suggests that directly combining
online constraint handling techniques with offline evolutionary methods may have difficulty capturing
features in complex tasks with sufficient accuracy. In addition, inaccurate surrogate models may
incorrectly guide online constraint handling techniques, resulting in poor performance on satellite
missions or even failure to find solutions that meet the constraints.

8
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Bo-qEI   ARCOO  Tri-mentoring

SI

(a) gtopx 2
Bo-qEI   ARCOO  Tri-mentoring

SI

(b) gtopx 6
CARCOO                CCOMs

SI

(c) gtopx 1
CARCOO                CCOMs

SI

(d) gtopx 8

Figure 3: Stability under different n% and m%. Unconstrained: (a), (b). Constrained: (c), (d).

•We find that simply modifying the previous unconstrained offline optimization method can also
achieve good optimization results and stability on complex satellite missions, which shows that the
previous unconstrained offline optimization method is very competitive.

Optimization Results under Different n% and m%. In real-world scenarios, we often do not
know the distribution of the dataset. We simulate this by keeping the total missing proportion
constant while varying n% and m%. Based on the results in Table 2 and Table 3, we selected
BO-qEI, ARCOO, and Tri-mentoring for unconstrained benchmarks and CARCOO and CCOMs for
constrained benchmarks, as they achieve satisfactory optimization stability in balanced scenarios. As
shown in Figure 3 (a) and Figure 3 (b), the optimization stability of BO-qEI gradually decreases as
n% increases. In contrast, ARCOO initially even shows some improvement but generally remains
stable. Tri-mentoring performs best at n = 20%,m = 30%, but its performance is subpar at other
times. In unconstrained benchmarks, we can obtain two observations:

• Classical baselines like BO-qEI, which originate from online optimization scenarios, are highly
sensitive to data missing in the optimal search region. In contrast, offline BBO methods are rela-
tively stable, demonstrating their advantage in different narrow distributions and validating their
effectiveness in real-world applications.

• ARCOO outperforms Tri-mentoring in various n% and m% situations, indicating that evaluating
the risk in the optimization process significantly contributes to optimization stability across different
narrow distributions.

• Although CCOMs are relatively stable in some cases, they often find poor solutions and stagnate,
indicated by a relatively high SI and sub-optimal optimization results. The reason may be that the
constraints are too strict, making the algorithm less inclined to explore outside current solution space.

• On the gtopx 1 task, the metrics of CCOMs are all below 0. This is because although CCOMs can
find better values than the optimal objective value in offline dataset, their subsequent performance
directly declines and is worse than the offline optimal objective value, resulting in poor SI values.

7 CONCLUSION AND DISCUSSION

This paper proposes SOO-Bench, a benchmark suite to promote stable offline black-box optimization.
SOO-Bench provides a variety of real offline optimization tasks. Considering that the narrow
distribution of offline datasets is a vital challenge of offline optimization, SOO-Bench provides APIs
that can customize the distribution of offline datasets to construct tasks with different difficulties,
thereby comprehensively testing the performance of algorithms. Notably, SOO-Bench for the first
time reveals the significant of stability of offline BBO and introduces an indicator called Stability
Improvement (SI) to quantify the stability. Finally, SOO-Bench reproduces offline optimization
baselines and conducts experiments to evaluate algorithmic stability and optimality.

There are still some limitations of SOO-Bench. First, the variety of tasks we provide is still not
rich enough, and there are many unexplored black-box optimization scenarios (e.g., robotic control).
Second, we emphasize that optimization stability is crucial in the offline optimization, the proposed
metric can trade off between the optimality of the output solution and the stability of optimization
process, but we believe that other reasonable metrics exist. The future work will explore real-world
scenarios by providing new datasets and tasks, and investigate a range of data size percentages (i.e.,
different degree about the missing m% near the worst value and the missing n% near the optimal

9
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value) to conduct a more comprehensive analysis. Meanwhile, we will further improve SOO-Bench,
develop more realistic narrow distribution methods to simulate real offline datasets, and propose a
comprehensive evaluation system containing richer evaluation indicators.

8 ETHICS AND REPRODUCIBILITY STATEMENTS

Ethics. This paper does not involve human subjects, personal data, or sensitive information. All
datasets used for testing are publicly available, and no proprietary or confidential information has
been utilized. We take responsibility for any potential violation of rights and for ensuring compliance
with data licensing requirements.

Reproducibility. Experimental settings are described in Section 6.1 with further details of the meth-
ods included in Appendix A-E. The datasets utilized in this paper are all publicly available and open-
source. The link to our anonymized repository that includes codes, datasets, documents, demo and
license can be found from https://anonymous.4open.science/r/SOO-Bench-9025.

REFERENCES

Barrera Luis A, Vedenko Anastasia, Kurland Jesse V, Rogers Julia M, Gisselbrecht Stephen S,
Rossin Elizabeth J, Woodard Jaie, Mariani Luca, Kock Kian Hong, and Inukai Sachi. Survey of
variation in human transcription factors reveals prevalent dna binding changes. Science, 351(6280):
1450–1454, 2016.

Michael Ahn, Henry Zhu, Kristian Hartikainen, Hugo Ponte, Abhishek Gupta, Sergey Levine, and
Vikash Kumar. ROBEL: robotics benchmarks for learning with low-cost robots. In Proceedings of
the 3rd Annual Conference on Robot Learning, pp. 1300–1313, Osaka, Japan, 2019.

Maximilian Balandat, Brian Karrer, Daniel R Jiang, Samuel Daulton, Benjamin Letham, Andrew Gor-
don Wilson, and Eytan Bakshy. Botorch: Programmable Bayesian optimization in pytorch. arXiv
preprint arXiv:1910.06403, 117, 2019.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016.

David H. Brookes, Hahnbeom Park, and Jennifer Listgarten. Conditioning by adaptive sampling
for robust design. In Proceedings of the 36th International Conference on Machine Learning, pp.
773–782, Long Beach, CA, 2019.

Can Chen, Yingxue Zhang, Jie Fu, Xue (Steve) Liu, and Mark Coates. Bidirectional learning for
offline infinite-width model-based optimization. In Advances in Neural Information Processing
Systems 35, pp. 29454–29467, New Orleans, LA, 2022.

Can Chen, Christopher Beckham, Zixuan Liu, Xue (Steve) Liu, and Chris Pal. Parallel-mentoring for
offline model-based optimization. In Advances in Neural Information Processing Systems 36, New
Orleans, LA, 2023.

European Space Agency and Advanced Concepts Team. GTOP Database - global optimisation
trajectory problems and solutions. https://www.esa.int/gsp/ACT/projects/gtop/,
2020. Archived webpage.

Clara Fannjiang and Jennifer Listgarten. Autofocused oracles for model-based design. In Advances
in Neural Information Processing Systems 33, pp. 12945–12956, Virtual Event, 2020.

Justin Fu and Sergey Levine. Offline model-based optimization via normalized maximum likelihood
estimation. In Proceedings of the 9th International Conference on Learning Representations,
Virtual Event, 2021.

Anna Gaulton, Louisa J. Bellis, A. Patrícia Bento, Jon Chambers, Mark Davies, Anne Hersey, Yvonne
Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, and John P. Overington.
ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Research, 40:
1100–1107, 2012.

10

https://anonymous.4open.science/r/SOO-Bench-9025
https://www.esa.int/gsp/ACT/projects/gtop/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Yue-Jiao Gong, Yuan-Ting Zhong, and Hao-Gan Huang. Offline data-driven optimization at scale: A
cooperative coevolutionary approach. IEEE Transactions on Evolutionary Computation, 2023.

Nikolaus Hansen. The CMA evolution strategy: A comparing review. In Towards a New Evolutionary
Computation - Advances in the Estimation of Distribution Algorithms, volume 192, pp. 75–102.
2006.

Hao-Gan Huang and Yue-Jiao Gong. Contrastive learning: An alternative surrogate for offline
data-driven evolutionary computation. IEEE Transactions on Evolutionary Computation, 27(2):
370–384, 2022.

Pengfei Huang and Handing Wang. Comparative empirical study on constraint handling in offline
data-driven evolutionary optimization. Applied Soft Computing, 110:107603, 2021a.

Pengfei Huang and Handing Wang. Comparative empirical study on constraint handling in offline
data-driven evolutionary optimization. Applied Soft Computing, 110:107603, 2021b.

Pengfei Huang, Handing Wang, and Yaochu Jin. Offline data-driven evolutionary optimization based
on tri-training. Swarm and Evolutionary Computation, 60:100800, 2021.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Proceedings of the 2nd
International Conference on Learning Representations, Banff, Canada, 2014.

Abhishek Kumar, Guohua Wu, Mostafa Z. Ali, Rammohan Mallipeddi, Ponnuthurai Nagaratnam
Suganthan, and Swagatam Das. A test-suite of non-convex constrained optimization problems
from the real-world and some baseline results. Swarm and Evolutionary Computation, 56:100693,
2020.

Aviral Kumar and Sergey Levine. Model inversion networks for model-based optimization. In
Advances in Neural Information Processing Systems 33, pp. 5126–5137, Virtual Event, 2020.

Aviral Kumar, Amir Yazdanbakhsh, Milad Hashemi, Kevin Swersky, and Sergey Levine. Data-driven
offline optimization for architecting hardware accelerators. In Proceedings of the 10th International
Conference on Learning Representations, Virtual Event, 2022.

Huakang Lu, Hong Qian, Yupeng Wu, Ziqi Liu, Ya-Lin Zhang, Aimin Zhou, and Yang Yu.
Degradation-resistant offline optimization via accumulative risk control. In Proceedings of the
26th European Conference on Artificial Intelligence, pp. 1609–1616, Kraków, Poland, 2023.

Han Qi, Yi Su, Aviral Kumar, and Sergey Levine. Data-driven offline decision-making via invariant
representation learning. In Advances in Neural Information Processing Systems 35, pp. 13226–
13237, New Orleans, LA, 2022.

Brandon Reagen, José Miguel Hernández-Lobato, Robert Adolf, Michael A. Gelbart, Paul N. What-
mough, Gu-Yeon Wei, and David M. Brooks. A case for efficient accelerator design space
exploration via Bayesian optimization. In IEEE/ACM International Symposium on Low Power
Electronics and Design, pp. 1–6, 2017.

Martin Schlueter, Mehdi Neshat, Mohamed Wahib, Masaharu Munetomo, and Markus Wagner.
GTOPX space mission benchmarks. SoftwareX, 14:100666, 2021.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems 25, pp. 2960–2968,
Lake Tahoe, NV, 2012.

Brandon Trabucco, Aviral Kumar, Xinyang Geng, and Sergey Levine. Conservative objective models
for effective offline model-based optimization. In Proceedings of the 38th International Conference
on Machine Learning, pp. 10358–10368, Virtual Event, 2021.

Brandon Trabucco, Xinyang Geng, Aviral Kumar, and Sergey Levine. Design-Bench: Benchmarks for
data-driven offline model-based optimization. In Proceedings of the 39th International Conference
on Machine Learning, pp. 21658–21676, Baltimore, MD, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

James T. Wilson, Riccardo Moriconi, Frank Hutter, and Marc Peter Deisenroth. The reparameteriza-
tion trick for acquisition functions. CoRR, abs/1712.00424, 2017.

Amir Yazdanbakhsh, Christof Angermüller, Berkin Akin, Yanqi Zhou, Albin Jones, Milad Hashemi,
Kevin Swersky, Satrajit Chatterjee, Ravi Narayanaswami, and James Laudon. Apollo: Transferable
architecture exploration. CoRR, abs/2102.01723, 2021.

Sihyun Yu, Sungsoo Ahn, Le Song, and Jinwoo Shin. RoMA: Robust model adaptation for offline
model-based optimization. In Advances in Neural Information Processing Systems 34, pp. 4619–
4631, Virtual Event, 2021.

Ye Yuan, Can Chen, Zixuan Liu, Willie Neiswanger, and Xue (Steve) Liu. Importance-aware co-
teaching for offline model-based optimization. In Advances in Neural Information Processing
Systems 36, New Orleans, LA, 2023.

Yuanting Zhong, Xincan Wang, Yuhong Sun, and Yue-Jiao Gong. Sddobench: A benchmark
for streaming data-driven optimization with concept drift. In Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 59–67, 2024.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In Proceedings
of the 5th International Conference on Learning Representations, Toulon, France, 2017.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

APPENDIX

This appendix is structured into four sections to improve understanding and facilitate the repro-
duction of our benchmark research. Task Description Section elaborates on the objective function,
constraints, and variables used in our study. Experimental Details Section provides comprehen-
sive information on the methodologies, code implementations, and resource usage of all methods
compared. Experimental Results Section thoroughly discusses the research results and findings
in detail. Finally, Hyperparameter Analysis Section itemizes the specific settings and configu-
rations utilized in the experiments. Our benchmark and comparison algorithms are available at
https://anonymous.4open.science/r/SOO-Bench-9025.

A TASK DESCRIPTION

In this section, we detail task description in SOO-Bench. Specifically, we answer (1) what is the goal
and background of each task? (2) where are the tasks from? (3) what do the variables and constraints
in each task represent?

A.1 GTOPX: SPACE MISSION BENCHMARKS

For those interested in the task, more information can be found on the official website for
the benchmark. To access detailed descriptions, methodologies, and data related to the task,
please visit the following URL: http://www.midaco-solver.com/index.php/about/
benchmarks/gtopx. This page provides essential resources for understanding the scope and
requirements of the benchmark challenges.

A.1.1 GTOPX 1: CASSINI 1

The Cassini 1 benchmark simulates an interplanetary mission targeting Saturn, with the mission’s aim
being to enter a specific orbit around Saturn characterized by an intracentric radius of 108,950 km and
an eccentricity of 0.98. The primary goal of this benchmark is to minimize the total ∆V , or change in
velocity, required throughout the mission, which includes the launch and orbital insertion maneuvers.
This scenario utilizes six decision variables and incorporates four constraints that set maximum limits
on the proximity of the center during four flyby maneuvers. The variables’ descriptions of this task
include var1 and var2.

A.1.2 GTOPX 2: CASSINI 2

The Cassini 2 benchmark, which models complex interplanetary missions to Saturn, including critical
maneuvers like the Deep Space Maneuver (DSM), presents a more challenging scenario than the
gtopx 1 benchmark. Unlike Cassini 1, which focuses on orbital insertion, the primary objective of
this benchmark is to achieve a rendezvous with Saturn, aiming to minimize the total ∆V required
throughout the mission. This benchmark involves handling 22 decision variables. The variables’
descriptions of this task include var1, var2, var3, var4, var5, var6, and var7.

A.1.3 GTOPX 3: MESSENGER (REDUCED)

The third benchmark, known as Messenger (reduced), is a simulation of interplanetary missions to
Mercury, excluding any resonant flybys of the planet. The main objective of this benchmark is to
minimize the total ∆V over the course of the mission. It involves 18 decision variables and the
explanation of the variables is given in Table 4.

A.1.4 GTOPX 4: MESSENGER (FULL)

The fourth benchmark, titled Messenger (full), models interplanetary missions to Mercury, incorporat-
ing resonant flybys of the planet. This benchmark aims to minimize the total ∆V incurred throughout
the mission. It features 26 decision variables, which includes all variables in Table 4.
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Table 4: Description of variables in GTOPX tasks (Schlueter et al., 2021).

Variable Descriptions gtopx 1 gtopx 2

var1 Initial day measured from 1-Jan 2000 ✓ ✓
var2 Time interval between events (e.g. departure, fly-by, capture) ✓ ✓
var3 Initial excess hyperbolic speed (km/S) × ✓
var4 Angles of excess velocity in a hyperbolic trajectory × ✓
var5 Fraction of the time interval after which DSM occurs × ✓
var6 Radius of flyby (in planet radii) × ✓
var7 Orientation of the trajectory angle in the planet’s B-plane approach vector × ✓

A.1.5 GTOPX 5: GTOC1

The fifth benchmark, known as GTOC1, models a complex space mission involving multi-gravity
assists to asteroid TW229. The objective of this mission is to maximize the change in the semi-
major axis of the asteroid’s orbit. This benchmark incorporates 8 decision variables and includes 4
constraints that set limits on the proximity to the center during each of the four flyby maneuvers. The
variables description includes var1 and var2.

A.1.6 GTOPX 6: ROSETTA

The sixth benchmark, named Rosetta, emulates multi-gravity-assisted space missions to Comet
67P/Churyumov-Gerasimenko, including the execution of a DSM. The primary objective of this
benchmark is to minimize the total ∆V required throughout the mission. It encompasses 22 decision
variables and description of variables are shown in Table 4.

A.1.7 GTOPX 7: CASSINI1-MINLP

The last benchmark, cassini1-minLP, is a mixed integer extension of a Cassini1 instance. While in
the original Cassini1 instance, the order of planetary flybys was fixed as Venus-Venus-Earth-Jupiter,
Cassini1-MINLP treated all four flybys as discrete decision variables. Every planet in the solar system
(plus the dwarf planet Pluto) is a viable option to fly by any of the four planets. The benchmark
involves 12 decision variables and further considers four constraints. Descriptions of all variables are
in Table 4.

A.2 CEC TASK: INDUSTRIAL AND DESIGN PROBLEMS

For detailed information and access to the resources associated with the task,
please visit the provided URL: https://github.com/P-N-Suganthan/
2020-RW-Constrained-Optimization. This link leads to the GitHub repository
where you can find all the necessary files, including source code and documentation, to understand
and engage with the benchmark suite effectively.

A.2.1 CEC 1: OPTIMAL OPERATION OF ALKYLATION UNIT

The initial benchmark test is termed “Optimal Operation of Alkylation Unit”. This test focuses on
optimizing the octane number of the olefin feed in an acidic environment, with the main goal to
enhance the alkylating product. The benchmark involves 7 decision variables and incorporates 14
constraints, which are designed to limit onboard fuel and launcher performance. The problem can be
formulated as follows.
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Minimize:
f(x̄) = −(0.035x1x6 + 1.715x1 + 10.0x2 + 4.0565x3 − 0.063x3x5)

subject to:

g1(x̄) = 0.0059553571x2
6x1 + 0.88392857x3 − 0.1175625x6x1 − x1 ≤ 0,

g2(x̄) = 1.1088x1 + 0.1303533x1x6 − 0.0066033x1x
2
6 − x3 ≤ 0,

g3(x̄) = 6.66173269x2
6 − 56.596669x4 + 172.39878x5 − 10000− 191.20592x6 ≤ 0

g4(x̄) = 1.08702x6 − 0.03762x2
6 + 0.32175x4 + 56.85075− x5 ≤ 0,

g5(x̄) = 0.006198x7x4x3 + 2462.3121x225.125634x2x4 − x3x4 ≤ 0,
g6(x̄) = 161.18996x3x4 + 5000.0x2x4 − 489510.0x2 − x3x4x7 ≤ 0,

g7(x̄) = 0.33x7 + 44.333333− x5 ≤ 0,
g8(x̄) = 0.022556x5 − 1.0− 0.007595x7 ≤ 0

g9(x̄) = 0.00061x3 − 1.0− 0.0005x1 ≤ 0,

g10(x̄) = 0.819672x1 − x3 + 0.819672 ≤ 0,

g11(x̄) = 24599.9x2250x2x4 − x3x4 ≤ 0,

g12(x̄) = 1020.4082x4x2 + 1.2244898x3x4 − 100000x2 ≤ 0,

g13(x̄) = 6.25x1x6 + 6.25x1 − 7.625x3 − 100000 ≤ 0,

g14(x̄) = 1.22x3 − x6x1 − x1 + 1.0 ≤ 0.

with bounds:
1000 ≤ x1 ≤ 2000, 0 ≤ x2 ≤ 100,

2000 ≤ x3 ≤ 4000, 0 ≤ x4 ≤ 100,

0 ≤ x5 ≤ 100, 0 ≤ x6 ≤ 20,

0 ≤ x7 ≤ 200.

(3)

A.2.2 CEC 2: PROCESS FLOW SHEETING PROBLEM

The second benchmark is characterized as a non-convex constrained optimization problem. This
benchmark incorporates three decision variables and is governed by three constraints. It is noted for
having an optimal objective function value of f(x) = 1.07654. The formulation of this problem can
be shown as follows.

Minimize:

f(x̄) = −0.7x3 + 0.8 + 5 (0.5− x1)
2

subject to:
g1(x̄) = − exp (x1 − 0.2)− x2 ≤ 0,

g2(x̄) = x2 + 1.1x3 ≤ −1.0,
g3(x̄) = x1 − x3 ≤ 0.2.

with bounds:
2.22554 ≤ x2 ≤ −1, 0.2 ≤ x1 ≤ 1, x3 ∈ {0, 1} .

(4)

A.2.3 CEC 3: PROCESS SYNTHESIS PROBLEM

The third benchmark, referred to as the Process Synthesis Problem, is defined as a non-convex
constrained optimization problem. This benchmark features two decision variables and is subject to
two constraints. It is recognized for achieving an best objective function value of f(x) = 2.0. The
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problem can be defined as follows.

Minimize:
f(x̄) = x2 + 2x1

subject to:

g1(x̄) = −x2
1 − x2 + 1.25 ≤ 0,

g2(x̄) = x1 + x2 ≤ 1.6.

with bounds:
0 ≤ x1 ≤ 1.6 ,

x2 ∈ {0, 1} .

(5)

A.2.4 CEC 4: THREE-BAR TRUSS DESIGN PROBLEM

The fourth benchmark, known as the Three-bar Truss Design Problem, originates from the field of
civil engineering and involves a complex constrainted setup. The primary objective of this problem is
to reduce the weight of the truss structure. The constraints are based on the stress limits for each bar,
leading to a problem characterized by a linear objective function, two decision variables, and three
nonlinear constraints. This benchmark’s optimal objective function value is f(x) = 2.63896. The
problem can be defined as below.

Minimize:

f(x̄) = l
(
x2 + 2

√
2x1

)
subject to:

g1(x̄) =
x2

2x2x1 +
√
2x2

1

P − σ ≤ 0,

g2(x̄) =
x2 +

√
2x1

2x2x1 +
√
2x2

1

P − σ ≤ 0,

g3(x̄) =
1

x1 +
√
2x2

P − σ ≤ 0.

where,
l = 100, P = 2, and σ = 2 .

with bounds:
0 ≤ x1, x2 ≤ 1 .

(6)

A.2.5 CEC 5: WELDED BEAM DESIGN

The fifth benchmark, known as the Welded Beam Design, primarily aims to minimize the cost of
constructing welded beams. This engineering challenge is defined by four variables and five con-
straints, which guide the development of the beam. The most acclaimed outcome of this benchmark
is recorded with an best objective function value of f(x) = 1.67022. The description of this problem
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is shown below.

Minimize:

f(x̄) = 0.04811x3x4 (x2 + 14) + 1.10471x2
1x2

subject to:
g1(x̄) = x1 − x4 ≤ 0,

g2(x̄) = δ(x̄)− δmax ≤ 0,

g3(x̄) = P ≤ Pc(x̄),

g4(x̄) = τmax ≥ τ(x̄),

g5(x̄) = σ(x̄)− σmax ≤ 0.

where,

τ =

√
τ ′2 + τ ′′2 + 2τ ′τ ′′

x2

2R
, τ ′′ =

RM

J
, τ ′ =

P√
2x2x1

,

M = p
(x2

2
+ L

)
,

R =

√
x2
2

4
+

(
x1 + xxw3

2

)2

, J = 2

((
x2
2

4
+

(
x1 + x3

2

)2
)
√
2x1x2

)
,

σ(x̄) =
6PL

x4x2
3

, δ(x̄) =
6PL3

Ex2
3X4

, Pc(x̄) =
4.013Ex3x

3
4

6L2

(
1− x3

2L

√
E

4G

)
L = 14in, P = 6000lb, E = 30.106psi, σmax = 30, 000psi, τmax = 13, 600psi,

G = 12.106psi, δmax = 0.25in

with bounds:
0.1 ≤ x3, x2 ≤ 10

0.1 ≤ x4 ≤ 2

0.125 ≤ x1 ≤ 2 .

(7)

A.3 HYBRID: VEHICLE CALIBRATION OPTIMIZATION TASK

The benchmark, known as Hybrid Vehicle Calibration, focuses on optimizing control schemes for
hybrid vehicles to improve overall efficiency. This intricate engineering task integrates an electric
motor with a conventional engine, necessitating precise coordination to optimize vehicle dynamics
like speed and acceleration while conforming to battery capacity limits. The objective is to fine-tune
these control strategies, which involve 115 distinct parameters, to ensure the engine operates at
peak efficiency across different driving conditions. The assessment aims to reduce fuel usage while
ensuring that battery management and mode transitions adhere to predefined constraints, leveraging a
comprehensive dataset for analysis. The specific constrained and unconstrained construction methods
are as follows:

value =

{
objective value + fuel_punish_mode + punish_soc unconstrainted task ,
objective value, fuel_punish_mode ≥ 0, punish_soc ≥ 0 constrainted task .

(8)

A.4 PROTEIN: DNA SEQUENCE OPTIMIZATION

The tasks TF Bind 8 and TF Bind 10 explore the affinity of various DNA sequences for several
human transcription factors. In our study, we specifically targeted the transcription factor SIX6
REF R1, with the aim to design an nucleotide sequence that exhibits high binding affinity to
this factor. The datasets for TF Bind 8 and TF Bind 10 encompass all possible combinations
of nucleotides for sequences of lengths 8 and 10, respectively, offering a comprehensive basis for
assessing sequence effectiveness. You can access the data and code by visiting the URL https:
//github.com/brandontrabucco/design-bench.
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B EXPERIMENTAL DETAILS

In this section, we provide further details about the experiments, including the URL for the code of
the comparison algorithms, and the computational resources used.

B.1 METHODS

This section introduces approaches for offline optimization. To establish a baseline for future
comparisons, we benchmark several recent offline MBO algorithms across our tasks. Existing methods
fall into three main categories: forward, generative, and evolutionary methods. Forward methods
focus on training robust surrogate models to combat adversarial optimization of inputs, followed
by gradient-based maximization. Generative methods sample solutions from learned generative
models with regularization. Evolutionary methods use neural networks and other techniques to learn
proxy models, which are then solved using evolutionary algorithms. In addition, we also introduce
traditional black box optimization methods for comparison. For evaluation, we consider three key
components of offline optimization: model architecture, learning algorithm, and search algorithm, as
outlined below.

B.1.1 TRADITIONAL BLACK BOX OPTIMIZATION METHODS

Algorithm 1 Offline Bayesian Optimization Trabucco et al. (2022)

1: Train a surrogate model f̂ based on offline dataset D.
2: Select the top 1 initial designs D̂ = (Xt,yt) from the offline dataset D.
3: for t = 1...K do
4: Find xt by optimizing the quasi-Expected-Improvemnt acquation function over the Gaussian

Process: xt = argmaxx u(x | D̂1:t−1).
5: Sample the Surrogate function: yt = f̂(xt).
6: Augment the data D̂1:t = {D̂1:t−1, (xt, yt)} and update the Gaussian Process.
7: end for

BO-qEI Balandat et al. (2019): We perform offline Bayesian optimization by fitting a Gaussian
Process using a learned surrogate model f̂(x). Next, we employ the quasi-Expected Improvement ac-
quisition function to propose candidate solutions for efficiency. After the Bayesian optimization cycle
is completed, we select the best candidates x from the dataset D̂. The procedure of BO-qEI is shown in
Algorithm 1. We use the implementation from https://github.com/brandontrabucco/
design-baselines/tree/master/design_baselines/bo_qei.

CMA-ES Hansen (2006): We perform offline optimization using the Covariance Matrix Adap-
tation Evolution Strategy (CMA-ES), which adapts the covariance matrix of a multivariate
normal distribution to guide the search. At each iteration, candidate solutions are sampled
from the distribution, and the distribution parameters are updated based on selected high-
performing solutions. After completing the optimization cycle, we select the best candidates
x from the dataset D. The procedure of CMA-ES is shown in Algorithm 1. We use the
implementation from https://github.com/brandontrabucco/design-baselines/
tree/master/design_baselines/cbas.

B.1.2 FORWARD METHODS

ARCOO Lu et al. (2023): ARCOO learns both a surrogate model and an energy-based model,
which characterizes the risk of degradation to address the out-of-distribution issue. The optimizer
at each step is regulated by a risk suppression factor derived from the energy-based model. The
procedure is outlined in Algorithm 3. The implementation can be found at https://github.
com/luhuakang/ARCOO.
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Algorithm 2 Covariance Matrix Adaptation Evolution Strategy (CMA-ES) Hansen (2006)

1: Initialize mean m0, step size σ0, population size λ, initial covariance matrix C0 = I
2: Set learning rates for mean (µ), covariance matrix (α), and step size adaptation (β)
3: for each generation t = 0, 1, 2, . . . do
4: Sample λ candidate solutions x(t)

i ∼ N (mt, σ
2
tCt) for i = 1, . . . , λ

5: Evaluate fitness f(x(t)
i ) for each candidate x

(t)
i

6: Select the top µ candidates with the best fitness values
7: Update mean mt+1 as the weighted average of the top µ candidates:

mt+1 =

µ∑
i=1

wix
(t)
i

8: Update covariance matrix Ct+1 to adapt the search distribution:

Ct+1 = (1− α)Ct + α

µ∑
i=1

wi

(
x
(t)
i −mt

)(
x
(t)
i −mt

)T
9: Update step size σt+1 based on the success rate of candidate solutions:

σt+1 = σt exp

(
β

(
∥pσ∥
∥N (0, I)∥

− 1

))
10: Update evolution path pσ for step size adaptation
11: end for
12: return Best solutions found during the optimization process

Tri-mentoring Chen et al. (2023): Tri-mentoring trains three surrogate models on the offline
dataset and utilizes majority voting to generate consensus labels. To mitigate potential errors in
the consensus, an adaptive soft-labeling module is applied. The complete algorithm is presented
in Algorithm 4. The implementation can be found at https://github.com/GGchen1997/
parallel_mentoring.

B.1.3 GENERATIVE METHODS

Autofocusing CbAS Brookes et al. (2019): The Autofocusing CbAS iteratively updates a search
model for optimal design by focusing on high-quality solutions. It employs importance sam-
pling to weight samples based on their likelihood of meeting desired conditions, allowing for
targeted optimization. Using weighted Maximum Likelihood Estimation (MLE), the search
model is refined, while an oracle model is retrained to adaptively reduce bias as the design
space is explored. The procedure of Autofocusing CbAS is shown in Algorithm 5. We use the
implementation from https://github.com/brandontrabucco/design-baselines/
tree/master/design_baselines/autofocused_cbas.

B.1.4 EVOLUTIONARY METHODS

TTDDEA Huang et al. (2021): TTDDEA is an offline optimization method that combines tri-training
with evolutionary algorithms. It uses three Radial Basis Function Networks (RBFNs) as surrogate
models to predict fitness scores and generates high-confidence pseudo-labels to augment limited
training data. By applying an evolutionary optimization process, TT-DDEA iteratively updates these
surrogate models and selects high-performing candidate solutions for the next generation. This
approach leverages semi-supervised learning and multi-model ensembles to address data scarcity in
offline environments. The algorithm can be seen in Algorithm 6. We use the implementation from
https://github.com/HandingWangXDGroup/TT-DDEA.
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Algorithm 3 Accumulative Risk Controlled Offline Optimization (ARCOO) Lu et al. (2023)
Input:Offline dataset D, learning rate η, maximum Langevin dynamics step K, Langevin dynamics
stepsize λ, and initial momentum m.

1: Initialize dual-head model that consists of surrogate head f̂θ(x) and energy head Eϕ(x).
2: for each training epoch do
3: Update f̂θ(x) using MSE loss:

θ ← θ − η∇θLD(θ)

4: Sample high-risk distribution q(x) by Langevin dynamics: q(x) = LDθ(p(x);K), i.e.,

xk ← xk−1 + λ∇xf̂θ(xk−1) + ωk, k = 1, . . . ,K,

where ωk ∼ N (0, λ), and x0 ∼ p(x). Sampling starts from the low-risk empirical distribution
p(x) over the offline dataset.

5: Update Eϕ(x) using contrastive divergence loss:

ϕ← ϕ− η∇ϕ [KL(p(x)∥hϕ(x))− KL(q(x)∥hϕ(x))] ,

where hϕ is derived from Eϕ(x).
6: end for
7: Let P̃ be an empirical distribution over a batch of the high-quality solutions in D, and Q̃ =

LDθ(P̃;K).
8: Calculate the risk suppression factor:

Rϕ(x) = m(EQ̃ − Eϕ(x))(EQ̃ − EP̃)
−1.

9: for t = 1 to T do
10: xt ← xt−1 +Rϕ(xt−1)∇xf̂θ(xt−1).
11: end for
12: return Final solution xapp = xT for online application.

Algorithm 4 Tri-mentoring for Offline Model-based Optimization Chen et al. (2023)
Input: The static dataset D, the number of iterations T , the optimizer OPT(·).

1: Initialize x0 as the design with the highest score in D.
2: Train proxies fA

θ (·), fB
θ (·), and fC

θ (·) on D with different initializations.
3: for t← 0 to T − 1 do
4: Sample K neighborhood points at xt as S(xt).
5: Compute pairwise comparison labels ŷA, ŷB , and ŷC for the three proxies on S(xt).
6: Derive consensus labels: ŷV = majority_voting(ŷA, ŷB , ŷC).
7: for proxy in {fA

θ (·), fB
θ (·), fC

θ (·)} do
8: Initialize soft-labels as consensus labels: ŷS = ŷV .
9: Inner level: fine-tune the proxy with Eq. (8).

10: Outer level: learn more accurate soft-labels ŷS with Eq. (9).
11: Mentor proxy using the optimized soft-labels ŷS with Eq. (8).
12: end for
13: Form a more robust ensemble as fθ(x) = 1

3

(
fA
θ (x) + fB

θ (x) + fC
θ (x)

)
.

14: Gradient ascent: xt+1 = xt + ηOPT(∇xfθ(xt)).
15: end for
16: return The high-scoring designs x∗ = xT .

CCDDEA Gong et al. (2023): CCDDEA combines hierarchical surrogate models with cooperative
coevolution to solve large-scale optimization problems. It uses a global model (HM) and local
models (LMs) to guide search at different levels. Local searches are enhanced with gradient-based
and evolutionary operators, while global communication merges sub-populations. The dynamic
space division strategy improves convergence by shifting focus from local to global optimization.
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Algorithm 5 Autofocused Model-based Optimization (Autofocusing CbAS) Brookes et al. (2019)
Input: Offline dataset, D = {(xi, yi)}ni=1; oracle model class, pβ(y | x) with parameters, β, that
can be estimated with MLE; search model class, pθ(x) with parameters, θ, that can be estimated
with weighted MLE or approximations thereof; desired constraint set, S (e.g., S = {y | y ≥ yτ});
maximum number of iterations, T ; number of samples to generate, m; EDA-specific monotonic
transformation, V (·).
Initialization: Obtain pθ(x) by fitting to {xi}ni=1 with the search model class. For the search
model, set pθ(0)(x)← pθ(x). For the oracle, pβ(0)(y | x), use MLE with equally weighted training
data.

1: for t = 1, . . . , T do
2: Sample from the current search model, {x̃(t)

i }mi=1 ∼ pθ(t−1)(x), ∀i ∈ {1, . . . ,m}.
3: vi ← V

(
Pβ(t−1)(y ∈ S | x̃(t)

i )
)
, ∀i ∈ {1, . . . ,m}.

4: Fit the updated search model, pθ(t)(x), using weighted MLE with the samples, {x̃(t)
i }mi=1, and

their corresponding EDA weights, {vi}mi=1.
5: Compute importance weights for the training data, wi ← pθ(t)(xi)/pθ(0)(xi), i = 1, . . . , n.
6: Retrain the oracle using the re-weighted training data,

β(t)← argmax
β∈B

1

n

n∑
i=1

wi log pβ(yi | xi).

7: end for
8: return The most promising candidates among {x̃(t)

i , ..., x̃
(t)
m }Tt=1.

Algorithm 6 Tri-Training Data-Driven Evolutionary Algorithm (TT-DDEA) Huang et al. (2021)
Input: Separate offline data sets L1, L2, and L3, trained RBFNs M1, M2, and M3, current population
P , population size Q.

1: for i = 1→ 3 do
2: Use the models M1, M2, M3 to predict the fitness of population, written as f1

1 , f
1
2 , . . . , f

1
Q,

f2
1 , f

2
2 , . . . , f

2
Q, and f3

1 , f
3
2 , . . . , f

3
Q.

3: end for
4: for i = 1→ 3 do
5: Find the high-confidence data xi as in Equation (9).
6: Calculate its pseudo label ŷi as in Equation (10).
7: Update Li to L′

i by (xi, ŷi) as in Equation (11).
8: end for
9: Train RBFNs M1, M2, and M3 with L′

1, L′
2, and L′

3.
10: Use the evolutionary algorithms to obtain promising candidates.
11: return The most promising candidates found by the evolutionary algorithms.
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The procedure of CCDDEA is shown in Algorithm. The implementation can be found in https:
//github.com/LabGong/cc-ddea.

Algorithm 7 Offline Data-Driven Optimization at Scale: A Cooperative Coevolutionary Approach
(CC-DDEA) Gong et al. (2023)

1: Input: D: The offline data;
n: The size of complete population;
TH , TL: The maximum generations of higher-level and lower-level optimization;
ginit: The initial number of groups;
Tg: The interval for updating the number of groups;
Tr: The interval for re-dividing the sub-spaces;
α: The learning rate of gradient descent;
rtop: The control parameter for top-ranked random merging in the cooperative search;

2: Output: The best solution
3: Initialization: ir ← 0 (index of Tr), g ← ginit
4: P ← Latin hypercube sampling
5: for i← 1 to TH do
6: if i > 1 and i mod Tg = 1 and g > 1 then
7: g ← g − 1
8: ir ← 0
9: end if

10: if ir mod Tr = 0 and g > 1 then
11: G← division rules
12: (HM,LMi)← HSJL(D, G)
13: end if
14: SP ← split P according to G
15: for SPj ∈ SP do
16: SPj ← LowerLevelSearch(SPj , TL, α, LMj)
17: end for
18: if g > 1 then
19: P ← HigherLevelSearch(SP, rtop, HM,LMs)
20: end if
21: ir ← ir + 1
22: end for
23: return P [0]

B.1.5 CONSTRAINED METHODS

We selected two primary categories of offline constraint algorithms: deep learning-based constrained
offline methods and evolution-based constrained offline methods. For our experiments, we utilized
classic methods from both categories.

CARCOO: This is a simplified constrained version of ARCOO. We integrate the degree of constraint
violation into risk assessment, treating solutions that violate constraints as high risk. CARCOO
employs the three models (i.e., a surrogate model, an energy-based model to characterize OOD risk,
an energy-based model to characterize constrained risk) to train the models on a training dataset. The
algorithm can be found in Algorithm 8.

CCOMs: This is a simple experimental version of PRIME (Kumar et al., 2022). We use θ∗ =

argminθ Exi,yi∼Dfeasible

[
(fθ (xi)− yi)

2
]
− αEx−

i ∼Dinfeasible

[
fθ
(
x−
i

)]
. This means that in addition

to fitting the surrogate model, we also make the values of points that violate the constraints as small
as possible. Then use the conservative model COMs (Trabucco et al., 2021) as surrogate model to
train. Pseudocode can be found at Algorithm 9.

DDEA-PF & DDEA-SPF Huang & Wang (2021b): DDEA-PF and DDEA-SPF are two data-driven
evolutionary algorithms for handling constraints in optimization tasks. DDEA-PF employs penalty
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Algorithm 8 Constrained Accumulative Risk Controlled Offline Optimization (CARCOO)
Input:Offline dataset D, learning rate η, maximum Langevin dynamics step K, Langevin dynamics
stepsize λ, and initial momentum m.

1: Initialize dual-head model that consists of surrogate head f̂θ(x) and energy head Eϕ(x).
2: for each training epoch do
3: Update f̂θ(x) using MSE loss:

θ ← θ − η∇θLD(θ)

4: Sample high-risk distribution q(x) by Langevin dynamics: q(x) = LDθ(p(x);K), i.e.,

xk ← xk−1 + λ∇xf̂θ(xk−1) + ωk, k = 1, . . . ,K,

where ωk ∼ N (0, λ), and x0 ∼ p(x). Sampling starts from the low-risk empirical distribution
p(x) over the offline dataset.

5: Update Eϕ(x) using contrastive divergence loss:

ϕ← ϕ− η∇ϕ [KL(p(x)∥hϕ(x))− KL(q(x)∥hϕ(x))] ,

where hϕ is derived from Eϕ(x).
6: Update Êτ (x) using contrastive divergence loss:

τ ← τ − η∇τ

[
KL(p̂(x)∥ĥτ (x))− KL(q̂(x)∥ĥτ (x))

]
,

where ĥτ is derived from Êϕ(x), p̂(x) is solutions that satisfy the constraints in the dataset,
q̂(x) is solutions in the dataset that do not satisfy the constraints

7: end for
8: Let P̃ be an empirical distribution over a batch of the high-quality solutions in D, and Q̃ =

LDθ(P̃;K).
9: Calculate the risk suppression factor:

Rϕ(x) = m(EQ̃ − Eϕ(x))(EQ̃ − EP̃)
−1.

Rτ (x) = m(EQ̃ − Eτ (x))(EQ̃ − EP̃)
−1.

10: for t = 1 to T do
11: xt ← xt−1 +

(Rϕ(xt−1)+Rτ (xt−1))
2 ∇xf̂θ(xt−1).

12: end for
13: return Final solution xapp = xT for online application.

functions to manage constraints, adjusting the penalty to push solutions towards feasibility. On the

other hand, DDEA-SPF focuses on adaptive penalty, i.e., fitness(x) = f(x) + ri
(
∑M

j=1 max[0,gj(x)]
q)

gmax,j
.

DDEA-PF is presented in Algorithm 10. The implementation is from https://github.com/
HandingWangXDGroup/Constraint-Handling-OfflineDDEA.

B.2 COMPUTATION RESOURCES

The computing resources required for the research described in this paper are relatively modest,
requiring only a single Nvidia GeForce RTX 3090 GPU. The experiments were efficiently completed
using this powerful graphics card, almost all within a 24-hour timeframe.

C EXPERIMENTAL RESULTS

Below, we present the experimental results of our study, providing detailed insights and analyses in
the following sections. The experiments were designed to evaluate the performance of our proposed
methods under various conditions. All results are averaged over eight times. It is important to note
that under different seeds, some may be able to run relatively good experimental results, while others
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Algorithm 9 Constrained Conservative Objective Models for Offline Optimization (CCOMs)
Input: Offline dataset D, the learning rate of OOD gradient ascent η, trade-off coefficient α.
Initialization: Surrogate model f̂θ.

1: for i = 1 to training_steps do
2: Sample (x0, y) ∼ D
3: Find xT (x0) via gradient ascent from x0:

xt+1 = xt + η∇xf̂θ(x)
∣∣∣
x=xt

; µ(x) =
∑
x0∈D

δx=xT (x0).

4: Minimize L(θ;α) with respect to θ.

L(θ;α) = Ex0∼D

(
f̂θ(x0)− y

)2
−αEx0

[
f̂θ(x0)

]
+αEµ(x)

[
f̂θ(x)

]
−Ex−∼Dinf

[
fθ
(
x−)]

θ ← θ − λ∇θL(θ;α)
5: end for
6: Initialize optimizer at the optimum in D:

7: Find x⋆ via trust-region gradient ascent from x̃:

xt+1 = xt + η∇xLopt(x)
∣∣∣
x=xt

where Lopt(x) := f̂⋆
θ (x).

8: Return the solution x⋆ = xT .

Algorithm 10 Data-Driven Evolutionary Optimization with Penalty Function (DDEA-PF) Huang &
Wang (2021b)

1: Initialize population P with size Q
2: Set the degree of violation of the jth constraint gj(x), penalty coefficient ri.
3: for each generation T do
4: for each individual x in P do
5: Evaluate fitness using the objective function with a penalty for constraint violation:

fitness(x) = f(x) + ri(

M∑
j=1

max[0, gj(x)]
q)

6: end for
7: Perform selection, crossover, and mutation in population P to find best feasible solutions.
8: end for
9: return Best feasible solutions x∗ = xT .
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may not be able to surpass the offline dataset. When such cases are relatively rare (i.e., less than 4
times), we will delete these cases, otherwise we will consider SI to be −∞ at this time.

The experimental results in the unconstrained scenario show that TTDDEA and CBAS algorithms
are the most balanced and stable on various benchmark functions, demonstrating high performance
and stability. Although CMA-ES performs well in some cases, the stability of the results is poor.
ARCOO and BO perform well on most functions.

The experimental results in the constraint scenario show that the DE-PF and DE-SFP algorithms
do not perform well on various benchmark functions. In addition, the performance of DE-PF and
DE-SFP on multiple benchmark functions is almost the same, showing consistent performance.
The performance of the CCOMS algorithm fluctuates greatly in different dimensions and functions.
Overall, the CARCOO algorithm has good performance and stability when dealing with constrained
optimization problems, providing an important reference for subsequent algorithm optimization.

In the hybrid vehicle task, we found that some tasks could not be completed within 24 hours,
highlighting the limitations of the current offline optimization algorithms. These algorithms struggle
with high-dimensional and time-consuming tasks, emphasizing the need to reduce the number and
points of evaluations. Streamlining these aspects is crucial for improving efficiency and effectiveness
in such complex optimization scenarios. Most algorithms that can be completed within the specified
time can achieve significant improvements. For example, when the 0-60 loss is severe, BO improves
from 257 to 33, with an SI of 0.91. ARCOO improves to 17, with an SI of 0.92. However, other
algorithms either cannot produce results within the specified time or fail to improve, resulting in
a negative SI. We found that many algorithms cannot find feasible solutions or solutions that are
better than offline datasets for complex tasks. Therefore, how to find the optimal solution with stable
improvement in future work is an issue worth considering.

Table 5: Overall results in GTOPX unconstriant scenario. Details are the same as main body. The
symbol “−∞” means that the algorithm can’t find solutions exceeding f(x∗

OFF). For each task,
algorithms within one standard deviation of having the highest performance are bolded.

Tasks GTOPX 2 GTOPX 3 GTOPX 4 GTOPX 6

Metrics FS ↓ SI ↑ FS ↓ SI ↑ FS ↓ SI ↑ FS ↓ SI ↑

10-60

f(x∗
OFF) 276.47 228.02 322.74 142.05

CMA-ES 276.47±1.76 0.00±0.00 228.02±2.27 0.00±0.00 322.74±1.11 0.00±0.00 142.05±0.48 0.00±0.00
Tri-mentoring 251.66±30.75 0.46±0.45 145.43±70.45 0.68±0.33 247.04±93.80 0.53±0.38 128.37±25.11 0.55±0.41

CBAS 276.47±1.76 −∞ 117.26±56.17 0.82±0.05 202.76±64.70 0.21±0.05 194.46±45.24 −∞
ARCOO 82.27±9.74 0.89±0.02 116.75±59.80 0.79±0.07 198.45±102.26 0.76±0.12 64.30±19.63 0.82±0.03
TTDDEA 472.87±530.28 0.74±2.24 829.88±1183.97 -0.46±3.44 1634.61±1578.12 −∞ 145.75±43.06 -0.07±0.64

BO 82.98±18.24 0.81±0.02 69.69±15.41 0.82±0.01 105.36±23.90 0.81±0.03 57.95±13.14 0.73±0.02
CCDDEA 276.57±4.77 −∞ 228.19±8.06 −∞ 326.68±5.93 −∞ 155.44±33.21 −∞

20-70

f(x∗
OFF) 219.12 171.28 242.26 121.48

CMA-ES 219.12±1.42 0.00±0.00 171.28±0.57 0.00±0.00 242.26±0.71 0.00±0.00 121.48±0.50 0.00±0.00
Tri-mentoring 166.90±63.81 0.74±0.30 154.24±20.72 0.51±0.41 174.32±56.98 0.75±0.31 104.82±18.42 0.42±0.38

CBAS 219.12±1.42 0.00±0.00 92.08±14.34 0.75±0.04 242.26±0.71 0.13±0.02 90.02±38.85 0.32±0.10
ARCOO 80.06±6.65 0.83±0.01 58.01±7.03 0.87±0.03 138.43±32.21 0.75±0.07 62.79±19.66 0.73±0.07
TTDDEA 248.55±43.15 -0.68±0.12 1234.48±1688.45 −∞ 989.33±1476.65 −∞ 117.25±37.72 -0.94±1.91

BO 84.13±4.97 0.74±0.30 59.46±10.87 0.76±0.03 107.50±18.28 0.72±0.03 71.90±13.96 0.69±0.01
CCDDEA 219.22±3.95 −∞ 172.36±5.27 −∞ 242.95±4.04 −∞ 121.70±1.72 −∞

30-80

f(x∗
OFF) 175.46 134.75 194.36 102.98

CMA-ES 175.46±0.69 0.00±0.00 134.75±0.64 0.00±0.00 194.36±0.37 0.00±0.00 102.98±0.36 0.00±0.00
Tri-mentoring 138.32±49.95 0.40±0.45 125.84±17.10 0.55±0.40 158.57±20.94 0.52±0.40 102.98±0.36 0.23±0.38

CBAS 175.46±0.69 0.00±0.00 96.61±20.89 0.67±0.02 190.91±7.41 0.12±0.02 90.94±24.05 0.40±0.05
ARCOO 86.91±16.70 0.78±0.05 65.17±14.18 0.80±0.05 110.97±8.00 0.74±0.05 58.05±10.68 0.72±0.11
TTDDEA 194.83±30.25 -8.67±2.67 198.92±96.66 −∞ 458.64±323.03 −∞ 167.23±62.22 −∞

BO 108.25±25.51 0.66±0.03 72.75±14.79 0.65±0.02 127.51±15.86 0.63±0.03 60.48±6.68 0.57±0.03
CCDDEA 176.53±3.76 −∞ 135.21±2.74 −∞ 193.12±2.67 −∞ 116.20±33.92 −∞

40-90

f(x∗
OFF) 136.50 102.75 153.91 83.44

CMA-ES 136.50±0.28 0.00±0.00 102.75±0.53 0.00±0.00 153.91±0.29 0.00±0.00 83.44±0.21 0.00±0.00
Tri-mentoring 127.39±18.01 0.51±0.44 96.53±12.48 0.51±0.43 153.91±0.41 0.43±0.47 83.44±0.21 0.41±0.48

CBAS 136.50±0.28 0.00±0.00 90.01±10.47 0.43±0.04 153.91±0.41 0.07±0.02 69.75±17.59 0.34±0.09
ARCOO 77.72±15.90 0.78±0.06 59.82±8.20 0.73±0.06 104.88±21.71 0.66±0.03 63.55±10.81 0.60±0.20
TTDDEA 280.25±223.36 -37.89±21.67 1961.71±3763.00 −∞ 299.17±120.87 −∞ 831.60±1441.82 −∞

BO 84.37±14.90 0.48±0.02 85.13±16.80 0.52±0.02 90.88±10.68 0.46±0.06 53.83±9.09 0.47±0.03
CCDDEA 138.24±2.59 −∞ 102.86±2.54 −∞ 153.43±3.53 −∞ 83.20±1.05 −∞

D ADDITIONAL EXPERIMENTS

Since we have the flexibility to construct the distribution of dataset, we also offer two additional
common settings for complex data environments. The first setting involves adjusting the size of the
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Table 6: Overall results in GTOPX constrianed scenario. Details are the same as Table 5. The symbol
“-" means that the algorithm cannot work because of too few solutions that satisfly the constraints.

Tasks GTOPX 1 GTOPX 5 GTOPX 7

Metrics FS ↓ SI ↑ FS ↓ SI ↑ FS ↓ SI ↑

10-60

f(x∗
OFF) 114.86 - 568.18

DE-PF 530.92±1.50 −∞ - - 1366.08±3.42 −∞
DE-SPF 530.92±1.50 −∞ - - 1366.08±3.42 −∞

CARCOO 111.07±4.18 0.27±0.21 - - 64.07±31.42 0.91±0.03
CCOMs 31.65±0.18 -0.70±1.13 - - 545.49±8.81 1.00±0.00

20-70

f(x∗
OFF) 87.15 - 422.76

DE-PF 392.04±4.10 −∞ - - 1044.00±5.69 −∞
DE-SPF 392.04±4.10 −∞ - - 1044.00±5.69 −∞

CARCOO 82.04±5.33 0.35±0.19 - - 199.37±136.86 0.79±0.07
CCOMs 248.57±177.55 -0.75±0.92 - - 30.50±0.49 1.00±0.00

25-75

f(x∗
OFF) 75.13 - 346.52

DE-PF 283.39±14.47 −∞ 0 −∞ 954.35±3.16 −∞
DE-SPF 263.97±52.96 −∞ 0 −∞ 954.35±3.16 −∞

CARCOO 74.98±1.09 -3.71±9.62 -58742.77±23361.35 0.37±0.12 260.16±109.21 0.62±0.24
CCOMs 164.89±129.51 0.62±0.24 -12634.47±22004.53 -0.19±0.34 954.35±3.16 −∞

30-80

f(x∗
OFF) 65.19 - 276.33

DE-PF 234.79±1.10 −∞ - - 890.64±3.36 −∞
DE-SPF 234.79±1.10 −∞ - - 890.64±3.36 −∞

CARCOO 62.46±2.41 0.37±0.16 19.78±0.00 0.13±0.00 150.00±65.72 0.66±0.14
CCOMs 112.97±99.94 -1.93±0.30 - - 30.50±0.49 1.00±0.00

40-90

f(x∗
OFF) 46.84 - 148.7

DE-PF 203.64±0.75 −∞ - - 780.34±3.49 −∞
DE-SPF 203.64±0.75 −∞ - - 780.34±3.49 −∞

CARCOO 46.56±2.68 0.17±0.22 1051.48±14.50 −∞ 143.31±8.99 0.22±0.13
CCOMs 203.64±0.75 -9.77±11.00 - - 114.93±16.23 1.00±0.00

Table 7: Overall results in CEC constrianed scenario. Details are the same as Table 6.

Tasks CEC 1 CEC 2 CEC 3 CEC 4 CEC 5

Metrics FS ↓ SI ↑ FS ↓ SI ↑ FS ↓ SI ↑ FS ↓ SI ↑ FS ↓ SI ↑

10-60

f(x∗
OFF) - 1.08 2.12 264.42 8.61

DE-PF - - 1.34±0.01 0.00±0.00 3.38±0.26 −∞ 381.04±3.52 −∞ 30.97±3.23 −∞
DE-SPF - - 1.34±0.01 0.00±0.00 3.37±0.01 −∞ 277.45±19.22 −∞ 29.44±0.00 0.00±0.00

CARCOO - - 1.17±0.25 -0.59±2.04 2.65±0.01 0.70±0.00 - - 11.33±0.41 0.87±0.12
CCOMs - - 422.29±159.58 −∞ 2.72±0.15 0.06±0.01 - - - -

20-70

f(x∗
OFF) - 1.08 2.00 264.42 6.75

DE-PF - - 1.32±0.02 −∞ 3.03±0.06 −∞ 378.29±1.61 −∞ 27.86±0.19 −∞
DE-SPF - - 1.32±0.02 −∞ 3.01±0.01 −∞ 274.70±12.15 −∞ 18.31±5.31 −∞

CARCOO - - 2.32±0.06 −∞ 0.67±0.29 0.86±0.07 - - 14.75±0.03 0.83±0.01
CCOMs - - 46.77±32.15 −∞ 3.01±0.00 -0.01±0.00 302.93±11.67 −∞ - -

25-75

f(x∗
OFF) - 1.08 2.00 264.42 5.84

DE-PF - - 1.30±0.03 −∞ 3.00±0.13 −∞ 377.28±0.24 −∞ 38.67±7.65 −∞
DE-SPF - - 1.30±0.03 −∞ 2.04±0.02 0.54±0.01 270.70±3.74 −∞ 17.99±0.11 −∞

CARCOO - - 2.43±0.07 −∞ 1.29±0.10 0.88±0.07 - - 10.37±0.90 -0.86±0.75
CCOMs - - 57.41±13.78 −∞ 2.02±0.00 0.08±0.00 297.66±3.34 0.43±0.39 - -

30-80

f(x∗
OFF) - 1.08 2.00 264.42 4.91

DE-PF - - 1.27±0.03 −∞ 2.90±0.18 −∞ 351.49±5.17 −∞ 20.41±0.01 −∞
DE-SPF - - 1.27±0.03 −∞ 2.84±0.14 −∞ 270.70±3.74 −∞ 16.08±0.23 −∞

CARCOO - - 2.79±0.22 −∞ 2.00±0.00 0.94±0.00 - - 9.18±0.07 -0.17±0.18
CCOMs - - 66.71±3.35 −∞ 2.14±0.01 0.08±0.01 286.00±0.00 −∞ - -

40-90

f(x∗
OFF) - 1.08 2.00 264.42 2.95

DE-PF - - 1.26±0.07 −∞ 2.81±0.27 −∞ 303.41±35.33 −∞ 19.63±0.55 −∞
DE-SPF - -n 1.23±0.05 −∞ 2.01±0.12 0.32±0.15 269.19±0.83 −∞ 13.06±0.19 −∞

CARCOO - - 3.49±0.49 −∞ 2.00±0.00 0.94±0.00 - - 2.69±0.11 0.71±0.67
CCOMs - - 64.21±9.70 −∞ 2.20±0.00 -0.02±0.00 269.04±6.89 −∞ - -
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Table 8: Overall results in PROTEIN unconstrianed & constrianed scenario.

Tasks Mujoco 1 Mujoco 2 Mujoco 1 Mujoco 2

10-60

f(x∗
OFF) 2.30 2.08

0-90

2.17 1.56
CMA-ES - - - - - - - -

Tri-mentoring 2.30±0.03 0.00±0.00 - - - - - -
CBAS - - - - - - - -

ARCOO 2.30±0.01 0.04±0.01 2.08±0.01 0.02±0.01 2.17±0.01 0.01±0.01 1.56±0.01 0.01±0.01
TTDDEA - - - - - - - -

BO - - - - - - - -

20-70

f(x∗
OFF) 2.00 1.88

0-80

1.83 1.33
CMA-ES - - - - - - - -

Tri-mentoring 2.00±0.02 0.00±0.00 - - - - - -
CBAS - - - - - - - -

ARCOO 2.00±0.01 0.02±0.01 1.88±0.01 0.03±0.01 1.83±0.01 0.01±0.01 1.33±0.01 0.01±0.01
TTDDEA - - - - - - - -

BO - - - - - - - -

25-75

f(x∗
OFF) 1.92 1.82

CMA-ES - - - -
Tri-mentoring 1.92±0.01 0.00±0.00 - -

CBAS - - - -
ARCOO 1.92±0.01 0.04±0.01 1.82±0.01 0.02±0.01
TTDDEA - - - -

BO 8.51±0.00 0.50±0.00 - -

30-80

f(x∗
OFF) 1.86 1.70

0-70

1.66 1.17
CMA-ES - - - - - - - -

Tri-mentoring - - - - 1.66±0.00 0.00±0.00 - -
CBAS - - - - - - - -

ARCOO 1.86±0.01 0.08±0.01 1.70±0.02 0.04±0.01 1.66±0.01 0.01±0.01 1.17±0.01 0.01±0.01
TTDDEA - - - - - - - -

BO - - - - - - - -

40-90

Metrics FS ↓ SI ↑ FS ↓ SI ↑ FS ↓ SI ↑ FS ↓ SI ↑
f(x∗

OFF) 1.73 1.59

0-60

1.55 1.08
CMA-ES - - - - - - - -

Tri-mentoring 1.73±0.04 0.00±0.00 - - - - - -
CBAS - - - - - - - -

ARCOO 1.73±0.01 0.00±0.00 1.59±0.01 0.00±0.00 1.55±0.01 0.05±0.01 1.08±0.01 0.03±0.01
TTDDEA - - - - - - - -

BO - - - - - - - -

Table 9: Overall results in GTOPX unconstrianed scenario.

Tasks GTOPX 2 GTOPX 3 GTOPX 4 GTOPX 6

Metrics FS ↓ SI ↑ FS ↓ SI ↑ FS ↓ SI ↑ FS ↓ SI ↑

0-60

f(x∗
OFF) 275.27 228.84 322.52 142.09

CMA-ES 275.27±2.34 0.00±0.00 228.84±3.46 0.00±0.00 322.52±1.07 0.00±0.00 142.09±0.39 0.00±0.00
Tri-mentoring 251.33±50.42 0.54±0.12 185.64±64.75 0.63±0.05 244.74±87.17 0.41±0.02 135.97±15.99 0.76±0.21

CBAS 275.27±2.39 0.00±0.00 96.03±10.36 0.84±0.32 275.46±79.07 0.22±0.12 116.67±43.99 0.37±0.26
ARCOO 51.97±4.85 0.91±0.04 129.52±66.78 0.67±0.27 210.33±103.27 0.59±0.21 44.96±8.72 0.85±0.05
TTDDEA 959.47±2023.91 −∞ 95908.88±129415.48 −∞ 11405.36±28334.25 −∞ 126.99±60.14 −∞

BO 93.68±10.56 0.81±0.09 69.67±14.92 0.81±0.06 106.5±23.94 0.79±0.11 51.66±5.91 0.73±0.01
CCDDEA 276.57±4.77 −∞ 228.19±8.06 −∞ 326.68±5.93 −∞ 142.58±2.14 −∞

0-70

f(x∗
OFF) 218.12 171.54 241.62 121.48

CMA-ES 218.12±1.78 0.00±0.00 171.54±0.81 -0.33±0.01 241.62±1.4 0.00±0.00 121.48±0.38 0.00±0.00
Tri-mentoring 197.63±53.32 -0.32±1.05 166.81±12.51 0.55±0.07 237.26±11.45 0.43±0.09 107.11±21.16 0.09±0.01

CBAS 218.12±1.78 0.00±0.00 106.53±38.2 0.73±0.12 232.11±19.59 0.16±0.08 83.22±38.49 0.32±0.13
ARCOO 54.33±7.18 0.90±0.03 101.59±35.56 0.73±0.04 190.24±72.22 0.38±0.17 47.97±7.14 0.82±0.05
TTDDEA 227.95±59.71 −∞ 28243.65±61226.1 −∞ 48026.88±114654.58 −∞ 115.87±25.63 -0.89±0.21

BO 89.69±29.44 0.75±0.14 76.77±16.35 0.73±0.08 108.33±24.68 0.72±0.16 62.53±5.97 0.67±0.01
CCDDEA 219.22±3.95 −∞ 172.37±5.26 −∞ 242.95±4.04 −∞ 121.70±1.72 −∞

0-80

f(x∗
OFF) 175.10 134.83 194.03 102.96

CMA-ES 175.10±0.75 0.00±0.00 134.83±0.55 0.00±0.00 194.03±0.89 0.00±0.00 102.96±0.29 0.00±0.00
Tri-mentoring 118.95±42.5 0.66±0.28 127.93±13.42 0.29±0.04 157.27±22.77 0.69±0.21 94.47±15.1 0.56±0.06

CBAS 175.10±0.75 0.00±0.00 99.02±20.89 0.66±0.27 183.27±19.71 0.10±0.02 82.24±0.27 0.35±0.01
ARCOO 52.34±0.06 0.87±0.00 77.74±23.06 0.70±0.09 140.88±53.32 0.42±0.20 46.64±19.93 0.75±0.27
TTDDEA 282.21±104.01 −∞ 47263.8±103752.22 −∞ 274.49±7796.13 −∞ 126.69±68.7 -0.45±0.24

BO 100.94±22.39 0.64±0.14 70.51±16.03 0.68±0.12 114.11±20.68 0.60±0.19 65.48±11.99 0.60±0.09
CCDDEA 176.53±3.76 −∞ 130.06±15.22 −∞ 197.42±10.85 −∞ 103.49±1.53 −∞

0-90

f(x∗
OFF) 136.28 102.69 153.62 83.37

CMA-ES 136.28±0.39 0.00±0.00 102.69±0.49 0.00±0.00 153.62±0.6 0.00±0.00 83.37±0.23 0.00±0.00
Tri-mentoring 111.71±34.31 0.20±0.04 101.23±4.07 0.01±0.00 151.09±6.83 0.17±0.06 83.37±0.23 0.00±0.00

CBAS 136.28±0.39 0.00±0.00 97.96±6.29 0.07±0.01 153.62±0.60 0.07±0.00 68.54±19.25 0.36±0.12
ARCOO 48.89±6.95 0.83±0.05 74.05±20.14 0.28±0.04 129.47±41.1 0.28±0.07 46.41±14.51 0.74±0.12
TTDDEA 2100.55±4408.74 −∞ 300661.39±756671.3 −∞ 202637.99±534082.56 −∞ 101.54±23.1 −∞

BO 103.95±14.57 0.47±0.02 75.71±15.56 0.45±0.07 121.59±28.12 0.45±0.12 62.64±13.96 0.46±0.14
CCDDEA 138.24±2.59 −∞ 491.55±954.25 −∞ 153.44±3.53 −∞ 83.20±1.05 −∞
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Table 10: Overall results in GTOPX constrianed scenario.

Tasks GTOPX 1 GTOPX 5 GTOPX 7

Metrics FS ↓ SI ↑ FS ↓ SI ↑ FS ↓ SI ↑

0-60

f(x∗
OFF) 114.82 - 564.53

DE-PF 803.62±1.43 −∞ - - 4237.06±187.67 −∞
DE-SPF 805.64±0 −∞ - - 4502.47±0.00 −∞

CARCOO 114.19±0.41 0.10 ±0.05 - - 355.23±151.35 0.45±0.25
CCOMs 225.04±167.60 -2.27±0.89 - - 4722.46±156.71 −∞

0-70

f(x∗
OFF) 87.13 - 425.37

DE-PF 803.62±1.43 −∞ - - 4237.06±187.67 −∞
DE-SPF 805.64±0 −∞ - - 4502.47±0.00 −∞

CARCOO 65.97±17.87 0.25±0.13 - - 148.98±14.94 0.75±0.02
CCOMs 31.38±0.10 −∞ - - 4301.71±454.23 −∞

0-80

f(x∗
OFF) 65.17 - 278.11

DE-PF 803.62±1.43 −∞ - - 4237.06±187.67 −∞
DE-SPF 23.72±0.00 0.94±0.00 - - 4502.47±0.00 −∞

CARCOO 64.55±0.41 0.12±0.07 - - 153.72±87.96 0.52±0.34
CCOMs 602.96±163.72 -7.27±0.45 - - 4722.46±156.71 −∞

0-90

f(x∗
OFF) 47.56 - 144.91

DE-PF 803.62±1.43 −∞ - - 4237.06±187.67 −∞
DE-SPF 805.64±0.00 −∞ - - 4502.47±0.00 −∞

CARCOO 47.77±0.23 0.19±0.10 - - 144.85±83.09 0.58±0.28
CCOMs 611.44±157.56 -14.35±0.56 - - 4722.46±156.71 −∞

Table 11: Overall results in CEC constrianed scenario.

Tasks CEC 1 CEC 2 CEC 3 CEC 4 CEC 5

Metrics FS ↓ SI ↑ FS ↓ SI ↑ FS ↓ SI ↑ FS ↓ SI ↑ FS ↓ SI ↑

0-60

f(x∗
OFF) - 1.08 2.13 264.16 8.70

DE-PF 6202.03±91.50 0.00±0.00 2.04±0.00 −∞ 3.20±0.00 −∞ 278.25±0.00 −∞ 42.31±3.82 −∞
DE-SPF 6202.03±91.50 0.00±0.00 - - 3.20±0.00 −∞ 312.92±18.99 −∞ 58.58±0.00 −∞

CARCOO - - 0.59±0.22 0.69±0.21 2.79±0.06 2.78±0.15 - - - -
CCOMs - - 83.49±16.18 −∞ 2.23±0.04 −∞ 290.48±4.02 −∞ - −∞

0-70

f(x∗
OFF) - 1.08 2.00 264.16 6.78

DE-PF 6202.03±91.50 0.00±0.00 1.91±0.12 −∞ 3.20±0.00 −∞ 364.91±0.00 −∞ 44.75±5.41 −∞
DE-SPF 6202.03±91.50 0.00±0.00 1.15±0.00 −∞ 4.20±0.00 −∞ 364.91±0.00 −∞ 58.58±0.00 −∞

CARCOO - - 2.25±0.46 -6.78±3.98 - - - - - -
CCOMs - - 395.63±155.21 -5.68±4.40 4.20±0.00 −∞ 265.01±0.32 58.68±41.95 - -

0-80

f(x∗
OFF) - 1.08 2.00 264.16 4.89

DE-PF 6202.03±91.50 0.00±0.00 1.49±0.12 −∞ 4.20±0.00 −∞ 364.91±0.00 −∞ 40.01±0.99 −∞
DE-SPF 6202.03±91.50 0.00±0.00 2.04±0.00 −∞ 4.20±0.00 0.00±0.00 364.91±0.00 −∞ 58.58±0.00 −∞

CARCOO - - - - 2.00±0.00 -0.04±0.02 - - - -
CCOMs - - 180.50±85.37 −∞ 4.19±0.00 −∞ - - - -

0-90

f(x∗
OFF) - 1.08 2.00 264.16 4.17

DE-PF 6202.03±91.50 0.00±0.00 1.77±0.15 −∞ 4.00±0.18 −∞ 364.91±0.00 −∞ 49.76±4.61 −∞
DE-SPF 6202.03±91.50 0.00±0.00 2.04±0.00 −∞ 4.20±0.00 0.00±0.00 364.91±0.00 −∞ 58.58±0.00 −∞

CARCOO - - 2.26±0.03 −∞ - - - - - −∞
CCOMs - - 12.04±3.42 1.43±0.13 - - 219.87±112.31 −∞ - -
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data volume, allowing us to explore the impact of varying data scales. The second setting modifies
the distribution of the solution space, enabling us to assess how changes in the distribution affect the
performance and efficiency of the system.

Table 12: Overall the different size of the offline dataset results in GTOPX unconstrianed scenario.
Details are the same as Table 5.

Datasize N=dim*100 N=dim*300 N=dim*500
f(x∗

OFF) 197.25 195.40 195.66
Metrics FS ↓ SI ↑ FS ↓ SI ↑ FS ↓ SI ↑

TT-DDEA 5594.65± 13897.52 −∞ 194.56± 43.91 −∞ 424.3± 238.99 −∞
ARCOO 99.07± 18.99 0.75±0.07 93.22±23.27 0.79±0.03 86.68±17.22 0.78±0.05

Tri-mentoring 197.25± 3.70 0.00±0.00 195.40±2.62 −∞ 179.85± 42.05 −∞
CCDDEA 197.25± 3.70 0.00±0.00 195.40±2.62 0.00± 0.00 167.82± 44.25 −0.02± 0.11

CBAS 197.25±3.7 0.00± 0.00 195.4±2.61 0.00± 0.00 195.66±1.78 0.00±0.00
CMAES 179.21±38.49 0.03±0.07 157.41±51.96 0.04±0.06 172.74±40.97 0.04±0.07

BO 97.26±11.19 0.75±0.03 99.02±25.92 0.72± 0.06 104.80± 26.16 0.73± 0.05

As shown in Table 12, the experimental results demonstrate that when the data volume is small
(N=100), the performance of all algorithms is significantly affected. For instance, the FS values
of TT-DDEA exhibit considerable fluctuations, highlighting the difficulty of effectively optimizing
the objective function in low-data scenarios. Moreover, under small data volume conditions, the SI
values frequently approach 0 or −∞, further confirming that insufficient data volume undermines
the convergence and stability of the algorithms. We also observed that BO and ARCOO are mini-
mally affected by data volume and are able to find better solutions, demonstrating their exceptional
capabilities.

First, we provide a black-box ground-truth oracle objective function for each task. An initial dataset is
obtained by uniformly sampling and evaluating the objective function. Datasets of different difficulty
levels are constructed based on this sorted initial dataset. Specifically, the right-n% of the solution
space range and the left-m% of the solution space range are removed to show different solution space
distributions. Through the above steps, an offline dataset with a narrow distribution in real tasks is
constructed by removing solutions.

To simulate a more realistic data distribution, we choose a dataset size that is 1000 times the variable
dimension. At the same time, to further simulate the narrow distribution, missing the m% and the
n% are used to construct different solution distributions. In this paper, we select the middle 50% of
the data (i.e., m%− n% = 50%) to construct a simulated dataset as a reasonable baseline. Since the
proposed benchmark is highly flexible and customizable, it enables users to modify the data volume,
m%, and n% as needed.

The experimental results in Table 13 show that the FS values of all algorithms are close to the optimal
solutions of the offline dataset, indicating that under this experimental setting, it is challenging for
the algorithms to further improve upon the current solutions. This phenomenon can be attributed to
two key factors:

• Lack of solution space exacerbating the OOD problem: In the experiments, parts of the
solution space may not be covered by the offline dataset, which restricts the algorithm’s
exploration capabilities during the optimization process. As a result, the algorithm struggles
to identify potential optimal solutions within the solution space. This limitation often leads
to the "OOD" problem, where the algorithm’s performance in new optimization tasks is
constrained by the incomplete representation of the solution space.

• The offline dataset’s optimal solutions are already highly competitive: The offline dataset
itself contains solutions that are close to the global optimum. With such high-quality data,
the algorithms have limited room for further optimization, making it difficult to achieve
solutions that significantly surpass the current optimal results.

Future research could focus on addressing the OOD problem by constructing more diverse and
representative datasets or developing algorithms with stronger generalization capabilities to better
handle the limitations of incomplete solution spaces.
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Table 13: Overall the different solution distribution results in GTOPX unconstrianed scenario. Details
are the same as Table 5.

Right-Left 0-50 10-60 20-70 25-75
f(x∗

OFF) 45.67 40.12 38.53 40.62
Metrics FS ↓ SI ↑ FS ↓ SI ↑ FS ↓ SI ↑ FS ↓ SI ↑
CMAES 107.89± 150.49 −∞ 46.92± 19.31 −∞ 47.41± 23.79 −∞ 59.78± 49.68 −∞

Tri-mentoring 45.67±4.63 −∞ 40.12±2.97 −∞ 38.53±2.48 −∞ 40.62±1.61 −∞
CBAS 45.67±4.63 0.00± 0.00 40.12±2.97 0.00± 0.00 38.53±2.48 0.00± 0.00 40.62± 1.62 0.00± 0.00

ARCOO 45.67±4.63 −∞ 41.35± 3.00 −∞ 38.53±2.48 −∞ 41.63± 2.81 −∞
TT-DDEA 56527.15± 72621.35 −∞ 50225.22± 112867.53 −∞ 187.73± 56.53 −∞ 549.99± 480.58 −∞

BO 70.88± 8.96 −∞ 70.98± 5.78 −∞ 82.18± 16.69 −∞ 86.16± 17.65 −∞
CCDDEA 53.34± 21.36 −∞ 40.12±2.97 0.00± 0.00 38.53±2.48 0.00± 0.00 113.09± 146.09 −∞

E HYPERPARAMETER ANALYSIS

We outline guidelines for hyperparameter selection for methods evaluated in the benchmark. These
principles help in offline tuning for new tasks. Begin by identifying essential hyperparameters, like
learning rate and batch size, and select a tuning method such as Grid Search or Random Search. We
run experiments to find the satisfied hyperparameter configurations with performance metrics like
accuracy and F1 score.

E.1 HYPERPARAMETERS OF BO-QEI

The primary tunable components of Bayesian optimization include the objective function and the
parameters within the optimization loop. The objective function is commonly optimized with a
maximum likelihood method, allowing validation log-likelihood or regression error to be tracked
directly. Training continues until the validation loss is minimized, ensuring good generalization
beyond the training dataset. This tuning method is fully offline since it exclusively uses a static task
dataset. In this study, we employ a Gaussian Process model combined with the quasi-Monte Carlo
Expected Improvement acquisition function. For an in-depth understanding of various Bayesian
optimization strategies and their associated hyperparameters, detailed information can be found in
the BoTorch documentation at https://botorch.org/docs/overview.

E.2 HYPERPARAMETERS OF CMA-ES

The primary configurable elements of Covariance Matrix Adaptation (CMA) techniques include the
trained objective function and the evolution strategy parameters. Typically, the objective function
is trained using a maximum likelihood approach to ensure optimal performance. For further details
and comprehensive information, refer to the open-source CMA-ES implementation and its extensive
documentation available at https://github.com/CMA-ES/pycma. In this research, we adopt
the default settings for CMA-ES provided by this implementation, with the parameter σ set to 0.5.

E.3 HYPERPARAMETERS OF AUTOFOCUSING CBAS

Autofocusing CbAS has one main tunable components. It involves verifying the performance index,
which plays a crucial role in generating the generalization capability of the learning model. By
ensuring that the performance index stays above a certain positive threshold, we can ascertain that
the algorithm is well-tuned and performing optimally. In this paper, we have set this threshold to
0.9. This careful selection helps maintain the reliability and effectiveness of the autofocusing CbAS
approach.

E.4 HYPERPARAMETERS OF ARCOO

The Accumulative Risk Controlled Offline Optimization (ARCOO) method has two hyperparameters:
accumulative risk control and Langevin dynamics steps. The former represents the level of total
risk tolerance, with an initial momentum set at 0.2, reflecting a moderate risk tolerance. The latter
involves sampling by 64 steps of Langevin dynamics, determining the distance between high-risk
solutions and observed solutions.
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E.5 HYPERPARAMETERS OF TRI-MENTORING

We tuned two critical hyperparameters: the number of neighborhood samples and the number of
optimization steps. Due to the algorithm’s robustness to the number of neighborhood samples, we set
this parameter to 10. To maintain consistency, we standardized the number of optimization steps to
100 across all experiments.

E.6 HYPERPARAMETERS OF TTDDEA

In this evolutionary offline optimization task, we retained the original hyperparameters because
they were carefully tuned for mutation rate, crossover probability, and selection pressure. These
settings ensure a balanced exploration and exploitation process, preventing premature convergence
and maintaining a diverse solution population. Keeping them unchanged guarantees the algorithm’s
robustness and reliable performance.

E.7 HYPERPARAMETERS OF CARCOO

The hyperparameters in the constrained ARCOO (CARCOO) method need to be consistent with the
original ARCOO settings. Therefore, we have configured them to exactly match the hyperparameters
used in the original ARCOO method.

E.8 HYPERPARAMETERS OF CCOMS

Constrainted conservative objective models have four main tunable parameters. The first parameter is
the degree to which the objective model is allowed to overestimate the objective value for off-manifold
designs, set to 2 to ensure a conservative approach. The second parameter is the number of gradient
ascent steps, chosen to be 100, balancing optimization efficiency and computational effort. The third
parameter is the learning rate, set to 2

√
d, where d is the dimension of the design space, ensuring

step sizes are appropriately scaled to the problem’s complexity. The final parameter is the constraint
trade-off coefficient, set to 1, ensuring an equal emphasis on optimizing the objective and satisfying
the constraints. These parameters are crucial for fine-tuning the model’s performance within the
desired constraints.

E.9 HYPERPARAMETERS OF DE-PF & DE-SPF

This hyperparameter is identical to the one used in TTDDEA, maintaining consistency with the origi-
nal paper. However, due to the algorithm’s suboptimal performance in handling out-of-distribution
(OOD) problems, we have adjusted the number of iterations to 50 in this study. This modification
aims to improve the algorithm’s efficiency and effectiveness in addressing the specific challenges
posed by OOD scenarios.
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