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Abstract

Representing uncertainty in causal discovery is
a crucial component for experimental design, and
more broadly, for safe and reliable causal decision
making. Bayesian Causal Discovery (BCD)
offers a principled approach to encapsulating
this uncertainty. Unlike non-Bayesian causal
discovery, which relies on a single estimated
causal graph and model parameters for assess-
ment, evaluating BCD presents challenges due to
the nature of its inferred quantity — the posterior
distribution. As a result, the research community
has proposed various metrics to assess the quality
of the approximate posterior. However, there
is, to date, no consensus on the most suitable
metric(s) for evaluation. In this work, we reex-
amine this question by dissecting various metrics
and understanding their limitations. Through
extensive empirical evaluation, we find that many
existing metrics fail to exhibit a strong correlation
with the quality of approximation to the true
posterior, especially in scenarios with low sample
sizes where BCD is most desirable. We highlight
the suitability (or lack thereof) of these metrics
under two distinct factors: the identifiability of
the underlying causal model and the quantity of
available data. Both factors affect the entropy
of the true posterior, indicating that the current
metrics are less fitting in settings of higher
entropy. Our findings underline the importance
of a more nuanced evaluation of new methods by
taking into account the nature of the true posterior,
as well as guide and motivate the development
of new evaluation procedures for this challenge.
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1. Introduction

Much of the pursuit in acquiring scientific knowledge in-
volves inferring causal relationships within a system of in-
terest and the laws that govern those relationships. Appli-
cations in biology, like inferring a gene network and their
regulatory mechanisms from gene expression data (Tejada-
Lapuerta et al., 2023; Dibaeinia & Sinha, 2020) and protein-
signaling networks with single-cell data (Sachs et al., 2005),
necessitates a mechanistic understanding of the data gener-
ation process. Estimating the causal model in such appli-
cations from data, called causal discovery, is an important
problem in empirical sciences (Spirtes et al., 2000).

A typical scientific discovery loop for causal understanding
involves a scientist first coming up with causal hypotheses
based on prior knowledge, and refining these hypotheses
based on new evidence obtained through observation and
experimentation. In science, a key requirement in light
of limited data is that all the plausible hypotheses that ex-
plain the data have to be considered before devising an effi-
cient experimentation protocol, as opposed to a single most
likely one (Lindley, 1956; Chaloner & Verdinelli, 1995).
Bayesian Causal Discovery (BCD) is an elegant framework
that fulfills this requirement by quantifying the epistemic
uncertainty of the underlying causal model through the
Bayesian posterior, which provides a degree of belief of
every causal hypothesis proportional to its ability to explain
the data (Heckerman et al., 2006; Friedman & Koller, 2003;
Chickering et al., 2013). The quantified epistemic uncer-
tainty can be then used to design informative experiments/
interventions to perform (Tong & Koller, 2001; Tigas et al.,
2022; Sussex et al., 2022; Lyle et al., 2023) or to estimate
causal effects of variables with Bayesian model averag-
ing (Geffner et al., 2022; Emezue et al., 2023).

One of the common frameworks for dealing with questions
related to cause and effect is the Structural Causal Model
(SCM) with an associated graph indicating the causal rela-
tionships between variables (Pearl, 2009; Peters et al., 2017).
Under this framework, BCD aims to infer the Bayesian
posterior over the graph and the parameters of the SCM.
This is a hard problem due to the combinatorial nature of
graphs, which renders the posterior intractable for more
than 6 variables. Recently, various approximate inference
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methods have been introduced that use gradient information
allowing to scale to SCMs for which the true posterior is
intractable (Annadani et al., 2021; Cundy et al., 2021; Lorch
et al., 2021; Nishikawa-Toomey et al., 2022; Deleu et al.,
2022; 2023; Hagele et al., 2023; Atanackovic et al., 2023).
However, in the absence of the true posterior, evaluation
of BCD methods is hard as the inferred quantity is a dis-
tribution rather than the most-likely estimate, as in causal
discovery. The BCD community so far has relied on proxy
metrics!, many of which are derived from causal discov-
ery evaluation. For instance, a standard metric in causal
discovery is the Structural Hamming Distance (SHD) for
evaluating the estimated graph, and in BCD, expected SHD
is used to evaluate the posterior over DAGs. However, such
a metric may not be representative of how good the pos-
terior approximation is, and has been briefly discussed in
prior work (Deleu et al., 2023; Lorch et al., 2022). Our
motivation is that a holistic understanding of the limitations
of BCD evaluation is missing. Given that many new BCD
algorithms are being proposed, proper understanding of the
limitations of the present evaluation metrics is important to
make advances in the right direction, especially with regards
to applying it to real-world datasets where the amount of
samples might be limited.

In this work, we aim to bridge the gap that exists in the
understanding of the evaluation of BCD algorithms. In order
to do so, we note that the desiderata for an ideal evaluation
metric would be to compare the approximated posterior to
the gold standard, the true posterior. Therefore, we analyze
the performance of different BCD methods on all the known
metrics for linear additive noise models, for which the true
posterior is tractable. This not only helps us to compare how
different metrics correlate with evaluating the approximate
posterior against the true posterior, but also gives a way
to understand some properties of the true posterior, which
we shall show, is important in understanding the conditions
under which the current metrics are suitable for evaluation
or where they may be lacking. Our experimental evaluation
with linear additive noise models on 8 different metrics for
5 different algorithms reveals the following aspects:

1. In terms of the relative performance of BCD methods,
we find that all the metrics are not correlated to a metric
which directly evaluates on the true posterior when the
number of samples is low (n ~ d where n is the dataset
size and d is the number of variables), indicating that
the current metrics are not suitable for evaluation of
uncertainty in these settings.

2. With higher number of samples (n >> d), the corre-
lation between the current evaluation metrics and the

"Unless otherwise specified, metric(s) in this work refers to
evaluation method(s) or protocol(s) to assess the goodness of an
algorithm.

metric on the true posterior significantly improves.

3. Based on a similar correlation analysis, we observe that
the current metrics are less suitable for the evaluation
of uncertainty when the true model is non-identifiable,
as opposed to the identifiable case.

4. Opverall, the reliability of existing metrics as evaluation
methods is related to the entropy of the true posterior.
The true posterior has higher entropy with less data
and non-identifiability.

5. Therefore, future algorithms should consider the set-
ting of interest (and the entropy of the true posterior
it induces) in deciding whether to use existing met-
rics or not. In a higher entropy true posterior setting, it
would be better to evaluate the posterior on downstream
tasks (for example causal effect estimation) where the
ground truth is well-defined.

The remaining parts of the paper are organized as follows:
Section 2 provides background on causality and Bayesian
causal discovery. Section 3 explains all different evaluation
metrics for BCD in use and discusses their limitations. Sec-
tion 4 presents the empirical evaluation of multiple different
algorithms on all metrics which highlights the shortcom-
ings of present metrics for BCD evaluation in terms of the
quality of the posterior approximation. Section 5 proposes
two alternative ways of evaluating BCD models. Finally,
Section 6 discusses the limitations and presents the overall
conclusion.

2. Background

In this section, we briefly introduce the Structural Causal
Model (SCM) formalism under which the problem of causal
discovery is defined. We also introduce the problem of
Bayesian Causal Discovery under this framework.

2.1. Structural Causal Model

Let V. = {1,...,d} be the vertex set of any graph G =
(V,E)and X = {X;y,...,X4} C X be the random vari-
ables of interest indexed by V. A Structural Causal Model
(SCM) consists of a set of equations wherein each variable
X, is assigned a value which is a deterministic function
of its direct causes X,(;) as well as an exogenous noise
variable ¢; with a distribution P, :

Xi = fi(Xpa(i)7 Gi) VieV (1)

fi’s are mechanisms that relate how the direct causes affect
the variable X;. If the structural assignments are assumed
to be acyclic, these equations induce a Directed Acyclic
Graph (DAG) G = (V, E) whose vertices correspond to
the variables and edges indicate direct causes. A perfect
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intervention on any variable X; corresponds to changing
the structural equation of that variable to the desired state
(value), X; = s;, where s; € &j. It is denoted by the do-
operator (Pearl, 2009) as do(X; = s;). Under this model,
the recursive application of Equation (1) entails a joint dis-
tribution px, such that the Markov factorization holds:

d
px(X) = [ [ pi(Xil Xpu) )
=1

The problem of causal discovery is to estimate the SCM
(i.e. the causal graph G, parameters of f;’s and ¢;’s) given
N samples from px. For analysis of different evaluation
metrics, we assume that the SCM is causally sufficient, i.e.
all the variables are measurable, and the noise variables are
mutually independent.

Without further assumptions on the mechanisms and the
noise, an SCM is not identifiable from observational data, i.e.
there could be multiple factorizations that can be consistent
with a given joint distribution px. One of the simplest iden-
tifiable setting is a linear Gaussian Additive Noise Model
(ANM) with homoscedastic noise (Peters & Biihlmann,
2014):

X; = '7iTXpa(i) + €, € ~N(0, 02)

where the mechanisms f; are linear with parameter ~; €
RIP2()I For notational brevity, henceforth we denote
¢ = (71,...,74,02) and all the parameters of interest
with 8 = (G, ¢). If the noise is heteroscedastic in the
above model, under the assumption of faithfulness, it is only
identifiable up to an equivalence class over graphs, called
Markov Equivalence Class (MEC) (Andersson et al., 1997).

2.2. Bayesian Causal Discovery

Given a dataset D = {XU ... XM} DAG G
and parameters ¢, they induce a unique joint distribu-
tion p(D, ¢, G) with the prior p(G, ¢) and likelihood
p(D|G, ¢) (Friedman & Koller, 2003). Bayesian causal
discovery aims to infer the posterior’ p(G,¢|D)
p(D|G, ¢)p(G, ¢). A Bayesian method for causal dis-
covery is preferable to model epistemic uncertainty about
the model due to finite data. In addition, with choice of
appropriate parameter priors (Geiger & Heckerman, 2002),
equivalence classes like MEC can be characterized in the
case of non-identifiability. A crucial benefit of posterior in-
ference in causal models is that it is helpful for downstream
tasks like experimental design and cause-effect estimation
with Bayesian model averaging. However, the true posterior
is not tractable for more than 6 variables. The true posterior
is given by p(G, ¢|D) = %. To calculate the

2We refer this as true posterior to emphasize the difference with
approximate posterior.

true posterior, we need to calculate the summation over G
which is infeasible as the number of possible DAGs grows
super-exponentially w.r.t. number of variables ((9(2d2)).
The goal of BCD therefore is to find an approximate poste-
rior ¢(G, ¢|D) that is close to the true posterior.

3. On Evaluation of BCD

Evaluating the goodness of posterior approximation
q(G, ¢| D) in the absence of true posterior p(G, ¢|D) re-
quires proxy metrics or downstream task evaluation. The
BCD community so far has focused on proxy metrics which
are mostly derived from causal discovery evaluation. The
current metrics can be classified into two categories: graph-
only evaluation metrics and full posterior evaluation metrics.

Graph only evaluation metrics. These metrics aim to
evaluate the uncertainty quantified about graphs through the
approximate posterior ¢(G|D).

¢ [E-SHD: Structural Hamming Distance (SHD) is a mea-
sure of number of edges that are to be added, removed,
or reversed to get the ground truth graph from the es-
timated graph. Since we have a posterior distribution
q(G | D) over graphs, the expected SHD is measured:

E-SHD = Eg(c|p)[SHD(G, G°7)]
where G is the ground-truth causal graph.

¢ E-CPDAG SHD: Similar to E-SHD, E-CPDAG SHD
measures the expected hamming distance between the
Completed partially directed acyclic graph (CPDAG,
an equivalence class of DAGs) of the ground truth
graph and the CPDAG of the graph sampled from the
posterior.

¢ Threshold Metrics: Area Under Precision Recall Curve
(AUPRC) and Area Under Receiver Operator Char-
acteristics (AUROC) are the two common threshold
based metrics. In these evaluation metrics, area under
the precision recall curve or ROC curve is measured by
thresholding the posterior edge beliefs ¢(G;;| D) and
averaging over all possible edges.

These metrics are easy to evaluate and have been widely
used in prior works (Lorch et al., 2021; Annadani et al.,
2021; Geffner et al., 2022; Deleu et al., 2022; Nishikawa-
Toomey et al., 2022; Lorch et al., 2022; Atanackovic et al.,
2023). However, all these metrics evaluate samples from
the posterior against a single graph (the ground truth) while
ignoring the uncertainty due to finite data that makes other
graphs plausible hypotheses.
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Full posterior evaluation metrics. The other metrics sam-
ple from the joint posterior over both G and ¢ to evaluate
the goodness of the posterior approximation:

e Negative Log-Likelihood: It is the negative Log-
Likelihood (NLL) of held-out observational samples,
computed by sampling the posterior model parame-
ters, ie. _EXpr(X)]Eq(G,q/)\D) lng(X ‘ G, d)) Un-
like in other inference problems like Variational Au-
toencoders (Kingma & Welling, 2013; Rezende et al.,
2014), NLL might not be the most suitable for structure
learning because a graph with more edges has lower
NLL than the ones with fewer edges.

* Interventional Negative Log-Likelihood: Since a poste-
rior defines a generative model of data, interventional
data of unseen interventions can be generated and
compared with the ground truth data generative pro-
cess. Interventional Negative Log-Likelihood (I-NLL)
averaged over different unseen interventions is de-
fined as: —§ 370 Exvp(xjao(x:) Eq(a.a) log p(X |
Gu d)a dO(X Z))

¢ Interventional Distance Metrics: Similar to inter-
ventional negative log-likelihood, Interventional KL-
Divergence (I-KL) and Interventional Maximum Mean
Discrepancy (I-MMD) are metrics which measure the
divergence between the unseen interventional distri-
butions between the distribution induced by the gen-
erative model and that from the ground truth data
generative process, i.e 52?:1 D(px (X|do(X;)) ||
gx (X|do(X;)) where D is either KL-divergence or
maximum mean discrepancy (Gretton et al., 2012) and
gx is the data distribution induced by the approximated
posterior.

NLL and I-NLL require that likelihood can be evaluated
which might not be the case if the SCM is not an ANM.
Given that most of the works deal with additive noise
models, both these metrics have also been used in prior
works (Deleu et al., 2023; Lorch et al., 2021; Annadani
et al., 2023; Toth et al., 2022; Deleu et al., 2022; Atanack-
ovic et al., 2023).

Despite the extensive use of these metrics in prior work, it
is unclear if they are suitable as proxy metrics. As BCD is
a relatively new and emerging field, there is no principled
case study yet which has addressed the evaluation problem.
In the following section, we address this gap by performing
an empirical study specifically with the aim to understand
the evaluation metrics better.

4. Experiments and Key Results

In this section, we design and perform a wide set of ex-
periments on BCD methods to establish the suitability of

the current evaluation metrics. We restrict our attention to
linear additive noise models as most of the existing BCD
methods are only applicable to this setting. In addition, true
posterior can be computed in this setting in closed form,
thus ensuring the drawn conclusions are sound. Model mis-
specification can be quite hard to deal with causal discovery
in general (Montagna et al., 2023). Therefore, we ensure
in the experiments that all the methods have the same level
of expressivity as the true posterior and have access to data
with no model misspecification.

Outline of experiments. We mainly aim to understand
the following aspects of the present evaluation metrics: (1)
How does true posterior perform on these metrics? (2) Do
all metrics correlate in terms of the ranking they induce on
different models, and are they correlated with metrics which
directly compare with the true posterior? (3) Entropy of
the true posterior and how consideration of entropy of the
true posterior is important for determining the reliability of
the evaluation metrics (4) Downstream tasks that might be
suitable for BCD when current metrics are not suitable.

4.1. Experimental Setting

Models. We experiment on the following different BCD
models: BCD Nets (Cundy et al., 2021), DIBS (Lorch et al.,
2021) and VBG (Nishikawa-Toomey et al., 2022) are meth-
ods which perform approximate inference on the graph, the
parameters of the linear mechanisms and the variance of
the noise variables. BCD Nets performs inference based
on node permutation matrices using variational inference,
DIBS is a particle-based method with Stein Variational Gra-
dient Descent (SVGD) (Liu & Wang, 2016) as its inference
engine and VBG is a VI approach with GFlowNets (Ben-
gio et al., 2021). We also include DAG bootstrap (Fried-
man et al., 1999) with GIES (Hauser & Biihlmann, 2012;
Chickering, 2002) for evaluation though it is not strictly a
Bayesian inference method as it has been used extensively
as a baseline in prior work. Bootstrap GIES (BGIES) per-
forms maximum-likelihood estimate on all the parameters of
interest on different datasets bootstrapped from the original
dataset, and then weighs each estimate with its unnormal-
ized posterior probability. For comparison, we also include
a non-Bayesian method by running DIBS deterministically
(setting the number of particles of SVGD to 1), called DIBS
Det. Details of all the methods, including their hyperpa-
rameter search procedure are given in Appendix A.1. When
applicable, we also include a version of DIBS that directly
uses the BGe score (Geiger & Heckerman, 2002) for likeli-
hood (called DIBS BGe).

Synthetic data generation. We test all the methods on
synthetic data. This enables us access to ground truth as
well as to have control over the SCM that generates the
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Figure 1. Evaluation of the models on ER1 graphs in the non-identifiable case (d = 5). In low sample regimes, true posterior itself is

evaluated to be worse on these metrics than their approximations.
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Figure 2. Evaluation of the models on ER1 graphs in the identifiable case (d = 5). In low sample regimes, true posterior itself is evaluated

to be worse on these metrics than their approximations.

data, thereby ensuring there is no model misspecification.
We sample graphs from Erd6s—Rényi (ER) (Erdds et al.,
1960) and Scale-Free (SF) (Barabasi & Albert, 1999) ran-
dom graph family along with a linear Gaussian ANM. The
graphs have expected edge per node of either 1 or 2 (referred
to as ER1, ER2, SF1 and SF2). We consider two scenar-
ios for linear ANM: homoscedastic Gaussian (identifiable)
and heteroscedastic Gaussian (non-identifiable) (Peters &
Biihlmann, 2014). In the first scenario, we set the variance
to one, while in the second scenario, the noise variances are
sampled from an inverse gamma distribution. The weights
are then derived from a multivariate Normal distribution
with a mean of 0 and a diagonal covariance matrix corre-
sponding to noise variances. Details of the data generating
process is given in Appendix A.2. True posterior can be com-
puted in closed form for both scenarios when d < 6. Details
of true posterior computation is provided in Appendix C.
All the experiments are conducted with 20 different random
datasets and 3 random initialization of the model per dataset,

resulting in 60 runs for each model.

Metrics for comparison with true posterior. As noted
before, the true posterior is the gold standard with which
the suitability of the other metrics can be reasonably es-
tablished. In order to compare the approximate posterior
with the true posterior, we use Maximum Mean Discrepancy
(MMD) (Gretton et al., 2012) with relevant kernel. More pre-
cisely, we compare ¢(G|D) with p(G|D) (called Graph
MMD) using a Hamming Kernel and ¢(¢|G, D) with
p(¢|G, D) using an RBF kernel (called Params MMD).
We use MMD as it requires only samples from the distribu-
tion.

4.2. Key Results

Evaluation on current metrics. We first evaluate all the
methods on the metrics outlined in Section 3 to give a rep-
resentative idea of the performance seen and reported in
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Figure 3. Spearman’s rank correlation coefficient between evaluation metrics with 5 samples (d = 5). The first and the second rows
correspond to the non-identifiable and identifiable cases, respectively. All the graph-based metrics are not correlated with the Graph
MMD. Params MMD is not correlated with any of the other metrics. Graph MMD and Params MMD are metrics that evaluate against the

true posterior.

prior work. This would serve as a useful context for what
is currently being evaluated in the literature. In addition,
we also include the performance that true posterior achieves
on these metrics. Figure 1 presents results for ER graph
for non-identifiable setting and Figure 2 for the identifiable
setting. It is interesting to note that when the number of
samples is smaller (d = n = b), the true posterior itself
performs significantly worse on all metrics, including that
of some of the BCD algorithms that are approximating the
true posterior. For most applications, especially in biology,
n ~ d is a fairly common setting. In fact, many of the al-
gorithms in BCD benchmark on synthetic datasets with the
number of samples less than 100 (and in many cases just 50
samples, with d ranging from 10 to 50). As the number of
samples increases, the methods perform better on these met-
rics. However, the relative performance of all the methods,
especially the true posterior, does not increase much when
the number of samples is increased from 100 to 1000 (see
Appendix B for a simple example illustrating this point).
This is consistent across different random graph models as
well (Appendix E.2). As prior works mostly evaluate on
higher dimensional cases where the true posterior is not
tractable, this issue of worse performance of true posterior
on these metrics has not been demonstrated before. At least
preliminarily, this calls into question the suitability of the
current evaluation metrics.

Evaluation on true posterior. For comparison, we also
present results that evaluate on true posterior with Graph
MMD and Params MMD. Figures 5 and 6 presents results

for ER1 graphs. The evaluation indicates that the models
considered do not estimate either the graph posterior or the
parameter posterior well for d = 5, as the MMD is greater
than O for both cases. Similar observation can be made for
other graph types (Appendix E.4).

Rank correlation between metrics. In order to further
understand the suitability of current metrics, we analyze the
Spearman’s rank correlation coefficient between different
metrics (Spearman, 1961). We rank different methods based
on their performance in each metric and measure Spear-
man’s rank correlation coefficient between rankings induced
by each metric. It ranges between -1 to 1 — a coefficient of
1 would correspond to perfect correlation and -1 to inverse
correlation. In other words, if Spearman’s correlation be-
tween two metrics is -1, the model that is evaluated as the
best under one metric would be evaluated by the other met-
ric as the worst. With Spearman’s rank correlation, we aim
to analyze the following two questions: (1) Are the different
proxy metrics correlated? and (2) More importantly, how
correlated are the proxy metrics to the metrics that compare
with the true posterior, i.e Graph MMD and Params MMD?
Figure 3 presents the result for non-identifiable scenario on
a dataset with d = 5, n = 5. Several interesting conclusions
can be drawn. Firstly, the graph-based proxy metrics are
not correlated (for example E-SHD and AUPRC), while the
interventional-based metrics I-NLL, I-KL, and I-MMD are
largely correlated. The correlation is higher in denser graphs.
However, it is interesting to note that the interventional met-
rics do not correlate with NLL. Though the community has
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Figure 4. Spearman’s rank correlation coefficient between evaluation metrics with 100 samples (d = 5). The first and the second rows
correspond to the non-identifiable and identifiable cases, respectively. All the graph-based metrics are correlated with each other and also
the Graph MMD. Params MMD is also correlated with other metrics. Graph MMD and Params MMD are metrics that evaluate against the

true posterior.
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Figure 5. Graph MMD of the models on ER1 graphs (d = 5).

relied on NLL as a reasonable metric, it is sensitive to mea-
surement errors and scale of the data (Lorch et al., 2022;
Reisach et al., 2021). Secondly, all the graph-based metrics
have very little to no correlation with graph MMD, and the
Params MMD is not correlated with other metrics.

In order to further understand if the same pattern exists in
other settings, we examine the Spearman’s rank correlation
coefficient for the identifiable setting (Figure 3 bottom row).
We observe a very interesting pattern. Unlike in the unidenti-
fiable case, the graph-based metrics are more correlated, and
the interventional metrics are correlated with each other and
also with NLL. However, the graph-based proxy metrics are
not well correlated with Graph MMD, although the level
of correlation is slightly higher than the non-identifiable
case. Similarly, Params MMD is not correlated with other
metrics. This indicates that, while the metrics are usually
correlated between each other in terms of ranking the mod-
els, the ranking that they induce would be different from
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Figure 6. Params MMD of the models on ER1 graphs (d = 5).

the rankings induced by comparison with the true posterior
when the number of samples is less.

Correlation between metrics for large datasets. In order
to see if the same correlation pattern persists for a higher
number of samples, we plot Spearman’s correlation coeffi-
cient for N = 100 (Figure 4). We observe that the correla-
tion between Graph MMD and graph-based proxy metrics
is higher than before, with the identifiable scenario having
a much higher correlation than the non-identifiable one. A
similar observation can be made for Params MMD. It is
reasonable to expect based on this result that the current
proxy metrics are viable for evaluation of BCD algorithms
with more samples and an identifiable underlying SCM.

A similar observation when N = {10, 1000} (Figures 21
and 22) reveals that the proxy metrics are not correlated
with the gold-standard metrics in practical settings with less
data and non-identifiability, where being Bayesian about
causal discovery is supposed to be advantageous. This calls
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into question the suitability of the current proxy metrics in
these settings.

Entropy of true posterior. From the rank correlation, it
is clear that the proxy metrics are only reliable with a high
number of data samples and also depend on the nature of
SCM, i.e. identifiability. We note that both of these aspects
are connected to the entropy of the true posterior. In fact,
it is reasonable to expect that the entropy of the true pos-
terior decreases as the number of samples is increased. If
an SCM is non-identifiable, all the graphs within the MEC,
which could be exponentially many, have a high probability,
thereby making the posterior more entropic. We empirically
demonstrate this on the true posterior corresponding to dif-
ferent settings. We use an approximator of entropy which
only requires samples from the distribution (Kozachenko
& Leonenko, 1987). Details are given in Appendix D. Fig-
ure 7 illustrates the entropy of true posterior under various
settings. It can be seen that entropy decreases with higher
samples and identifiability. Since the proxy metrics are usu-
ally derived from causal discovery, they do not reflect the
quality of approximation when there are many graphs (and
corresponding parameters) with high posterior probability.
Therefore, it is reasonable to conclude that the current met-
rics are not suitable where BCD is most desirable — higher
entropy settings of the true posterior.

Entropy of models. Using the same entropy estimator, we
also examine the entropy of BCD models. In particular, we
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Figure 9. Changes of the entropy on ER1 graphs in an incremental
setting in the non-identifiable case (d = 10). We start with 10
observational samples and at each step, we add 5 interventional
samples and retrain the models. For all the models, as we give
them more interventional samples, the entropy does not decrease
substantially.

are interested in the following two aspects: 1) How entropic
are the BCD algorithms in comparison to true posterior?
2) Does the entropy decrease as more observational and
interventional data is given? Our goal is not to decide which
method is the best but to understand if the methods respond
to additional data to reduce their entropy. Figure 8 presents
the results for ER1 graphs. Most of the methods have en-
tropies the same as that of the true posterior, except DIBS,
which always gives very low entropy solutions. Similar be-
haviour is seen in other graph types as well (Appendix E.4).
When interventional data is given and the model is updated
at each step, similar to an experimental design loop (Tigas
et al., 2022), the reduction in entropy is very good for VBG
and BCD Nets while it does not necessarily decrease for
DIBS and BGIES (Figure 9).

Effect of prior. An important factor in obtaining a good
estimate of the true posterior is the choice of the prior over
the graphs and parameters of the model, i.e. p(G, ¢). Apart
from DIBS, all methods do not use an informative prior.
DIBS leverages the knowledge of the underlying data gener-
ative process to design priors that match that are informative.
While a more extensive study is required to understand the
performance of various methods due to the choice of the
prior, we do notice that for SF graphs, the solution of DIBS
is completely dominated by the prior in low data regimes.
While this is the intended behavior in a Bayesian setting,
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Figure 10. Evaluation of the models on SF1 graphs in the non-identifiable case (d = 5). In low sample regimes, true posterior itself is

evaluated to be worse on these metrics than their approximations.

the solution of DIBS is very low entropy. In fact, we found
that it samples a graph with no edges in low data regimes
(Figures 10 and 19). However, for ER graphs, the prior is
less dominant than for SF graphs and it leads to reasonable
samples with DIBS.

5. Possible Alternative Evaluation Procedures

Although our study mainly focuses on identifying the po-
tential issues in the evaluation metrics for BCD, we suggest
two possible alternate way of evaluating BCD algorithms
by considering the empirical results obtained in Section 4.

5.1. Experimental Design

As seen in Figure 7, after acquiring enough (interventional)
data, the true posterior will have less entropy. Therefore, one
possible way to evaluate the BCD algorithms is to evaluate
it downstream, for instance, by performing experimental de-
sign to acquire enough interventional data and then evaluat-
ing with the proxy metrics when they are more suitable. The
task of choosing the intervention that results in the highest
expected reduction in entropy is concerned with Bayesian
optimal experimental design (Lindley, 1956; Chaloner &
Verdinelli, 1995; Foster et al., 2019), a downstream task of
Bayesian Causal Discovery. Many specific experimental
design procedures exist for BCD (Tigas et al., 2022; 2023;
Agrawal et al., 2019; Zhang et al., 2023; Toth et al., 2022)
that can be used to collect data and perform evaluation.

5.2. Causal Effect Estimation

In some applications, proxy metrics either require access
to the underlying ground truth graph or other parameters
thereof, which might not be available. In such a case, exper-
imental design as a downstream evaluation tool might not

be applicable. An alternative evaluation procedure in such
a case, therefore, is the downstream task of causal effect
estimation. Causal effect estimation is the task of estimating
the state of a variable that is part of the causal model when
the system is subject to interventions. This method has been
thoroughly studied in Emezue et al. (2023) and has shown
to be useful in identifiable cases with few data samples.

6. Discussion and Conclusion

In this work, we demonstrate the shortcomings of the present
evaluation metrics for Bayesian Causal Discovery with an
extensive empirical study. Our key result is that when the
true posterior has high entropy - which is the case with less
data and non-identifiability, current evaluation metrics do
not lead to the same ranking of different BCD models com-
pared to metrics that involve the true posterior. Therefore,
evaluation of BCD should be considered carefully in settings
with limited data and identifiability of SCM. This challenge
of evaluating BCD in these settings could potentially be
overcome by evaluation in downstream tasks: for example,
causal effect estimation or Bayesian experimental design to
acquire interventional samples, after which the true poste-
rior has less entropy which enables reliable evaluation with
current metrics. While our study sheds a light on evaluation
procedures and their shortcomings in BCD, our study is
limited to causally sufficient linear additive noise models.
As the field of Bayesian Causal Discovery progresses in
terms of posterior approximation in settings where these
assumptions do not hold, a similar analysis as presented in
this work might be necessary for such settings.
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A. Experimental Details
A.1. Models

This section provides a casual overview of the models featured in the study, along with details regarding their implementation
and the choices made for hyperparameters.

BCD-Nets. BCD-Nets (Cundy et al., 2021) is a bayesian posterior approximation method designed to model linear-
Gaussian SCMs. It decomposes the weighted adjacency matrix W of the linear SCM into a permutation matrix P and
a strictly lower-triangular matrix L, i.e. W = PLPT. It uses variational inference to learn the posterior distribution
q4(P, L, ¥) over the SCM parameters by maximizing the Evidence Lower Bound (ELBO) w.r.t. variational parameters
¢. For the implementation, we utilize the public implementation of BCD-Nets ' with the same hyperparameters as in the
original paper except for the number of training steps which we change to 20k steps.

DIBS. DIBS (Lorch et al., 2021) is a fully differentiable bayesian posterior approximation method suitable to model both
linear and non-linear SCMs. It proposes to transfer the posterior inference into the latent space of a probabilistic graph
representation and assumes there is a latent variable Z that models the generative process of the underlying causal graph.
They factorize the joint distribution p(Z, G, ©, D) in a way that allows for joint posterior inference of both the graph structure
and the conditional distribution parameters. To be more precise, p(Z, G, ¢, D) = p(Z)p(G | Z)p(¢ | G)p(D | G, ¢).
They apply the gradient-based SVGD algorithm (Liu & Wang, 2016) for sampling. In this work, we utilize 3 different
versions of DiBS+: the linear version (we refer to as DIBS), a deterministic variant of DiBS in which we have only 1 particle
in the model (referred to as DIBS-Det), and a marginal version (we refer to as DIBS-Bge) where the marginal posterior over
the graphs, i.e. p(G|D), is computed using the Bayesian Gaussian Equivalent (BGe) marginal likelihood. Also, we use the
implementation of Tigas et al. (2022)? and change it to learn the noise variances together with other parameters. For all
experiments, we set the o, o, v, and 7y to 0.5, 0.02, 5, and 500, respectively, use 50 particles, and run the model for 20k
iterations. We use the default values for other hyperparameters.

VBG. VBG (Nishikawa-Toomey et al., 2022) is another bayesian posterior approximation model suitable designed to
model linear-Gaussian SCMs. It extends the DAG-GFlowNet (Deleu et al., 2022) to not only learn the graph structure but
also the parameters of a linear Gaussian model between the variables in the DAG. In order to model the posterior distribution
over the parameters, it utilizes GFlowNets (Bengio et al., 2021). We use the public implementation of VBG * and use its
default hyperparameters for all experiments. As VBG assumes fixed noise variances, we experimented with various values
for the noise variance and determined that 0.1 yields the best results in our settings.

DAG Bootstrap. DAG Bootstrap (Friedman et al., 1999) is a non-parametric model that performs model averaging by
bootstrapping the data to yield a collection of synthetic datasets. Each dataset is then utilized to learn an individual graph
and its associated causal mechanisms, employing the score-based GIES algorithm (Chickering, 2002; Hauser & Biihlmann,
2012). The ensemble of distinct single graphs approximates the posterior by assigning weights to each graph based on its
unnormalized posterior probability. For our experiments, we employ the implementation of Tigas et al. (2022)?, and use 100
bootstraps.

A.2. Synethetic Dataset Details

In this study, we adopt Erd6s—Rényi (ER) (Erdds et al., 1960) and Scale-Free (SF) (Barabési & Albert, 1999) graphs as the
underlying graph structures for all experiments, utilizing a linear structural equation model (SEM) with 5 and 10 nodes. We
generated the graph by setting an expected edge of 1 or 2 for each node. For the SCM weights and noises, we considered
two scenarios. In the first scenario, we introduce Gaussian noise with equal variances across all nodes, with the variance
value set to 1, and sample the weights of the SCM from independent normal distributions with the mean and the variance set
to 0 and 2 respectively. In this scenario, the underlying causal model will be identifiable. In the second scenario, we explore
a non-equal variance case where the noise variances are sampled from an inverse gamma distribution with o and 3 set to 4
and 0.5, respectively. The parameters of the inverse gamma distribution are chosen to restrict the noise variances to a low
value, preventing the generation of data with high levels of noise. The weights are then derived from a Multivariate Normal

"https://github.com/ermongroup/BCD-Nets
Zhttps://github.com/yannadani/cbed
*https://github.com/mizunt1/vbg
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distribution with a mean of 0 and a diagonal covariance matrix corresponding to noise variances. Data was then sampled
using ancestral sampling, and different numbers of training samples (N = {5, 10, 100, 1000} were generated for different
experiments.

B. Limitations of Graph Metrics: Example

Ground Truth Graph

Scenario 1 Scenario 2 Scenario 3

P(G|D)=05 P(G | D) =075 P(G| D) =025

!
!

P(G | D) =025 P(G| D) =0.75

&)z &
Q
)
]
@ & &
(2]

Z

Z

Figure 11. A simple example showing the shortcomings of the graph-based metrics in evaluating posterior distributions. Each scenario
corresponds to a posterior distribution over the possible graphs. In the first scenario, E-SHD is 0.5, E-CPDAG SHD is 0, AUROC is
0.66, and AUPRC is 0.5375. In the second scenario, E-SHD is 0.25, E-CPDAG SHD is 0, AUROC is 1, and AUPRC is 0.775. In the
third scenario, E-SHD is 0.75, E-CPDAG SHD is 0, AUROC is 0.66, and AUPRC is 0.2625. Suppose if the model was non-identifiable,
then our posterior would correspond to scenario 1 even with lots of samples. However, we don’t necessarily get the best performance as
evaluated by these metrics. Rather, approximate inference method might lead to solutions similar to other scenarios (for example, scenario
2) which are evaluated to be better than the true posterior (scenario one).

C. True Posterior Computation
Note that for an ANM, the likelihood can be evaluated through the noise variable, which we assume to be Gaussian (Geffner

et al., 2022). Therefore, p(D | G, ¢) = H;VZI Hle N('VTX(j()i), o?)

3 pa 7

C.1. Parameter Posterior

We follow the posterior computation from (Cho et al., 2016). More precisely, 02 ~ Inv-Gamma(a, 3) and ¢; ~
N (s, 02 (As)™h). Let X0y € RN P2l be the matrix of parents for variable i and X; € RN be the vector of sam-
ples of variable <. The posterior over parameters has the same form with parameters for a given graph:

= (AL ™ (Agps 4+ Xpa(iy Xii)

ra_
o =+ 5
1
gl=p5+ §(X?Xz' +ud N — ()T NG
In this work, we setv = 4, 3 =0.5and A = 1.
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C.2. Graph Posterior

The marginal likelihood function p(D | G) can also be obtained in closed form, through which the graph posterior p(G | D)
can be derived by enumerating all the possible graphs. For the identifiable case, the marginal likelihood is given by:

va_ (B)™ r(a')dﬁ det(A;)

p(D | G) = (2m) (B7)de’ ' [(a)? Pt det(Af)

If the posterior has to ensure that all the graphs within the MEC have the same probability given large number of samples, it
can be ensured with the BGe score (Geiger & Heckerman, 2002). The marginal likelihood is given in (Kuipers et al., 2014)
(Equation 6), and we use the implementation of (Lorch et al., 2021). Note that BGe score assumes that the parameter priors
are sampled from a Gaussian-Wishart distribution, instead of Gaussian-Inverse Gamma. Although strictly this assumption is
violated in our data generative process, the computation of p(G|D) is still valid.

D. Entropy Estimator

For any random variable Y € RP, the Kozachenko-Leonenko estimate of the entropy H(Y), with N iid samples from py is
given by (Kozachenko & Leonenko, 1987):

N
Tt (Y) = $(N) = (n) + log(e,) + 1 D log(e()) &)

P
where €(i) is the distance of the i sample to its n' nearest neighbor, ¢, = F(fijg) (+) is the digamma function and T'(+)
2

is the Gamma function. As Y corresponds to parameters of the causal model and the causal graph in our case, we measure
Hyr (Y) of the distance between likelihoods of the samples induced by the posterior estimates, as that would reflect the
information geometry of the approximate posterior better than the parameters themselves. More precisely, we measure the
Kozachenko-Leonenko estimate of the entropy on between distances of likelihoods of held-out data as measured by a kernel.

HG,¢)~Ha |E B [k(logp(X| G, ) logp(X | G, )] @)

~q

where k(-, -) is the RBF kernel. We use the implementation provided by (Lombardi & Pant, 2016).

15



Challenges and Considerations in the Evaluation of Bayesian Causal Discovery

E. Additional Results

In this section, we report additional results and show the evaluation of models on different graph types.

E.1. Effect of Data Normalization.

Recently, it has been shown that synthetic data might induce varsortability bias, i.e. causal discovery algorithms take
advantage of increasing marginal variance across the causal graph from root to leaf (Reisach et al., 2021). In order to account
for this, we run all the methods wherein the marginal variance of each variable is roughly 1, and plot rank correlation
(Figures 12 to 15). We observe that a similar pattern of correlation holds as before when the variables had different scales.
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Figure 12. Spearman’s rank correlation coefficient between evaluation metrics with 5 normalized training samples (d = 5). The first
and the second rows correspond to the non-identifiable and identifiable cases, respectively. Similar to the unnormalized case, all the
graph-based metrics are not correlated with the Graph MMD, and Params MMD is not correlated with any of the other metrics. Graph
MMD and Params MMD are metrics that evaluate against the true posterior.

E.2. Additional Results: Evaluation on Metrics

Here we report additional results. Figures 16 to 20 show the performance of models on different graph types in both
non-identifiable and identifiable cases.

E.3. Additional Results: Correlation Between Metrics

Figures 21 and 22 show the Spearman’s rank correlation coefficient between evaluation metrics on 5-node graphs with 10
and 1000 samples, respectively.

E.4. Additional Results: Entropy and Comparison with True Posterior

Figure 23 shows the entropy of the models on 5-node graphs with different graph types. Figures 24 and 25 show the Graph
MMD and Params MMD of the models on 5-node graphs with different types.
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Figure 13. Spearman’s rank correlation coefficient between evaluation metrics with 10 normalized training samples (d = 5). The first and
the second rows correspond to the non-identifiable and identifiable cases, respectively. The same pattern as in the non-normalized case is
observed.
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Figure 14. Spearman’s rank correlation coefficient between evaluation metrics with 100 normalized training samples (d = 5). The first
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MMD and Params MMD are metrics that evaluate against the true posterior.
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Figure 16. Evaluation of the models on ER2 graphs in the non-identifiable case (d = 5). In low sample regimes, true posterior itself is

evaluated to be worse on these metrics than their approximations.
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Figure 17. Evaluation of the models on ER2 graphs in the identifiable case (d = 5). In low sample regimes, true posterior itself is
evaluated to be worse on these metrics than their approximations.
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Figure 18. Evaluation of the models on SF1 graphs in the identifiable case (d = 5). In low sample regimes, true posterior itself is evaluated
to be worse on these metrics than their approximations.
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Figure 19. Evaluation of the models on SF2 graphs in the non-identifiable case (d = 5). In low sample regimes, true posterior itself is
evaluated to be worse on these metrics than their approximations.
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Figure 20. Evaluation of the models on SF2 graphs in the identifiable case (d = 5). In low sample regimes, true posterior itself is evaluated
to be worse on these metrics than their approximations.
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Figure 21. Spearman’s rank correlation coefficient between evaluation metrics with 10 training samples (d = 5). The first and the second
rows correspond to the non-identifiable and identifiable cases, respectively. All the graph-based metrics are still not correlated with the
Graph MMD, and Params MMD is still not correlated with any of the other metrics. Graph MMD and Params MMD are metrics that

evaluate against the true posterior.
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Figure 22. Spearman’s rank correlation coefficient between evaluation metrics with 1000 training samples (d = 5). The first and the
second rows correspond to the non-identifiable and identifiable cases, respectively. All the graph-based metrics are starting to correlate

with each other and also the Graph MMD. Params MMD is also start to correlate with other metrics. Graph MMD and Params MMD are
metrics that evaluate against the true posterior.

Entropy (ERl) Entropy (ER2) Entropy (SF1) Entropy (SF2)
: gt ot me
%—400*#I *? * **E % +f *+ g +¥é *ﬁ *‘? B VBG
b= i+ + + = TP
£ -500 -
g -600 i + T L
g_mﬁlﬁlﬁlﬁl ﬁﬁﬁf? %%ﬁﬁ ﬁﬂﬁ#
800 1000 1000 10 100 1000 10 100 1000
-300 & & ?
9 -400
" R f@ ﬁ h
% -600 Y ﬁ % * * % i #
o
é .m Hﬁﬁ] 1? Ak
-800 ﬁ
5 10 100 1000 100 1000 100 1000 5 10 100 1000
# of samples # of samples # of samples # of samples

Figure 23. Entropy of the models on different graph types (d = 5).
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Figure 24. Graph MMD of the models on different graph types (d = 5).
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Figure 25. Params MMD of the models on different graph types (d = 5).
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