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Abstract

We consider the Reinforcement Learning problem of controlling an unknown dy-
namical system to maximise the long-term average reward along a single trajectory.
Most of the literature considers system interactions that occur in discrete time and
discrete state-action spaces. Although this standpoint is suitable for games, it is
often inadequate for mechanical or digital systems in which interactions occur
at a high frequency, if not in continuous time, and whose state spaces are large
if not inherently continuous. Perhaps the only exception is the Linear Quadratic
framework for which results exist both in discrete and continuous time. However,
its ability to handle continuous states comes with the drawback of a rigid dynamic
and reward structure. This work aims to overcome these shortcomings by mod-
elling interaction times with a Poisson clock of frequency ε−1, which captures
arbitrary time scales: from discrete (ε = 1) to continuous time (ε ↓ 0). In addition,
we consider a generic reward function and model the state dynamics according
to a jump process with an arbitrary transition kernel on Rd. We show that the
celebrated optimism protocol applies when the sub-tasks (learning and planning)
can be performed effectively. We tackle learning within the eluder dimension
framework and propose an approximate planning method based on a diffusive limit
approximation of the jump process. Overall, our algorithm enjoys a regret of order
Õ(ε1/2T +

√
T ). As the frequency of interactions blows up, the approximation

error ε1/2T vanishes, showing that Õ(
√
T ) is attainable in near-continuous time.

1 Introduction

Controlling a dynamical system to drive it to optimal long-term average behaviour is a key challenge
in many applications, ranging from mechanical engineering to econometrics. Reinforcement Learning
(RL) aims to do so when the system is a priori unknown by tackling jointly both the control and the
statistical inference of the system. This joint objective is even more important in the online version of
the problem, in which one interacts with the system along a single trajectory (no resets or episodes).
In the last decades, the insights of Bandit Theory (see e.g. [28]) have been leveraged to tackle the
RL problem, while addressing the inherent exploration-exploitation dilemma that naturally arises in
sequential decision-making (see e.g. [35, § 4.2]). However, most literature considers interactions that
occur in discrete time, which is not always applicable when events are triggered by a digital system.
Such systems are pervasive in finance and advertising, for instance, and typically have interactions
occurring at a very high frequency, with each interaction having only a marginal impact on the state
of the system.

Near-continuous time, continuous state-space. A natural approach to plan in such systems is to
directly model the problem in continuous time. This is the common approach in finance, see for
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instance [15, 17, 31]. However, the continuous time approach conflicts with the sample-based nature
of statistical learning theory that fundamentally takes place in discrete time. As such, learning requires
careful modelling of the data-generating process and its arrival times. We consider interactions
governed by a Poisson clock, setting the expected inter-arrival time of the clock to a parameter
ε ∈ (0, 1). This allows us to model a continuum of situations: from discrete time ε = 1, to
continuous time ε ↓ 0. We are interested in the regime in which ε≪ 1.

Concurrently, a prerequisite for real-world applicability is the ability to model complex dynamics and
rich reward signals for continuous state variables. With this in mind, we focus on the model-based
approach where the transition and the reward function belong to a parameterised class of functions
operating on a continuous state-action space. This level of generality poses challenges regarding all
three key sub-tasks of RL: which are planning, learning, and the explore-exploit trade-off.

Discrete and continuous control. For discrete-time dynamics on finite state-action spaces, the
planning problem falls under the umbrella of Markov Decision Processes (MDPs) which have been
extensively reviewed in [33]. The finite nature of MDPs is at the heart of their theoretical and
computational success. Their extension to countable or even continuous state spaces is, however,
non-trivial; see e.g. [11, § 4.6, p.245] for a review of the challenges. Perhaps the only exception
which retains those nice theoretical and computational properties is the celebrated Linear Quadratic
(LQ) framework [21]. However, both frameworks are limited in their expressive power. In contrast,
the continuous-time theory of Stochastic Control has demonstrated how to effectively solve the
control problem for arbitrary regular dynamics on continuous state-spaces. It enjoys a rich and mature
literature [5, 6, 30], both on the theoretical aspects as well as numerical solvers based on Partial
Differential Equations (PDEs), another storied field [9, 12, 25]. The near-continuous time framework
lies between the two theories, and recent results of [4] show how to navigate between them and
approximately solve the planning problem in the high-frequency interactions regime by solving its
diffusive counterpart.

Learning non-linear systems. Similar to the planning problem, the natural way to move beyond
finite Markov chain models and towards continuous state dynamics is through linear models. The
least-squares estimator enjoys strong theoretical guarantees including adaptive confidence sets that
can be efficiently maintained online, see e.g. [2]. Extensions [32, 34] showed how to extend
this approach to richer model classes through the use of Non-Linear Least Squares (NLLS). This
framework subsumes standard least squares and has been successful in many dynamics by retaining
its key properties regarding confidence sets. While providing a protocol for learning with NLLS,
Russo and Van Roy characterised, in [34], the trade-off between the richness of the model and the
hardness of its learning through two quantities of the model class: the log-covering number, and the
eluder dimension which summarises the difficulty of turning the information from data into predictive
power.

Optimistic exploration. Optimism in the Face of Uncertainty (OFU) has proven highly successful in
sequential decision-making from bandits to RL. The works of [7, 10, 20] showed how to extend the
celebrated UCB [8] algorithm from bandits to finite MDPs; later, extensions were made to continuous
state in the LQ setting, see e.g. [1, 3, 16] and references therein. Extension from bandit to MDP and
then to LQ raised new challenges that persist in our setting. First, the agent should not revise its
behaviour too often to prevent dithering, which requires the design of a lazy update-scheme. Second,
generic continuous states-spaces models come with inherent unboundedness, and one must carefully
address stability issues.

In this work, we consider the near-continuous time system interaction model and propose an optimistic
algorithm for online reinforcement learning in the average reward setting1. Our approach builds on
the work of [4] and the connection to the diffusive regime to address the planning sub-task, yielding
ε1/2-optimal policies. Furthermore, we perform the learning with NLLS extending the work of
[34] to our near-continuous time and unbounded state setting. Underlying the extension of both
these two approaches is a careful treatment of the state boundedness which we do with Lyapunov
stability arguments. Overall, our algorithm enjoys near-optimal performance as its regret scales with
Õ(ε1/2T +

√
T ). As the frequency of interactions increases (ε ↓ 0) the approximation error vanishes,

showing that Õ(
√
T ) is attainable in near-continuous time.

1Also known as, average cost per stage, long-run average, or ergodic setting.
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2 Setting

We consider an agent interacting with its environment to maximise a long-term average reward. At
each interaction, it observes the current state of the system x ∈ Rd, takes action a ∈ A ⊂ RdA , and
receives reward r(x, a), for r : Rd ×A→ R. The system then transitions to the state x′ according to

x′ = x+ µθ∗(x, a) + Σξ with ξ ∼ N (0, Id),

Σ ∈ Rd×d, and in which µθ∗ : Rd ×A→ Rd is the deterministic motion of the system2. Contrasting
with the standard setting, we consider here the interactions to occur in a random fashion, which we
model by an independent Poisson process of intensity ε−1. As such, ε parameterises the mean wait
time between events and gives us a direct control on the frequency of interactions.

State dynamics. Let Ω := D be the space of càdlàg functions from [0,+∞) to Rd, and let P be
a probability measure on Ω. We formalise the interaction time and the noise process as a marked
P-compound Poisson process (Nt)t∈R+ of intensity ε−1 ≥ 1. We denote by (τn)n∈N its arrival
(interaction) times, with τ0 := 0, and by (ξn)n∈N its marks, which are independent of everything
else and drawn i.i.d. according to the centred standard Gaussian measure ν on Rd. We encode the
information available at time t ∈ R+ in the σ-algebra Ft := σ((τn, ξn)τn≤t) and with the filtration
F defined as the completion of (Ft)t∈R+

. Let A be the set of F-adapted A-valued processes, referred
to as controls. For any initial state x0 ∈ Rd and α ∈ A, we let Xα,θ∗

denote the pathwise-unique
solution of {

Xα,θ∗

τn = Xα,θ∗

τn−1
+ µθ∗(Xα,θ∗

τn−1
, ατn−1

) + Σξn
Xα,θ∗

τ0 = x0
. (1)

In (1), we model the dynamic according to a jump process and Xα,θ∗
is then defined at any time

t ∈ R+ by considering that it is piece-wise constant on each interval [τn−1, τn), n ∈ N∗. Although
involved, this definition allows us to define the state process at any time and feature the interplay of
the Poisson and wall-time clocks.

Reinforcement learning problem. In our model based paradigm, ignorance about the system is
condensed to a single parameter set Θ ⊂ RdΘ containing the unknown nominal parameter θ∗. To
single out the RL challenges, we further assume that θ∗ only affects the drift assuming other quantities
(i.e. Σ, ε, and r) are known to the agent. For any x0 ∈ Rd, we evaluate the performance of any
strategy α ∈ A with the long-term average reward criterion defined by

ραθ∗(x0) := lim inf
T→∞

1

T
E

[
NT∑
n=1

r(Xα,θ∗

τn , ατn)

]
. (2)

The goal of the agent is to accumulate as much reward as possible, i.e. to compete with the best an
omniscient agent can achieve: ρ∗θ∗(x0) := supα∈A ρ

α
θ∗(x0). We evaluate the quality of a learning

algorithm generating α according to its regret.
Definition 2.1. For any T ∈ R+, x0 ∈ Rd, and α ∈ A, the regret of α is

RT (α) := Tρ∗θ∗(x0)−
NT∑
n=1

r(Xα,θ∗

τn , ατn) . (3)

Noticing that NT is the number of events up to time T , the definitions of the optimal performance
(2) and the regret (3) highlight the interplay between the wall-clock (T ) and Poisson clock (NT ).
The agent’s realised trajectory uses the Poisson clock, which governs interactions, while the ideal
performance is understood per unit of wall-clock time.

2.1 Working Assumptions

Of particular interest in our approach is the high-frequency regime in which ε ↓ 0. In this framework,
many interactions occur per unit of time, each of which is of negligible impact both in terms of

2While the additive noise structure is a design choice that simplifies the analysis, the choice of parameterising
the drift as x+ µθ∗(x, a) instead of µθ∗(x, a) does not affect its generality and is made only for convenience.
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dynamics and reward. This regime can be encoded by introducing, for any parameter θ ∈ Θ, rescaled
coefficients (µ̄θ, Σ̄, r̄) connected to the original parametrisation by

µθ = εµ̄θ , Σ = ε
1
2 Σ̄ , and r = εr̄ .

In this rescaled parametrisation, µ̄θ, Σ̄, and r̄ are understood as independent of ε. To improve
legibility, we will use both representations (µθ,Σ, r) and (µ̄θ, Σ̄, r̄). While the scaling of µθ and r in
ε arises naturally, the one of Σ is a design choice: we consider the covariance ΣΣ⊤ to be linear in ε.
Known as the diffusive regime, this preserves stochasticity3 as ε ↓ 0. We now impose regularity
assumptions on the drift and reward signal, uniformly over the possible parametrisations and controls
(α, θ) ∈ A × Θ. We take ∥·∥ to be the Euclidian norm on Rd and ∥·∥op for the operator norm on
Rd×d associated to ∥·∥.
Assumption 1. The map (µ̄, r̄) is continuous, and there is L0 > 0 such that for all (θ, a) ∈ Θ× A

L0> sup
x∈Rd

∥µ̄θ(x, a)∥
1 + ∥x∥

+ sup
x ̸=x′

∥µ̄θ(x, a)− µ̄θ(x
′, a)∥

∥x− x′∥
+ sup

x∈Rd

∥r̄(x, a)∥+ sup
x ̸=x′

∥r̄(x, a)− r̄(x′, a)∥
∥x− x′∥

.

Furthermore, L0 > ∥Σ̄∥op and Σ̄Σ̄⊤ ⪰ ς Id for some ς > 0, where ⪰ denotes the Loewner order.

Assumption 1 mainly imposes regularity on both µ̄θ and r̄ through a Lipschitz condition. We also
assume rewards to be bounded, which may be relaxed, but doing so is highly technical and involves
trading-off the growth of r with the stability of the process (see Assumption 2). Note that we do not
assume boundedness of µ̄θ. Finally, we assume non-degeneracy of the noise by requiring Σ̄ to be full
rank.

We conclude with Assumption 2 to ensure stability of the state process. Let Rd
∗ := Rd \ {0} and

R+ := (0,+∞). For k ∈ N, let Ck(Rd
∗;R+) denote the set of k-times continuously differentiable

functions from Rd
∗ to R+. Let ∇ and ∇2 denote the gradient and Hessian operator respectively.

Assumption 2. There is (ℓV , LV , cV ,MV ,M
′
V ) ∈ R5

+ and a Lyapunov function V ∈ C2(Rd
∗;R+)

satisfying, for any (x, x′, a, θ) ∈ Rd × Rd × A×Θ, x ̸= x′, and ε ∈ (0, 1):

(i.) ℓV ∥x− x′∥ ≤ V (x− x′) ≤ LV ∥x− x′∥ ,
(ii.) sup

x∈Rd
∗

∥∇V (x)∥ ≤MV and sup
x∈Rd

∗

∥∥∇2V (x)
∥∥
op
≤M ′

V ,

(iii.) V (x+ εµ̄(x, a)− x′ − εµ̄(x′, a)) ≤ (1− εcV )V (x− x′) . (4)

Assumption 2 is a Lyapunov-like condition through the function V . The condition (i.) requires that
V behaves similarly to a norm, while (ii.) asks that V be smoothly differentiable everywhere but at 0
and (iii.) imposes a contraction condition on the drifts.

Connection to linear stability. Stability theory has been extensively studied the special case of
linear dynamics. In this case, we recover Assumption 2 from the Continuous Algebraic Riccati
Equation (CARE; see e.g. [27, § 4.4]). Considering linear dynamics µ̄θ(x, a) = Āx + B̄a (given
matrices (Ā, B̄) of appropriate dimensions), continuous stability is guaranteed when the eigenvalues
of Ā have negative real-part or, equivalently, by the existence of a positive semi-definite matrix P
solving the CARE Ā⊤P + PĀ = − Id. For this P , its associated norm V = ∥·∥P is the appropriate
Lyapunov function for Assumption 2. Indeed, conditions (i.) and (ii.) follow as V is a norm and, for
ε ≤ 1/2λmax(P ), we have

V (x+ εµ̄(x, a)− x′ − εµ̄(x′, a))2 = (x− x′)⊤(P + εĀ⊤P + εPĀ+ ε2P )(x− x′)
= (x− x′)⊤(P − ε Id +ε2P )(x− x′)
≤ (x− x′)⊤(P − εP/λmax(P ) + ε2P )(x− x′)
≤ (1− ε/2λmax(P ))V (x− x′)2 .

Taking the square-root and using
√

1− ε/2λmax(P ) ≤ 1− ε/4λmax(P ) leads to (iii.) with cV =
1/4λmax(P ).

3Another common, but more rigid, regime is to consider Σ = εΣ̄, whose limit regime is deterministic and
known as the fluid limit, see [18].
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3 Main results

Our main contribution is a demonstration of the OFU protocol in the near-continuous time continuous
state-action RL problem. The ingredients of OFU are: learning from accumulated data to design
confidence sets; lazy updates to trade off policy revision and learning guarantees; and planning
amongst plausible parameterisations. We summarise this protocol in Algorithm 1.

Algorithm 1 OFU-Diffusion

Input: confidence level δ, initial state x0, initial control ϖ0

for n ∈ N∗ do
At time τn, receive r(Xϖ,θ∗

τn−1
, ϖτn−1

) and Xϖ,θ∗

τn .
if n satisfies (7) then
nk ← n, k ← k + 1,
Compute θ̂nk

using (5) and Cnk
(δ/3) with (6).

θ̃k ← argmaxθ∈Cnk
(δ/3) ρ̄

∗
θ

πk ← π̄∗
θ̃k

using (9)
end if
Play ϖτn := πk(X

ϖ,θ∗

τn ).
end for

Learning. Our algorithm proceeds by episodes, indexed by k ∈ N with nk denoting the start of the
kth episode. At each nk, Algorithm 1 revises its knowledge using the Non-Linear Least-Square fit
and the associated confidence set Cnk

(δ), defined (for βn(δ) given in (13) for all n ∈ N) by

θ̂nk
∈ argmin

θ∈Θ

nk−1∑
n=0

∥∥∥Xϖ,θ∗

τn+1
−Xϖ,θ∗

τn − µθ(X
ϖ,θ∗

τn , ϖτn)
∥∥∥2 , (5)

Cnk
(δ) :=

θ ∈ Θ :

√√√√nk−1∑
n=0

∥∥∥µθ(X
ϖ,θ∗
τn , ϖτn)− µθ̂nk

(Xϖ,θ∗
τn , ϖτn)

∥∥∥2 ≤ βnk
(δ)

 . (6)

Lazy Updates. Our episodic scheme follows the same rationale as in [1, 20], and triggers updates
as soon as enough information is collected. Formally, it constructs a sequence of episodes {Sk}k∈N
whose starting times are defined by n0 := 0 and, for any k ∈ N, nk+1 is the first time n > nk
satisfying (7) √√√√ sup

θ∈Cnk
(δ)

n∑
i=0

∥∥∥µθ(X
ϖ,θ∗
τi , ϖτi)− µθ̂nk

(Xϖ,θ∗
τi , ϖτi)

∥∥∥2 > 2βn(δ) . (7)

Planning. At the heart of our proposal is the way in which we address the optimistic planning,
detailed in Section 4.3. For a given parameter θ ∈ Cnk

(δ), we leverage the connection between
our setting and its continuous-time counterpart. We consider continuous-time controls ᾱ ∈ Ā with
diffusive average reward given by

ρ̄ᾱθ (x0) := lim inf
T→+∞

1

T
E

[∫ T

0

r̄(X̄ ᾱ,θ
t , ᾱt)dt

]
in which

{
dX̄ ᾱ,θ

t = µ̄θ(X̄
ᾱ,θ
t , ᾱt)dt+ Σ̄dWt

X̄ ᾱ,θ
0 = x0

(8)

in which W denotes a P-Brownian motion, F̄ its filtration, and Ā the set A-valued F̄-predictable
processes. This diffusive problem gives us an optimality criterion and associated optimal control4:

ρ̄∗θ(x0) := sup
α∈A

ρ̄ᾱθ (x0) and π̄∗
θ ◦ X̄ ᾱ,θ ∈ argmax

ᾱ∈Ā
ρ̄ᾱθ (x0) (9)

which approximates the original jump-process problem ρ∗θ(x0). This problem admits a Hamilton-
Jacobi-Bellman (HJB) equation (given in (18) below) characterising an optimal policy π̄∗

θ : Rd → A
which yields a computable optimal Markov control for (9).

4We will use the obvious notational confusion between the policy π̄∗
θ and the control process it generates.
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Theorem 3.1. Under Assumptions 1 and 2, for any δ ∈ (0, 1), x0 ∈ Rd, and γ ∈ (0, 1), there is a
pair (Cγ , C) ∈ R2

+ of constants independent of ε such that Algorithm 1 achieves

RT (ϖ) ≤ 2Cγε
γ
2 T + C

√
dE,Tε−1 log(N ε

Tε−1)T log(Tδ−1) (10)

with probability at least 1− δ, in which dE,Tε−1 is the 2ε/
√
T -eluder dimension (see [34, Def. 4.]

and (56) in Appendix C.2) of the class {µθ}θ∈Θ restricted to a ball of radius O(
√
log(T/ε)), and

log(N ε
Tε−1) is the ε2∥Σ̄∥2op/T -log-covering number of this same restricted class.

Theorem 3.1 contains two terms of different nature. The linear term is inherited from the diffusive
approximation planning method and scales with Cγε

γ/2. The dependency of the constant in γ is
inherited from the analysis of [4] and Cγ < +∞ holds for γ < 1. Quantifying the behaviour of Cγ as
γ ↑ 1 is technically intricate. Nevertheless, our bound indicates that the long run approximation error
vanishes as ε ↓ 0 almost as a fast as

√
ε. The second term quantifies all other sources of error, and

exhibits the expected scaling in the complexity measures of [34], in terms of both eluder dimension
and log-covering numbers, as well as the

√
T horizon dependency.

4 Ideas of the Proof

4.1 Stability

Working with unbounded processes and generic drift requires us to prevent state blow-up, which
could degrade regret regardless of learning. In Proposition 4.1 we combine the Lyapunov stability
of (4) with concentration arguments to show that unstable trajectories can only happen with low
probability. A detailed proof is given in Appendix B.

Proposition 4.1. Under Assumptions 1 and 2, there is a function Hδ(n) = O
(√

log(nδ−1)
)

such
that for any δ ∈ (0, 1), α ∈ A, x0 ∈ Rd, and θ ∈ Θ we have

P

(
sup
t∈R+

∥Xα,θ
t ∥

Hδ(Nt)
≥ 1

)
≤ δ . (11)

Working on the high-probability event of Proposition 4.1 allows us to handle the unbounded state in
the learning, planning, and optimism.

4.2 Learning

Confidence Sets. The crux of our analysis is incorporating Proposition 4.1 into the NLLS method
of [34] by refining it to be adaptive to the norm of the state process. For R > 0, let B2(R) ⊂ Rd

denotes the Euclidean ball of radius R at 0. To adapt the log-covering number, we can work with Hδ

by formally defining N ε
n as the size of the smallest cover C ε

n of FΘ := (µθ)θ∈Θ such that

sup
µ1∈FΘ

min
µ2∈C ε

n

sup
x∈B2(Hδ(n))

∥µ1(x)− µ2(x)∥ ≤
ε∥Σ̄∥2op
n

. (12)

Restricting the domain of FΘ allows us to handle the richness of unbounded models and states while
following [34] to define confidence sets. Let δ ∈ (0, 1), set β0 := ε

1
2 , and let

βn(δ) := β0 ∨ 2ε
1
2 ∥Σ̄∥op


√√√√1 + 2

(√
2 log

(
4π2n3

3δ

)
+

√
2ε

1
2 ∥Σ̄∥−1

op κn(δ)

)
+
√
κn(δ)

 (13)

in which

κn(δ) := log

(
2π2n2εN ε

n

3δ

(
∥Σ̄∥2op + 8L2

0(1 +Hδ(n))
))

.

Using this choice (βn)n∈N and replacing nk by n in (6) formally defines the confidence sets
(Cn(δ))n∈N. For any α ∈ A, the probability that the state process Xα,θ∗

t outgrows Hδ(Nt) is
small and, thus, this confidence set will hold with high probability as shown by Proposition 4.2.
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Proposition 4.2 (Adapted from [32, Prop. 5]). Under Assumptions 1 and 2, for any x0 ∈ Rd, and
δ > 0,

P

({
θ∗ ∈

∞⋂
n=1

Cn(δ)

}
∩

{
sup
n∈N∗

∥∥Xϖ,θ∗

τn

∥∥
Hδ(n)

≤ 1

})
≥ 1− δ , (14)

Well-posed confidence sets are insufficient for low-regret approaches in the OFU paradigm. This high
confidence (low fit error) of the NLLS estimator must be translated as low online prediction error.

Prediction error. To adapt the ϵ-eluder dimension (defined for ϵ > 0 in [32, Def. 3.]), which we
denote dimE, to our unbounded state we proceed on the trajectory. The relevant extension for us
is given for n ∈ N∗ by the 2

√
ε/n-eluder dimension of the class {f |B}f∈FΘ

of elements of FΘ

restricted to the setBn := B2(supt≤τn∥X
ϖ,θ∗

t ∥), denoted by dE,n := dimE({f |Bn
}f∈FΘ

, 2
√
ε/n).

In Proposition 4.3 we obtain first and second order prediction error bounds from this eluder dimension.
In Proposition 4.3 the order notation Õ hides terms that are poly-logarithmic in Nt and dE,Nt

whose
the full details are given in Appendix C.2.
Proposition 4.3. Under Assumptions 1 and 2, for any δ ∈ (0, 1), α ∈ A, x0 ∈ Rd, and t ∈ R+, we
have with probability at least 1− δ

Nt∑
n=1

∥∥∥µθ̂n
(Xα,θ∗

τn , ατn)− µθ∗(Xα,θ∗

τn , ατn)
∥∥∥ ≤ Õ (√εdE,Nt log(N

ε
Nt

)Nt + dE,Nt

)
, (15)

and
Nt∑
n=1

∥∥∥µθ̂n
(Xα,θ∗

τn , ατn)− µθ∗(Xα,θ∗

τn , ατn)
∥∥∥2 ≤ Õ (dE,Nt

log(N ε
Nt

)
)
. (16)

Lazy updates. We leverage the second order bound (16) of Proposition 4.3 to define our lazy-
update scheme (7). We show in Appendix E that this scheme does not degrade the speed at which
Algorithm 1 learns by more than a constant factor, while also ensuring that the policy is only updated
logarithmically in the number of interactions up to any horizon.

4.3 Planning

Algorithm 1 requires us to be able to plan using any θ ∈ Θ, and as such we will extend the definitions
of Xα,θ, ραθ (x0), ρ

∗
θ(x0) to any (α, θ) ∈ A × Θ by replacing θ∗ by θ in (1) and (2). Let A be the

set of measurable maps from Rd to A. For a given θ ∈ Θ, the well-posedness of the control problem
ρ∗θ(x0) and its resolution are non-trivial.
Proposition 4.4 (Adapted from [4, Thm. 2.3, Rem. 2.4.]). Under Assumptions 1 and 2, there is
LW ∈ R+, independent of ε, such that for any θ ∈ Θ

(i.) The map x 7→ ρ∗θ(x) is constant, taking only one value which we denote by ρ∗θ ∈ R;

(ii.) There is an LW -Lipschitz function W ∗
θ such that

ερ∗θ = max
a∈A
{E[W ∗

θ (x+ µθ(x, a) + Σξ)]−W ∗
θ (x) + r(x, a)} ∀x ∈ Rd ; (17)

(iii.) There is π∗
θ ∈ A , such that for all x ∈ Rd, π∗

θ(x) maximises the right hand side in (17),
and π∗

θ ◦Xπ∗
θ ,θ is an optimal Markov control, i.e. ρπ

∗
θ

θ (·) ≡ ρ∗θ .

Proposition 4.4.(i.) shows that the control problem ρ∗θ is independent of the initial conditions and
meaningfully ergodic, which follows from stability analysis of the process using (4). Points (ii.) and
(iii.) show that there is an optimal policy, which can be computed by solving the HJB equation (17).
As before, confusing policies in A and controls inA, we will write ρπθ and Xπ,θ to simplify notation.
Unfortunately (17) is an integral equation with low regularity, owing to the non-local jumps of the
system, which complicates its analysis and the construction of numerical solvers.

Diffusion limit. In the limit regime of interest, i.e. as ε ↓ 0, the non-local behaviour of (17) vanishes
and it becomes a diffusive HJB equation. The associated diffusive control problem ρ̄∗θ(x0) has been
extensively studied, see e.g. [5, 6].
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Proposition 4.5 (Adapted from [4, Thm. 3.4.]). Under Assumptions 1 and 2, for any θ ∈ Θ,

(i.) The map x 7→ ρ̄∗θ(x) is constant, taking only one value which we denote by ρ̄∗θ ∈ R.

(ii.) There is an LW -Lipschitz function W̄ ∗
θ ∈ C2(Rd;R) such that

ρ̄∗θ = max
a∈A

{
µ̄θ(x, a)

⊤∇W̄ ∗
θ (x) + r̄(x, a)

}
+

1

2
Tr[Σ̄Σ̄⊤∇2W̄ ∗

θ (x)], ∀x ∈ Rd . (18)

(iii.) There is π̄∗
θ ∈ A such that, for all x ∈ Rd, π̄∗

θ(x) maximises the right hand side in (18),
and π̄∗

θ ◦ X̄ π̄∗
θ ,θ is an optimal Markov control, i.e. ρ̄π̄

∗
θ

θ (·) ≡ ρ̄∗θ .

Proposition 4.5 ensures that the diffusive problem satisfies all the properties of Proposition 4.4
(ergodicity, optimal policy, and HJB equation). However, the HJB (18) is now a second-order local
PDE instead of a non-local integral equation. This local equation does not have cross-dependencies
between points: the solution at x depends only on its derivatives at x, which is fundamentally simpler
than the non-local behaviour of (17). Moreover, this diffusive PDE belongs to a well-studied family,
both from the points of view of theory [19, 26] and of numerics [23, 24]. These facts motivate the
use of these tools to construct approximate planning methods for (17) in the near-continuous time
regime as ε ↓ 0.
Proposition 4.6 (Adapted from [4, Thm. 3.6.]). Under Assumptions 1 and 2, for any γ ∈ (0, 1),
there is a constant Cγ > 0, independent of ε, such that, for any θ ∈ Θ,

|ρ̄∗θ − ρ∗θ| ≤ Cγε
γ
2 and ρ∗θ − ρ

π̄∗
θ

θ (0) ≤ Cγε
γ
2 . (19)

Moreover, there is a function eθ : Rd → R such that,

ερ
π̄∗
θ

θ (0) = E[W̄ ∗
θ (x+ µθ(x, a) + Σξ)]− W̄ ∗

θ (x) + r(x, π̄∗
θ(x)) + eθ(x) , ∀x ∈ Rd (20)

and there is C ′
γ > 0, independent of ε, such that |eθ(x)| ≤ C ′

γε
1+ γ

2 (1 + ∥x∥3) for all x ∈ Rd.

Proposition 4.6, combined with (18) provides a certifiable approximation for solving the control
problem (2) with off-the-shelf diffusive HJB solvers, at a cost independent of ε. An example of this
methodology is seen in [4, § 4], in which [4, Fig. 1, p. 30] shows the reduction in computational
effort. Proposition 4.6 also provides in (20) an HJB-like representation of the approximation, which
provides a key with which to analyse the regret incurred when using this approximation.

4.4 Regret Decomposition

To sketch the proof of Theorem 3.1, we work on the high-probability event of Proposition 4.2, and
omit martingale measurability issues this could cause. We will also ignore the randomness of jump
times and consider T ≲ εNT , with ≲ denoting inequality up to a constant. Appendix E is dedicated
to a complete proof.

Proof sketch of Theorem 3.1. Let k : N→ N map an event n to the episode k(n) to which it belongs
and let θn := θ̃k(n). We begin the regret decomposition by applying the HJB-like equation (20) of
Proposition 4.6.(iii.) to the rewards collected along the trajectory r(Xϖ,θ∗

τn , ϖτn) in the definition of
the regret. Conditioning as appropriate, this yields

RT (ϖ) = Tρ∗θ∗ − ε
NT∑
n=1

ρ
π̄∗
θn

θn
(0) (R1)

+

NT∑
n=1

E[W̄ ∗
θn(X̃

ϖ,θn
τn+1

)|Fτn ]− W̄ ∗
θn(X

ϖ,θ∗

τn ) (R2)

+

NT∑
n=1

eθn(X
ϖ,θ∗

τn ) (R3)

in which X̃ϖ,θ
τn+1

:= Xϖ,θ∗

τn + µθ(X
ϖ,θ∗

τn , ϖτn) + Σξn+1, for (n, θ) ∈ N × Θ, is a counterfactual
one-step transition assuming parameter θ ∈ Θ.
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On the event of Proposition 4.2, θ∗ is in ∩n∈NCn(δ) and the optimism of Algorithm 1 ensures that

ρ̄∗θ∗ ≤ ρ̄∗θn = ρ̄
π̄∗
θn

θn
for all n ∈ N. Combining this with Proposition 4.6, show that (R1) decomposes

into

R1 ≲ ε

(
NT∑
n=1

(ρ∗θ∗ − ρ̄∗θ∗) +

NT∑
n=1

(
ρ̄∗θn − ρ

π̄∗
θn

θn

))
≤ 4NTCγε

1+ γ
2 .

Also by Proposition 4.6, R3 ≤ ε1+
γ
2NT (1 +Hδ(NT )

3). Thus R1 +R3 ≲ Cγε
γ
2 T .

For (R2), the identity

X̃ϖ,θ
τn+1

= X̃ϖ,θ∗

τn+1
− µθ∗(Xϖ,θ∗

τn , ϖτn) + µθ(X
ϖ,θ∗

τn , ϖτn)

combined with the Lipschitzness of W̄ ∗
θ from Proposition 4.5, yields

R2 ≤ LW̄

NT∑
n=1

∥∥∥µθn(X
ϖ,θ∗

τn , ϖτn)− µθ∗(Xϖ,θ∗

τn , ϖτn)
∥∥∥ (R4)

+

NT∑
n=1

E[W̄ ∗
θn(X

ϖ,θ∗

τn+1
)−W ∗

θn+1
(Xϖ,θ∗

τn+1
)|Fτn ] (R5)

+

NT∑
n=1

E[W ∗
θn+1

(Xϖ,θ∗

τn+1
)|Fτn ]−W ∗

θn(X
ϖ,θ∗

τn ) , (R6)

by adding and subtracting E[W̄ ∗
θn+1

(X̃ϖ,θ∗

τn+1
)|Fτn ] = E[W̄ ∗

θn+1
(Xϖ,θ∗

τn+1
)|Fτn ]. (R6) is a martingale

term, which we can bound using concentration theory. Our lazy update-scheme ensures that θn ̸=
θn+1 only O(log(NT )) times by time T , keeping (R5) small.

It remains to show that the lazy update-scheme, does not degrade the learning of (R4), which is
controlled by improvements to Proposition 4.3 in Appendix C which yield
NT∑
n=1

sup
(θ1,θ2)∈Ck(n)(δ)2

∥∥∥µθ1(X
ϖ,θ∗

τn , ϖτn)− µθ2(X
ϖ,θ∗

τn , ϖτn)
∥∥∥ ≲ Õ(

√
dE(Tε−1) log(N ε

Tε−1)T ) .

5 Conclusion

In this work we proposed a general framework for the Reinforcement Learning problem of controlling
an unknown dynamical system, on a continuous state-action space, to maximise the long-term average
reward along a single trajectory. In particular, we focused on the understudied high-frequency systems
driven by many small movements. Modelling such systems as controlled jump processes, we provided
an optimistic algorithm which leverages Non-Linear Least Squares for learning and the diffusive
limit regime for approximate planning. This proof of concept calls for several further refinements to
be implementable in practice.

Optimism. The optimistic step of Algorithm 1 chooses θ̃n in an inefficient manner. Like in UCRL2
[20], optimistic exploration can be performed at the same time as planning by solving an expanded
HJB equation, i.e. (18) with the maximum now taken over (a, θ) ∈ A×Θ. Since our assumptions
are uniform in θ, this is possible up to a modified regret decomposition, as in [20].

Lazy updates. The way we quantify learning progress to design the lazy update-scheme (7) remains
fundamentally discrete. Computationally cheaper lazy update-schemes might be obtained through
simpler heuristics. For instance, the scaling of the drift with ε suggests it could be possible to update
periodically, directly in terms of the wall-clock time T .

Case-by-case. As a proof of concept, we endeavoured to study the RL problem in high generality.
However, practical applications must use all available model information to refine the method ad-hoc.
This is true for the learning method (replace NLLS with a fit specialised to the model at hand and
bound the eluder dimension and log-covering numbers), and for numerical schemes on the PDE (18)
which are built on a case-by-case basis for d > 1, see [25].
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Appendices
A Preliminaries

A.1 Organisation of Appendices

We prove the results one by one, starting with stability, then learning, planning, and finally concluding
with the regret proof of Theorem 3.1.

In Appendix B, we go over the probabilistic properties of our problem and show several bounds on
the stability of the process, in the sense of high-probability and moment boundedness. In particular
the main objective of this appendix is to prove Proposition 4.1.

In Appendix C, we show a generalisation of the existing theory of learning with NLLS to the case of
unbounded functions on unbounded domains. The key results are Propositions 4.2 and 4.3

In Appendix D, we provide a characterisation of the control part of the RL problem we analyse,
including the diffusion limit approximation, namely Propositions 4.4 to 4.6.

In Appendix E, we perform regret analysis and collect the last few results used to prove the regret
bound of Theorem 3.1. This includes treatement of the lazy update-scheme.

The remainder of Appendix A is devoted to notations and short-hands used throughout, but each
appendix is meant to be as notationally stand-alone as possible.

A.2 General notation

The set of natural numbers including 0 is denoted N, while N∗ := N \ {0} denotes the set of (strictly)
positive integers. For n ∈ N∗, we use [n] to denote the set of positive integers up to and including
n, i.e. [n] := {1, . . . , n}. Let R denote the set of real numbers and define R+ := (0,+∞) and
Rd

∗ := Rd \ {0}. The space of sequences taking values in S will be denoted by SN. For S ⊂ Rd, we
also denote the complement of S by Sc := Rd \ S, we use the same notation for the complement of a
probability event.

We denote by ⟨·|·⟩ the inner product on Rd, by ∥·∥ the Euclidean norm on Rd, and by ∥·∥op the
associated operator norm on Rd×d. For R ∈ R+ and x ∈ Rd, we denote the Euclidean ball of radius
R centred at x by B2(x,R), and when x = 0 we use the shorthand B2(R) for B2(0, R).

For d ≥ 1, D ⊂ Rd and D′ ⊂ R, we denote the space of continuous functions from D to D′ by
C0(D;D′). For any k ∈ N∗, we denote Ck(D;D′) the subset of C0(D;D′) containing all functions
which are continuously differentiable up to order k.

A.3 Problem dependent notation

The space of càdlàg (rcll) functions from [0,+∞) to Rd, for d ∈ N∗, is denoted D and P is a
probability measure on Ω := D. (Nt)t∈R+ denotes a marked P-compound Poisson process of
intensity ε−1 > 1, (τn)n∈N denotes the sequence of its arrival times, with τ0 := 0, and (ξn)n∈N
denotes the sequence of its marks. Namely, the sequences (τn)n∈N and (ξn)n∈N are independent,
(τn+1 − τn)n∈N is i.i.d. with exponential distribution of parameter ε and (ξn)n∈N is i.i.d. with
standard Gaussian measure on Rd, which we denoted by ν.

For t ∈ [0,+∞), Ft := σ((τn, ξn)τn≤t) and the filtration F is the completion of (Ft)t∈R+
. The set

of F-adapted A-valued processes, which we consider as admissible controls, is denoted A. For any
(x0, α, θ) ∈ Rd ×A×Θ, Xα,θ is the solution of{

Xα,θ
τn = Xα,θ

τn−1
+ µθ(X

α,θ
τn−1

, ατn−1
) + Σξn

Xα,θ
τ0 = x0

. (21)

When specifying the dependence on the initial condition x0 ∈ Rd is necessary, we write Xx0,α,θ.
This process is defined for any t ∈ [0,+∞) by considering its trajectories as piece-wise constant
on any interval of the form [τn−1, τn) for n ∈ N∗. For any (x0, α, θ) ∈ Rd × A × Θ, the control
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problem is denoted by

ρ∗θ(x0) := sup
α∈A

ραθ (x0) in which ραθ (x0) := lim inf
T→∞

1

T
E

[
NT∑
n=1

r(Xx0,α,θ
τn , ατn)

]
.

We denote by W a P-Wiener process (a.k.a Brownian motion), by F̄ the P-augmentation of the
filtration it generates, and by Ā the collection of A-valued and F̄-predictable processes. For any
(x0, ᾱ, θ) ∈ Rd × Ā × Θ, we denote by X̄ ᾱ,θ (or X̄x0,ᾱ,θ if specifying the initial condition) the
solution of {

dX̄ ᾱ,θ
t = µ̄θ(X̄

ᾱ,θ
t , ᾱt)dt+ Σ̄dWt

X̄ ᾱ,θ
0 = x0

. (22)

The associated control problem is denoted by

ρ̄∗θ(x0) := sup
ᾱ∈Ā

ρ̄ᾱθ (x0) in which ρ̄ᾱθ (x0) := lim inf
T→∞

1

T
E

[∫ T

0

r(X̄x0,ᾱ,θ
t , ᾱt)dt

]
.

According to Propositions 4.4 and 4.5, we defined the constants ρ∗θ := ρ∗θ(0) and ρ̄∗θ := ρ̄∗θ(0). For
θ ∈ Θ, π̄∗

θ denotes a policy in A ( the set of measurable maps from Rd to A) which maximises the
right-hand side of the HJB equation (17) associated to ρ̄∗θ (see Proposition 4.5). Throughout, we use
the same notation for policies and the Markov controls they induce, provided there is no ambiguity.

We use ϖ to denote the control process output of Algorithm 1 mathematically. For any ω ∈ Ω, the
trajectory generated by Algorithm 1 is therefore defined as in (21) by Xϖ,θ∗

· (ω). By definition of
Algorithm 1, in its kth episode (i.e. for t ∈ [τnk

, τnk+1)), ϖt = πk(X
ϖ,θ∗

t ), with πk := π̄∗
θ̃k

.

Throughout these appendices, we will use the shorthand ψε
θ(x, a) := x+εµ̄θ(x, a), for any (x, a, θ) ∈

Rd × A× θ.
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B State Process Stability

A key aspect of our setting is that both the state process Xα,θ, for any (α, θ) ∈ A × Θ, and the
drift µ itself are unbounded. This can lead to an exponential blow-up of the state process, which
can be harmful to both the learning and control aspects. In order to avoid this difficulty we imposed
Assumption 2, which corresponds to a stochastic Lyapunov condition, and ensures that the state will
not explode in expectation. We reinforce this result by leveraging concentration theory to obtain the
high-probability bound of Proposition 4.1. Appendix B.1 is dedicated to its proof, and it will be used
in the proofs of learning results and high-probability regret bounds (Appendices C and E).

Proposition 4.1. Under Assumptions 1 and 2, there is a function Hδ(n) = O
(√

log(nδ−1)
)

such
that for any δ ∈ (0, 1), α ∈ A, x0 ∈ Rd, and θ ∈ Θ we have

P

(
sup
t∈R+

∥Xα,θ
t ∥

Hδ(Nt)
≥ 1

)
≤ δ . (11)

Unlike learning and regret, the analysis of the control task is done in expectation via the HJB
equation. Here the unbounded drift will materialise as higher moments of Xα,θ. The counterpart of
Proposition 4.1 in this case is a moment result, given by Lemma B.5, which is proved in Appendix B.2
and will then be used in Appendix D.
Lemma B.5. Under Assumptions 1 and 2, for any p ≥ 2, there is a constant c′p > 0 independent of ε
such that

E
[
∥Xx0,α,θ

t ∥p
]
≤ 1

ℓpV

(
Lp

V e
− cV

4 t ∥x0∥p +
4c′p
cV

(
1− e−

cV
4 t
))

,

for any (x0, α, θ) ∈ Rd ×A×Θ and t ∈ [0,+∞).

B.1 Proof of Proposition 4.1

This appendix is dedicated to the proof of Proposition 4.1 which is a high probability bound on the
state process. This proof follows the Chernoff method. Thus, we will derive an exponential moment
bound for the state process in Lemma B.2. We will first obtain a stochastic stability condition in
expectation in Lemma B.1. In what follows, let Rε :=

√
8d log(1/ε) and ξ ∼ ν.

Lemma B.1. Under Assumptions 1 and 2,

(i.) for any (η, x, a, θ) ∈ Rd × Rd × A×Θ, we have

V (ψε
θ(x, a)−

√
εη) ≤ (1− εcV )V (x−

√
εη) + εMV L0(1 + ∥η∥) ; (23)

(ii.) and, for any (a, θ) ∈ A×Θ, and any x ̸∈ B2(ε
1
2 ∥Σ̄∥opRε) we have

E[V (ψε
θ(x, a) + Σξ)] ≤ (1− εcV )V (x) + εc′V

in which c′V is a constant independent of ε.

Proof.

(i.) By Lipschitzness of V and (4), for any (η, x, a, θ) ∈ Rd × Rd × A×Θ, we have

V (ψε
θ(x, a)−

√
εη) = V (ψε

θ(x, a)− ψε
θ(
√
εη, a) + εµ̄(

√
εη, a))

≤ V (ψε
θ(x, a)− ψε

θ(
√
εη, a)) +MV ε

∥∥µ̄(√εη, a)∥∥
≤ (1− εcV )V (x−

√
εη) +MV ε

∥∥µ̄(√εη, a)∥∥ ,
from which (23) follows by using Assumption 1, which implies ∥µ̄(

√
εη, a)∥ ≤ L0(1 +√

ε ∥η∥) ≤ L0(1 + ∥η∥) since ε ∈ (0, 1).

(ii.) For any x ∈ Rd, by the symmetry of the law of Σ̄ξ, by (23) applied for η = Σ̄ξ, and by
taking the expectation, we have
E[V (ψε

θ(x, a) + Σξ)] = E[V (ψε
θ(x, a)−

√
εΣ̄ξ)]

≤ (1− εcV )E[V (x−
√
εΣ̄ξ)] + εMV L0(1 + ∥Σ̄∥opE[∥ξ∥]) .

(24)

15



Since ξ is a standard Gaussian, ∥ξ∥2 is a random variable following a χ2 distribution with d
degrees of freedom, thus E[∥ξ∥2] = d, and by Jensen’s inequality E[∥ξ∥] ≤

√
d. Thus the

second term is bounded by εMV L0(1 +
∥∥Σ̄∥∥

op

√
d).

We now focus on bounding E[V (x− Σξ)]. We would like to use a Taylor expansion, but
care needs to be taken to handle the non-differentiability of V at 0. Under the expectation,
we distinguish two events: the event on which ∥ξ∥ < Rε, which supports the main mass of
ν, and the event on which ∥ξ∥ ≥ Rε, corresponding to the tails.

(a) For the first event we consider (on which ∥ξ∥ < Rε), for any x ̸∈ B2(∥Σ∥opRε), we
must have 0 ̸∈ B2(x, ∥Σξ∥), and thus 0 ̸∈ (x+∆Σξ)∆∈[0,1]. Since this line segment
doesn’t contain 0 (the only point at which V is not continuously differentiable), we
can perform a second-order Taylor expansion of V to obtain

E[V (x+Σξ)1{∥ξ∥<Rε}]

≤ E
[(

V (x) + ξ⊤Σ⊤∇V (x) +
1

2
Tr[Σξξ⊤Σ⊤∇2V (x̂)]

)
1{∥ξ∥<Rε}

]
for some x̂ ∈ (x+∆Σξ)∆∈[0,1]. By the Cauchy-Schwartz inequality and the derivative
bounds of Assumption 2, we obtain

E[V (x+Σξ)1{∥ξ∥2<Rε}] ≤ V (x) + E[ξ⊤1{∥ξ∥<Rε}]Σ
⊤∇V (x) +

ε

2
M ′

V ∥Σ̄∥2op

≤ V (x) +
ε

2
M ′

V ∥Σ̄∥2op ,

since E[ξ⊤1{∥ξ∥<Rε}] = 0 by the rotational invariance property of a truncated Gaus-
sian.

(b) On the second event (on which ∥ξ∥ ≥ Rε), we cannot use a Taylor expansion. Instead,
we use the Lipschitzness of V followed by the Cauchy-Schwartz inequality, and then
apply a sub-Gaussian concentration inequality (see e.g. [29, (3.5)]):

E[V (x+Σξ)1{∥ξ∥≥Rε}] ≤ V (x) +MV ∥Σ∥op E[∥ξ∥1{∥ξ∥≥Rε}]

≤ V (x) +MV ∥Σ∥op
√
E[∥ξ∥2]P(∥ξ∥ ≥ Rε)

≤ V (x) +MV ∥Σ∥op

√
4de−

R2
ε

8d

≤ V (x) + 2εMV ∥Σ̄∥op
√
d .

To complete the proof, we combine both cases in (24), and let

c′V :=MV L0(1 + ∥Σ̄∥op
√
d) + 2MV ∥Σ̄∥op

√
d+

M ′
V

2
∥Σ̄∥2op.

Lemma B.2. Under Assumptions 1 and 2, for any (x0, α, θ) ∈ Rd ×A×Θ and any λ ∈ R+, we
have

E[eλV (Xx0,α,θ
τn

)] ≤ (n+ 1) exp

(
λ

(
c′V
cV

+ LV (ε
1
2 ∥Σ̄∥opRε + ∥x0∥)

)
+
λ2M2

V ∥Σ̄∥2op
2cV

)
,

for any n ∈ N.

Proof. For n ∈ N∗, let us define the following events for i < n: Ei,n−1 := {i = sup{j ∈
{0, . . . , n − 1} : ∥Xα,θ

τj ∥ ≤ ∥Σ∥opRε}} and Ēn−1 := {minj∈{0,...,n−1}∥Xα,θ
τj ∥ > ∥Σ∥opRε}.

Note that both these events are Fτn−1
-measurable and that ∪i≤n−1Ei,n−1 = Ēc

n−1, so that
{Ēn−1, E0,n−1, . . . , En−1,n−1} induces a partition of Ω. We begin by working conditionally to each
of these events, and in a second part we will collect them to bound E[exp(λV (Xα,θ

τn )].
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For any 0 ≤ i < n, by the tower rule and by adding and subtracting
E[exp

(
E[λV (Xα,θ

τn )|Fτn−1 ]
)
1Ei,n−1 ], we have

E[eλV (Xα,θ
τn

)1Ei,n−1
] = E[E[eλV (Xα,θ

τn
)|Fτn−1

]1Ei,n−1
]

= E
[
exp

(
E[λV (Xα,θ

τn )|Fτn−1
]
)
1Ei,n−1

× E
[
exp

(
λV (Xα,θ

τn )− E[λV (Xα,θ
τn )|Fτn−1

]
)
|Fτn−1

] ]
.

Using a result for Lipschitz functions of Gaussian random variables (see e.g. [13, Thm 5.5]) applied
to V and ξ, we obtain

E[eλV (Xα,θ
τn

)1Ei,n−1
] ≤ e

λ2

2 M2
V ∥Σ∥2

opE
[
exp

(
E[λV (Xα,θ

τn )|Fτn−1
]
)
1Ei,n−1

]
= e

λ2

2 M2
V ∥Σ∥2

opE
[
exp

(
E[λV (ψε

θ(X
α,θ
τn−1

, ατn−1
) + Σξn)|Fτn−1

]
)
1Ei,n−1

]
.

(25)

If i = n− 1, ∥Xα,θ
τn−1
∥ ≤ ∥Σ∥opRε on the event Ei,n−1, and thus we have

E
[
λV (ψε

θ(X
α,θ
τn−1

, ατn−1
) + Σξn)

∣∣Fτn−1

]
≤ E

[
λLV

∥∥∥Xα,θ
τn−1

+ µ(Xα,θ
τn−1

, ατn−1
) + Σξ

∥∥∥ ∣∣Fτn−1

]
≤ λLV

(
(1 + L0)∥Σ∥opRε + 1 + ∥Σ∥op

√
d
)

by using the fact that E[∥ξ∥] ≤
√
E[∥ξ∥2] =

√
d, as ξ ∼ ν. Noticing that supε∈(0,1) ε

1
2Rε =√

8de−1, let us introduce

CH := LV

(
(1 + L0)∥Σ̄∥op

√
8de−1 + 1 + ∥Σ̄∥op

√
d
)
. (26)

Combining this with (25) yields

E[eλV (Xα,θ
τn

)1Ei,n−1
] ≤ exp

(
λ2

2
M2

V ∥Σ∥
2
op + λCH

)
, (27)

in the case i = n− 1.

If i < n− 1, we can apply the same methodology, and continuing from (25) apply Lemma B.1 to
obtain

E[eλV (Xα,θ
τn

)1Ei,n−1 ] ≤ e
λ2

2 M2
V ∥Σ∥2

opE
[
exp

(
E
[
λV (ψε

θ(X
α,θ
τn−1

, ατn−1) + Σξn)|Fτn−1

])
× 1{Xα,θ

τn−1
>∥Σ∥opRε}1Ei,n−2

]
, (28)

≤ e
λ2

2 M2
V ∥Σ∥2

op+λεc′V E[exp((1− εcV )λV (Xα,θ
τn−1

))1Ei,n−2
] .

It remains to use an induction argument in n down to n = i + 1 and use the fact that ∥Xα,θ
τi ∥ ≤

∥Σ∥opRε on Ei,i, to obtain

E[eλV (Xα,θ
τn

)1Ei,n−1
]

≤ exp

(
λCH + λεc′V

n−1−i∑
k=0

(1− εcV )k +
λ2M2

V ∥Σ∥2op
2

n−1−i∑
k=0

(1− εcV )2k

)

≤ exp

(
λCH + λ

c′V
cV

+
λ2M2

V ∥Σ̄∥2op
2cV

)
. (29)

On the event Ēn−1, that is if the process is never in the ball B2(∥Σ∥opRε) before time τn, we use the
fact that (28) is valid with Ēn−1 and Ēn−2 in place of Ei,n−1 and Ei,n−2. Applying the induction,
we obtain

E[eλV (Xα,θ
τn

)1Ēn−1
] ≤ exp

(
λLV ∥x0∥+ λ

c′V
cV

+
λ2M2

V ∥Σ̄∥2op
2cV

)
. (30)
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Using our partition and combining (27), (29), and (30) we can thus write, for any n ∈ N

E
[
eλV (Xα,θ

τn
)
]
≤ E

[
eλV (Xα,θ

τn
)

(
1Ēn−1

+

n−1∑
i=0

1Ei,n−1

)]

≤ (n+ 1) exp

(
λ

(
c′V
cV

+ CH + LV ∥x0∥
)
+
λ2M2

V ∥Σ̄∥2op
2cV

)
which concludes the proof.

With these two lemmas, we can now prove Proposition 4.1, the main result of this section. First, let
us give the exact definition of Hδ(n):

Hδ(n) :=
1

ℓV
(CH + LV ∥x0∥) +

c′V
ℓV cV

+
MV

ℓV
∥Σ̄∥op

√
2

cV
log

(
π2(n+ 1)3

6δ

)
(31)

in which CH is defined in (26), so that Hδ(n) = O
(√

log(nδ−1)
)
.

Proposition 4.1. Under Assumptions 1 and 2, there is a function Hδ(n) = O
(√

log(nδ−1)
)

such
that for any δ ∈ (0, 1), α ∈ A, x0 ∈ Rd, and θ ∈ Θ we have

P

(
sup
t∈R+

∥Xα,θ
t ∥

Hδ(Nt)
≥ 1

)
≤ δ . (11)

Proof. Fix n ∈ N, by Markov’s inequality and Assumption 2, for any u > 0, we have

P
(
∥Xα,θ

τn ∥ > u
)
≤ E

[
eλℓV ∥Xα,θ

τn
∥
]
e−λℓV u ≤ E

[
eλV (Xα,θ

τn
)
]
e−λℓV u ,

which implies that

P
(
∥Xα,θ

τn ∥ −
c′V
ℓV cV

− CH

ℓV
− LV

ℓV
∥x0∥ > u

)
≤ E

[
eλV (Xα,θ

τn
)
]
exp

(
−λℓV

(
u+

c′V
ℓV cV

+
CH

ℓV
+
LV

ℓV
∥x0∥

))
.

Applying Lemma B.2, and taking λ = cV ℓV u/(M
2
V ∥Σ̄∥2op), we obtain

P
(
∥Xα,θ

τn ∥ > u+
c′V
ℓV cV

+ ε
1
2
LV

ℓV
∥Σ̄∥opRε+

LV

ℓV
∥x0∥

)
≤ (n+ 1) exp

(
−λℓV u+ λ2

M2
V ∥Σ̄∥2op
2cV

)

= (n+ 1) exp

(
− cV ℓ

2
V

2M2
V ∥Σ̄∥2op

u2

)
.

Letting u =MV ∥Σ̄∥opℓ−1
V

√
2c−1

V log((n+ 1)/δ′), yields

P

(
∥Xα,θ

τn ∥ ≥
CH

ℓV
+
LV

ℓV
∥x0∥+

c′V
ℓV cV

+
MV

ℓV
∥Σ̄∥op

√
2

cV
log

(
n+ 1

δ′

))
≤ δ′.

Setting δ′ = 6δ/π2(n+ 1)2, and taking a union bound over n ∈ N yields

P

(
sup
t∈R+

Xα,θ
t

Hδ(Nt)
≥ 1

)
= P

(⋃
n∈N
{∥Xα,θ

τn ∥ ≥ Hδ(n)}
)
≤ δ ,

which implies the result since δ ∈ (0, 1) implies log(n3/δ) ≤ log(n3/δ3) = 3 log(n/δ).
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B.2 Expectation Bounds of Higher Orders

In this appendix, we will focus on higher moment conditions of the state process, which will be used
in the control results of Appendix D. In Lemma B.3 and Corollary B.4 we work to raise the stochastic
stability condition from Lemma B.1 to a power p ≥ 2. Lemma B.5, the main result of this section,
will follow from this by arguments of [4].

Lemma B.3. Under Assumptions 1 and 2, for p ≥ 2, there is a function g : Rd × Rd → R+ and a
constant Cp > 0 independent of ε satisfying

g(x, η) ≤ εCp

(
1 + V (x−

√
εη)p−1

)
(1 + ∥η∥p) ,

for any (η, x) ∈ Rd × Rd, such that

V (ψε
θ(x, a)−

√
εη)p ≤ (1− εcV )V (x−

√
εη)p + g(x, η) . (32)

for any (η, x, a, θ) ∈ Rd × Rd × A×Θ.

Proof. We first raise both sides of (23) to the power p

V (ψε
θ(x, a)−

√
εη)p ≤

(
(1− εcV )V (x−

√
εη) + εMV L0(1 + ∥η∥)

)p

.

We will now expand the right hand side. Let a = (1− εcV )V (x−
√
εη) and b = εMV L0(1 + ∥η∥),

by the binomial theorem we have

(a+ b)p =

p∑
k=0

(
p

k

)
akbp−k = ap + b

p−1∑
k=0

(
p

k

)
akbp−1−k

≤ ap + b(1 + b)p−1(1 + a)p−1

p−1∑
k=0

(
p

k

)
.

Since (1 − εcV ) ∈ (0, 1), ε ≤ 1, b ≤ 1 + b, and
∑p−1

k=0

(
p
k

)
≤ 2p, by using the binomial identity

(1 + a)q ≤ 2q−1(1 + aq) for (a, q) ∈ [0,+∞)× [1,+∞), we have

V (ψε
θ(x, a)−

√
εη)p ≤ (1− εcV )V (x−

√
εη)p

+ ε(1 +MV L0(1 + ∥η∥))p(1 + V (x−
√
εη)p−1)2p−2+p . (33)

Finally, we have

(1 +MV L0(1 + ∥η∥))p = (1 +MV L0 +MV L0 ∥η∥)p

≤ (1 +MV L0 + (1 +MV L0) ∥η∥)p

= (1 +MV L0)
p(1 + ∥η∥)p

≤ (1 +MV L0)
p(1 + ∥η∥p)2p−1 . (34)

Combining (33) and (34), leads to the required result.

Recall that ξ ∼ ν is a centred standard Gaussian random variable.

Corollary B.4. Under Assumptions 1 and 2, for any p ≥ 2, there is a constant cp > 0 independent
of ε such that

E [V (ψε
θ(x, a) + Σξ)p] ≤

(
1− ε cV

2

)
E[V (x−

√
εξ)p] + εcp

for any (x, a, θ) ∈ Rd × A×Θ.

Proof.
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i. Taking the expectation of the bound on g from Lemma B.3 and applying Hölder’s inequality
yields

E[g(x, ξ)] ≤ εCpE
[
(1 + V (x−

√
εξ)p−1)(1 + ∥ξ∥p)

]
≤ εCpE

[
(1 + V (x−

√
εξ)p−1)

(p+1)
p

] p
p+1

E
[
(1 + ∥ξ∥p)p+1

] 1
p+1

≤ 4εCpE
[
1 + V (x−

√
εξ)

(p−1)(p+1)
p

]
E
[
(1 + ∥ξ∥p)p+1

] 1
p+1 ,

by using the identities: for (u, v) ∈ R2
+, (1 + u)(p+1)/p ≤ 4(1 + u(p+1)/p) and (1 +

v)p/(p+1) ≤ 1 + v. Since ξ has bounded moments of any order,

C ′
p := 4CpE

[
(1 + ∥ξ∥p)p+1

] 1
p+1

is a finite constant and we have

E [g(x, ξ)] ≤ εC ′
pE
[
1 + V (x−

√
εξ)p−

1
p

]
.

ii. Recalling Lemma B.3, we have

E [V (ψε
θ(x, a) + Σξ)p] ≤ (1− εcV )E[V (x−

√
εξ)p] + E[g(x, ξ)]

≤
(
1− ε cV

2

)
E[V (x−

√
εξ)p]

+ εE
[
C ′

p(1 + V (x−
√
εξ)p−

1
p )− cV

2
V (x−

√
εξ)p

]
. (35)

iii. Note that, for any p ≥ 2, the function

z ∈ Rd 7→ ∥z∥p−
1
p

1 + ∥z∥p
∈ R+

is bounded, so there exists a constant C ′′
p > 0 such that, for any z ∈ Rd,

C ′
pV (z)p−

1
p − cV

2
V (z)p ≤ C ′′

p .

Applying this to the expectation in (35), we have

E [V (ψε
θ(x, a) + Σξ)p] ≤

(
1− ε cV

2

)
E[V (x+

√
εξ)p] + ε(C ′′

p + C ′
p) .

Letting cp := C ′
p + C ′′

p completes the proof.

Lemma B.5. Under Assumptions 1 and 2, for any p ≥ 2, there is a constant c′p > 0 independent of ε
such that

E
[
∥Xx0,α,θ

t ∥p
]
≤ 1

ℓpV

(
Lp

V e
− cV

4 t ∥x0∥p +
4c′p
cV

(
1− e−

cV
4 t
))

,

for any (x0, α, θ) ∈ Rd ×A×Θ and t ∈ [0,+∞).

Proof. Recall from Corollary B.4 that we have

E[V (ψε
θ(x, a) + Σξ)p] ≤

(
1− ε cV

2

)
E[V (x+Σξ)p] + εcp (36)

for any (x, a, θ) ∈ Rd × A×Θ. We begin by eliminating the Σξ from the right-hand side so that we
have a proper Lyapunov contraction property on the generator. We expand V p ∈ C2(Rd; [0,+∞))
and use the fact that E[ξ] = 0 to obtain

E[V (x+Σξ)p] = V (x)p + εpE[V (x+∆Σξ)p−1 Tr[ξΣ̄Σ̄⊤ξ⊤∇2V (x+∆Σξ)]]

+ εp(p− 1)E[V (x+∆Σξ)p−2 Tr[ξΣ̄Σ̄⊤ξ⊤∇V (x+∆Σξ)∇V ⊤(x+∆Σξ)]]
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for some random variable ∆ taking value in [0, 1]. This is now upper-bounded by using the Lipschitz-
ness of V and the Cauchy-Schwartz inequality

E[V (x+Σξ)p] ≤ V (x)p + εpM ′
V ∥Σ̄∥2opE[(V (x) +MV ∆Σ ∥ξ∥)p−1 ∥ξ∥2]

+ εp(p− 1)(MV )2∥Σ̄∥2opE[(V (x) +MV ∆Σ ∥ξ∥)p−2 ∥ξ∥2] .

By the binomial theorem as in the proof of Lemma B.3, and as |∆| ≤ 1, we have

E[V (x+Σξ)p] ≤ V (x)p + ε

(
pM ′

V ∥Σ̄∥2opE

[
∥ξ∥2

p−1∑
k=0

(
p− 1

k

)
V (x)k(MV ∥Σ∥op ∥ξ∥)

p−1−k

]

+ p(p− 1)(MV ∥Σ̄∥op)2E

[
p−2∑
k=0

(
p− 2

k

)
V (x)k(MV ∥Σ∥op ∥ξ∥)

p−2−k

])
.

Since ∥ξ∥ is a sub-Gaussian random variable it has moments of all orders, and we can express
the interior of the bracket above as a polynomial in V (x) of order p − 1 with finite coefficients
{ak}p−1

k=0 ⊂ R+. Recalling (36), we thus have

E[V (ψε
θ(x, a) + Σξ)p] ≤ (1− εcV )

(
V (x)p + ε

p−1∑
k=0

akV (x)k

)
+ εcp

≤
(
1− ε cV

4

)
V (x)p + ε

(
cp −

cV
4

V (x)p +

p−1∑
k=0

akV (x)k

)
As in part iii. of the proof of Corollary B.4, the interior of the second bracket is a continuous function
which goes to −∞ as ∥x∥ → +∞, so there must be a constant c′p ∈ R+ (independent of ε) such that

cp + sup
x∈Rd

(
− cV

4
V (x)p +

p−1∑
k=0

akV (x)k

)
≤ c′p < +∞ .

Therefore, we have the desired Lyapunov generator condition

E[V (ψε
θ(x, a) + Σξ)p] ≤

(
1− ε cV

4

)
V (x)p + εc′p ,

which is equivalently written for any (x, a) ∈ Rd × A as

1

ε

∫
(V (ψε

θ(x, a) + Σe)p − V (x)p)ν(de) ≤ − cV
4

V (x)p + c′p . (37)

By Itô’s Lemma, (37), and a localisation argument, we have, for any t ≥ t0 ≥ 0, that

E[V (Xx0,α,θ
t )p] = E[V (Xx0,α,θ

t0 )p]

+ E
[∫ t

t0

1

ε

∫
(V (ψε

θ(X
x0,α,θ
s , αs) + Σe)p − V (Xx0,α,θ

s )p)ν(de)ds

]
≤ E[V (Xx0,α,θ

t0 )p]− cV
4

∫ t

t0

E
[
V (Xx0,α,θ

s )p
]
ds+ (t− t0)c′p .

By a simple comparison argument for ODEs, we then obtain

E[V (Xx0,α,θ
t )p] ≤ e−

cV
4 tV (x0)

p +
4c′p
cV

(
1− e−

cV
4 t
)
.

Using now Assumption 2, we obtain

E[∥Xx0,α,θ
t ∥p] ≤ 1

ℓpV

(
Lp

V e
− cV

4 t ∥x0∥p +
4c′p
cV

(
1− e−

cV
4 t
))

.
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C Concentration Inequality and Online Prediction Error

The key result of this section, Proposition 4.2, builds heavily on [34, Prop. 5]. Proposition 4.2 differs
from this existing result in three ways. First, it is any-time i.e. does not require a priori knowledge
of a time horizon. This is a minor technical refinement, but it is of practical importance. Second, it
applies to a pure-jump process defined on R+. This apparent complexity vanishes when the filtration
of the pure-jump process is chosen correctly, as the state process is piece-wise constant. Third, and
most important, it applies to learning in a function class (FΘ) of unbounded drifts for an unbounded
process Xα,θ, which is an inherent difficulty in handling continuous state RL problems.

This third extension is non-trivial and leads us to significantly reshuffle the proof structure of [34],
and to incorporate some self-normalised inequality arguments as well as high-probability bounds on
the state from Appendix B. While many of the original ideas are still used, the way they link together
has changed and thus we will include, in Appendix C.1, a complete derivation for the sake of clarity.
In this spirit, we will prove a generic result (Theorem C.3), which itself implies Proposition 4.2.
Proposition 4.2 (Adapted from [32, Prop. 5]). Under Assumptions 1 and 2, for any x0 ∈ Rd, and
δ > 0,

P

({
θ∗ ∈

∞⋂
n=1

Cn(δ)

}
∩

{
sup
n∈N∗

∥∥Xϖ,θ∗

τn

∥∥
Hδ(n)

≤ 1

})
≥ 1− δ , (14)

Proposition 4.2 ensures that the sets (Cn(δ))n∈N defined in (6) are valid confidence sets. In order to
bound the regret, we need to go further and to bound the online prediction error of functions within
these confidence sets along the trajectory (see. (57)).

For any n ∈ R, let dE,n denotes the 2
√
ε/n-eluder dimension of the model class restricted to the

set Bn := B2(sups≤τn∥X
ϖ,θ∗

s ∥), i.e. dE,n := dimE({f |Bn}f∈FΘ , 2
√
ε/n). In Appendix C.2, we

derive a general result (Proposition C.7) from which Proposition 4.2 follows.
Proposition 4.3. Under Assumptions 1 and 2, for any δ ∈ (0, 1), α ∈ A, x0 ∈ Rd, and t ∈ R+, we
have with probability at least 1− δ

Nt∑
n=1

∥∥∥µθ̂n
(Xα,θ∗

τn , ατn)− µθ∗(Xα,θ∗

τn , ατn)
∥∥∥ ≤ Õ (√εdE,Nt

log(N ε
Nt

)Nt + dE,Nt

)
, (15)

and
Nt∑
n=1

∥∥∥µθ̂n
(Xα,θ∗

τn , ατn)− µθ∗(Xα,θ∗

τn , ατn)
∥∥∥2 ≤ Õ (dE,Nt

log(N ε
Nt

)
)
. (16)

C.1 Confidence sets

In this section, we work in a generic online learning framework, so that our results can be more easily
compared and contrasted with [32, 34] and others. We, therefore, introduce some dedicated notation
and a stand-alone assumption for this section.

Consider a set of functions F from Rd → Rd, and fix f∗ ∈ F . We will study pairs of (random)
Rd-valued sequences ((Xi)i∈N, (Yi)i∈N) generated as

Yi = f∗(Xi) + ξi

for (ξi)i∈N a stochastic process in some filtered probability space (Ω′,H∞,H,P), with each ξi
independent of everything else up to time i. We takeHi as the completion of σ({ξj}j≤i), for i ∈ N,
and we let H = (Hi)i≥0.

Given some Rd-valued and H-adapted sequences (Zi)i∈N and (Z ′
i)i∈N, and some n ∈ N∗, let us

define

⟨Z|Z ′⟩n :=
n−1∑
i=0

⟨Zi|Z ′
i⟩ and ∥Z∥n :=

√
⟨Z|Z⟩n .

While ∥·∥n is not a norm, it plays this role and we follow here the notational convention of [34]. We
will extend the definitions of ⟨·|·⟩n and ∥·∥n to n = 0 by simply taking the empty sum to be 0, i.e.
⟨Z,Z ′⟩0 := 0.
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To simplify notation, we will drop the sequence (Xi)i∈N when it is an argument to a function inside
∥·∥n or ⟨·|·⟩n: i.e. ∥f∥n stands for ∥(f(Xi))i∈N∥n. With this notation in mind, for any n ∈ N, we
define f̂n as an arbitrary element of

argmin
f∈F

∥Y − f∥2n .

In other words f̂n is a non-linear least-square fit in F using the first n points of (Xi, Yi)i∈N.
In this generic setting, we introduce Assumption 3, which in our end-goal application subsumes
Assumptions 1 and 2 and Proposition 4.1.

Assumption 3. There is (L,Γ) ∈ R2
+ and a function Hδ : N→ R+ such that

sup
f∈F

sup
x∈Rd

∥f(x)∥
1 + ∥x∥

≤ L ,

and for all i ∈ N∗, ξi is an Hi−1-conditionally Γ2-sub-Gaussian random variable, ξ0 is Γ2-sub-
Gaussian, and the sequence (Xi)i∈N satisfies

P
(
sup
n∈N

∥Xn∥
Hδ(n)

> 1

)
< δ

for all δ ∈ (0, 1).

Let (C Γ
n )n∈N∗ denote a deterministic sequence of finite covers of F , whose cardinalities are respec-

tively given by (N Γ
n )n∈N∗ , such that for all n ∈ N∗

sup
f∈F

min
g∈CΓ

n

sup
x∈B(Hδ(n))

∥f(x)− g(x)∥ ≤ Γ2

n
.

The definition of this cover corresponds to one used in [34] with a domain restricted to lie in the
high-probability region of the state process instead of the whole domain. This ensures the cover
remains finite for all n ∈ N∗.

For any δ ∈ (0, 1), n ∈ N∗, and f ∈ F let us define the quantities

L1
n(δ) := log((Γ2 + 8L2(1 + sup

i≤n
∥Xi∥22))N Γ

n δ
−1) ,

L0
n(δ) := L1

n(6δπ
−2n−2) ,

C1
n(f) := Γ2 + ∥f − f∗∥2n

C2
n(f) := sup

i≤n
∥f(Xi)− f̂n(Xi)∥ ,

and the event

E0n(δ) :=

{∥∥∥f̂n − f∗∥∥∥
n
≤ 2Γ

√
L1
n

(
3δ

π2n2

)

+ 2

√√√√Γ2 + 2Γ

(
n sup

g∈CΓ
n

C2
n(g)

√
2 log

(
4π2n3

3δ

)
+

√
2n sup

g∈CΓ
n

C2
n(g)L

1
n

(
3δ

π2n2

))}
.

(38)

Building upon the proof method of [34], the cornerstone of this section is Lemma C.2, which shows
that, with high-probability, f∗ is contained in all the elements of a sequence of confidence sets, each
centred at f̂n in the ∥·∥n norm.

Lemma C.2. Under Assumption 3, for n ∈ N∗ and δ ∈ (0, 1), we have

P

( ⋂
n∈N∗

E0n(δ)

)
≥ 1− δ .

23



We begin the proof of Lemma C.2 by giving the concentration inequality of Lemma C.1.
Lemma C.1. Under Assumption 3, for all n ∈ N∗, δ ∈ (0, 1), and f ∈ F

P

(
|⟨ξ|f − f∗⟩n| ≥ Γ

√
2(Γ2 + ∥f − f∗∥n) log

(
Γ2 + ∥f − f∗∥n

δ

))
≤ δ .

Proof. This proof relies on extensively studied arguments for self-normalised inequalities, but we
include it for completeness because it uses non standard constants. Let us begin by fixing f ∈ F .
For all n ∈ N, let

Zn(f) := ⟨ξ|f − f∗⟩n .
For any λ ∈ R, let us define the process (Mλ

n (f))n∈N defined by

Mλ
n (f) := exp

(
λZn(f)−

λ2Γ2

2
∥f − f∗∥2n

)
.

Let us show that Mλ
n (f) is a conditional supermartingale. For any n ∈ N, we have

E
[
Mλ

n+1(f)|Hn

]
=Mλ

n (f)E
[
exp

(
λ⟨ξn+1|f(Xn)− f∗(Xn)⟩n

)∣∣∣∣Hn

]
e−

λ2Γ2

2 ∥f(Xn)−f∗(Xn)∥2
n .

(39)

By the Cauchy-Schwartz inequality

|⟨ξn|f(Xn)− f∗(Xn)⟩n| ≤ ∥ξn∥n ∥f(Xn)− f∗(Xn)∥n
and thus, since ξn is conditionally Γ2-subgaussian with variance Γ2, ∥ξn∥ is Γ2-subgaussian. There-
fore

E
[
exp

(
λ⟨ξn|f(Xn)− f∗(Xn)⟩n −

λ2Γ2

2
∥f(Xn)− f∗(Xn)∥2n

)
|Hn

]
≤ 1

and thus, by (39), Mλ
n (f) is a supermartingale. By definition of ⟨·|·⟩0 and ∥·∥0, Mλ

0 (f) = 1, so that
E[Mλ

n (f)] ≤ 1 for all n ∈ N.

We now perform a Laplace trick. Let Φ be the Gaussian measure of mean 0 and variance Γ−4 on R,
and let us define the process (Mn(f))n∈N by

Mn(f) : =

∫
Mλ

n (f)Φ(dλ)

=

∫
exp

(
λZn(f)−

λ2Γ2

2
∥f − f∗∥2n

)
Φ(dλ)

=
1

Γ2 + ∥f − f∗∥2n
exp

{
Z2
n(f)

2Γ2(Γ2 + ∥f − f∗∥2n)

}
.

By Markov’s inequality, P(Mn(f) ≥ δ−1) ≤ δ, and thus

P

Zn(f) ≥ Γ

√√√√2(Γ2 + ∥f − f∗∥2n) log

(
Γ2 + ∥f − f∗∥2n

δ

) ≤ δ .

We will turn to the proof of Lemma C.2. Recall (38), which defined for δ ∈ (0, 1) and n ∈ N∗, the
event

E0n(δ) :=

{∥∥∥f̂n − f∗∥∥∥
n
≤ 2Γ

√
L1
n

(
3δ

π2n2

)

+ 2

√√√√Γ2 + 2Γ

(
n sup

g∈CΓ
n

C2
n(g)

√
2 log

(
4π2n3

3δ

)
+

√
2n sup

g∈CΓ
n

C2
n(g)L

1
n

(
3δ

π2n2

))}
.
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Lemma C.2. Under Assumption 3, for n ∈ N∗ and δ ∈ (0, 1), we have

P

( ⋂
n∈N∗

E0n(δ)

)
≥ 1− δ .

Proof. The proof builds on elements of [34]. We begin by giving two small auxiliary results which
we will use.

i. Let n ∈ N∗, and δ ∈ (0, 1), by a union bound over the family of conditionally sub-Gaussian
random variables (∥ξi∥)i∈[n], we have

P

(
sup
i≤n
∥ξi∥ ≥ Γ

√
2 log

(
2n

δ

))
≤ δ (40)

ii. For any f ∈ F , and n ∈ N∗ we have

∥f∗ − Y ∥2n − ∥f − Y ∥
2
n = ⟨f∗ − Y |f∗ − Y ⟩n − ⟨f − f∗ + f∗− Y |f − f∗ + f∗− Y ⟩n
= ⟨f∗ − Y |f∗ − Y ⟩n − ⟨f − f∗|f − f∗⟩n

+ 2⟨Y − f∗|f − f∗⟩n − ⟨Y − f∗|Y − f∗⟩n
= −∥f − f∗∥2n + 2⟨ξ|f − f∗⟩n . (41)

Applying (41) with f := f̂n, the n-point non-linear least-square fit, leads to a non positive
left hand side and thus ∥∥∥f̂n − f∗∥∥∥2

n
≤ 2 |⟨ξ|f − f∗⟩n| .

At the same time, for all n ∈ N∗, by definition of C Γ
n , it holds that for all g ∈ C Γ

n∥∥∥f̂n − f∗∥∥∥2
n
≤ 2 |⟨ξ|g − f∗⟩n|+ 2

∣∣∣⟨ξ|f̂n − g⟩n∣∣∣
≤ 2 |⟨ξ|g − f∗⟩n|+ 2n sup

i≤n
∥ξi∥2 C

2
n(g) . (42)

Combining (40) and (42), we obtain, for all δ ∈ (0, 1), n ∈ N∗, and g ∈ C Γ
n , that

P

(∥∥∥f̂n − f∗∥∥∥2
n
≥ 2 |⟨ξ|g − f∗⟩n|+ 2nC2

n(g)Γ

√
2 log

(
2n

δ

))
≤ δ (43)

Let us now provide two bounds on C1
n(g) we will use. For all n ∈ N∗, δ ∈ (0, 1) and g ∈ C Γ

n , let

C1
n(g) ≤ Γ2 + 8L2(1 + sup

i≤n
∥Xi∥2) . (44)

C1
n(g) ≤ Γ2 +

∥∥∥f̂n − f∗∥∥∥2
n
+
∥∥∥g − f̂n∥∥∥2

n
≤ C1

n(f̂n) + nC2
n(g) , (45)

Applying Lemma C.1 for each g ∈ C Γ
n , by a union bound over g ∈ C Γ

n , we have for any δ0(n) ∈ (0, 1)
(to be fixed at the end), that

δ0(n) ≥ P

 sup
g∈CΓ

n

|⟨ξ|g − f∗⟩n| ≥ Γ

√√√√2 sup
g∈CΓ

n

C1
n(g) log

(
supg∈CΓ

n
C1

n(g)N
Γ

n

δ0(n)

) .

Applying (44) and (45) this becomes

δ0(n) ≥ P

 sup
g∈CΓ

n

|⟨ξ|g − f∗⟩n|

≥ Γ

√√√√2(C1
n(f̂n) + n sup

g∈CΓ
n

C2
n(g)) log

(
(Γ2 + 8L2(1 + supi≤n ∥Xi∥2))N Γ

n

δ0(n)

)
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and thus

δ0(n) ≥ P

(
sup
g∈CΓ

n

|⟨ξ|g − f∗⟩n| ≥ Γ
√
2L1

n(δ0(n))

(√
C1

n(f̂n) +
√
n sup

g∈CΓ
n

C2
n(g)

))
. (46)

Combining (43) and (46) by a union bound gives us

δ0(n) ≥ P

(∥∥∥f̂n − f∗∥∥∥2
n
≥ 2Γ

√
2L1

n

(
δ0(n)

2

)(√
C1

n(f̂n) +
√
n sup

g∈CΓ
n

C2
n(g)

)

+ 2nC2
n(g)Γ

√
2 log

(
4n

δ0(n)

))
.

For all n ∈ N∗, on the complement of this event (whose probability is at least 1− δ0(n)) we have

C1
n(f̂n) ≤ Γ2 + Γ

√
2C1

n(f̂n)L
1
n(δ0(n)/2) + hΓn , (47)

in which

hΓn := 2Γ

(
n sup

g∈CΓ
n

C2
n(g)

√
2 log

(
4n

δ0(n)

)
+

√
2n sup

g∈CΓ
n

C2
n(g)L

1
n

(
δ0(n)

2

))
.

Viewing (47) as a second order polynomial in
√
C1

n(f̂n), we obtain via its roots that√
C1

n(f̂n) ≤ Γ
√
L1
n(δ0(n)/2) +

√(
Γ
√
L1
n(δ0(n)/2)

)2
+ 4(Γ2 + hΓn)

≤ 2Γ
√
L1
n(δ0(n)/2) + 2

√
Γ2 + hΓn .

Since
∥∥∥f̂n − f∗∥∥∥

n
≤
√
C1

n(f̂n) by definition of C1
n(f̂n), we have

∥∥∥f̂n − f∗∥∥∥
n
≤ 2

√√√√Γ2 + 2Γ

(
n sup

g∈CΓ
n

C2
n(g)

√
2 log

(
4n

δ0(n)

)
+

√
2n sup

g∈CΓ
n

C2
n(g)L

1
n

(
δ0(n)

2

))
+ 2Γ

√
L1
n(δ0(n)/2) .

Therefore, letting

E1n(δ) :=
{∥∥∥f̂n − f∗∥∥∥

n
≤ 2Γ

√
L1
n

(
δ

2

)

+ 2

√√√√Γ2 + 2Γ

(
n sup

g∈CΓ
n

C2
n(g)

√
2 log

(
4n

δ

)
+

√
2n sup

g∈CΓ
n

C2
n(g)L

1
n

(
δ

2

))}
,

we have, for all n ∈ N∗, that P(E1n(δ0(n))) ≥ δ0(n). Letting δ0(n) = 6
π2n2 δ, by a union bound we

obtain

P

( ⋂
n∈N∗

E1n(δ0(n))

)
≥ 1− δ 6

π2

∞∑
n=1

1

n2
= 1− δ .

Noting that E0n(δ) = E1n(δ0(n)) for all δ ∈ (0, 1) and n ∈ N∗ completes the proof.

In the proof of Lemma C.2, we used self-normalised inequalities to generalise the results of [34] to
unbounded states. We now incorporate the high probability bound of Assumption 3 and formalise
confidence sets, which will prove Theorem C.3. Theorem C.3 can then be specified for our setting by
merging it with the results of Appendix B in Proposition 4.2.
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For δ ∈ (0, 1), let β0 ∈ R+ and let us define the sequence (Cn(δ))n∈N in which

Cn(δ) :=
{
f ∈ F : ∥f − f̂n∥n ≤ βn

}
(48)

with

βn(δ) := β0 ∨ 2Γ


√√√√1 + 2

(√
2Γ log

(
8n

δ

)
+

√
2L0

n

(
δ

4

))
+

√
L0
n

(
δ

4

) . (49)

Theorem C.3. Under Assumption 3, we have for all δ ∈ (0, 1)

P

({ ⋂
n∈N∗

{f∗ ∈ Cn(δ)}

}⋂{
sup
n∈N∗

∥Xn∥
Hδ(n)

≤ 1

})
≤ δ

Proof. Fix δ ∈ (0, 1), and assume ω ∈ {ω′ ∈ Ω : supn∈N∗∥Xn(ω
′)∥2/Hδ(n) ≤ 1}. In this case we

have the following bound, for all n ∈ N∗

2n min
g∈CΓ

n

C2
n(g) ≤ 2Γ2

by definition of C Γ
n as a Γ2n−1 cover on B2(Hδ(n)). Therefore, the event{ ⋂

n∈N∗

E0n(δ)

}⋂{
sup
n∈N∗

∥Xn∥2
Hδ(n)

≤ 1

}
is contained in the event

E0(δ) :=

{ ⋂
n∈N∗

{∥∥∥f∗ − f̂n∥∥∥
n
≤ βn(2δ)

}}⋂{
sup
n∈N∗

∥Xn∥2
Hδ(n)

≤ 1

}
.

By Lemma C.2, Assumption 3, and a union bound, P
(
E0(δ)

)
≥ 1− 2δ, and we obtain the result by

(48) and (49), i.e. by definition of Cn(δ).

Proposition 4.2 (Adapted from [32, Prop. 5]). Under Assumptions 1 and 2, for any x0 ∈ Rd, and
δ > 0,

P

({
θ∗ ∈

∞⋂
n=1

Cn(δ)

}
∩

{
sup
n∈N∗

∥∥Xϖ,θ∗

τn

∥∥
Hδ(n)

≤ 1

})
≥ 1− δ , (14)

Proof. The proof follows by applying Theorem C.3 to this setting. Where (Xi)i∈N :=
((Xϖ,θ∗

τi , ϖτi))i∈N, (Yi)i∈N := (Xϖ,θ∗

τi+1
− Xϖ,θ∗

τi )i∈N, F := FΘ and with (ξn+1)n∈N and
(βn(δ))n∈N∗ as defined in Section 2 and (13) respectively. This sets Γ = ∥Σ∥op = ε

1
2 ∥Σ̄∥op.

The only subtlety is that the process Xϖ,θ∗
is measured at random times, but since these times are

independent of anything else, and the process is almost surely constant between them, they do not
affect the proof.

C.2 Widths of confidence sets

In Appendix C.1, we showed how to design confidence sets along a trajectory of Xα,θ for learning µ
by using NLLS to minimise a fit error of the form

N∑
n=1

∥∥∥µ1(X
α,θ∗

τn , ατn)− µ2(X
α,θ∗

τn , ατn)
∥∥∥ ,

for (µ1, µ2) ∈ CN (δ) and N ∈ N∗. When analysing the regret of such a learning algorithm this is
not sufficient: instead of the fit error, we need to control a prediction error of the form

N∑
n=1

∥∥∥µθn(X
α,θ∗

τn , ατn)− µθ∗(Xα,θ∗

τn , ατn)
∥∥∥ ,
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for (µθn)n∈N ⊂ Fθ such that µθn ∈ Cn(δ) for all n ∈ N. The difference is that µθn changes over
time, so that the sum counts the errors in predicting the next state made by the sequence (µθn)n∈N.

In fact, since we will want to implement lazy-updates, we will need a more general result where
the µθn are not all in their respective Cn(δ) but rather are from a piece-wise constant sequence with
µθn := µθk(n)

∈ Ck(n)(δ), where k(n) ≤ n for all n ∈ N. Therefore, as in Appendix C.1, we begin
by showing a general result in the learning framework of [34] (Proposition C.4), then apply it to our
setting to prove Proposition 4.3. Using the notation of Appendix C.1, let F be a function class of
functions from Rd → Rd, and recall the arbitrary sequence (Xn)n∈N ⊂ Rd.

The ϵ-eluder dimension of a function class F , for ϵ ∈ R+, introduced in [34] is a notion of dimension
which is perfectly tailored to converting fit errors into prediction errors. We defer to [34] for its
technical definition. Unlike [34], we must adapt our eluder dimension to work with unbounded
functions on unbounded processes. Failing to do so would lead our results to be largely vacuous since
the eluder dimension of F might be infinite for any ϵ.

We work with a modified eluder dimension, which takes three arguments: a function class F
whose elements have for domain a set X ⊂ Rd; a set S ⊂ X ; and ϵ ∈ R+. Our modified eluder
dimension is the ϵ-eluder dimension of {f |S : f ∈ F}, the class containing the restrictions to S
of elements of F , which we denote by dimS

E(F , ϵ). In this way, the eluder dimension of [34] is
dimX

E (F , ϵ). For n ∈ N∗, let Bn := B2(supi∈[n] ∥Xi∥) and, for any u ∈ R+, let us define the
sequence (dF

E,n(u))n∈N∗ , in which

dF
E,n(u) := dimBn

E

(
F ,

2u√
n

)
for all n ∈ N∗ and u ∈ R+.

Proposition C.4. Let (β̃i)i∈N be a non-decreasing positive real-valued sequence, (f̃i)i∈N, and
(Fi)i∈N be a sequence of subsets of F of the form Fi := {f ∈ F : ∥f − f̃i∥i ≤ β̃i}. Then, for any
n ∈ N, we have

n∑
i=1

sup
(f,f ′)∈F2

n

∥f(Xi)− f ′(Xi)∥ ≤ 2β̃n

√
dF
E,n(β̃0)n+ dF

E,n(β̃0) sup
i∈[n]

∥Xi∥ , (50)

and
n∑

i=1

sup
(f,f ′)∈F2

n

∥f(Xi)− f ′(Xi)∥
2 ≤ 4β̃2

nd
F
E,n(β̃0)

(
3 + log

(
n supi∈[n] ∥Xi∥
16β̃4

n(d
F
E,n(β̃0))

2

))
+ 2dF

E,n(1 + 2β̃2
nd

F
E,n(β̃0))(1 + sup

i∈[n]

∥Xi∥) . (51)

To prove Proposition C.4, the key result of [34] we leverage is Lemma C.5 which we combine with
two functional inequalities given in Lemma C.6.

For a function class F with domain X ⊂ Rd, and any x ∈ X , let us define

Λ(F ;x) = sup
(f1,f2)∈F2

∥f1(x)− f2(x)∥ .

The quantity Λ(F , x) is the maximal prediction gap at x between two functions in F . Bounding
the prediction error along (Xi)i∈N of a sequence of function classes (Fi)i∈N ⊂ F means bounding∑n

i=1 Λ(Fi, Xi) in terms of n ∈ N.

Lemma C.5. [[34, Prop.3]] Let (f̃i)i∈N be a sequence of elements of F , (Fi)i∈N be a sequence of
subsets of F of the form Fi := {f ∈ F : ∥f − f̃i∥i ≤ β̃i}. For any ϵ ∈ (0, 1) and n ∈ N, one has

n∑
i=1

1{Λ(Fi;Xi)>ϵ} ≤

(
4β̃2

n

ϵ2
+ 1

)
dimBn

E (F , ϵ) .

Proof. Following the proof of [34, Prop.3], the only modification involves the bound ∥f −f∥n ≤ β̃n,
for any (f, f) ∈ F 2

n , which holds by assumption.
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Lemma C.6. Let (xi)i∈N ∈ RN∗

+ . Assume there is a family of positive sequences ((ζϵn)n∈N)ϵ∈R+ and
a family of positive constants (χϵ)ϵ∈R+ such that, for any n ∈ N∗ and ϵ > 0,

n∑
i=1

1{xi>ϵ} ≤
ζϵn
ϵ2

+ χϵ (52)

then the following two inequalities hold
n∑

i=1

xi ≤ 2
√
nζϵn + χϵ sup

i∈[n]

xi (53)

n∑
i=1

x2i ≤ ζϵn

(
3 + log

(
n supi∈[n] x

2
i

(ζϵn)
2

))
+ χϵ(2 + ζϵn)(1 + sup

i∈[n]

x2i ) . (54)

Proof.

i. For ϵ > 0, we have by (52)
n∑

i=1

(xi − ϵ)1{xi>ϵ} =

n∑
i=1

∫ xi

ϵ

1{xi>u}du

≤
∫ supi∈[n] xi

ϵ

n∑
i=1

1{xi>u}du

≤
∫ supi∈[n] xi

ϵ

ζϵn
u2

+ χϵdu

= χ sup
i∈[n]

xi −
ζϵn

supi∈[n] xi
− χϵϵ+

ζϵn
ϵ
,

and thus
n∑

i=1

(xi − ϵ)1{xi>ϵ} ≤
ζϵn
ϵ

+ χϵ sup
i∈[n]

xi . (55)

Combining (55) with
n∑

i=1

(xi − ϵ) ≤
n∑

i=1

(xi − ϵ)1{xi>ϵ}

yields
n∑

i=1

xi ≤ nϵ+
ζϵn
ϵ

+ χϵ sup
i∈[n]

xi .

Setting ϵ =
√
ζϵn/n yields (53).

ii. To prove (54), we iterate the bound (55)
n∑

i=1

(xi − ϵ)21{xi>ϵ} = 2

n∑
i=1

∫ xi

ε

(xi − u)1{xi>u}du

≤ 2

n∑
i=1

∫ supi∈[n] xi

ϵ

(xi − u)1{xi>u}du

≤ 2

∫ supi∈[n] xi

ϵ

ζϵn
ϵ

+ χϵ sup
i∈[n]

xidu

≤ 2

(
χ( sup

i∈[n]

x2i − sup
i∈[n]

xiϵ) + ζϵn log
( supi∈[n] xi

ϵ

))
≤ 2ζϵn log

( supi∈[n] xi

ϵ

)
+ 2χϵ sup

i∈[n]

x2i .
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Now, by some algebraic manipulations of
∑n

i=1 x
2
i , completing the square, discarding

negative terms, and using (55) in the third step, we get
n∑

i=1

x2i ≤
n∑

i=1

x2i1{xi>ϵ} + ϵ2
n∑

i=1

1{xi>ϵ}

≤
n∑

i=1

(xi − ϵ)21{xi>ϵ} + 2ϵ

n∑
i=1

xi1{xi>ϵ} + nϵ2

≤ 2ζϵn log
( supi∈[n] xi

ϵ

)
+ 2χϵ sup

i∈[n]

x2i + ϵ

(
ζϵn
ϵ

+ χϵ sup
i∈[n]

xi + ϵn

)
+ nϵ2 .

Taking ϵ = ζϵn/
√
n and factoring, using also u ≤ 1 + u2 for u ∈ R, yields

n∑
i=1

x2i ≤ ζϵn

(
3 + log

(
n supi∈[n] x

2
i

(ζϵn)
2

))
+ χϵ(2 + ζϵn)(1 + sup

i∈[n]

x2i ) .

Proposition C.4. Let (β̃i)i∈N be a non-decreasing positive real-valued sequence, (f̃i)i∈N, and
(Fi)i∈N be a sequence of subsets of F of the form Fi := {f ∈ F : ∥f − f̃i∥i ≤ β̃i}. Then, for any
n ∈ N, we have

n∑
i=1

sup
(f,f ′)∈F2

n

∥f(Xi)− f ′(Xi)∥ ≤ 2β̃n

√
dF
E,n(β̃0)n+ dF

E,n(β̃0) sup
i∈[n]

∥Xi∥ , (50)

and
n∑

i=1

sup
(f,f ′)∈F2

n

∥f(Xi)− f ′(Xi)∥
2 ≤ 4β̃2

nd
F
E,n(β̃0)

(
3 + log

(
n supi∈[n] ∥Xi∥
16β̃4

n(d
F
E,n(β̃0))

2

))
+ 2dF

E,n(1 + 2β̃2
nd

F
E,n(β̃0))(1 + sup

i∈[n]

∥Xi∥) . (51)

Proof. The proof consists in applying Lemma C.6 to Lemma C.5, with xi = Λ(Fi, Xi), ζϵn =

4β̃2 dimBn

E (F , ϵ) (Bn := B2(supi∈[n] ∥Xi∥)), and χϵ = dimBn

E (F , ϵ). When we set the value of ϵ
in the proof of Lemma C.6, χϵ becomes

dimBn

E

(
F ,

√
frac4β̃2

nn

)
≤ dimBn

E

F ,

√
4β̃2

0

n


as (β̃n)n∈N is non-decreasing and the eluder dimension is decreasing in its third argument. An
analogue remark holds for ζϵn. We can thus substitute ζϵn = 4β̃2

nd
F
E,n(β̃0) and χϵ = dF

E,n(β̃0) in (53)
and (54), which gives the result.

We now apply Proposition C.4 to our setting. For n ∈ N∗, let us recall the shorthand notation

dE,n := dimBn

E

(
FΘ, 2

√
ε

n

)
(56)

in which we extended the notation from (Xi)i∈N to Xα,θ in the evident manner.
Proposition C.7. Under Assumptions 1 and 2, for any (α, θ) ∈ A × Θ and t ∈ R+, any non-
decreasing positive real-valued sequence (β̃n)n∈N, any (µ̃n)n∈N ⊂ FΘ, and any sequence (Fn)n∈N
of subsets of Fθ of the form

Fn =

µ ∈ FΘ :

√√√√n−1∑
i=0

∥∥∥µn(X
α,θ
τi , ατi)− µ̃n(X

α,θ
τi , ατi)

∥∥∥2
2
≤ β̃n

 ,
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we have
Nt∑
n=1

sup
(µ1,µ2)∈Fn

∥∥µ1(X
α,θ
τn , ατn)− µ2(X

α,θ
τn , ατn)

∥∥ ≤ 2βNt

√
dE,Nt

+ dE,Nt
sup
s≤t

∥∥Xα,θ
s

∥∥ , (57)

and
Nt∑
n=1

sup
(µ1,µ2)∈Fn

∥∥µ1(X
α,θ
τn , ατn)− µ2(X

α,θ
τn , ατn)

∥∥2
≤ 4β2

NT
dE,Nt

(
3 + log

(
Nt sups≤t

∥∥Xα,θ
s

∥∥
16β4

Nt
d2E,Nt

))
+ 2dE,Nt

(1 + 2β2
Nt

dE,Nt
)(1 + sup

s≤t

∥∥Xα,θ
s

∥∥2).
(58)

Proof. Immediate by applying Proposition C.4 to our setting, as we did in the proof of Proposition 4.2.

Under the event of Proposition 4.2, which ensures that θ∗ ∈ ∩n∈NCn(δ), we can derive from
Proposition C.7 a bound on the prediction error relative to the true dynamics Xα,θ∗

generated by the
control α ∈ A, in particular we are interested in α = ϖ.
Proposition 4.3. Under Assumptions 1 and 2, for any δ ∈ (0, 1), α ∈ A, x0 ∈ Rd, and t ∈ R+, we
have with probability at least 1− δ

Nt∑
n=1

∥∥∥µθ̂n
(Xα,θ∗

τn , ατn)− µθ∗(Xα,θ∗

τn , ατn)
∥∥∥ ≤ Õ (√εdE,Nt

log(N ε
Nt

)Nt + dE,Nt

)
, (15)

and
Nt∑
n=1

∥∥∥µθ̂n
(Xα,θ∗

τn , ατn)− µθ∗(Xα,θ∗

τn , ατn)
∥∥∥2 ≤ Õ (dE,Nt

log(N ε
Nt

)
)
. (16)

Proof. This follows from Proposition C.7 by choosing (β̃n)n∈N = (βn(δ))n∈N and (Fn)n∈N =
(Cn(δ))n∈N, i.e. choosing (µ̃n)n∈N = (µθ̂n

)n∈N, the NLLS fit on n points. It is key to notice that
these choices of (β̃n)n∈N, (Fn)n∈N, and (µ̃n)n∈N are adapted to F, and therefore we can apply
Proposition C.7 on the event of Proposition 4.2 without issues. This yields

Nt∑
n=1

∥∥∥µθ̂n
(Xα,θ∗

τn , ατn)− µθ∗(Xα,θ∗

τn , ατn)
∥∥∥ ≤ 2βNt

(δ)
√

dE,Nt
+ dE,Nt

Hδ(NT ) ,

and
Nt∑
n=1

∥∥∥µθ̂n
(Xα,θ∗

τn , ατn)− µθ∗(Xα,θ∗

τn , ατn)
∥∥∥2 ≤ 4βNT

(δ)2dE,Nt

(
3 + log

(
NtHδ(Nt)

16βNt(δ)
4d2E,Nt

))
+ 2dE,Nt

(1 + 2βNt
(δ)2dE,Nt

)(1 +H2
δ (Nt)) .

To obtain the estimates of (15)–(16), it suffices to recall the definitions of βn(δ) (i.e. (13)) and Hδ(n)
(i.e. (31)).
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D Planning and Diffusive Limit Approximation

Our work builds upon [4], but with specialised results for our setting. This paper recovers the key
results of this section (Propositions 4.4 to 4.6) under a stronger and more abstract set of assumptions.
For the comfort of the reader we thus present the necessary steps to extend their results to our
assumptions. Since our assumptions do not directly subsume theirs, we exhibit in each case from
Assumptions 1 and 2 how to recover the keystone results which underpin the technical arguments of
[4].

We begin by the well-posedness results for the pure jump case (Proposition 4.4) and the diffusive limit
case (Proposition 4.5), and then focus on the approximation result linking the two regimes (Proposi-
tion 4.6). In [4], Proposition 4.4 corresponds to Theorem 2.3. and Remark 2.4. In Appendix D.1, we
show how it follows from Assumptions 1 and 2 by proving the two intermediary results used in [4] to
prove the result.

Proposition 4.4 (Adapted from [4, Thm. 2.3, Rem. 2.4.]). Under Assumptions 1 and 2, there is
LW ∈ R+, independent of ε, such that for any θ ∈ Θ

(i.) The map x 7→ ρ∗θ(x) is constant, taking only one value which we denote by ρ∗θ ∈ R;

(ii.) There is an LW -Lipschitz function W ∗
θ such that

ερ∗θ = max
a∈A
{E[W ∗

θ (x+ µθ(x, a) + Σξ)]−W ∗
θ (x) + r(x, a)} ∀x ∈ Rd ; (17)

(iii.) There is π∗
θ ∈ A , such that for all x ∈ Rd, π∗

θ(x) maximises the right hand side in (17),
and π∗

θ ◦Xπ∗
θ ,θ is an optimal Markov control, i.e. ρπ

∗
θ

θ (·) ≡ ρ∗θ .

In [4], Proposition 4.5 corresponds to Theorem 3.4. In Appendix D.2, we show that it also follows
from Assumptions 1 and 2 by proving that [4, Assumption 5] holds under Assumptions 1 and 2.

Proposition 4.5 (Adapted from [4, Thm. 3.4.]). Under Assumptions 1 and 2, for any θ ∈ Θ,

(i.) The map x 7→ ρ̄∗θ(x) is constant, taking only one value which we denote by ρ̄∗θ ∈ R.

(ii.) There is an LW -Lipschitz function W̄ ∗
θ ∈ C2(Rd;R) such that

ρ̄∗θ = max
a∈A

{
µ̄θ(x, a)

⊤∇W̄ ∗
θ (x) + r̄(x, a)

}
+

1

2
Tr[Σ̄Σ̄⊤∇2W̄ ∗

θ (x)], ∀x ∈ Rd . (18)

(iii.) There is π̄∗
θ ∈ A such that, for all x ∈ Rd, π̄∗

θ(x) maximises the right hand side in (18),
and π̄∗

θ ◦ X̄ π̄∗
θ ,θ is an optimal Markov control, i.e. ρ̄π̄

∗
θ

θ (·) ≡ ρ̄∗θ .

Remark D.1. Proposition 4.5.(iii.) is not stated as is in [4, Thm. 3.4], but it follows from it by the
same arguments as [4, Remark 2.4].

Propositions 4.4 and 4.5 together ensure that both the prelimit and limit regimes are well posed, while
Proposition 4.6 gives the rate of convergence of the control problems along this limit. This result is
essentially contained in the proof of [4, Thm. 3.6], but since its statement is different, we include a
proof for completeness in Appendix D.3.

Proposition 4.6 (Adapted from [4, Thm. 3.6.]). Under Assumptions 1 and 2, for any γ ∈ (0, 1),
there is a constant Cγ > 0, independent of ε, such that, for any θ ∈ Θ,

|ρ̄∗θ − ρ∗θ| ≤ Cγε
γ
2 and ρ∗θ − ρ

π̄∗
θ

θ (0) ≤ Cγε
γ
2 . (19)

Moreover, there is a function eθ : Rd → R such that,

ερ
π̄∗
θ

θ (0) = E[W̄ ∗
θ (x+ µθ(x, a) + Σξ)]− W̄ ∗

θ (x) + r(x, π̄∗
θ(x)) + eθ(x) , ∀x ∈ Rd (20)

and there is C ′
γ > 0, independent of ε, such that |eθ(x)| ≤ C ′

γε
1+ γ

2 (1 + ∥x∥3) for all x ∈ Rd.

32



D.1 Proof of Proposition 4.4

In [4], Theorem 2.3 and Remark 2.4 follow from Lemmas A.1 and A.2, which respectively give a
mixing condition and a moment bound for Xα,θ. We already proved [4, Lemma A.2] in Lemma B.5.
Moreover, Lemma D.2 which reproduced [4, Lemmas A.1] holds with only minor modifications of
the proof from [4].

Lemma B.5. Under Assumptions 1 and 2, for any p ≥ 2, there is a constant c′p > 0 independent of ε
such that

E
[
∥Xx0,α,θ

t ∥p
]
≤ 1

ℓpV

(
Lp

V e
− cV

4 t ∥x0∥p +
4c′p
cV

(
1− e−

cV
4 t
))

,

for any (x0, α, θ) ∈ Rd ×A×Θ and t ∈ [0,+∞).

Lemma D.2. For any (x, x′) ∈ Rd × Rd, θ ∈ Θ, and α ∈ A,

E
[
∥Xx,α,θ

t −Xx′,α,θ
t ∥

]
≤ LV

ℓV
∥x− x′∥ e−cV t

for any t ∈ [0,+∞).

Proof. We can follow the proof of [4] using Assumption 2 directly without resorting to the higher
order Lyapunov function ζ which they use.

D.2 Proof of Proposition 4.5

Proposition 4.5, such as it is stated in [4, Thn 3.4.] relies on their Assumption 5. This assumption
contains two conditions, which we will show respectively in Lemmas D.3 and D.4.

As detailed in [4, Remark 3.2.(i)], the first condition can be shown by proving an analogue of
[4, Lemma A.1] for the diffusive limit process (22). In terms of arguments of the proof, this
analogue requires only a change in the stochastic generator used in Itô’s Lemma5. In the proof of
Lemma D.3, we, therefore, show how to adapt [4, Lemma A.1] to the generator of the diffusion under
Assumptions 1 and 2.

In the proof of [4, Lemma A.1], there are two key steps. First, study the discounted version of the
control problem, and show that it is equi-Lipschitz continuous in the discount, which rests on the
result in Lemma D.3. Then one takes the vanishing discount limit in the HJB equation using the
theory of viscosity solutions to complete the proof.

Lemma D.3. For any (x0, x
′
0) ∈ Rd × Rd, θ ∈ Θ, α ∈ A,

E
[∥∥∥X̄x,α,θ

t − X̄x′,α,θ
t

∥∥∥] ≤ LV

ℓV
∥x− x′∥ e−cV t

for any t ∈ [0,+∞).

Proof. If x0 = x′0, this is trivially true by pathwise-uniqueness, so we suppose x0 ̸= x′0. Let us
consider (x1, x2) ∈ Rd × Rd with x1 ̸= x2. By a Taylor expansion in (4), we obtain as ε→ 0

(µ̄(x1, a)− µ̄(x2, a))⊤∇V (x1 − x2) ≤ −cV V (x1 − x2) . (59)

The Lyapunov function V is not differentiable at 0, so we will construct an approximating sequence
for it. Let erf denote the error function and let Vι := V erf(ιV ) for ι > 0. Note that Vι ∈ C1(Rd;R+)
and Vι is Lipschitz, let us show that it satisfies (59) everywhere.

Let z := x1 − x2. Since z ̸= 0 we have

∇Vι(z) = ∇V (z)

(
erf(ιV (z)) +

2ι√
π

V (z)e−ι2V 2(z)

)
.

5For a general overview of this sort of stability results and of Stochastic Lyapunov conditions in the diffusive
case, see e.g. [22, § 5.7].
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By Assumption 2, this implies that

(µ̄θ(x1, a)− µ̄θ(x2, a))
⊤∇Vι(z) ≤ −cV V (z)erf(ιV (z))− 2ι√

π
cV V (z)2e−ι2V 2(z)

≤ −cV Vι(z) . (60)

Since ∇Vι is continuous in z, and so is the right-hand side, we can let ∥z∥ → 0 and conclude the
bound also holds for x1 = x2.

We now apply Itô’s lemma for the process X̄x,α,θ − X̄x′,α,θ to Vι. Using (60), this yields, for
t ≥ t0 ≥ 0,

E
[
Vι

(
X̄x0,α,θ

t − X̄x′
0,α,θ

t

)]
≤ E

[
Vι

(
X̄x0,α,θ

t0 − X̄x′
0,α,θ

t0

)]
+ E

[∫ t

t0

(
µ̄θ

(
X̄x0,α,θ

s , αs

)
− µ̄θ

(
X̄

x′
0,α,θ

s , αs

))⊤
∇Vι

(
X̄x0,α,θ

s − X̄x′
0,α,θ

s

)
ds

]

≤ E
[
Vι

(
X̄x0,α,θ

t0 − X̄x′
0,α,θ

t0

)]
−
∫ t

t0

cV E
[
Vι

(
Xx0,α,θ

s −Xx′
0,α,θ

s

)]
ds .

We conclude by the same ODE comparison argument as in the proof of Lemma B.5 and then pass to
the limit as ι→ 0 to obtain the claimed result using Assumption 2.(i).

While Lemma D.3 showed that [4, Assumption 5.(i)] is implied by Assumptions 1 and 2. It remains
now to verify their Assumption 5.(ii). Note that by [4, Remark 3.2.(ii)], an equation of the form of
their (3.3) is sufficient to do so. Lemma D.4 gives exactly this result with (61), by noting that [4,
(3.4)] holds by Assumption 2.
Lemma D.4. Under Assumptions 1 and 2, for any p ≥ 2 there are (c̄p, c̄

′
p) ∈ R2

+ such that

µ̄θ(x, a)
⊤∇V (x)p +Tr[Σ̄Σ̄⊤∇2V (x)p] ≤ −c̄pV (x)p + c̄′p (61)

for any (x, a, θ) ∈ Rd × A×Θ.

Proof. Let us take (x, x′) ∈ Rd × Rd such that ∥x− x′∥ ≥ ε/(1 − εL0), which implies
∥x− x′ +∆(µθ(x, a)− µθ(x

′, a))∥ > 0 for any ∆ ∈ [0, 1] and for all (a, θ) ∈ A × Θ and we
can expand (4), which gives

−εcV V (x− x′) ≥ (µθ(x, a)− µθ(x
′, a))⊤∇V (x− x′)

+
1

2
(µθ(x, a)− µθ(x

′, a))⊤∇2V (x̂)(µθ(x, a)− µθ(x
′, a)) ,

in which x̂ = x+ ∆̂(x′ − x) for some ∆̂ ∈ [0, 1]. Thus

(µ̄θ(x, a)− µ̄θ(x
′, a))⊤∇V (x− x′)

≤ −cV V (x− x′)− ε

2
(µ̄θ(x, a)− µ̄θ(x

′, a))⊤∇2V (x̂)(µ̄θ(x, a)− µ̄θ(x
′, a)) .

Letting ε→ 0, the constraint on (x, x′) vanishes as well as the second term (on compact sets), and
we recover

(µ̄θ(x, a)− µ̄θ(x
′, a))⊤∇V (x−x′)+ 1

2
Tr[Σ̄Σ̄⊤∇2V (x−x′)] ≤ −cV V (x−x′)+ d

2
∥Σ̄∥2opM ′

V .

Taking x′ = 0 implies that

µ̄θ(x, a)
⊤∇V (x) +

1

2
Tr[Σ̄Σ̄⊤∇2V (x)] ≤ −cV V (x) + C

for all (x, a) ∈ Rd
∗ × A, in which C := d∥Σ̄∥2opM ′

V /2 + L0MV .
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Notice that, since V ∈ C2(Rd
∗;R+) and vanishes at 0 (see Assumption 1), V (·)p can be extended by

continuity at 0 so that V (·)p ∈ C2(Rd;R+). For any (x, a, θ) ∈ Rd × A×Θ, let

k(x, a) : = µ̄θ(x, a)
⊤∇V (x)p +

1

2
Tr
[
Σ̄Σ̄⊤∇2V (x)p

]
= pµ̄θ(x, a)

⊤∇V (x)V (x)p−1

+
1

2
Tr
[
Σ̄Σ̄⊤ (pV (x)p−1∇2V (x) + p(p− 1)V (x)p−2∇V (x)∇⊤V (x)

)]
= pV p−1(x)

(
µ̄θ(x, a)

⊤∇V (x) +
1

2
Tr[Σ̄Σ̄⊤∇2V (x)]

)
+
p(p− 1)

2
V (x)p−2 Tr[Σ̄Σ̄⊤∇V (x)∇⊤V (x)]

≤ −pcV V (x)p + CpV (x)p−1 +
dp(p− 1)

2
(∥Σ̄∥opMV )2V (x)p−2

and we can now choose c̄p = −pcV /2, for which there exists a constant c̄′p such that

−c̄pV p(x) + CpV p−1(x) +
dp(p− 1)

2
(∥Σ̄∥opMV )2V p−2(x) ≤ c̄′p

for all x ∈ Rd.

D.3 Proof of Proposition 4.6

The rest of this section is dedicated to showing Proposition 4.6 using modifications of the proof of [4,
Thm. 3.6.] to which it corresponds. Here we produce a self-contained proof in order to clarify how
(20) is derived from the proof.
Proposition 4.6 (Adapted from [4, Thm. 3.6.]). Under Assumptions 1 and 2, for any γ ∈ (0, 1),
there is a constant Cγ > 0, independent of ε, such that, for any θ ∈ Θ,

|ρ̄∗θ − ρ∗θ| ≤ Cγε
γ
2 and ρ∗θ − ρ

π̄∗
θ

θ (0) ≤ Cγε
γ
2 . (19)

Moreover, there is a function eθ : Rd → R such that,

ερ
π̄∗
θ

θ (0) = E[W̄ ∗
θ (x+ µθ(x, a) + Σξ)]− W̄ ∗

θ (x) + r(x, π̄∗
θ(x)) + eθ(x) , ∀x ∈ Rd (20)

and there is C ′
γ > 0, independent of ε, such that |eθ(x)| ≤ C ′

γε
1+ γ

2 (1 + ∥x∥3) for all x ∈ Rd.

Proof. The first part of Proposition 4.6, i.e. (19), corresponds to [4, Thm. 3.6.], which we previously
showed holds in our setting by verifying its assumptions. We now prove the second claim. Let

δrεθ(x, a) := µ̄θ(x, a)
⊤∇W̄ ∗

θ (x)+
1

2
Tr[Σ̄Σ̄⊤∇2W̄ ∗

θ (x)]−
1

ε

(
E
[
W̄ ∗

θ (ψ
ε
θ(x, a) + Σξ)

]
− W̄ ∗

θ (x)
)
.

From (18), and Proposition 4.5.(iii.) we have

ρ̄∗θ = max
a∈A

{
µ̄θ(x, a)

⊤∇W̄ ∗
θ +

1

2
Tr[Σ̄Σ̄⊤∇2W̄ ∗

θ (x)] + r̄(x, a)

}
= µ̄θ(x, π̄

∗
θ(x))

⊤∇W̄ ∗
θ (x) +

1

2
Tr[Σ̄Σ̄⊤∇2W̄ ∗

θ (x)] + r̄(x, π̄∗
θ(x))

which implies

ερ
π̄∗
θ

θ (0) = E[W̄ ∗
θ (ψ

ε
θ(x, π̄

∗
θ(x))+Σξ)]−W̄ ∗

θ (x) + r(x, π̄∗
θ(x)) + ε(δrεθ(x, π̄

∗
θ(x)) + ρ̄∗θ − ρ

π̄∗
θ

θ (0)).

Note that |δrεθ(x, π̄∗
θ(x))| ≤ supa∈A |δrεθ(x, a)|, which by [4, (3.10)] is bounded by cγε

γ
2 (1 + ∥x∥3)

for some constant cγ > 0. An application of (19) yields

ρ̄∗θ − ρ
π̄∗
θ

θ (0) = ρ̄∗θ − ρ∗θ + ρ∗θ − ρ
π̄∗
θ

θ (0) ≤ 2Cγε
γ
2

and, at the same time, ρ̄∗θ−ρ
π̄∗
θ

θ (0) ≥ ρ̄∗θ−ρ∗θ ≥ −Cγε
γ
2 . Therefore, there is a function eθ : Rd → R

such that (20) holds, which also satisfies

|eθ(x)| ≤ (2Cγ + cγ)ε
1+ γ

2 (1 + ∥x∥3) .
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E Regret Analysis

In this final appendix, we complete the analysis of the regret of Algorithm 1 and prove Theorem 3.1.
First, we will give the regret decomposition, and then in the later sections we will bound terms one
by one calling upon the results of the previous appendices.
Theorem 3.1. Under Assumptions 1 and 2, for any δ ∈ (0, 1), x0 ∈ Rd, and γ ∈ (0, 1), there is a
pair (Cγ , C) ∈ R2

+ of constants independent of ε such that Algorithm 1 achieves

RT (ϖ) ≤ 2Cγε
γ
2 T + C

√
dE,Tε−1 log(N ε

Tε−1)T log(Tδ−1) (10)

with probability at least 1− δ, in which dE,Tε−1 is the 2ε/
√
T -eluder dimension (see [34, Def. 4.]

and (56) in Appendix C.2) of the class {µθ}θ∈Θ restricted to a ball of radius O(
√
log(T/ε)), and

log(N ε
Tε−1) is the ε2∥Σ̄∥2op/T -log-covering number of this same restricted class.

E.1 Regret Decomposition

Recall that we defined k : n ∈ N 7→ k(n) as the map associating to each event n the episode of
Algorithm 1 in which they occur. Like in Section 4.4, let us define θn = θ̃k(n) for all n ∈ N. The
regret of Algorithm 1, which generates the control ϖ ∈ A, is

RT (ϖ) := Tρ∗θ∗ −
NT∑
n=1

r(Xϖ,θ∗

τn , ϖτn)

By definition of ϖ in Algorithm 1, ϖτn = π̄∗
θn
(Xϖ,θ∗

τn ), so that

RT (ϖ) := Tρ∗θ∗ −
NT∑
n=1

r(Xϖ,θ∗

τn , π̄∗
θn(X

ϖ,θ∗

τn ))

At the heart of the decomposition is the use of the HJB-type equation (20) applied for each n at
the point Xϖ,θ∗

τn . For clarity, let us introduce for all n ∈ N the random variable X̃ϖ,θn
τn+1

equal in
distribution, conditionally on Fτn , to the random variable ψε

θn
(Xϖ,θ∗

τn , ϖτn) + Σξn+1. With this
notation (20) becomes

ερ
π̄∗
θn

θn
(0) = E[W̄ ∗

θn(X̃
ϖ,θn
τn+1

)|Fτn ]− W̄ ∗
θn(X

ϖ,θ∗

τn ) + r(Xϖ,θ∗

τn , π̄∗
θn(X

ϖ,θ∗

τn )) + eθn(X
ϖ,θ∗

τn ) .

(62)

This imagined evolution of the system represents the counterfactual induced by a single step transition
at time τn+1, according to the belief in θn. With this notation, applying (62) yields

RT (ϖ) = Tρ∗θ∗ −
NT∑
n=1

ερ
π̄∗
θn

θn
(0) +

NT∑
n=1

eθ∗(Xϖ,θ∗

τn ) +

NT∑
n=1

E[W̄ ∗
θn(X̃

ϖ,θn
τn+1

)|Fτn ]− W̄ ∗
θn(X

ϖ,θ∗

τn ) .

= (T − εNT )ρ
∗
θ∗ (R1)

+ ε

NT∑
n=1

(ρ∗θ∗ − ρ
π̄∗
θn

θn
(0)) +

NT∑
n=1

eθ∗(Xϖ,θ∗

τn ) (R2)

+

NT∑
n=1

E[W̄ ∗
θn(X̃

ϖ,θn
τn+1

)|Fτn ]− W̄ ∗
θn(X

ϖ,θ∗

τn ). (63)

The first term, (R1), quantifies the deviation of the Poisson clock from its mean. On the other
hand, (R2) quantifies both the optimistic nature of Algorithm 1 and the approximation error of its
approximate planning. The third term, (63), resembles a martingale (up to reordering), but it fails
to be one on two key counts. First, the element from the family of functions (W̄ ∗

θn
)n∈N used at

each step n changes. Second, the expectation terms are with respect to the counterfactual transitions
(X̃ϖ,θ∗

τn+1
)n∈N while the random terms use the real transitions (Xϖ,θ∗

τn+1
)n∈N.
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Note that we can control the difference between the counterfactual and the real trajectory at a one-step
time horizon, by using

X̃ϖ,θ
τn+1

d
= Xϖ,θ∗

τn+1
− µθ∗(Xϖ,θ∗

τn , ϖτn) + µθ(X
ϖ,θ∗

τn , ϖτn) , (64)

in which d
= denotes equality in the same conditionally distributional sense as above. By adding and

subtracting relevant terms to exhibit the key quantities we get:
NT∑
n=1

E[W̄ ∗
θn(X̃

ϖ,θn
τn+1

)|Fτn ]− W̄ ∗
θn(X

ϖ,θ∗

τn ) ≤
NT∑
n=1

E[W̄ ∗
θn(X̃

ϖ,θn
τn+1

)|Fτn ]− E[W̄ ∗
θn(X

ϖ,θ∗

τn+1
)|Fτn ]

+

NT∑
n=1

E[W̄ ∗
θn(X

ϖ,θ∗

τn+1
)|Fτn ]− E[W̄ ∗

θn+1
(Xϖ,θ∗

τn+1
)|Fτn ]

+

NT∑
n=1

E[W̄ ∗
θn+1

(Xϖ,θ∗

τn+1
)|Fτn ]− W̄ ∗

θn(X
ϖ,θ∗

τn ) .

Using (64), and the uniform LW -Lipschitzness of (W̄ ∗
θn
)n∈N, we get for each n ∈ N

E[W̄ ∗
θn(X̃

ϖ,θn
τn+1

)|Fτn ]− E[W̄ ∗
θn(X

ϖ,θ∗

τn+1
)|Fτn ] ≤ LW

∥∥∥µθn(X
ϖ,θ∗

τn , ϖτn)− µθ∗(Xϖ,θ∗

τn , ϖτn)
∥∥∥

and thus the regret term (63) is bounded by
NT∑
n=1

E[W̄ ∗
θn(X̃

ϖ,θn
τn+1

)|Fτn ]− W̄ ∗
θn(X

ϖ,θ∗

τn ) ≤ R3 +R4 +R5

in which

R3 : = LW

NT∑
n=1

∥∥∥µθn(X
ϖ,θ∗

τn , ϖτn)− µθ∗(Xϖ,θ∗

τn , ϖτn)
∥∥∥ (R3)

R4 : =

NT∑
n=1

E[W̄ ∗
θn(X

ϖ,θ∗

τn+1
)− W̄ ∗

θn+1
(Xϖ,θ∗

τn+1
)|Fτn ] (R4)

R5 : =

NT∑
n=1

E[W̄ ∗
θn+1

(Xϖ,θ∗

τn+1
)|Fτn ]− W̄ ∗

θn(X
ϖ,θ∗

τn ) . (R5)

At the end of this decomposition, we have constructed a true martingale in (R5), which we bound in
Appendix E.6. The first term (R3) accumulates the fit error described in Proposition 4.3, up to the
lazy updates, which we study in Appendix E.4. The term (R4) is bounded by the number of effective
updates of θn (namely,

∑NT

n=1 1{θn+1 ̸=θn}) in Appendix E.5. Finally, the bounds on (R1) and (R2)
are given in Appendices E.2 and E.3 respectively.

To combine the high-probability events used to bound (R1) and (R5), with the event of Proposition 4.2
used by the other terms, we will perform a union bound. This corresponds to the δ/3 used in the
definition of the confidence sets of Algorithm 1.

E.2 Bounding the Poisson clock variation term (R1)

We bound (R1) using Lemma E.1 which is a standard sub-exponential concentration result, see
e.g. [14, Lemma 4.1]. It implies

P

(
|T − εNT | ≥ 2

√
εT log

(
6

δ

)
∨ 2ε log

(
6

δ

))
≤ δ

3
.

Lemma E.1. For any T ∈ R∗
+ and δ ∈ (0, 1),

P

(
|εNT − T | > 2

√
εT log

(
2

δ

)
∨ 2ε log

(
2

δ

))
≤ δ .
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Proof. Let υ := ε−1T . For any λ ∈ [−1, 1], E[eλ(NT−υ)] = exp(υ(eλ−1−λ)) ≤ eλ2υ . Therefore,
NT is (

√
2υ, 1)-subexponential (see e.g. [14]) and therefore,

P (|NT − υ| > ϵ) ≤

{
e−

ϵ2

4υ for ϵ ∈ (0, 2υ]

e−
ϵ
2 for ϵ > 2υ

,

which implies

P

(
|NT − υ| > 2

√
υ log

(
2

δ

)
1{δ≥e−υ} + 2 log

(
2

δ

)
1{δ≤e−υ}

)
≤ δ .

E.3 Bounding the optimistic approximation term (R2)

There are two terms in (R2). The second is the most straightforward as it can be bounded by applying
the bound on eθ∗ of Proposition 4.6, which yields

NT∑
n=1

eθ∗(Xϖ,θ∗

τn ) ≤ 2C ′
γNT ε

1+ γ
2 (1 + sup

s≤T
∥Xϖ,θ∗

s ∥3) .

We decompose the remaining term of (R2) into

ε

NT∑
n=1

(ρ∗θ∗ − ρ
π̄∗
θn

θn
) = ε

NT∑
n=1

(
ρ∗θ∗ − ρ̄∗θ∗ + ρ̄

π̄∗
θ∗

θ∗ − ρ̄
π̄∗
θn

θn
+ ρ̄∗θn − ρ

∗
θn + ρ∗θn − ρ

π̄∗
θn

θn

)
≤ 4NTCγε

1+ γ
2 + ε

NT∑
n=1

(
ρ̄
π̄∗
θ∗

θ∗ − ρ̄
π̄∗
θn

θn

)
by applying Proposition 4.6 to all but the second pair of terms.

On the event of Proposition 4.2, with δ/3 in place of δ, we have θ∗ ∈ ∩n∈N∗Cn(δ/3) and thus, by

definition of Algorithm 1, ρ̄π̄
∗
θ∗

θ∗ − ρ̄
π̄∗
θn

θn
≤ 0 for all n ∈ N∗ . Thus, on this event we have

ε

NT∑
n=1

(ρ∗θ∗ − ρ
π̄∗
θn

θn
) ≤ 4NTCγε

1+ γ
2 .

E.4 Bounding the prediction error term (R3)

Because of the lazy updates, µθn = µθk(n)
is chosen within Ck(n)(δ/3) instead of Cn(δ/3) preventing

us from using directly Proposition C.7. Nevertheless, the lazy update-scheme is designed not to
degrade the overall learning performance by more than a constant factor. Leveraging (7),

n−1∑
i=1

∥∥∥µθn(X
ϖ,θ∗

τi , ϖτi)− µθ∗(Xϖ,θ∗

τi , ϖτi)
∥∥∥ ≤ {2βn(δ/3) if n < nk

βn(δ/3) if n = nk
(65)

As a result, µθn is chosen within an inflated version of Cn(δ/3), defined as in (6) but with βn(δ/3)
replaced by 2βn(δ/3). Thus, we can follow the same arguments as in the proof of Proposition 4.3, by
applying Proposition C.7 to the inflated confidence sets, up to the constant factor 2 in the bounds.
And therefore on the event of Proposition 4.2, we have

R3 = LW

NT∑
n=1

∥∥∥µθn(X
ϖ,θ∗

τn , ϖτn)− µθ∗(Xϖ,θ∗

τn , ϖτn)
∥∥∥

≤ 6LWβNT
(δ/3)

√
dE,Nt

+ LWdE,Nt
Hδ/3(NT ) .
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E.5 Bounding the lazy-update term (R4)

We observe that (R4) is bounded by

R4 =

NT∑
n=1

E[W̄ ∗
θn(X

ϖ,θ∗

τn+1
)− W̄ ∗

θn+1
(Xϖ,θ∗

τn+1
)|Fτn ]

≤ 2LW

NT∑
n=1

E
[(

1 + ∥Xϖ,θ∗

τn+1
∥
)
1{θn ̸=θn+1}|Fτn

]
≤ 2LW

NT∑
n=1

(
(1 + εL0)(1 + ∥Xϖ,θ∗

τn ∥) + ε
1
2 ∥Σ̄∥opE [∥ξn+1∥ |Fτn ]

)
1{θn ̸=θn+1}

≤ 2LW (1 + εL0)

(
1 + sup

s≤T
∥Xϖ,θ∗

s ∥+
√
dε

1
2 ∥Σ̄∥op

) NT∑
n=1

1{θn ̸=θn+1} .

Thus bounding the number of updates with Lemma E.2 bounds (R4).

Lemma E.2. Under Assumptions 1 and 2, Algorithm 1 generates episodes which satisfy for all
T ∈ R+ and δ ∈ (0, 1)

NT∑
n=1

1{θn ̸=θn+1} ≤ 4βNT
(δ/3)2dE,Nt

(
3 + log

(
Nt sups≤t∥Xϖ,θ∗

s ∥
16βNt(δ/3)

4d2E,Nt

))
+ 2dE,Nt

(1 + 2βNt
(δ/3)2dE,Nt

)(1 + sup
s≤t
∥Xϖ,θ∗

s ∥2) .

Proof. Consider k ∈ N∗, by (7), each time we trigger an update we have

2βnk
(δ/3)2 < sup

µθ∈Cnk−1
(δ)

∥∥∥µθ − µθ̂nk−1

∥∥∥2
nk

≤ sup
µθ∈Cnk−1

(δ)

∥∥∥µθ − µθ̂nk−1

∥∥∥2
nk−1

+ sup
µθ∈Cnk−1

(δ)

nk∑
n=nk−1+1

∥∥∥µθ(X
ϖ,θ
τn , ϖτn)− µθ̂nk−1

(Xϖ,θ
τn , ϖτn)

∥∥∥2
≤ βnk

(δ/3)2 +

nk∑
n=nk−1+1

Λ(Cnk−1
(δ/3);Xϖ,θ

τn , ϖτn)
2 .

Summing over all episodes, since the sequence (βn(δ/3))n∈N is non-decreasing, we have that for all
T ∈ R+

NT∑
n=1

Λ(Cnk
(δ/3); (Xτn , ϖτn))

2 ≥
KT∑
k=1

βnk
(δ/3)2 ≥ KTβ0(δ/3)

2 ,

in which KT := k(NT ) ∈ N is the number of episodes by time T . An application of the second part
of Proposition C.7, i.e. (58) now yields the desired result as β0(δ/3)2 = ε.

E.6 Bounding the martingale term (R5)

Let
Zn := E[W̄ ∗

θn(X
α,θ∗

τn )|Fn−1]− W̄ ∗
θn(X

α,θ∗

τn ) .

By definition

R5 = E[W̄ ∗
θNT +1

(Xϖ,θ∗

τNT +1
)|FτNT

] + W̄ ∗
θ0(x0) +

NT∑
n=1

Zn .

39



On the one hand, Zn is a LW ∥Σ∥op-Lipschitz function of ξn, which is Gaussian and of mean 0.
Therefore, by [13, Thm 5.5], Zn is LW ∥Σ∥op-sub-Gaussian and

P

(
NT∑
n=1

Zn > LW ∥Σ̄∥op

√
2εNT log

(
1

δ

))
≤ δ . (66)

On the other hand, by the uniform Lipschitzness of (W̄ ∗
θ )θ∈Θ, W̄ ∗

θ0
(x0) ≤ LW (1 + ∥x0∥) and

E[W̄ ∗
θNT +1

(Xϖ,θ∗

τNT +1
)|FτNT

] ≤ LW (1 + E[∥Xϖ,θ∗

τNT +1
∥|FτNT

])

≤ LW (1 + εL0 + (1 + εL0)∥Xϖ,θ∗

τNT
∥+ ε

1
2 ∥Σ̄∥opE[∥ξNT+1∥ |FτNT

])

≤ LW (1 + εL0)

(
1 + sup

s≤T
∥Xϖ,θ∗

s ∥2 + ε
1
2 ∥Σ̄∥op

√
dLW

)
. (67)

Combining (66) and (67) yields

R5 ≤ LW

∥∥Σ̄∥∥
op

√
2εNT log

(
3

δ

)
+ 2LW (1 + εL0)(1 + sup

s≤T
∥Xϖ,θ∗

s ∥+ ε
1
2 ∥Σ̄∥op

√
dLW )

(68)

with probability at least 1− δ/3.

E.7 Collecting the bounds

We conclude the proof of Theorem 3.1 by collecting all the terms from Appendices E.2–E.6 and
simplifying them. By a union bound over the events listed in steps Appendices E.2, E.4 and E.6, with
probability at least 1− δ

RT (ϖ) ≤ 2L0

(√
εT log

(
6

δ

)
∨ 2ε log

(
6

δ

))
+ 4NTCγε

1+ γ
2 + 2C ′

γNT ε
1+ γ

2 (1 +H3
δ/3(NT ))

+ 6LWβNT
(δ/3)

√
dE,NT

+ LWdE,NT
Hδ/3(NT )

+ 2LW (1 + εL0)
(
(1 +Hδ/3(NT ) + dε

1
2 ∥Σ̄∥op

)4βNT
(δ/3)2dE,Nt

(
3

+ log

(
NtHδ/3(NT )

16βNT
(δ/3)4d2E,NT

))
+ 2dE,NT

(1 + 2βNt
(δ/3)2dE,NT

)(1 +Hδ/3(NT )
2)


+ LW

∥∥Σ̄∥∥
op

√
2εNT log

(
3

δ

)
+ 2LW (1 + εL0)(1 +Hδ/3(NT ) + ε

1
2 ∥Σ̄∥op

√
dLW ).

This can be more simply expressed for some constants C(i)
R ∈ R+, i ∈ [5], as

RT (ϖ) ≤ C(1)
R (Cγ + C ′

γ)ε
1+ γ

2NT log(NT )
3 + C

(2)
R

√
dE,NT

εNT log

(
NT (1 + εN ε

NT
)

δ

)
+ C

(3)
R

(
1 + εdE,NT

log(NT ) log(NT (1 + εN ε
NT

))
)
dE,NT

log(NT )
4

+ C
(4)
R

√
εT log

(
1

δ

)
+ C

(5)
R

(
1 + log

(
1

δ

))
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still with probability at least 1− δ. On this high-probability event we can writeRT (ϖ) (up rounding
up Tε−1 where necessary and up to a change in the constants) as

RT (ϖ) ≤ C(1)
R (Cγ + C ′

γ)ε
γ
2 T log

(
T

ε

)
+ C

(2)
R

√
dE,Tε−1T log

(
Tε−1(1 + εNTε−1)

δ

)
+ C

(3)
R

(
1 + εdE,Tε−1 log(Tε−1) log(Tε−1(1 + εN ε

Tε−1))
)
dE,Tε−1 log(Tε−1)4

+ C
(4)
R

√
εT log

(
1

δ

)
+ C

(5)
R

(
1 + log

(
1

δ

))
.

Considering only the two dominant terms and ignoring logarithmic factors we get the claimed bound.
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