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ABSTRACT

We introduce CAMELS, a continual learning framework that leverages metric space constraints
in latent space to preserve stable representations over time. Rather than constraining parameters
or matching global prototypes, CAMELS anchors the internal structure of past tasks by preserving
pairwise cosine similarities among replay samples—maintaining relative geometry without freez-
ing coordinates and embeds different tasks in orthogonal subspaces. This formulation treats con-
tinual learning as the problem of preserving local isometries across evolving latent manifolds in
high-dimensional embedding spaces. We provide theoretical guarantees that our approach bounds
forgetting and classification risk by maintaining manifold consistency and prototype stability. Em-
pirically, CAMELS outperforms or matches prior methods on standard benchmarks including Split,
Rotated, and Permuted MNIST, as well as Split CIFAR-10. The resulting latent space is highly
interpretable, revealing clear task and class structure that evolves throughout training. These results
highlight the value of geometric structure preservation as a principled approach to learning stable,
adaptable representations in sequential settings.

1 INTRODUCTION

Deep neural networks trained sequentially on multiple tasks suffer from catastrophic forgetting: new gradients over-
write weights that were important for past tasks (Kirkpatrick et al., 2017). Replay buffers alleviate forgetting by inter-
leaving samples from previous tasks with current data, but how to use those samples most effectively remains open.
Many recent works regularize the classifier logits (Li & Hoiem, 2016; Lopez-Paz & Ranzato, 2017; Rebuffi et al.,
2017) or the parameter space (Aljundi et al., 2018; Chaudhry et al., 2019; 2018). By contrast, representation-centric
approaches match either class prototypes (Asadi et al., 2023), topological summaries (Fan et al., 2024), or pair-wise
similarities (Cha et al., 2021; Yu et al., 2023). Inspired by the observation that relative relationships carry more trans-
ferable information than absolute coordinates (Moschella et al., 2023), we propose to preserve only the intra-task
pair-wise distances and to decouple different tasks through an online, batch-specific orthogonality constraint.

1.1 CONTRIBUTIONS

We develop a new representation learning-based approach to continual learning, CAMELS, whose novelties are three-
fold:

1. Masked Manifold Anchoring: An {5 loss on cosine distances that is applied exclusively to pairs drawn from
the same task, avoiding spurious constraints across unrelated tasks

2. Orthogonality Penalty: We replace global sub-space regularisers with a per-batch orthogonality penalty:
for each replay mini-batch we derive an orthonormal basis via QR factorisation and minimise the squared
projection of current embeddings onto this basis

3. Elegent Interpretability: Our model lends itself to elegant interpretations and visualizations of the multi-task
joint latent space following the continual learning stream.

We demonstrate that this simple combination—no teacher network, no task IDs at inference—achieves competitive
and improved performance on both Permuted- and Split-MNIST while using the same fixed memory footprint as
earlier methods such as GEM (Lopez-Paz & Ranzato, 2017) and A-GEM (Chaudhry et al., 2019).
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1.2 PROBLEM FORMULATION

Let {71,...,7Tr} be a sequence of tasks, where each task 7; provides labeled samples {(xgt), y§t))}fi‘1. In domain-
incremental CL, all tasks share the same label set but differ in input distribution, whereas in class-incremental CL, new
classes are introduced sequentially throughout training (Lopez-Paz & Ranzato, 2017; Rebuffi et al., 2017). Define the
forgetting on task ¢ as F; = maxj<y<; Ag,i — Ar,;, where Ay ; is the accuracy on task ¢ immediately after learning

task k. The average forgetting is F = ﬁ ZiT;ll F;. We aim to find a sequence of parameters {6; }7_, and a bounded

memory buffer { M, }7_, that minimizes F while maintaining high accuracy throughout continual learning (Xu et al.,
2023). Crucially, our model does not have access to task IDs (task incremental continual learning) and instead must
learn them from shifts in the data distribution.

2 RELATED WORK

Continual learning methods can be broadly grouped into parameter- and replay-based approaches. Parameter
constraints mitigate forgetting by penalizing updates along important directions, as in Elastic Weight Consoli-
dation (EWC)(Kirkpatrick et al., 2017) and its Riemannian Walk (RWalk) extension using KL-based sensitivity
scores(Chaudhry et al., 2018), or through online importance estimation in Memory-Aware Synapses (MAS)(Aljundi
et al., 2018). Replay methods enforce consistency with past data: Gradient Episodic Memory (GEM) projects gra-
dients to avoid increasing loss on stored samples(Lopez-Paz & Ranzato, 2017), A-GEM reduces this overhead via
approximate projections (Chaudhry et al., 2019), Dynamic Experience Replay (DER) selects only the most salient
samples (Luo & Li, 2020), and Strong Experience Replay (SER) augments stored examples with a consistency loss to
stabilize updates (Zhuo et al., 2023).

Representation-driven techniques focus on preserving or adapting the feature space. iCaRL maintains class exemplars
and applies logit distillation to balance old and new classes (Rebuffi et al., 2017), while prototype—sample relation
distillation pushes embeddings toward stored prototypes (Asadi et al., 2023). Contrastive objectives—employed
by SCALE (Yu et al., 2023), Co2L (Cha et al., 2021), and supervised contrastive loss (SupCon)(Khosla et al.,
2020)—group semantically similar examples, and persistent-homology distillation preserves the embedding mani-
fold’s topological structure(Fan et al., 2024). In contrast, our method anchors only masked pairwise distances and
enforces per-batch orthogonality, eliminating the need for a global prototype bank or an external teacher network.

2.1 BIOLOGICAL MOTIVATION

We base the underlying motivation of our latent space geometry constraints off of the concept of neural manifolds,
wherein the brain represents distinct tasks and cognitive variables on low-dimensional neural manifolds that are rotated
and pushed into nearly orthogonal subspaces, thereby minimizing interference and preserving representations over
time. We review literature on neural manifolds and neural task representations as a biological motivation for Camels.

Population recordings in motor cortex reveal that neural activity during reaching and grasping lies on a smooth,
low-dimensional manifold capturing the bulk of response variance (Gallego et al., 2017; Gallego, 2018). Across
different movement types, these manifolds share a common geometry but can be rotated in state space to encode task-
specific dynamics (Sabatini & Kaufman, 2024). Similarly, prefrontal circuits form distinct manifolds for different
cognitive rules, with task contexts encoded in nearly orthogonal subspaces to prevent cross-talk (Timo Flesch, 2022;
Hajnal et al., 2023).

Studies in parietal and prefrontal cortex show that multiplexed representations of sensory inputs, motor plans,
and contextual variables occupy separable, orthogonal dimensions within the same population (Hajnal et al.,
2023; McFayden et al., 2022). Hippocampal place-cell ensembles likewise remap into distinct smemi-orthogonal
subspaces for different environments, maintaining stable spatial codes with minimal overlap (L Bashford, 2023) or,
more formally, avoiding interference. These findings directly parallel our per-batch orthogonality penalty, which
projects new-task embeddings away from previously occupied subspaces.

Even as task demands shift, the relative geometry—pairwise angles and distances—among neural trajectories
remains remarkably stable, supporting consistent decoding and generalization (Pereira-Obilinovic et al., 2024).
Population-level isometries have been documented in auditory cortex, where phonetic categories preserve their angu-
lar relationships across speaker changes, and in sensory areas that maintain metric structure under context switches
(Pereira-Obilinovic et al., 2024; W. Jeffrey Johnston, 2024).

The hippocampus replays compressed trajectories along neural manifolds during rest and sleep, effectively
anchoring memory representations and preventing forgetting (Avitan & Stringer, 2022). This biological replay



Under review as a workshop paper at CoLLAs 2025

echoes our manifold anchoring via replay-buffer distances, suggesting that aligned latent geometries are a universal
strategy for continual adaptation without interference.

Hence, our combined metric space objective of intra-task manifold anchoring and infer-task orthogonality is motivated
from the geometry of “task neural manifolds” existent in the prefontal cortex, providing a neurological analogy for
our latent space design.

3 SETUP AND THEORETICAL RESULT

Our model is designed to enforce the two above metric space constraints of isometric task learning and orthogonal
task subspaces. We design a latent encoder architecture and training scheme that promotes generality of downstream
use for the latent embeddings while following our geometric constraints.

3.1 TRAINING SCHEME

We retain a classic encoder backbone that down-projects our input to the latent space. For our experiments, we need
a downstream model that maps our latent vectors to logits spanning N classes, noting that our similarity-conditioned
latent representation can be “plugged in” to a potentially multimodal architecture, such as a classifier, generative
decoder, or other. Our training algorithm can be summarized as follows:

We train our model by iteratively introducing new tasks as new datasets, each task being trained for M epochs. Each
batch, we train in parallel on a replay minibatch that incorporates standard CE loss, manifold anchoring loss, and
orthogonality loss.

Training objective (new task ¢). Consider a current-task batch (x., y.) and a replay batch (x,., y,., "), from which
we get our latent embedding batches through passing these batches through our encoder Fy : z. = Ep(x.), 2, =
Ey(x,) (note z, and z. are both matrices with first dimension as batch). Then, we define our pairwise similarity
metric D(Z);; = d(Z;, Z;) for a matrix of embedding vectors Z. Anchoring to 2"/, the matrix of “expert model”’s
embeddings on z,, we minimize the following loss (a complete explanation of loss terms can be found in the Ap-
pendix):
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Figure 1: Diagram of Latent Model Architecture: we utilize a standard latent-classifier architecture with a loss trained

on the metric structure of the encoder’s output. In general, we choose classification as our representative task: the
head can be replaced with any model accepting latent vectors as input.
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3.2 CENTRAL THEOREM

The effectiveness of CAMELS is grounded in a geometric argument that isometric transformations of finite points in
high dimensional space lead to minimal loss in distance-based classifier risk. Our main theoretical result (proved in
Appendix B) bounds the total forgetting and empirical risk of our model in the strict continual learning setting given a
fixed point of our multi-loss training objective.

Theorem 1 (Bounded forgetting and average risk). Assume tasks arrive sequentially, each satisfies a John-
son—Lindenstrauss (JL) embedding with distortion ¢ < 1 (Johnson & Lindenstrauss, 1984), and training reaches
a stationary point where Lyan = Lowtn = 0. Then for every past task t < T, (Isometry) M, is preserved up
to e-distortion, (Classifier invariance) Prototype distances dcos(w, (z)) are unchanged (Lemma 5), (Risk bound)

|Rt"ﬁer — Rtb eﬁ"e| < C-¢ for some constant C (Lopez-Paz & Ranzato, 2017; Fan et al., 2024), (Average-risk

1
guarantee) 7 E (’Rfﬁ R} ef"re) < De. for some constant D.
t<T

In the following section, we gain more intuition for the connection between these latent space geometric concepts of
task subspaces and our continual learning metrics of average empirical risk and catastrophic forgetting.

INTUITIVE THEORETICAL SKETCH OF CAMELS

We first provide a toy visualization in R? of how an isometric transformation of previous tasks due to the addition of
a new task manifold in our training scheme does not change a distance-based classification method.

Before Learning New Task After Learning New Task (Isometric Update)

0.5

.
-1.40

Figure 2: As a toy example, we take three sheets in R3 to represent task manifolds of a 3-task continual learning
scheme. Specifically, task manifold 1 is represented by the blue plane, task manifold 2 is represented by the orange
plane. Our classifier boundary is a linear decision boundary defined by the plane x 4+ y + 2z = 0, whose intersection
on each task manifold governs the classification behavior on that task. We see these intersections as the solid line
(intersection with task manifold 1), and the dashed line (intersection with task manifold 2). The latent space after
“training on task 3” is represented in the right plot, where now we have the inclusion of the green plane of task
manifold 3, and task manifold 1 and 2 have both been isometrically rotated. However, what matters is the intersection
of the classifier decision boundary on their planes, which after the transformation remains the exact same (once again
shown through the solid and dashed lines). In this toy example, we clearly see that isometric transformations on old
orthogonal tasks retain our classification performance on them, a geometric argument against catastrophic forgetting.

The full proof of our theorem is deferred to the appendix, but we offer an intuitive guide to how these losses construc-
tively create our desired joint task latent space.

1. Using JL, we show that our isometry on finite points extends to an isometry on continuous space. At a
stationary point with L., = 0, every pair of replayed embeddings {z;, z; } satisfies

(L =e)llzi = zll5 < [|Ponew (2) = Ponew ()13 < (1+¢) [l2s — 23
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by the Johnson-Lindenstrauss lemma (Johnson & Lindenstrauss, 1984). Thus intra-task distances—and hence an-
gles—are “locked in” up to a factor (1 + ¢).

2. Our isometry guarantee fixes the distance between class prototypes (centroids of embedding subspaces cor-
responding to our classifier decision regions). Since each class prototype w, is just the mean of unit-norm embed-
dings, preserving all pairwise distances forces ||w. ™ — wgld |l = 0. Equivalently, the centroid of any finite point set
is unchanged under an exact isometry on that set (do Carmo, 1992).

3. The orthogonality loss blocks task interference; near-orthogonality in high dimensions limits random over-
lap. The per-batch orthogonality penalty drives new-task gradients into the orthogonal complement of span(Z,.).
Furthermore, in high dimensions, two random k-dimensional subspaces of R? are almost orthogonal, with principal
angles concentrating near 7 and overlaps of order O(1/ \/&) (?). Hence even without explicit orthogonality, random
task features would minimally interfere.

4. Quasi-isometric preservation of decision boundaries implies c-preservation of empirical risk. The 0-1 clas-
sification loss is 1-Lipschitz in the /., distance between the old and new probability vectors. Since isometry and
orthogonality together imply ||g"*" (z) — ¢°4(z)||oo < &, each example’s risk changes by at most ¢, and averaging
over the data yields |R}e" — Rgld’ < ¢ (Lopez-Paz & Ranzato, 2017; Fan et al., 2024).

5. Concentration in d provides an exponentially small tail. By Lévy’s lemma, any 1-Lipschitz distortion of a

point on the d-sphere concentrates with probability 1 — 2¢=¢4" Thus the chance of a large distance or risk shift
decays exponentially in the latent dimension d (Ledoux, 2001).

All in all, isometries lock past-task geometry; orthogonality blocks new-task leakage; Lipschitz-continuity of the
loss converts small geometric distortions into small risk changes; and concentration in high d makes large deviations
vanishingly unlikely. Hence catastrophic forgetting is bounded by O(e) both per task and on average.

Through embedding space isometries, we thus show that CAMELS retains earlier performance while expanding into
new orthogonal sub-spaces (Beshkov et al., 2022; Fan et al., 2024). Unlike parameter-space methods (EWC Kirk-
patrick et al., 2017, OGD Farajtabar et al., 2020), CAMELS’s guarantees are metric and task-agnostic, requiring no
Fisher-matrix or gradient storage, only latent embedding vectors that are stored alongside replay buffer samples and
logits.

4 RESULTS

We evaluate CAMELS on three canonical continual benchmarks that all derive multiple tasks from the original MNIST
digit corpus (LeCun et al., 1998) the test input permutation, label partition, and domain rotation, namely Permuted
MNIST, Split MNIST, and Rotated MNIST, covering both domain- and class-incremental learning. Details about
these benchmarks are in the appendix.

We first test ablations; in Table 1 that CAMEL, using relative (cosine similarity distance) anchoring to create an
isometry with samples from the balanced replay buffer, performs better than both absolute anchoring (comparing
current embeddings to previous embeddings as vectors) and the replay buffer baseline when taking a sweep over 10
trials for optimal hyperparameters for Permuted MNIST.

Method latent dim | Appan | Aorth | Task O | Task 1 | Task 2 | Task 3 | Task 4 | Task 5 | Task 6 | Task 7 | Task 8 | Task 9 | Average
CAMELS 64 2.0 1.0 92.13 | 9226 | 91.26 | 92.47 | 91.51 | 94.11 | 93.20 | 95.25 | 96.00 | 96.70 93.49
Baseline 64 0.0 0.0 88.39 | 89.41 | 88.61 | 88.64 | 89.67 | 90.53 | 91.08 | 93.83 | 94.02 | 96.27 91.05
ANA 64 2.0 1.0 89.11 | 90.06 | 86.99 | 89.66 | 91.25 | 93.20 | 95.05 | 96.06 | 97.37 | 98.06 92.68

Table 1: Task Accuracy Percent: CAMEL, Baseline, and Absolute Norm Anchoring variants.

We next display results for the various MNIST benchmarks — as seen in Figure 3, that CAMELS is an improvement
on each benchmark vis-a-vis other continual learning models.
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Accuracy + Std. (%)

Dataset Method Task 1 Task 2 Task 3 Task 4 Task 5
PermutedMNIST OGD 79.5+23 88.9 + 0.7 89.6 £ 0.3 91.8 £0.9 924+ 1.1
A-GEM 855+1.7 87.0+ 15 89.6 + 1.1 912408 939+ 1.0
EWC 64.5+29 77.1+23 804 + 2.1 879+13 93.0 £ 0.5
SGD 60.6 +4.3 776+ 1.4 799+ 2.1 87.7+29 924+ 1.1
CAMEL (Ours) 9587 £0.35 9595+044 95741043 9677 £0.59 98.02+0.21
SplitMNIST 0OGD 98.6 + 0.8 99.5 4+ 0.1 98.0 + 0.5 98.8 £ 0.5 99.2 +£ 0.3
A-GEM 929 +0.8 96.3 4+ 0.1 86.5+ 0.5 923405 993 +£0.3
EWC 90.2+5.7 98.9 + 0.2 91.1+35 944+20 993 +£0.2
SGD 882+59 984 +0.9 903+ 45 952+1.0 994 +0.2
CAMEL (Ours) 9894 +£0.10 98.89 £0.09 99.1 +0.17 99.04 +£0.17 99.79 + 0.03
RotatedMNIST  OGD 75.6 +£0.8 86.6 + 0.1 91.7+0.5 943405 934 +0.3
A-GEM 726 + 1.8 844+ 16 91.0+ 1.1 93.9 + 0.6 946 + 1.1
EWC 61.9+2.0 78.1+ 1.8 89.0+ 1.6 944407 939 +£ 0.6
SGD 629+ 1.0 765+ 1.5 88.6 + 1.4 95.1+0.5 941+ 1.1
CAMEL (Ours) 91.7 £ 047 9212 +0.21 91.14 £ 041 9294 +047 96.56 + 0.2

Figure 3: Per-task test accuracy (%) £ SD across 5 tasks for CL MNIST Benchmarks

We are able to outperform existing methods in continual learning, especially with respect to the PermutedMNIST
benchmark. We are able to do this without any task ID supervision and drastically lower variance between runs,
demonstrating the consistency of our latent representations.

To compare across a different baseline, we looked to test our model on SplitCIFAR10. To tackle this, we constructed a
DLA (Yu et al., 2019) backbone for our model, outputting a latent representation of our RGB images like with MNIST
before. From there, the framework follows the same pipeline. The following table shows results for our model for 10
epochs for 5 tasks.

Baselines Split-CIFAR-10

66.62 (£1.06)
80.42 (+0.95)

Conv. Neural Network
Offline re-training + task oracle

Task-Agnostic
CAMELS (Ours)

85.84 (£0.93)

HVCL 78.41 (£1.18)
HVCL w/ GR 81.00 (£1.15)
CL-DR 86.72 (£0.30)
TLR 74.89 (+£0.61)
MAS 73.50 (£1.54)

Table 2: Split-CIFAR-10 Accuracy across Task-Agnostic Models

We are within the margin of error for the model performing the best in this benchmark. This shows the versatility of
our model with different model backbones and ability to learn more complex representations.

4.1 MANIFOLD LOSS EFFECTIVENESS

One visualization we performed was to see whether the manifold loss was truly preserving the metric of prior expert
task subspaces — that is, given an old task’s dataset after fully continual learning on all tasks, is our fully trained
model’s pairwise distance matrix of embeddings of {(z;, yi)}ielcn( p,) consistent with the expert model embeddings
(the embedding snapshots of the model freshly trained on task ¢). To verify this, we collect all embeddings of the
oldest task and compute their pairwise distance matrix and compare it to the pairwise distance matrix of our final
model evaluated on task O after trained on all T tasks. We average max pool for visualization purposes (to remove
high frequency noise) but find strong metric similarities and very minor deviations, giving empirical justification for
the following theoretical groundings of our technique.

In our training, we note that intermediate tasks tend to suffer the most catastrophic forgetting in certain cases, as they
combine the lack of recency of old tasks with the “garbled” learning of combining replay buffer gradient updates
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Expert D (task 0] Expert 0 (task 0) BASELINE D

Figure 4: (Left) CAMELS’ distance-matrix reconstruction on task O: the expert model’s D, the CAMELS model’s D,
and their absolute difference (all embedded in one row).
(Right) The same for the balanced-replay baseline. CAMELS clearly preserves the expert metric far more faithfully.

Expert D (task 51 cameLD Expert 0 (task 5) BASELINE D

Figure 5: We perform the same comparison for an intermediate task ¢ = 5 and see though less significant, CAMELS
outperforms the baseline in task subspace metric reconstruction.

from old tasks with the gradient updates trying to converge on the current task. Hence, we also plot the distance
matrix reconstruction between CAMELS’ and the baseline for task 5 and indeed notice CAMELS’ reconstruction of
the expert task metric is far better.

4.2 LATENT SPACE INTERPRETABILITY

Our resulting latent space is highly interpretable as points in a metric space, clustered by both task similarity (input
distribution) and output class value. We plot task embedding vectors from a 10 task permuted MNIST task sequence a
using t-SNE dimensionality reduction to two dimensions . Note OL refers to Orthogonality Loss, AMAL refers to Ab-
solute Metric Anchoring Loss (anchoring to the difference in Euclidean norm of embedding vector pairs), and RMAL
refers to the relative metric anchoring loss, the cosine similarity between embedding vector pairs. We also provide in
the appendix a comparison between expert and final model distance matrix plots, demonstrating the continuity of our
isometries over training across 10 tasks.

Baseline OL & AMAL OL & RMAL

Latent - Lot

Figure 6: 2-D t-SNE plots of latent vectors uniformly sampled from 7" = 10 tasks for Permuted MNIST during
final evaluation. On the top, each latent vector is coloured from the task (ie. permutation) it is taken from, and on
the bottom, each embedding vector is coloured by its MNIST class (digit 0, - - - , 9) irrespective of permutation. As
the above figure demonstrates, our metric space clustering and orthogonality guarantees enforce much clearer, well-
defined task/class cluster separation compared to baselines that do not incorporate this loss.
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5 CONCLUSION AND FUTURE WORK

In this work, we present a novel continual-learning framework, CAMELS, a latent space-driven training algorithm
combining manifold anchoring and subspace orthogonality to deliver robust, geometry-aware latent representations.
Our empirical studies on Permuted and Split MNIST demonstrate that CAMELS not only matches but often exceeds
the performance of existing replay-based and regularization methods, while maintaining a strong level of interpretabil-
ity on its joint task latent space due to our metric space constraints. The intuitive appeal of CAMELS lies in its ground-
ing in high-dimensional geometry, locking the relative structure of replayed samples and pushing new tasks into fresh
latent directions, mirroring neural manifold strategies observed in biological learning. Some of the limitations of our
framework include the sensitivity to new tasks, requiring changes to our hyperparameter set to accommodate. We
see several avenues in continuing to develop CAMELS, including scaling to larger continual learning benchmarks
(Core50, CIFAR-100), experimenting with different downstream models (latent space generative decoders, denoising
models, etc.). We hope to also continue to refine our study of manifold loss dynamics, in particular experience-drift
mechanisms that dynamically select replay samples for maximal isometric coverage, and continue to expand on our
theoretical understanding of task learning as isometries.

In summary, CAMELS offers a scalable, theoretically grounded, and interpretable approach to continual learning. We
believe its geometric insights and strong empirical performance will inspire a new line of research at the intersection
of representation geometry and continual adaptation, and further help us understand the training dynamics of high
dimensional latent spaces in continual settings.
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A EXPERIMENT DETAILS

All our experiments were done using Tesla P100 GPUs. Code is available on our GitHub, not linked to preserve
anonymity.

A.1 EXPERIMENT OVERVIEW

In Permuted MNIST (PMNIST) (Kirkpatrick et al., 2017), each task applies a fixed but task-specific random permu-
tation to the 28 x 28 pixel vector, leaving labels unchanged. All ten digits appear in every task, but the input distribution
differs radically, making representation transfer challenging yet label-consistent. With Split MNIST (Zenke et al.,
2017), the ten digits are split into five two—way classification tasks: (0V1), (2v3), ..., (8V9). The input distribution is
identical across tasks (the normal MNIST dataset), but class overlap is absent, emphasizing catastrophic forgetting of
the classifier head rather than the feature extractor.In Rotated MNIST (RMNIST) (Lopez-Paz & Ranzato, 2017), task ¢
rotates every image by a fixed angle 0; € [0°,180°). Following Farajtabar et al. (2020), we use ten equidistant angles
(0°,20°,...,180°). This produces a smooth domain shift, testing a method’s ability to learn isometry-equivariant
features.

A.2 MODEL ARCHITECTURE

Encoder Input examples x € R% is first mapped by a two—layer ReLU MLP

z = norm(Wg O'(W1X+b1)+b2) € RP, norm(v) = Y,

MBS

where D < dj, and norm(-) keeps the embedding on the unit sphere so all downstream losses are scale-free.

Classifier head. (replace with any downstream model) A single linear layer h(x) = W,z with W, € R®*P produces
logits for the C' semantic classes shared by every task.

Task-balanced replay bank. After finishing task ¢ we (i) freeze the current encoder, (ii) compute reference em-
beddings z" = FEj,(x) for a balanced subset of training items, (iii) store triples (x, y, z™) in a task-specific
bank of equal size. At run time each replay mini-batch is drawn from one bank, so its reference embeddings
come from a single “expert” encoder. Intuitively, this expert represents our model freshly trained on the current
tahttps://arxiv.org/abs/1606.09282sk ¢, which empirically has a maximal accuracy ranging around 98-99%. Another
alternative is to continually add to the replay buffer throughout training epochs, but we find this process empirically
outperforms continual buffer additions, as we are adding expert samples for future replay as opposed to intermediate
latent activations.

Orthogonal task sub-spaces. From all the sampled embeddings of a given replay batch, we take the orthogonal
matrix ¢ from the QR decomposition of the concatenated embedding matrix [ ZIef Zrefa - Z;ff ] where R is
the size of our replay batch. () represents an orthogonal basis of the space spanned by these replay embedding vectors,
taken as an approximation of prior task results. Then, we minimize the loss given in our Setup section.

Loss Function Recall, our loss function is:

1 1 &
£ = CE(h(xc). ye) + CE(h(x:), r) +Aman 53| D(2r) - D(z)|[}, +Aor B || Qe
=1

current replay

manifold
orthogonal

* Current task classification loss: This is the standard cross-entropy loss on the current task batch (x., y.),
which minimizes the empirical risk on the new task.

* Replay task classification loss: This cross-entropy loss is applied to a replay batch (x,., y,-) from previously
seen tasks, helping prevent catastrophic forgetting by reinforcing prior knowledge.

* Manifold anchoring loss: Here, D(Z),; = d(Z;, Z;) is a pairwise cosine distance matrix. This term
encourages the pairwise geometry of latent representations z, = FEjp(x,) to match the structure from a
reference model z™'. This preserves the fine-grained relational structure within old-task embeddings without
anchoring their absolute positions.
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* Orthogonal subspace penalty: ()., is an orthonormal basis (e.g., via QR decomposition) spanning the
replay embeddings. This term penalizes the projection of new embeddings onto the subspace spanned by prior
tasks, encouraging new task representations to explore orthogonal directions and thus reduce interference.

A.3 TRAINING OVERVIEW

Our full training algorithm is as follows:

Algorithm 1 One training step of CAMEL

Require: Current batch (x, y) from task 7', replay buffer 3, parameters 6, hyper-params Aman, Aorth
Ensure : Updated parameters 6, buffer B

Embed current data
Zeur < Embed(z; 0); map into unit-sphere
lop +— CE(Cls(Zcur),y); classification loss

Sample replay
(%,7,2,t) + B.sample(m) if & # () then
Zrep < Embed(%;0); current embeddings of replay
lrep CE(ClS(Zrep),ﬂ); replay CE
liman < MaskedPairwise(Zyep, 2, t); preserves intra-task distances
Q<+ QR(zT); basis of replay subspace
Lorth < | Zew Q%3 carves new subspace
else

| lrep <= 0 Lnan 0 Lo < 0

Total loss & update

0 ECE + Erep + )\man gman + )\orth gorth 06— 77V9 & gradient step
Buffer update

B.add(z,y, Zeur, T); store fresh embeddings
rgturn 0, B

A.4 REPLAY BUFFER DETAILS

The design of our replay buffer is crucial for defining the latent activations used in masked-manifold anchoring and
orthogonality penalties. Early on we experimented with an EMA “teacher” to generate soft targets in-flight, but this
approach monotonically favored recent tasks and accelerated forgetting over long sequences. Especially important for
manifold anchoring is a balanced replay buffer with respect to task and classes, where the joint balance is primarily
important in class-incremental learning where each task may not evenly distribute amongst its output classes. Below
details the evolution of our replay buffer across experiment development.

* A simple reservoir buffer treats every incoming sample equally, but this can cause under-representation of
older or rare classes, leading to imbalanced coverage that exacerbates catastrophic forgetting (Brignac et al.,
2023). Moreover, uniform reservoir does not account for task boundaries: in class-incremental settings it
tends to flush out early-task samples too quickly, hurting stability (Aljundi et al., 2018).

» To mitigate class imbalance, we adopt Class-Balanced Reservoir Sampling (CBRS), which enforces equal
quota per class within the buffer (Chrysakis & Moens, 2020). CBRS ensures that every class remains repre-
sented, preserving the manifold geometry needed for paired-distance losses (Krawczyk & Gepperth, 2024).

* Beyond class balance, tasks themselves may differ in difficulty or data volume. We therefore extend CBRS
to a taskxclass—balanced reservoir, allocating a fixed quota to each (task, class) cell, and trimming excess
uniformly across cells (Findik & Pourkamali-Anaraki, 2022). This design guarantees that replay mini-batches
approximate the original task distributions, a best-practice highlighted for large-scale continual learning.
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* At sampling time, we draw first in a balanced fashion across tasks and classes, then top up with any leftover
capacity to reach the target batch size; this preserves diversity without biasing toward recent tasks (Liu et al.,
2024).

* We also allow the buffer to adaptively reallocate space among tasks based on their observed forgetting rates,
following strategies like Adaptive Experience Replay (AdaER) (Li et al., 2023) and Uncertainty-Guided
Reservoir Sampling (Zhang et al., 2024). In practice, we find a static task—class balanced buffer yields the
best mix of simplicity and performance in our CAMELS framework.

A.5 EXPERIMENTAL RESULTS

In this section, we discuss the training dynamics of our framework, specifically looking at the individual losses for
each of our experiment benchmarks.

Loss over Iterations for Each Task

nnnnnnnnn

(a) PermutedMNIST (b) SplitMNIST (c) RotatedMNIST

Figure 7: For each of our baseline experiment benchmarks, we see the above loss plots during training for (a) Permut-
edMNIST, (b) SplitMNIST, and (c) RotatedMNIST from left to right. For an individual plot, each task is separated
into a separate loss curve independent of the others, so we could see the forward learning and convergence of our
framework.

Comparing each of the loss plots, we can see similarities in convergence for (a) and (c) due to the nature of our dataset
for training. With both PermutedMNIST and RotatedMNIST, we are applying a transformation to the entire dataset
and per task training on a set as large as the initial dataset. As such, the model is able to learn in a similar fashion for
both; however, RotatedMNIST seems to converge slower for the first task, indicative of the task difficulty. Unlike (a)
and (c), SplitMNIST follows a shorter number of iterations due to the nature of the dataset, and sees a more coarse
loss convergence. Especially with (b), we see the forward learning of each task at a finer resolution; however, this is
present in all three, demonstrating the effectiveness of the framework for the problem formulation.

B THEORETICAL RESULTS

In this section we provide a proof of our central theorem that links task-subspace isometries to bounds on catastrophic
forgetting.

Throughout let @5 : R% — S~ c R? be the unit-normalized encoder (mapping to points on the unit sphere in R<,
let 7; = {(wi,y:) 14, be the t™ task represented as an empirical sample from an underlying data distribution, and and
denote the latent manifold M := ®y(supp 7). Then, £ = Log + AmanLman + Aorth Lorth 18 our CAMELS objective
(83).

B.1 SUPPORTING LEMMAS

The following lemma proved in (Johnson & Lindenstrauss, 1984) will be useful:

Lemma 2 (Johnson-Lindenstrauss extension theorem). Given an n-point metric space X, X C Y, H a Hilbert
space, [ : X — H a mapping. Then, there exists an extension F :'Y — H of f (that is, F|x = f) where
Lip(F) < lognLip(f) approximately.

In fact, we use the above to prove the next lemma, showing that a zero manifold loss on a finite set of points can extent
to an isometry on a broader space:
Lemma 3 (Masked-manifold isometry). If Lyan = O then for every past task t < T ®g restricted to Ty is an exact

cosine—isometry; pair-wise distances are preserved. (Distance-preserving maps yield quasi-isometries by Johnson &
Lindenstrauss, 1984, Blumenthal, 1953.)
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Proof. We want to show that if £,,, = 0 then ®y|7, is an isometry (in deos) on every past task ¢ < T. Let
M, ={(i,§)|m =T, i#J} be the set of intra—task pairs stored for task ¢. Zero masked-manifold loss implies

V<Z’J) €M, : ’dCOS(‘I)e(.'I;i),‘i’Q({I;j)) - dcos(‘ﬁg*(a;i),tbg*(wj))’ =0.

Hence pairwise distances on the finite set S; = {x; : (z;,y;) € T;} are preserved.

Consider the map T defined by taking a point ®g(z;) — Pp+(x;); that is, the map that takes the representation of a
point under our old encoder to the representation under our new encoder. This map is 1-Lipschitz on S; by definition
(1-Lipschitz is just an isometry). We invoke 2 here: we take our extension space as conv(S;), the convex hull of our
points in S;. Our gradient updates made small enough along with /> normalization (along with the assumption that our
classifier is Lipschitz) ensures that our latent points can rest in a convex set (example: the ball of vectors at most unit
norm). So, for all practical purposes, nothing will ever leave this convex set. Thus, for a mini-batch-size B, we can
bound the Lipschitz constant of our map extension 7" by 1 + ¢ given that our dimension size k& > e¢~2logn. As per
the JL lemma, we choose our latent dim to be large enough such that for our desired ¢ this holds, and we have a quasi
e-isometry over the whole convex hull (that, is, distance between points differ by at most €). This can also be extended
to the entire support of 7; (Blumenthal, 1953) [J

Lemma 4 (Per-batch orthogonality). Gradient descent on Loyn = ||Q), Z.||% drives the current embeddings Z, into
the orthogonal complement of span(Z,.). Hence T, My L span(M 7).

Proof. For unit 2 the loss w.r.t. a single sample is £(2) = ||Q],2||3. Its gradient is V¢ = 2QmQl,> =
2Pr0jiz,)(2). Recall that our @y is the orthonormal matrix whose column space is equivalent to span(Z,) and

hence our projection operator is just QQ*. So, gradient descent therefore subtracts exactly the projection of z onto
span(Z,.); the unique stationary point is when that gradient is zero, hence when the projection vanishes, This occurs
by definition when z L span(Z,). Extending to a basis of T, M (the tangent space of the manifold M rooted at z)
follows by linearity. Suppose we start at z and take a smooth curve ¢ : [0, 1] — My such that ¢(0) = z,¢(0) = v for
some tangent direction v € T, M. Then,

d

7 0@)l=0 = (Val,v) = 2(QQ"z,v)

But we showed that at the fixed point of our loss, QQTz = 0, so Vo, linearity of QQ” implies QQ7v = 0
2(QQTz,v) =0 = 2(2,QQTv)). So the projection of any tangent vector v onto span(Z,) is zero, mean-
ing our tangent space at the fixed point z is orthogonal to our previous tasks’ span.

Intuitively, this means that gradient steps along our fixed point will not affect old task representations — we can improve
on our current task in the orthogonal subspace of all previous tasks.

O

Lemma 5 (Prototype Stability). Under Lemma 3, the class prototypes wy, = E[®g(x) | y] are unchanged for y
Y<r_1. Cluster-based decision rules therefore remain fixed (Asadi et al., 2023; Cha et al., 2021; Yu et al., 2023).

Proof. Our prototype w, for every output class y represents the average over all latent vectors ®g(x) that map to
y in the classifier. We take (y € yg_l) (in domain incremental learning, this is just the entire output class, but in
class incremental learning this is instead restricted to the output classes that we have seen so far). Because learning
every subsequent task is an isometry, we have that {w, : y € )} also remain at the same pairwise distances as we
learn more tasks. Take any w,“* and wgld, Sy as the set of inputs that map to the class y. We can write the prototype
difference as

1
A
TESyY

Note that as all these embeddings are approximately unit norm, so ®y__ (x) — ®g, d(:z:)g which can be expanded
as terms in the d cosine metric between new and old embeddings, that cancel each other out. Also note for some
weighting coefficients o, ayr

(= wpt)y = 3 Y awaw (P, (), B, (2))

TESy T’ €S,

Z Z a$a$'<®‘901d (x)vq)eozd (.’L‘/>> = <wzld’wloléd>

©€S, 2'€S,,
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so we have that prototypes evolve as isometries as well.

Prototype—sample approaches use those distances directly (Asadi et al., 2023) or via a contrastive loss (Cha et al.,
2021). For example, classification algorithms may use something along the lines of § = argmax, (24, w,) for some
query embedding z4, and as this only depends on relative distances then w, need not be re-optimised and is unaffected
by updates that are orthogonal to (Z,.) (Lemma 4). [

Finally, we prove our central theorem.

B.2 PROOF OF CENTRAL THEOREM

Our central theorem states that under the JL embedding assumption that our distortion e < 1, and if we have a
stationary point where the two losses L,,4n, Lortn are zero, then the risk increase on any past task is upper-bounded
by Ce.

Isometry preserves distances: Our masked manifold isometry lemma shows us that at the fixed point of manifold
loss, we have that for any z;,z; € 7T;,. By Lemma 3 and the JL lemma (Johnson & Lindenstrauss, 1984) , for any
i, ¢, €Ty

’dcos(égnew (x,i),<b9new(xj)) - dCOS(‘bgo]d(Ii)7‘bgold(ivj))| S €.
Orthogonality implies no cross-task drift: Our next lemma 4 implies ®guew (M,) C span(M;)t & M, so move-

ments along the tangent space of our optimized fixed points lie in directions that do not distort internal geometry of
previous tasks

Classifier Behavior Invariance: Given a cosine-based softmax

eXp(_dcos(wy ,Po (T)))
o eXp(*dcos(wy/ Po ($)))

Lemma 5 keeps w, fixed and Step 1 keeps distances within €. Note that g, (x) does not at all depend on absolute
positions of ®g(x) and w,, but only on the pairwise distances. Moreover, because g,, is 1-Lipschitz in dcos, our quasi
e-isometry over all points in the convex hull that we reached in the isometry lemma gives us that the change in class
probability is O(e).

Risk bound: We can use our bound in the change of class probability to then bound empirical risk. Specifically, take
the standard classification indicator loss (3, y) = 1{§ # y} and assume its Lipschitz constant w.r.t. g, is L < 1.
Then, we will show that

IRI™Y —RM| < Le = Ce,

where C' = L collects constant factors (se Fan et al., 2024and the Lipschitz-driven analysis of rehearsal Lopez-Paz &
Ranzato, 2017; Bonicelli et al., 2022).

For every z, our model outputs a probability vector g(z) = (gi(x),---,gc(x)) where g;(x) gives the ith class
probablity for the latent vector z. Because of our probability bound, we have ¢"**(z) — ¢°4(x)_ < €V, ignoring
constant terms. Define the empirical risk on task ¢ as

1 1
Rt(e) = @ Z 1Q(1)75y = @ Z 1argmaxj g (x)#y
(z,9)€D: (z,y)€Dy

Now suppose our g;’s shift by at most €. Either we have that they yield the same argmax, in which case our loss term
for that x will be unchanged, or we swap the argmax between two classes whose probabilities were bounded by e.
That is, for a given output class y, we have that |I,(g) — 1,(¢")| < 14—/ >c = g — ¢’ o/€ Which is a constant in €
asymptotically due to our infinity norm bound shown above. So, element-wise,

[Lgnewsy — Lyoragy| = |ly(9) —1y(¢)| < g—¢'o <€
Which immediately gives the result for average empirical risk |R7** — R$'Y| < O(e) up to a constant factor.

The above bound immediately results in a uniform bound for both average joint multi-task empirical risk and
catastrophic forgetting. [

16



	Introduction
	Contributions
	Problem Formulation

	Related Work
	Biological Motivation

	Setup and Theoretical Result
	Training Scheme
	Central Theorem

	Results
	Manifold Loss Effectiveness
	Latent Space Interpretability

	Conclusion and Future Work
	Experiment Details
	Experiment Overview
	Model Architecture
	Training Overview
	Replay Buffer Details
	Experimental Results

	Theoretical Results
	Supporting Lemmas
	Proof of Central Theorem


