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Abstract

Automatic approaches for algorithm configuration and design have received sig-
nificant attention in the last years, thanks to both the potential to obtain high
performing algorithms, and the ease for algorithm designers and practitioners. One
limitation of current methods is the need to repeat the task for every new scenario
encountered. We show how the observation of problem-independent features of the
solution landscape can enable the use of past experiments to infer good configura-
tions for unseen scenarios, both in case of new instances and new problems. As a
proof of concept, we report preliminary experiments obtained when configuring a
metaheuristic with two parameters.

1 Introduction

Algorithm configuration (AC) or (hyper-)parameter tuning is a crucial task in many practical settings,
where a parameterized algorithm is used to obtain the best possible results in a given scenario. Given
a (without loss of generalization) minimization problem P, a set of instances Z, an algorithm A% for
P with parameters © = 61, 0s, ..., 0, and a measure of the cost c(-) of AQ, the goal is to find ©*
such that ¢(A9") is minimized over Z.

Recently, the development of automatic methods for AC has been the focus of various lines of
research in areas such as Operations Research (OR) and Machine Learning (ML), where the per-
formance of the algorithms used is crucial. Automatic algorithm configuration strategies can not
only improve over final solution qualities or running times, but they also unburden developers and
practitioners of the tedious task of manual configuration, and can be useful in understanding the
problem at hand. Alongside automatic algorithm selection, with which it shares several similarities,
automatic configuration is one of the key tasks of Automated Machine Learning (AutoML) pipelines.
Configurators are, in a nutshell, machine learning algorithms that learn the best configurations for a
training set, to be applied on a test set or in a production setting. When features of the instances are
included in the learning process in order to adapt the final configuration to each specific instance of
the test set, we talk about per-instance algorithm configuration.

A large collection of methods have been proposed to tackle the AC problem, using various strategies
such as random search [3]], model-based methods [[11} 4], Bayesian optimization [18| [15]], racing
methods [6,16]], and local search algorithms [[12} 2} [1]].

One main limitation of current automatic AC methods is that a new tuning is usually required for every
new given task or scenario. To obtain good results, configurations have to be obtained on a training
set of instances that comes from the same distribution of the test set. The extent to which a certain
configuration will generalize to different instance distributions is in principle unknown, and in general
we can expect to observe a decrease in performance. One consequence of this is the difficulty of
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using configurations, and thus knowledge, obtained in past experiments to new, unseen scenarios. In
this work, we explore the possibility of combining data obtained in previous configuration tasks with
instance features to obtain instance-specific configurations, and apply this to metaheuristic algorithms
for combinatorial optimization problems. In particular, our goal is to infer algorithm configurations
for a certain problem, starting from configurations obtained on other problems. While a similar
approach has been successfully applied to adjust hyperparameter configurations in machine learning
tasks [8], to the best of our knowledge this is the first case of transfer learning in OR algorithms.

2 Materials and methods

We consider the fixed-temperature variant of Simulated Annealing (SA), for which we configure two
parameters: (i) the initial temperature value (a real-valued scaling coefficient in the range [0, 1]), and
(i) the neighbourhood exploration (binary, to choose a neighbourhood move to be evaluated either
randomly or following some ordering), identified as one of the main SA components [[17, 14} 7, 9].
Conversely to the traditional “cooling” strategy of SA, the fixed-temperature variant (FT) keeps the
same temperature value throughout the whole search.

We compute problem-independent instance features to use the same set of features across different
problems. This contrasts with previous instance-specific configuration approaches for combinatorial
optimization problems, where problem-specific instance features are usually considered [[13]]. The
choice of a set of features that represents the main characteristics of an instance is an open problem
in itself. We choose to use a set of features that represents the conditions encountered by the FT
algorithm during the search. As the FT (and SA) are built by introducing a diversification mechanism
on top of standard hill climbing strategies, we compute a total of forty probing landscape features by
executing first and best improvement runs on each instance, and computing a series of statistics about
the convergence and the neighbourhoods traversed. The most relevant features include statistics on
the number of moves to reach a local optimum and on the amount of improving and plateau moves in
the neighbourhoods traversed, and the slope of a linear model fit on the sequence of the average gaps
from the best solution in the neighbourhood traversed.

Following a recent interpretation of algorithm configuration as an inference task, in this work we
investigate if a generic inference tool can be an effective alternative in practice to classic AC packages
[LO]. As configurator we use the irace package, an R implementation of the racing algorithm [6} [16].
For computational reasons we perform approximate inference of parameter values from the landscape
features using the MERCS package, which implements a forest of multi-directional decision trees
[19].

The workflow for each experiment is as follows. First we tune a FT algorithm for a given problem
and instance class, all instance sizes considered, using irace. Each tuning consists of 1000 evaluations
of FT configurations for 10 seconds on an instance. We perform 15 tunings for each scenario, and the
resulting configurations are then benchmarked on the test set. We then compute the forty landscape
features for all the instances of the training set seen in the different tunings, associate each set of
features with the results obtained by all the configurations evaluated on the relative instance, and
select for each instance the configuration that obtained the best results. We finally compute the same
set of landscape features for the instances of the test set, use MERCS to infer the best configuration
for each test instance, and benchmark the outcome.

3 Per-instance algorithm configuration of metaheuristics

We start by exploring the possibility of performing per-instance algorithm configuration of meta-
heuristics using problem-independent instance features. We use the Quadratic Assignment Problem
(QAP) with two instance classes (random and structured), each containing sizes 60, 80 and 100. Each
instance class is partitioned into a training and a test set, each one with 50 instances per size.

In the first experiment, we consider separately the two instance classes. We have therefore one tuning
for the random instances, and one for the structured instances. We also use only data obtained on the
random training instances to infer good configurations on the random test instances, and do likewise
for the structured instances.
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Figure 1: Results obtained in terms of relative percentage deviation from the best known solutions
on the random and structured QAP instances by irace (separate tunings for each instance class) and
MERCS:; lower boxplots represent better results.
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Figure 2: Results obtained in terms of relative percentage deviation from the best known solutions on
the random and structured QAP instances by irace (one single tunings for both instance classes) and
MERCS; lower boxplots represent better results.

The results are reported in Figure in terms of percentage deviation (z — £)/Z x 100 from the best
known solutions Z, divided by instance size. In both instance classes the results are very similar.
There is statistically significant difference only on the structured instances of sizes 60, where the
inference with MERCS performs better than the regular tuning. This happens because, for each
instance class, there is a relatively narrow interval of values that can obtain those results in the runtime
allowed, and both irace and MERCS can identify it.

In the second experiment we consider the two instance classes together. We therefore perform one
single tuning task, and use data from both instance classes to infer configuration on the whole test set.
In this case, the configurations that globally obtain the best results across the two instance classes
are suboptimal for each single class. The inference tasks is performed as in the previous case. The
results are reported in Figure 2] in terms of percentage deviation from the best known solutions,
divided by instance size. In this case, as expected, the outcome of the tuning task is not of the same
quality as in the case of separate tunings. MERCS can, however, make use of the features to identify
better parameter values in many cases, in particular on the random instances: only on the structured
instances of sizes 60 and 80 the results are not statistically significantly different. The reason why the
results of MERCS are not as good as in the previous experiment is the lack of better starting data,
since irace in this case was not able to exploit the good areas of the parameter space.

4 Transferring configurations of metaheuristics across problems

Having seen how a generic inference tool can be successfully used for per-instance configuration,
in this experiment we use the same approach based on problem-independent features to compute
configurations across different problems using a generic inference tool. We apply the inference task
as described in Section[2] but this time using data obtained on three problems to infer the best settings
for a fourth, different problem.
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Figure 3: Results obtained in terms of relative percentage deviation from the optimal solutions on the
random and clustered TSP instances by irace (separate tunings for each instance class) and MERCS
(inference from QAP and PFSP experiments); lower boxplots represent better results.

The target problem is the Traveling Salesperson Problem (TSP), for which we have a set of random
instances (RUE) and a set of clustered instances (RCE). Each instance class contains instances of
sizes 100, 150 and 200 cities. The instances are equally divided in a training and a test set. The
three problems we start from are the QAP and two objectives of the Permutation Flow Shop Problem
(PSFP), the makespan objective and the total completion time objective. For each problem we have
two instance classes (one random and one structured) of various sizes. The starting point for the
inference is the data collected in six set of tunings, one for each objective function and instance class.
So, in total, we have six different families of landscapes that we use as our training set. Analogously
to the previous experiments, we compute the landscape features on the TSP test instances, and use
MERCS to infer FT configurations starting from our training set. Using irace, we tune a FT on the
training set of TSP instances, and benchmark the resulting configurations on the relative test set. As
in the first experiment, we tune separately per instance class, considering all instance sizes together.

In Figure |3| we show the results obtained, in terms of relative percentage deviation from the optimal
solutions computed using Concorde [3]]. As a comparison, we report also the results that are obtained
on our test set by a 2-opt heuristic.

On the RUE instances, the configurations obtained using MERCS performs similarly to those obtained
by irace on sizes 100 and 150, while they perform significantly worse on size 200. They are still
outperforming the solutions that can be found with a 2-opt local search. On the RCE instances,
instead, per-instance configuration with MERCS outperforms the classical tuning on instance of sizes
100 and 150, but obtains very poor results on instances of size 200. In this latter case, there is a huge
variance in the solution qualities that can be obtained, and in many instances MERCS is outperformed
even by the 2-opt heuristic.

These results can be explained with the fact that, while the landscape shape generated by the three
different sizes is the same for each instance class, the numerical values involved differ. The proper
set of values for the size 200 TSP instances has not been observed in any of the experiments on the
other three scenarios. The set of features we use are not sufficient to fully capture the relationships
between the numerical values of the instances and the proper temperature values needed on the
200-size instances, especially on the RCE instances. On the other hand, while the landscapes of the
four problems considered differ, sometimes significantly, in shape, the set of features observed is
representative enough to infer good parameter values for the sizes 100 and 150, for both instance
classes. This however suggests which kind of features would properly complement the set used in
these experiments.

5 Conclusions

We have presented some preliminary results showing how, starting from an archive of experiments,
generic conference tools can be used to perform per-instance algorithm configuration based on
a representative set of problem-independent features, also on unseen problems. To the best of
our knowledge, this is the first time transfer learning has been used in the context of algorithm
configuration and optimization algorithms.
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