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ABSTRACT

This brief sketches initial progress towards a unified energy-based solution for
the semi-supervised visual anomaly detection and localization problem. In this
setup, we have access to only anomaly-free training data and want to detect and
identify anomalies of an arbitrary nature on test data. We employ the density es-
timates from the energy-based model (EBM) as normalcy scores that can be used
to discriminate normal images from anomalous ones. Further, we back-propagate
the gradients of the energy score with respect to the image in order to generate
a gradient map that provides pixel-level spatial localization of the anomalies in
the image. In addition to the spatial localization, we show that simple process-
ing of the gradient map can also provide alternative normalcy scores that either
match or surpass the detection performance obtained with the energy value. To
quantitatively validate the performance of the proposed method, we conduct ex-
periments on the MVTec industrial dataset. Though still preliminary, our results
are very promising and reveal the potential of EBMs for simultaneously detecting
and localizing unforeseen anomalies in images.

1 INTRODUCTION

Figure 1: Sample localization outputs for
grid, capsule and transistor categories from
MVTec AD: From left to right, columns
show test image, ground truth mask and pre-
dicted localization

The advent of smart manufacturing and the explo-
sion of data collection in factories and other indus-
trial setups have brought considerable attention to
the topic of anomaly detection. Its goal is to identify
rare, abnormal events from the observation of data.
This research area has already inspired a vast body
of literature whose central idea is to learn a model
of normalcy from the positive data and subsequently
flag samples that deviate from the learned model
as anomalous. Classic approaches include meth-
ods based on distances and nearest-neighbor Knorr
et al. (2000); Breunig et al. (2000), clustering He
et al. (2003), principal component analysis and its
kernel variants Hoffmann (2007), and one-class sup-
port vector machines. Recently, deep learning has
also been used for (deep) anomaly detection, and ex-
isting out-of-distribution (OOD) detection methods
were successfully applied to this problem Lee et al.
(2018); Ahuja et al. (2019); Hendrycks et al. (2019);
Ren et al. (2019). In addition, deep generative mod-
els such as variational autoencoders (VAE) and gen-
erative adversarial networks (GAN) have also been
used to characterize abnormality in a variety of man-
ners, based on gradient Kwon et al. (2020), recon-

struction error Chen & Konukoglu (2018), or density estimation An & Cho (2015). We refer to Ruff
et al. (2021); Goldstein & Uchida (2016) for an exhaustive review of anomaly detection methods.
The overwhelming majority of these methods deal with the detection problem, where one simply
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needs to discriminate normal samples from anomalous ones. There are numerous usages, medical
imaging being one example, wherein it is very important not only to identify abnormal images, but
also to localize the abnormality in such images for diagnosis purposes (e.g. areas with brain lesions
in CT images).

The literature on anomaly localization is relatively more scant, but includes recent methods based
on deep generative models that provide spatial localization by comparing the reconstructed image
with the original input Bergmann et al. (2019b); Schlegl et al. (2017); Chen & Konukoglu (2018).
While still budding, there is also a new trend of emerging works that focus on anomaly localization
Yi & Yoon (2020); Defard et al. (2020); Cohen & Hoshen (2021).

Energy-based models for visual anomaly detection and localization. The principal idea behind
energy-based models (EBM) is to learn an energy function Eθ(x) : RD → R that parametrizes a
density pθ(x) as (LeCun et al., 2006):

pθ(x) =
exp(−Eθ(x))∫
x
exp(−Eθ(x))

,

where θ are parameters of the model. An interesting property of EBMs is that, unlike probabilistic
models, they don’t necessitate normalization nor a tractable likelihood. Hence, any nonlinear regres-
sion function can act as an energy function. These attributes provide great flexibility to EBMs, and
we have seen many recent works successfully take advantage of it across different data domains and
a variety of energy functions and deep networks. However, being devoid of a tractable likelihood
requirement comes with its own challenges. Stable and resource-efficient training of EBMs remains
an open problem and recent research has focused on training on popular datasets that were compiled
for small-scale classification problems (e.g. CIFAR10). In this regard, the application of EBMs to
new problems and different data domains is an opportunity to further develop and popularize EBMs.

Of special importance to this work, EBMs have been shown to have better performance in OOD de-
tection than other likelihood-based generative models (Zhai et al., 2016; Grathwohl et al., 2019; Liu
et al., 2020; Du & Mordatch, 2019). This makes EBMs a promising alternative for semi-supervised
anomaly detection problems, where only positive samples (i.e. normal) are available during train-
ing. This is especially true for real-world industrial settings where defect data is limited or even
unavailable, and the nature of anomalies and defects is not known a priori. In those cases, training
a model with an explicit discriminative loss term is impractical.

Contributions. This paper proposes a unified EBM method that simultaneously addresses image-
level anomaly detection and pixel-level anomaly localization in the semi-supervised setting. Our
main contributions can be listed as:

• An EBM method for visual anomaly detection that jointly tackles detection and localiza-
tion.

• The back-propagation of gradients of the EBM energy w.r.t. the image, resulting in a (gradi-
ent) heat map from which we can derive both an innovative detection score and pixel-level
localization of anomalies in the input image. To our knowledge, this is the first time that
gradients of energy score w.r.t input images are interpreted as spatial anomaly information.

• The application of the method to a real-world industrial case and its quantitative validation
with objective metrics. Industrial defect detection stresses the capabilities of generative
models as it comes with challenges that can be hardly approximated with synthetic, or
research datasets. We provide detailed detection and localization results on the MVTec AD
dataset, and compare against reported bechmarks.

2 METHOD

We present the details on our method in this section. Details about the training procedure are pro-
vided in Section 3. During inference, an input x ∈ Rw×h×c is first processed by the network in a
typical forward pass to generate an energy scalar. w and h are the width and height, respectively,
of the input, and c is the number of channels (c = 3 for RGB images, c = 1 for grayscale images).
The gradient of this scalar w.r.t to the input (not the weights) is calculated by back-propagation to
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(a) Sample image, with visualizations of raw and
standardized gradient maps

(b) Histograms of raw and standardized scores for
good vs defective pixels

Figure 2

produce a gradient-map, g(x), which has the same shape as that of the input,

g(x) ,
∂ log pθ(x)

∂x
. (1)

Let gk denote the kth channel of g. A visualization of these gradient-maps shows that although
the gradient value is high in the anomalous regions in the image (see Fig. 2a), it is also high in
other non-defective regions of the image. Hence, distinguishing between good and defective pixels
based on these raw scores may result in significant false positives. We can significantly improve on
this by modeling a probability density px(g) over the gradient-map’s values for each pixel location
individually. Note that this density is modelled over values of g at a particular pixel location x. The
modeling is performed using the set of gradient-maps, gtrain(x), derived from the set of training
images. During testing, the log-likelihood score of the observed gradient value, ĝ, at x is calculated
as l = log px(ĝ) and this score is used as an anomaly score. Hence, the determination of whether a
pixel is good or defective is based on how much its gradient value deviates from the typical values
observed on the training set images. If the distribution used is a normal distribution, then the log-
likelihood, l, is equivalent to standardizing the raw anomaly score by its mean, µk(x), and standard
deviation, σk(x), as follows

lk(x) =
gk(x)− µk(x)

σk(x)
.

Note that µk(x) and σk(x) are calculated for each per-pixel location, x, in each channel k separately,
from gtrain values at x. The final anomaly score, a(x) at x is theL1 orL2 norm of the corresponding
raw or standardized gradient scores from each channel, i.e.

araw(x) =

(
c∑

k=1

|gk(x)|r
)1/r

, astd(x) =

(
c∑

k=1

|lk(x)|r
)1/r

, r = 1, 2. (2)

As can be seen in Fig. 2b, standardized scores show much better separation between good and
defective pixels.

Finally, we aggregate the per-pixel anomaly scores to obtain a single scoreA(x) for an entire image,
again by taking the L1 or L2 norm as follows

Araw = ‖g(x)‖r ,

(∑
x

|araw(x)|r
)1/r

Astd = ‖l(x)‖r ,

(∑
x

|astd(x)|r
)1/r

(3)

This score can be used to for the classification of the image as defective or good. Note that Araw is
essentially the same as approximate mass score proposed in (Grathwohl et al., 2019).
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Table 1: AUROC results for anomaly detection on MVTec (results for other
benchmarks taken from Cohen & Hoshen (2021))

Geom GANomaly AE(L2) ITAE SPADE EBM (Ours)

Average 0.67 0.76 0.75 0.84 0.85 0.72

3 EXPERIMENTS

3.1 TRAINING

In this work, we take an MCMC-based maximum likelihood (ML) approach to training our model.
As our energy function approximator, we use an all convolutional neural network similar to the one
Nijkamp et al. (2019) used (see Table 3 in the Appendix), but instead of Leaky-ReLU, we use ELU
(Clevert et al., 2016) activation functions between all layers to stabilize training. To optimize for
likelihood, we use Contrastive Divergence (CD) (Hinton, 2002).

To synthesize the negative samples needed by the CD objective, we employ a Stochastic Gradient
Langevin Dynamics (SGLD) MCMC sampler (Welling & Teh, 2011). We initialize MCMC chains
from a uniform distribution and run a fixed number of MCMC steps (100). For a more resource-
efficient training, we experimented with reducing the number of steps and using a replay buffer
to persist MCMC chains (Tieleman, 2008) instead of initalizing from noise at each training itera-
tion, but we could not manage to find a stable training regime on all categories and had sporadic
energy spikes. We leave the solution of these problems to later work and share only the results
of non-persistent trainings for consistency over all dataset categories. During sampling, we don’t
accumulate gradients w.r.t. model parameters for later use at model parameter update step.

During training, we only use nondefective images and we don’t explicitly optimize for any discrim-
inative objective. In that sense, training is unsupervised. But, as we know that the training data
is not contaminated with defective samples, we prefer to call our approach semi-supervised. We
believe that a fully unsupervised method should tackle the consequences of possible training data
contamination.

3.2 RESULTS

We test our approach on the problem of visual anomaly detection on the recently introduced MVTec
dataset (Bergmann et al., 2019a), which is a dataset for benchmarking anomaly detection methods
with a focus on industrial inspection. There are fifteen different object and texture categories in the
dataset, and we train a separate EBM for each category. The training is performed using defect-free
training images only and the model is not exposed to any defective images during training. Training
of EBMs is known to be computationally demanding and hence the input images are downsized, to
128× 128 to keep the training time manageable.

For a test input, we generate both the per-pixel anomaly scores, a(x), and the per-frame anomaly
scores, A(x) as described in Section 2. These scores can be used to distinguish between good and
defective data, at both the pixel level and the frame level. This effectively creates a binary classi-
fier, whose performance is characterized by the receiver operating characteristics (ROC) curve. We
tested performance with both the raw and standardized scores, and found that the standardized scores
generally outperform the raw scores and hence, we report results using standardized scores. For the
detection task, we report the area under the ROC curve (AUROC) in Table 1, and for the localization
task, we report the AUROC in Table 2. We can observe that the EBM achieves respectable scores
on both tasks, but there is certainly room for improvement. For a comparison between raw and stan-
dardized scores, please refer to section A.2 in the Appendix. For most categories, it is observed that
standardizing the scores results in an improvement in the performance. For localization, sample im-
ages containing anomalies are shown in Fig. 3, along with the standardized gradient maps produced
by our method. For this set, we see that the high-intensity regions in the anomaly maps correspond
well visually with ground truths. The accompanying density histograms show good separation of
scores between good-pixels and anomalous pixels.
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Figure 3: From left to right: sample images with anomalies, their corresponding ground truth masks,
anomaly score maps (standardized gradient maps), and histograms (good vs. defective pixels). Ver-
tical dashed lines are three-sigma rule thresholds.
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Table 2: AUROC results for anomaly localization on MVTec (results for
other benchmarks taken from Bergmann et al. (2019b))

Category AE
(SSIM)

AE
(L2)

AnoGAN CNN
Feature

Dictionary

EBM
(Ours)

Carpet 0.87 0.59 0.54 0.72 0.63

Grid 0.94 0.90 0.58 0.59 0.86

Leather 0.78 0.75 0.64 0.87 0.87

Tile 0.59 0.51 0.50 0.93 0.57

Wood 0.73 0.73 0.62 0.91 0.74

Bottle 0.93 0.86 0.86 0.78 0.72

Cable 0.82 0.86 0.78 0.79 0.56

Capsule 0.94 0.88 0.84 0.84 0.64

Hazelnut 0.97 0.95 0.87 0.72 0.78

Metal Nut 0.89 0.86 0.76 0.82 0.65

Pill 0.91 0.85 0.87 0.68 0.75

Screw 0.96 0.96 0.80 0.87 0.87

Toothbrush 0.92 0.93 0.90 0.77 0.68

Transistor 0.90 0.86 0.80 0.66 0.74

Zipper 0.88 0.77 0.78 0.76 0.55

4 CONCLUSION

This work presented an energy-based method for the semi-supervised anomaly detection and local-
ization problem. We propose an alternative scoring function for image-level anomaly detection and
spatial anomaly maps for pixel-level localization; both are derived from back-propagating gradients
of the energy score w.r.t. the test image. We experiment our approach on the MVTec AD industrial
dataset and benchmark against the state of the art. While the method is still in the early stages of
development, initial results are encouraging with indications of how to obtain further improvements.
These include using larger models with higher capacity to model the energy function, and exploring
regimens to perform training in a more stable and less resource-intensive manner.
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A APPENDIX

A.1 CNN TOPOLOGY

Table 3: CNN topology

kernel stride padding fin fout activation
(3x3) 1 1 nc = 1, 3 32 ELU
(4x4) 2 1 32 64 ELU
(4x4) 2 1 64 128 ELU
(4x4) 2 1 128 256 ELU
(4x4) 2 1 256 256 ELU
(4x4) 2 1 256 256 ELU
(4x4) 1 0 256 1 N/A

A.2 RAW VS STANDARDIZED SCORES

We compare AUROC scores for both detection and localization using raw gradient-map scores and
standardized scores. In general, we observe that standardized scores perform better than raw scores.
For a few categories, the raw scores do provide better AUROC.

Table 4: Comparing Raw and Standardized AUROC scores for detection

Energy Raw gradients Standardized gradients

Average 0.56 0.69 0.72

Table 5: Comparing Raw and Standardized AUROC scores for localization

Category Raw Standardized Difference

Carpet 0.53 0.63 0.10

Grid 0.86 0.86 0.00

Leather 0.43 0.86 0.43

Tile 0.50 0.57 0.07

Wood 0.73 0.74 0.01

Bottle 0.70 0.72 0.02

Cable 0.46 0.56 0.10

Capsule 0.44 0.64 0.20

Hazelnut 0.73 0.78 0.05

Metal Nut 0.71 0.65 -0.06

Pill 0.71 0.74 0.03

Screw 0.88 0.87 -0.01

Toothbrush 0.82 0.68 -0.14

Transistor 0.74 0.74 0.00

Zipper 0.64 0.55 -0.09
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