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ABSTRACT

The goal of continual learning (CL) is to train a model that can solve multiple
tasks presented sequentially. Recent CL approaches have achieved strong perfor-
mance by leveraging large pre-trained models that generalize well to downstream
tasks. However, such methods lack theoretical guarantees, making them prone to
unexpected failures. Conversely, principled CL approaches often fail to achieve
competitive performance. In this work, we aim to bridge this gap between theory
and practice by designing a simple CL method that is theoretically sound and highly
performant. Specifically, we lift pre-trained features into a higher dimensional
space and formulate an over-parametrized minimum-norm least-squares problem.
We find that the lifted features are highly ill-conditioned, potentially leading to
large training errors (numerical instability) and increased generalization errors. We
address these challenges by continually truncating the singular value decomposition
of the lifted features. Our approach, termed LoRanPAC, is stable with respect to
the choice of hyperparameters, can handle hundreds of tasks, and outperforms
state-of-the-art CL methods on multiple datasets. Importantly, our method satisfies
a recurrence relation throughout its continual learning process, which allows us
to prove it maintains small training and test errors by appropriately truncating
a fraction of SVD factors. This results in a stable continual learning method
with strong empirical performance and theoretical guarantees. Code available:
https://github.com/liangzu/loranpac.

1 INTRODUCTION

Continual learning (CL) requires training a model that performs well on multiple tasks presented
sequentially. A primary challenge in CL is acquiring new knowledge without causing catastrophic
forgetting (i.e., substantial performance degradation on previously learned tasks). However, the gap
that prevails in the CL literature, as we review in Section 5 and Appendix H, is that theoretically
grounded CL methods tend to be impractical (Evron et al., 2022; Peng & Risteski, 2022; Peng
et al., 2023; Cai & Diakonikolas, 2024), while highly performant methods involve solving intricate,
non-convex training problems, for which deriving informative theoretical guarantees is challenging
(Wang et al., 2022b;c;a; Smith et al., 2023; Wang et al., 2023; Jung et al., 2023; Tang et al., 2023;
Gao et al., 2024b; Roy et al., 2024; Kim et al., 2024). In this paper, we aim to bridge the gap by
designing a simple CL method that is both theoretically grounded and highly performant.

1Work done while at the University of Pennsylvania.
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Towards this goal, we consider learning downstream image classification tasks continually with large
pre-trained models, which are widely available nowadays. As their weights are typically frozen, they
provide highly generalizable features that significantly boost performance with little computational
overhead (Wang et al., 2022d;a; McDonnell et al., 2023; Zhou et al., 2024a). Crucially, pre-trained
models simplify network design, as concatenating a pre-trained model with a shallow trainable
network often attains competitive performance (Zhou et al., 2023; McDonnell et al., 2023).

Motivated by the RanPAC method of McDonnell et al. (2023), we use a shallow trainable network
that is now commonly known as the random feature model. With this network, we lift pre-trained
features into a higher dimensional space and then train a linear classifier on the lifted features
simply by least-squares fitting. Yet, the lifted features are double-edged: while they tend to boost
performance by increasing feature separability (Telgarsky, 2022; Min et al., 2024), they are also
highly ill-conditioned, making it computationally difficult to train the linear classifier. For example,
the ill-conditioned features would decelerate the convergence of gradient-based methods such as
Orthogonal Gradient Descent (OGD) and PCA-OGD (Farajtabar et al., 2020; Doan et al., 2021). Also
due to ill-conditioning, the implementation of the Ideal Continual Learner (ICL) (Peng et al., 2023)
based on incremental Singular Value Decomposition (SVD) will be numerically unstable. While
RanPAC alleviates the numerical instability by using ridge regression, its performance is sensitive to
the choice of the regularization parameter, which can make it ill-suited for long task sequences.

We identify that the ill-conditioning and instability arise as more tasks are observed and then the
smallest singular values of the lifted features plummet, while the largest singular values remain almost
constant. This finding motivates our method, termed LoRanPAC, which truncates these smallest
singular values prior to least-squares fitting. LoRanPAC bridges the gap between theory and practice
by delivering stable and strong performance with theoretical guarantees. Concretely:

• We provide a continual implementation of LoRanPAC to train an over-parameterized linear classifier
with highly ill-conditioned features in a numerically stable fashion (Section 3). We show it is more
stable, more scalable, and more efficient than RanPAC.
• We derive theoretical guarantees for LoRanPAC, proving that it has small training and test errors
when a suitable fraction of SVD factors are truncated (Theorems 1 and 2, Section 4). These results
stem from a non-trivial recurrence relation that allows us to capture the continual learning dynamics
of LoRanPAC (Lemma 1, Appendix D).
• We conduct extensive experiments on multiple datasets, showing that LoRanPAC uniformly out-
performs prior works and specifically RanPAC (Section 6). Thanks to our stable implementation,
LoRanPAC outmatches RanPAC by a significant margin in the CIL setting with one class given at a
time (Inc-1), where hundreds of tasks (classes) are sequentially presented (Table 2).

2 TECHNICAL BACKGROUND

Problem Setting. We consider classification tasks in the class-incremental learning (CIL) setting,
where each incoming task contains only unseen classes. Following conventions (Yan et al., 2021;
Zhou et al., 2023), we write B-q1, Inc-q2 to mean that the model is given q1 classes in the first task
and then q2 classes in each of the subsequent tasks (q1 = 0 means all tasks have q2 distinct classes).
We use vision transformers (ViTs) of Dosovitskiy et al. (2021) as pre-trained models.

Pretrained Features and Labels. Given mt images of task t, we feed them to pre-trained ViTs,
obtaining the output features Xt ∈ Rd×mt . Here, d is the feature dimension (d = 768 in the ViTs
used). Corresponding to Xt is the label matrix Yt ∈ Rct×mt . Every column of Yt is a one-hot vector,
that is some standard basis vector in Rct , where ct is the total number of classes observed so far. We
thus have c1 ≤ · · · ≤ ci ≤ · · · ≤ ct. Let Mt := m1 + · · ·+mt. While Yi ∈ Rci×mt might have a
different number of rows as ci varies, one can pad ct− ci zero rows to Yi when new class information
is revealed; so, with a slight abuse of notation, Yi is viewed as having ct rows. We denote by Y1:t the
label matrix of the first t tasks: Y1:t = [Y1, . . . ,Yt] ∈ Rct×Mt .

Random ReLU Features. Let relu : ξ 7→ max{0, ξ} be a ReLU layer and P ∈ RE×d denote a
random Gaussian matrix with i.i.d. N (0, 1) entries; here we assume E > d. These allow us to embed
Xt into a higher dimensional space and get random ReLU features Ht ∈ RE×mt via

Ht := relu(PXt), H1:t := [H1, . . . ,Ht] ∈ RE×Mt . (1)
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Note that relu is a pointwise non-linearity, applied to PXt entry-wise. The goal is to learn a linear
classifier W ∈ Rct×E continually, using features Ht and labels Yt of task t.

An alternative way to view these setups is through a two-layer neural network

X 7→W · relu(PX),

where P are randomly generated, then fixed, and W are trainable weights. Networks of this form
predate the early work of Schmidt et al. (1992); Pao & Takefuji (1992) and are later known as extreme
learning machines and random feature models. In Appendix H.2 we review these lines of research.
In principle, the randomness of P would have some effects on learning W , but algorithmically, this
randomness is irrelevant as P is fixed after random generation. In the paper we adopt this algorithmic
viewpoint, treating H1:t = relu(PX1:t) as fixed, and largely ignore the randomness of P .

Table 16 of our appendix shows random ReLU features H1:t boosts the performance (compared to the
original pre-trained features X1:t, ReLU features relu(Xt), or randomly embedded features PX1:t.
Fig. 6 in the appendix furthermore shows that the performance improves as the embedding dimension
E increases. These experiments justify the use of random ReLU features in high embedding
dimensions (we use E = 105 unless otherwise specified).

Minimum Norm Solution and Its Instability. If E ≫Mt, there are infinitely many W satisfying
WHi = Yi (∀i). Among them, a common choice is the minimum-norm solution:

min
W∈Rct×E

∥W ∥2F s.t. WHi = Yi, i = 1, . . . , t, (Min-Norm)

where ∥ · ∥F denotes the Frobenius norm. While Min-Norm is an offline formulation that assumes
the availability of all seen data {(Hi,Yi)}ti=1, it can be implemented in a CL fashion, e.g., via
incremental SVD (Remark 2). But such an intuitive implementation fails. Fig. 1a plots the eigenvalues
of H⊤

1:tH1:t, showing that H⊤
1:tH1:t is highly ill-conditioned: it has just a few largest and smallest

eigenvalues, respectively of order 1011 and 10−5, outnumbered by the eigenvalues in between that
decay more slowly. Fig. 1b plots extreme eigenvalues of H⊤

1:tH1:t, revealing that the minimum
eigenvalue drastically drops after a certain number of tasks. Comparing Fig. 1b, c, d, we see that the
training MSE loss 1

Mt
∥WH1:t − Y1:t∥2F explodes up, and the test accuracy plummets, exactly when

the smallest eigenvalues (of order 10−5) emerge and begin to invade the spectrum. In summary, the
incremental SVD solution to Min-Norm is unable to handle the highly ill-conditioned features H1:t,
resulting in numerical errors.

3 LORANPAC: STABLE CONTINUAL LEARNING VIA LOW-RANK RANDOM
FEATURES

Offline Formulation. The numerical evidence collected in Fig. 1 suggests that the instability of Min-
Norm relates to the emergence of very small eigenvalues that make H1:t ∈ RE×Mt ill-conditioned.
This motivates a simple remedy, called LoRanPAC (offline formulation), which consists of truncating
the smallest singular values (vectors) of H1:t and then solving Min-Norm with its truncated version.
More concretely, write the SVD of H1:t as σ1u1v

⊤
1 + · · · + σMtuMtv

⊤
Mt

with ordered singular
values σ1 ≥ · · · ≥ σMt

. The truncation can then be described with some integer kt ∈ [0,Mt] by
a function τkt

that maps H1:t to σ1u1v
⊤
1 + · · · + σkt

ukt
v⊤
kt

, where kt is the number of top SVD
factors preserved. Since τkt

(·) preserves the shape of its input, τkt
(H1:t) is of the same size E ×Mt

as H1:t. Applying this idea of truncation to Min-Norm means solving the following program:

W t ∈ argmin
W∈Rct×E

∥W ∥2F s.t. W τkt
(H1:t) = Y1:t. (LoRanPAC)

LoRanPAC is thus named, as it draws inspiration from RanPAC (McDonnell et al., 2023) and leverages
low-rank random features. It is safe to assume kt ≤ rank(H1:t), for otherwise the truncation has no
effects. For simplicity one might assume H1:t has full rank, that is rank(H1:t) = min{E,Mt}.
Continual Implementation. To solve LoRanPAC continually, we first write down the closed-form
expression of W t. Let U1:tΣ1:tV

⊤
1:t be a compact SVD of τkt

(H1:t); here, U1:t is of size E × kt
and Σ1:t is invertible of size kt × kt. Similarly, let U1:tΣ1:tV

⊤
1:t be a compact SVD of H1:t, where
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(1a) The eigenvalues of H⊤
1:tH1:t arranged in descending order (t fixed).

(1b) Maximum and minimum eigenvalues of H⊤
1:tH1:t as the number t of seen tasks increases.

(1c) Training MSE loss 1
Mt

∥WH1:t − Y1:t∥2F of the incremental SVD solution to Min-Norm.

(1d) Final test accuracy of the incremental SVD solution to Min-Norm.

Figure 1: Spectrum of H⊤
1:tH1:t and its impact on training losses & test accuracy (E = 105); see

also Appendix K.8. The matrix H⊤
1:tH1:t is ill-conditioned (1a); training loss increases (1c) and test

accuracy drops (1d), drastically, when small eigenvalues (of order 10−5) invade the spectrum (1b).

Algorithm 1: Continual Solver of LoRanPAC (detailed version in Algorithm 4, Appendix C)

1 Input (Task t): Features Ht ∈ RE×mt (1), labels Yt ∈ Rct×mt , truncation percentage ζ ∈ [0, 1];
2 For t← 1, 2, . . . :
3 kt ← ⌈(1− ζ)min{E,Mt}⌉; // Mt := m1 + · · ·+mt can be updated online
4 Jt ← Y1:tH

⊤
1:t; // online update of Jt detailed in Algorithm 5, Appendix C

5 Form Bt as per (3);
6 (Ũ1:t, Σ̃1:t)← Top-kt SVD factors of Bt; // Algorithm 3 if t = 1, or Algorithm 2 if t > 1

7 Compute linear classifier W̃t := JtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:t; // cf. (2) and (4)

U1:t has rank(H1:t) columns and contains U1:t as a submatrix. We can then write W t as

W t = Y1:tV 1:tΣ
−1

1:tU
⊤
1:t = Y1:tV 1:tΣ1:tU

⊤
1:t

(
U1:tΣ

−2

1:tU
⊤
1:t

)
(i)
= Y1:tV1:tΣ1:tU

⊤
1:t

(
U1:tΣ

−2

1:tU
⊤
1:t

)
= Y1:tH

⊤
1:t

(
U1:tΣ

−2

1:tU
⊤
1:t

)
,

(2)

where (i) holds as the column vectors of U1:t not shown in U1:t are orthogonal to U1:t. Given (2), it
now suffices to update Jt := Y1:tH

⊤
1:t ∈ Rct×E , U1:t ∈ RE×kt , and Σ1:t ∈ Rkt×kt in an online

fashion. This procedure is described in Algorithm 1, where the following points are considered:

• Since the columns of Y1:t are one-hot vectors, we can compute Y1:tH
⊤
1:t incrementally by matrix

addition rather than (sparse) matrix multiplication.

• An exact update of U1:t and Σ1:t would require computing the SVD factors of the full data H1:t.
However, past data H1:t−1 is not available when observing task t. Thus, we consider approximating
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Figure 2: Final test accuracy as the truncation percentage ζ varies.

U1:t, Σ1:t by two respective matrices Ũ1:t, Σ̃1:t of the same sizes. Specifically, as shown in Line 6,
we set Ũ1:t, Σ̃1:t to be the top kt SVD factors of Bt, where Bt is defined as

Bt :=

{
H1 if t = 1;[
Ũ1:t−1Σ̃1:t−1, Ht

]
otherwise.

(3)

Note that B1 is of size E ×m1, while for t > 1 we have Bt of size E × (kt−1 +mt). The top-kt
singular values of Bt and H1:t are close to each other (cf. Fig. 1a, Fig. 8, Fig. 9, and Theorem 6),
which indicates the effectiveness of our continual updating strategy. Then, as shown in Line 7 and
recalling (2) and Jt = Y1:tH

⊤
1:t, we construct a linear classifier via

W̃t ← JtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:t. (4)

• In Algorithm 1, ζ denotes the truncation percentage. Given ζ, we set the number kt of top SVD
factors preserved at task t to kt = ⌈(1 − ζ)min{E,Mt}⌉, where ⌈·⌉ converts an input number to
the closest integer no smaller than it. Fig. 2 visualizes the effect of ζ on the final test accuracy,
highlighting nearly zero accuracy with ζ = 0 and stable performance with ζ ≥ 5%.
Remark 1. At test time, given a sample, we make a forward pass and obtain its random ReLU feature
h. The predicted class is then set according to the maximum entry of W̃th.
Remark 2. Algorithm 1 with ζ = 0 is the incremental SVD method that we use to solve Min-Norm.
Remark 3 (Time and Space Complexity). The major cost of Algorithm 1 is to compute the top-kt
SVD factors of the E × (kt−1 +mt) matrix Bt, which takes O(E(kt−1 +mt)

2) time. Futhermore
Algorithm 1 uses O(2Ect+Ekt+k2t ) memory to store Jt, Ũ1:t, and Σ̃1:t, and W̃t, and O(Ekt−1+
Emt) memory to construct Bt, and some extra working memory to compute the top-kt SVD factors
of Bt. We refer the reader to Appendix C for more details.

4 PROVABLY CONTROLLED TRAINING AND TEST ERRORS

In this section, we present Theorems 1 and 2, which bound the training and test error of the output (4)
of our approach (Algorithm 1).

Notations. Denote by µk(·) the k-th largest eigenvalue of a symmetric matrix. Define

γ1 := 1, γt :=
µkt

(
BtB

⊤
t

)
maxi=1,...,t−1

{
µki+1

(
BiB⊤

i

)} , ∀ t > 1. (5)

The quantity γt relates to the stability-plasticity tradeoff, as it is the ratio between the minimum
preserved eigenvalue µkt

(
BtB

⊤
t

)
at task t and the maximum eigenvalues being truncated in the past,

µki+1

(
BiB

⊤
i

)
. Clearly γt > 0, as we truncate only non-zero eigenvalues. Furthermore, instead

of determining the number of preserved SVD factors kt based on the truncation percentage ζ, we
can take a threshold hyperparameter δ and truncate eigenvalues smaller than δ; this δ implicitly
determines kt’s, and we have µkt

(
BtB

⊤
t

)
≥ δ > µki+1

(
BiB

⊤
i

)
, which implies γt ≥ 1. Finally, as

suggested by Fig. 1a, γt can be as large as 1010: If we set δ = 10−2 in the case of Fig. 1a, then the
maximum truncated eigenvalue is of order 10−5 and the minimum preserved is of order 105.

Then, the accumulative error at is defined as

a0 := 0, at :=

t∑
i=1

µki+1

(
BiB

⊤
i

)
, ∀t ≥ 1. (6)
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The term at reflects the information ignored by our algorithm, as µki+1

(
BiB

⊤
i

)
is the maximum

eigenvalue truncated at task i. Note that, even when observing thousands of tasks (e.g., t ≈ 103), if
we truncate the smallest eigenvalues (of order 10−5), at is in the order of 10−2.

Model Assumption. We consider a noisy linear regression model. Specifically, we assume there is
some ground-truth weight matrix W ∗

t ∈ Rct×E and noise E1:t ∈ Rct×Mt satisfying
Y1:t = W ∗

t H1:t + E1:t. (7)
The quantities W ∗

t and E1:t are colored to reflect the fact that they are unknown and not computable.
The model in (7) is related to probabilistic principal component analysis (PPCA); cf. Tipping &
Bishop (1999) and Chapter 2.2 of Vidal et al. (2016). The two main differences with PPCA are that
we make no probabilistic assumptions on H1:t or E1:t (except in Appendix F); and we consider the
over-parameterized case with large E, while PPCA assumes W ∗

t is a tall matrix (i.e., E < ct).

Bound The Training MSE. In the over-parametrized regime E ≫ Mt, a solution to Min-Norm
should, in principle, perfectly fit the data and achieve zero training MSE. However, solving Min-Norm
is numerically unstable and empirically entails huge losses (Fig. 4). As a remedy, our approach
truncates the data spectrum continually, trading off between perfectly fitting training data and
increasing numerical stability. The following theorem, whose proof can be found in Appendix E,
connects the eigenvalue ratio γt and the accumulative error at with our method’s training loss,
showing that the training MSE is provably under control:
Theorem 1. Let Bt, γt, at be defined as in (3), (5), and (6) respectively. If Y1:t = W ∗

t H1:t + E1:t
(7), then the output W̃t = Y1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t of our method (4) satisfies

1

Mt

∥∥W̃tH1:t − Y1:t

∥∥2
F ≤ 4 · ∥W ∗

t ∥2F
(

at
Mt

+
at−1(t− 1)

γtMt
+

at−1(t− 1)2

γ2
tMt

)
(8)

+ 2 · ∥E1:t∥2
(
(Mt − kt)

Mt
+

(t− 1)min {Mt−1 − kt−1, (t− 1)kt}
γ2
tMt

)
.

In (8), ∥·∥ is an overloaded notation, denoting the spectrum norm of a matrix and also the Euclidean
norm of a vector. One of the main quantities governing the bound in Theorem 1 is at/Mt, which
reflects the truncation process for the current task. When truncating the smallest eigenvalues (of order
10−5) and observing hundreds of tasks, at is in the order of 10−3, which makes at/Mt insignificant.
Then, the terms (t−1)/γt and at−1/Mt capture the continual past truncations and are equal to zero for
t = 1. Similarly to at, when truncating only the smallest eigenvalues, we have at−1 ≈ 10−5(t− 1)
and (t − 1)/γt ≈ 10−10(t − 1). Hence, all terms involving (t − 1)/γt and at−1/Mt are under
control for hundreds- even thousands- of tasks. Finally, although the ground-truth W ∗

t and noise E1:t
are unknown, we empirically verify that the minimum-norm solution to LoRanPAC achieves high
accuracy (Section 6). This suggests the linear model assumption is adequate, and that ∥E1:t∥2 and
∥W ∗

t ∥2F are reasonably small. In summary, the upper bound (8) shown in Theorem 1 behaves well
and is quite small if we truncate the eigenvalues suitably (which makes γt large and at small).

Bound The Test MSE. Consider a test sample (h,y) satisfying y = W ∗
t h+ ϵ for some noise vector

ϵ. To derive a bound on the test MSE, we assume that h is randomly sampled from some distribution
with a finite second-order moment (Λ := E[hh⊤] < ∞), and that ϵ is random, independent of
h. Given the output W̃t of our method (4), we bound its test error Eh,ϵ

[
∥W̃th − y∥2

]
over the

randomness of h, ϵ as follows:
Theorem 2. Let Bt, γt, at be defined as in (3), (5), and (6) respectively. Assume Y1:t = W ∗

t H1:t +

E1:t (7) and y = W ∗
t h+ ϵ with Λ := E[hh⊤]. The output W̃t of Algorithm 1 satisfies

Eh,ϵ

∥∥W̃th− y
∥∥2 ≤ 4 · ∥W ∗

t ∥2F · Bt + 4 · ∥E1:t∥2 · Vt + 2 · Eϵ

[
∥ϵ∥2

]
, (9)

where Bt and Vt are defined as follows:

Bt =

∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥(1 + (t− 1)2

γ2
t

)
+

(
at
Mt

+
at−1(t− 1)

γtMt
+

at−1(t− 1)2

γ2
tMt

)

Vt =

∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥ ·
(

1
γt

min {Mt−1 − kt−1, (t− 1)kt}+ kt

)
µkt

(BtB⊤
t

)
+

kt
Mt

+

(
t− 1

γ2
tMt

+
2

γtMt

)
·min {Mt−1 − kt−1, (t− 1)kt} .

(10)

6
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There are two major terms in Bt (10). The term in the right-most large parenthesis also appears in
the error bound of Theorem 1; and reflects the fact that training losses impact test errors. Then, the
term

∥∥Λ− 1
Mt

H1:tH
⊤
1:t

∥∥ is commonly seen in covariance estimation (Wainwright, 2019), where h
and the columns of H1:t are assumed to be independent i.i.d. Gaussian vectors. In this case, if Λ
furthermore satisfies some boundedness condition, we can show

∥∥Λ− 1
Mt

H1:tH
⊤
1:t

∥∥ converges to
0 as Mt →∞; cf. Theorem 9 of Koltchinskii & Lounici (2017). On the other hand, the Gaussian
assumption is sufficient but not necessary, and a similar conclusion is reached if we take a much
weaker assumption called hypercontractivity (Jirak et al., 2024). Note that Vt is independent of
noise, so the rest of the terms in (9), which are weighted by noise magnitudes ∥E1:t∥2, Eϵ

[
∥ϵ∥2

]
, are

negligible if the noise is sufficiently small.

5 RELATED WORK

We now discuss related works that are the most relevant to our method and theory. A more extensive
review of the literature and context is in Appendix H.

RanPAC. The RanPAC method of McDonnell et al. (2023) motivates our use of random ReLU
features H1, . . . ,Ht. It amounts to solving the ridge regression problem (with some λ > 0)

min
W∈Rct×E

λ · ∥W ∥2F + ∥WH1:t − Y1:t∥2F. (RanPAC)

The choice of hyperparameter λ is crucial; RanPAC with a small regularization λ fails to achieve
competitive performance, while it might work well with a large enough λ (e.g., λ = 104); cf. Fig. 12.
In constrast, Prabhu et al. (2024) finds that small λ (of order 10−5) works better if H1:t is replaced
with random Fourier features. This implies the optimal choice of λ depends, among other factors, on
the scale of the features and the noise level. Our method also has a hyperparameter, the truncation
percentage ζ, while the choice of ζ is less sensitive to these factors (Fig. 2). In the implementation
of McDonnell et al. (2023), RanPAC selects λ from the predefined set {10−8, 10−7, . . . , 108} via
cross-validation on a small faction of training data. Although this stabilizes RanPAC in some cases,
cross-validation can fail when the validation (or training) set is small and not representative of test
data. Unfortunately, this failure occurs often in CIL with small increments (cf. Table 2, Section 6).

In more detail, for every task t and every each candidate choice of λ, RanPAC maintains the
covariances H1:tH

⊤
1:t, Y1:tH

⊤
1:t, to solve the normal equations W (H1:tH

⊤
1:t + λIE) = Y1:tH

⊤
1:t

in variable W using off-the-shelf solvers implemented in PyTorch, which in general takes O(E3)
time. In contrast, LoRanPAC has O(E(kt−1 +mt)

2) time complexity, and this is why it is slower
than LoRanPAC for the same E, particularly when E is large (cf. Fig. 3, Section 6). Certainly, both
RanPAC and LoRanPAC can potentially be implemented more efficiently. For example, RanPAC
involves inverting the regularized covariance H1:tH

⊤
1:t + λIE , and this inverse can be updated

continually via the Sherman–Morrison–Woodbury formula. This formula is at the heart of the classic
recursive least-squares method (Sayed, 2008), and its philosophy is also found in recent continual
learning papers (Min et al., 2022; Zhuang et al., 2022; 2023). However, it is known that such a
scheme can be numerically unstable, brittle for ill-conditioned data. Indeed, in our setting, We find the
implementation based on the Sherman–Morrison–Woodbury formula suffers from numerical errors
and is unable to maintain good accuracy. Moreover, numerical errors accumulate over time, leading
to worse performance for longer sequences of tasks. Finally, even if we know the numerical errors
might arise in these methods, there is no obvious way to remedy them. This is different from our
implementation based on robust truncated SVD, which has the advantage that we could (empirically)
reduce numerical errors by re-orthogonalizing Ũ1:t (see Remark 4 and Algorithm 2).

One more component in RanPAC is a preprocessing step called first-session adaptation. That is,
before using the pre-trained model for continual learning, one fine-tunes it with data from the first
task in a parameter-efficient way (Panos et al., 2023). This needs extra hyperparameters and yields
different features than H1:t. We study the impact of this step in Table 1, Section 6.

The final point that relates LoRanPAC to RanPAC is this: W t in (2) is a global minimizer of

min
W∈Rct×E

∥W τkt(H1:t)− Y1:t∥2F. (11)

Both LoRanPAC and RanPAC aim to minimize the MSE loss; the former uses truncation and the
latter uses regularization to make the problem better conditioned. The MSE loss typically yields
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similar performance to the cross-entropy loss in many settings (Janocha & Czarnecki, 2017; Hui &
Belkin, 2021), and the MSE loss is preferred here as it allows for a closed-form least-squares solution
to be rapidly computed and continually updated.

ICL. LoRanPAC is also related to the Ideal Continual Learner (ICL) of Peng et al. (2023), which in
the linear, over-parameterized case is the following linearly constrained quadratic problem:

min
W∈Rct×E

∥WHt − Yt∥2F s.t. WHi = Yi, i = 1, . . . , t− 1. (ICL)

Proposition 5 of Peng et al. (2023) gives a method based on SVD to solve ICL; it is proved in
Peng & Vidal (2025) that this method implicitly finds the solution to Min-Norm. But we have seen
in Fig. 1 that solving Min-Norm is numerically challenging due to highly ill-conditioned features
H1:t. Proposition 6 of Peng et al. (2023) further suggests that solving ICL by a gradient-based
method gives the approach of Farajtabar et al. (2020), known as Orthogonal Gradient Descent (OGD).
Subsequently, OGD is combined with the idea of SVD truncation in the PCA-OGD method (Doan
et al., 2021). As gradient-based methods, OGD and PCA-OGD converge slowly for ill-conditioned
data and would be less efficient than our LoRanPAC implementation; the differences between PCA-
OGD and our method are thoroughly discussed in our rebuttal. The OR-Fit method of Min et al.
(2022) improves PCA-OGD by devising carefully chosen stepsizes that facilitate solving the current
task. Their proposed stepsizes are related to ICL and recursive least-squares in an intriguing manner;
we refer the reader to Peng & Vidal (2025) for the precise mathematical connections and a unifying
perspective on the aforementioned methods.

Principal Component Regression. LoRanPAC combines principal component analysis and ordinary
least-squares, which is analogous to principal component regression (PCR) (Xu & Hsu, 2019; Huang
et al., 2022; Hucker & Wahl, 2023; Bach, 2024; Green & Romanov, 2024). These papers consider
the offline setting, where truncation is performed only once. In contrast, we analyze the effect of
continual truncation, which is most pertinent for CL. Indeed, for t = 1, B1 of Theorem 2 is equal to
the corresponding term in Theorem 1 of Huang et al. (2022) up to a constant. More importantly, these
papers have statistical assumptions on H1:t, which are potentially violated by generating H1:t via
Ht := relu(PXt), with Xt consisting of features from pre-trained models. In contrast, Theorems 1
and 2 have few assumptions, and so they apply, at least in principle, to the full architecture (i.e., a
pre-trained model and random ReLU feature model in cascade).

6 NUMERICAL VALIDATION

This section highlights the performance and efficiency of LoRanPAC in the CIL setting across
a diverse range of datasets and increments. For additional results, see Appendix K, particularly
Appendix K.4 for experimental outcomes in the DIL (domain-incremental learning) setting.

6.1 SETUP

Baselines. The most relevant baseline to compare is RanPAC (McDonnell et al., 2023). Additional
competitive baselines include L2P (Wang et al., 2022d), DualPrompt (Wang et al., 2022c), Co-
daPrompt (Smith et al., 2023), SimpleCIL, ADAM (Zhou et al., 2023) and EASE (Zhou et al., 2024a).
We also compare LoRanPAC with a joint linear classifier, that is, a linear model trained using either
the pre-trained features X1:T of all T tasks, or the random ReLU features H1:T . We denote these two
methods by LC (X1:T ) and LC (H1:T ). To ensure a fair comparison, all experiments are conducted
based on the PILOT GitHub repository of Sun et al. (2023). Additional experimental details, as well
as a comprehensive review of relevant baselines is given in Appendix J and Appendix H.

Pre-trained Models. We use ViT models pre-trained on ImageNet-1K; specifically the model
vit_base_patch16_224 from the timm repository (Wightman, 2019). Experiments using ViTs
pre-trained on ImageNet-21K are presented in Appendix K.2.

Datasets. Following prior works (Zhou et al., 2023; McDonnell et al., 2023), we run CIL experiments
with B-q1, Inc-q2 on continual learning versions of the following datasets: CIFAR100 (Krizhevsky
et al., 2009), ImageNet-R (Hendrycks et al., 2021a), ImageNet-A (Hendrycks et al., 2021b), CUB-200
(Wah et al., 2011), ObjectNet (Barbu et al., 2019), OmniBenchmark (Zhang et al., 2022), VTAB
(Zhai et al., 2019), and StanfordCars (Krause et al., 2013). We set q1 = 0 for most cases, but since
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Table 1: Final accuracy with pre-trained ViTs. Large accuracy gaps between RanPAC and LoRanPAC
(ours) are shown in bold. †: Methods using first-session adaptation with the hyperparameters set as
per RanPAC†. ∗: Methods using first-session adaptation with the hyperparameters set as per EASE∗

(Zhou et al., 2024a). Table 14 reports standard deviation. Appendix J reports experimental details.

(Part 1) CIFAR100 (B-0) ImageNet-R (B-0) ImageNet-A (B-0) CUB-200 (B-0) Avg.

LC (X1:T ) 87.56 72.42 58.85 88.76 76.90
LC (H1:T ) 87.76 73.00 59.25 88.72 77.18

Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20

L2P 80.25 83.53 83.57 67.92 71.78 73.42 44.50 48.52 51.28 53.60 59.20 67.81 65.45
DualPrompt 80.85 83.86 84.59 67.12 71.57 72.87 49.70 53.72 56.75 54.79 63.99 69.93 67.48
CodaPrompt 82.93 86.31 87.87 67.80 72.73 74.85 34.43 49.57 59.51 36.39 60.18 71.29 65.32
SimpleCIL 80.48 80.48 80.48 63.47 63.47 63.47 58.72 58.72 58.72 80.45 80.45 80.45 70.78
RanPAC 86.71 87.02 87.10 71.90 71.97 72.50 56.48 62.34 61.75 88.08 87.15 88.13 76.76
LoRanPAC 88.18 88.18 88.21 73.67 73.72 73.63 62.74 63.20 63.20 89.36 89.27 89.23 78.55

ADAM† 83.55 85.13 85.86 63.73 65.03 71.40 58.72 58.66 58.99 80.49 80.66 81.00 72.77
RanPAC† 88.73 90.04 90.74 70.80 73.37 78.80 62.34 62.08 62.28 88.42 87.57 88.68 78.65
LoRanPAC† 89.73 90.82 91.44 73.58 74.55 79.13 62.74 62.80 62.94 89.14 89.19 89.27 79.61

EASE∗ 84.43 86.48 88.16 73.53 77.02 77.55 58.26 61.69 62.28 80.66 81.68 81.13 76.07
LoRanPAC∗ 89.46 90.90 91.67 78.73 80.43 81.45 63.40 64.45 65.64 89.14 89.19 89.44 81.16

(Part 2) ObjectNet (B-0) OmniBenchmark (B-0) VTAB (B-10) StanfordCars (B-16) Avg.
LC (X1:T ) 59.70 79.55 91.32 74.12 76.17
LC (H1:T ) 59.96 80.02 91.17 73.65 76.20

Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20

L2P 45.53 52.05 55.49 54.50 57.29 60.50 59.32 73.25 78.91 13.70 27.46 43.68 51.81
DualPrompt 47.56 53.68 55.64 56.14 59.18 62.39 64.10 77.78 83.75 11.38 18.84 27.89 51.53
CodaPrompt 46.61 54.44 59.17 60.00 64.98 68.25 68.77 76.81 86.32 7.96 11.29 30.74 52.95
SimpleCIL 51.66 51.66 51.66 70.19 70.19 70.19 82.53 82.53 82.53 35.46 35.46 35.46 59.96
RanPAC 58.77 57.66 57.69 77.63 77.63 77.46 91.15 91.58 91.58 58.03 71.40 71.40 73.50
LoRanPAC 60.83 60.86 60.77 79.50 79.60 79.70 92.46 92.55 92.56 74.21 74.39 74.39 76.82

ADAM† 52.16 53.94 55.97 70.54 70.53 70.38 82.55 82.55 82.55 35.61 35.61 35.61 60.67
RanPAC† 59.14 61.54 64.59 78.10 78.46 78.86 91.48 91.86 91.86 58.65 72.24 72.24 74.56
LoRanPAC† 61.78 63.56 66.48 80.07 80.28 80.45 92.55 92.53 92.60 74.87 74.89 75.13 77.93

EASE∗ 49.28 53.88 57.05 70.33 70.68 70.84 89.85 93.48 93.49 32.43 31.77 29.00 61.84
LoRanPAC∗ 61.57 63.40 66.29 80.02 80.42 80.82 92.68 92.71 92.67 75.91 75.71 75.96 78.18

StanfordCars and VTAB have 196 and 50 classes, respectively, we take q1 = 16 and q1 = 10 for
them. We let q2 vary in {5, 10, 20}, and also consider the more challenging case q2 = 1.

Metrics. After learning task t we evaluate the top-1 classification accuracyAi,t for every i = 1, . . . , t.
For a total of T tasks, the accuracy matrix A is defined as a T × T upper triangular matrix with its
(i, t)-th entry being Ai,t. Final accuracy is defined as the average 1

T

∑T
i=1Ai,T of the last column

of A. Total accuracy is defined as the average 1
T (T−1)

∑
1≤i≤t≤T Ai,t of all upper triangular entries.

Following common practices, we use total accuracy and final accuracy as our evaluation metrics.

6.2 EXPERIMENTAL RESULTS AND ANALYSIS

Table 1 contains the main results for q2 = 5, 10, 20 on 8 different CIL datasets. First observe that L2P,
DualPrompt, and CodaPrompt are unstable as their accuracy varies significantly in different datasets
for different values of q2. Second, SimpleCIL, ADAM, and EASE are unstable as their performance
is largely compromised on StanfordCars. Then, RanPAC is unstable with respect to q2 as it exhibits a
large performance gap compared to LoRanPAC for q2 = 5 on ImageNet-A and StanfordCars. Finally,
we see LoRanPAC has more stable performance across datasets and for varying q2.

Why Does LoRanPAC Uniformly Outperform RanPAC? The first reason is that LoRanPAC’s
high efficiency and scalability enable the use of a larger embedding dimension. Indeed, LoRanPAC
uses E = 105, taking advantage of the scaling law (Fig. 6, Appendix K.5), while RanPAC uses its
default choice E = 104. Note that this is a fair comparison since LoRanPAC’s implementation is
more scalable and more efficient than RanPAC’s. Specifically, LoRanPAC has O(E(kt−1 +mt)

2)
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Figure 3: Training times (in minutes) for varying embedding dimensions E.

time complexity while RanPAC takes O(E3) time for each task t. An alternative way to make a fair
comparison is to set the same embedding dimension E for both methods, in which case LoRanPAC
can be up to 1000 times faster than RanPAC (e.g., see E = 25000 in Fig. 3).

The second reason, as mentioned earlier, is that the cross-validation strategy of McDonnell et al.
(2023) might fail to choose a suitable regularization λ for RanPAC when the validation set is small.
This is the case in ImageNet-A (B-0, Inc-5) and StanfordCars (B-16, Inc-5) of Table 1, where the
validation sets are small and RanPAC’s performance is severely degraded. A more careful analysis
of these two failure cases shows that the accuracy matrices of RanPAC have multiple columns with
nearly zero entries (cf. Fig. 15a and Fig. 17c), exposing RanPAC’s instability.

Table 2: Final and total accuracy in CIL datasets with q2 = 1 (Inc-1).

CIFAR100 ImageNet-R ImageNet-A CUB ObjectNet OmniBenchmark VTAB StanfordCars

Final Accuracy
RanPAC 86.99±0.06 70.12±0.39 36.6±25.35 55.15±37.14 57.14±0.24 77.9±0.04 91.47±0.3 35.56±24.75

LoRanPAC 88.19±0.05 73.66±0.07 62.76±0.16 89.19±0.06 60.82±0.15 79.3±0.06 92.51±0.05 74.32±0.11

Total Accuracy
RanPAC 90.46±0.73 69.1±0.37 44.23±0.46 74.67±2.87 62.37±2.1 85.23±0.56 74.67±3.07 56.27±0.78

LoRanPAC 92.18±0.56 78.87±0.34 70.08±0.86 92.89±0.59 70.54±1.94 86.51±0.59 96.41±0.31 81.18±0.68

Inc-1: One Class at A Time. In light of the above analysis, we consider the CIL setting, with one
class given at each iteration (Inc-1). In this setting, a new task has much fewer training samples and
CL methods need to cope with hundreds of tasks (classes) on certain datasets. Note that adapter-based
methods such as EASE are infeasible for CIL with Inc-1 (cf. Appendix H.1). In this setting, the
fragility of RanPAC with respect to the choice of λ is amplified (see Table 2), and the method exhibits
a significant performance drop compared to Table 1. In contrast, LoRanPAC’s performance is stable,
exhibiting high accuracy comparable to the cases of Inc-{5, 10, 20} in Table 1. Accuracy matrices
associated with Table 2 are plotted in Figs. 14 to 18 of Appendix K.10.3, where we present similar
results for Inc-{1, 2, 4, 5}.

7 CONCLUSION

This work puts forward a simple method that bridges the gap between empirical performance and the-
oretical guarantees in continual learning with pre-trained models. By addressing the ill-conditioning
of lifted features through continual SVD truncation, our approach achieves both stability and strong
performance. Extensive experiments demonstrated that our method outperforms state-of-the-art
methods across multiple datasets and can handle sequences with hundreds of tasks. Theoretically,
we proved that our method maintains small training and test errors by appropriately truncating SVD
factors. This work underscores the potential of combining empirical techniques with principled
frameworks to develop robust and scalable continual learning systems, and will encourage follow-up
works to achieve so as well.
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A OVERVIEW OF THE APPENDIX

• In Appendix B, we complie all the mathematical notations used throughout the paper.
• In Appendix C we describe the implementation details of LoRanPAC. There, we also discuss

other potential implementations and our design choice.
• In Appendix D, we present auxiliary lemmas that are useful for proving our main theorems.
• In Appendix E, we prove the theorems displayed in the main paper (Theorems 1 and 2).
• In Appendix F we present results similar to Appendix E, with the difference that we now

assume the noise is Gaussian, which gives slightly tighter error bounds.
• In Appendix G, we prove some extra theoretical results such as perturbation bounds on

eigenvalues and eigenvectors (Theorem 6).
• In Appendix H we review related works on continual learning, focusing on CL methods

with pretrained models and existing theoretical developments.
• In Appendix I we report the statistics of the datasets we use for experiments.
• In Appendix J we specify the experimental setup.
• In Appendix K we report extra experimental results, figures, and tables.

B NOTATIONS

Here in Table 3 we compile all the notations used in the paper.

Table 3: Notations

d dimension of pre-trained features
E embedding dimension
mt number of training samples for task t
Mt m1 + · · ·+mt

ct total number of classes seen in the first t tasks
T total number of tasks
N (0, 1) Gaussian distribution with mean 0 and variance 1
⌈·⌉ the ceiling operator, which maps a number to the closest integer no smaller than it

IE E × E identity matrix
Xt d×mt matrix, whose columns are output features of pre-trained models
P E × d random embedding matrix with N (0, 1) entries
Ht Random ReLU features relu(PXt) as defined in (1)
λ ridge regularization parameter in RanPAC

Bt the matrix whose SVDs are truncated by Algorithm 4, defined in (3)
kt the number of singular values and vectors preserved for the first t tasks
τkt

(·) function that computes the best rank-kt approximation of a matrix
µk(·) the k-th largest eigenvalue of a symmetric matrix

U1:tΣ1:tV
⊤
1:t SVD of H1:t

U1:tΣ1:tV
⊤
1:t SVD of τkt

(H1:t)

Ũ1:t, Σ̃1:t SVD factors of Bt

at accumulative error defined in (6)
γt the eigengap between the present and past, defined in (5)
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C IMPLEMENTATION DETAILS FOR LORANPAC

In this section, we give full details of our algorithm for LoRanPAC. Note that Algorithm 1 of the
main paper is a concise version of our approach, used to illustrate the methodology at high level.

In Appendix C.1, we introduce Algorithm 2, our implementation of the incremental SVD approach.
Note that Algorithm 2 dates back at least to Bunch & Nielsen (1978) and has been applied to
image processing, computer vision, and latent semantic indexing (Zha & Simon, 1999; Levey &
Lindenbaum, 2000; Brand, 2002; Artac et al., 2002; Ross et al., 2008). Recently a link between
continual learning and incremental SVD was built (Peng et al., 2023). However, it has not been
applied to the context we consider here to the best of our knowledge, and suitable modifications
are needed to incorporate incremental SVD for solving LoRanPAC satisfactorily. For example, we
truncate the SVD factors in each continual update as shown Algorithm 2, and the outputs (Ũ1:t, Σ̃1:t)
of Algorithm 2 are not necessarily equal to the top-kt SVD factors of H1:t. It is then our contribution
to arm Algorithm 2 with theoretical guarantees (cf. Lemma 1 and Theorem 6).

In Appendix C.2, we introduce Algorithm 4, a continual learning method that stably solves LoRan-
PAC.

C.1 INCREMENTAL TRUNCATED SVD

We first explain the design choice as suggested by (2): Should we maintain all SVD factors Ũ1:t, Σ̃1:t,
and Ṽ1:t, or should we just maintain the singular values Σ̃1:t and and left singular vectors Ũ1:t? In
the main paper, we suggested taking the latter choice, as we empirically found continually updating
all SVD factors Ũ1:t, Σ̃1:t, and Ṽ1:t lead to large test errors.

We now describe how to update the top kt SVD factors Ũ1:t, Σ̃1:t from the previous estimates
Ũ1:t−1, Σ̃1:t−1 and new data Ht. Let QtRt be the QR decomposition of (IE − Ũ1:t−1Ũ

⊤
1:t−1)Ht.

Then we have [
Ũ1:t−1Σ̃1:t−1, Ht

]
=
[
Ũ1:t−1, Qt

] [
Σ̃1:t−1 Ũ⊤

t−1Ht

0 Rt

]
.

Note that [Ũ1:t−1, Qt] is already orthogonal, we can do a truncated SVD on the smaller (kt−1 +
mt)× (kt−1 +mt) matrix of the right-hand side. The full procedure is summarized below:

Algorithm 2: Incremental Truncated Singular Value Decomposition

1 Input: data matrix Ht ∈ RE×mt of task t, desired output rank kt ≤ min{E,Mt}
(Mt := m1 + · · ·+mt), truncated SVD factors Ũ1:t−1 ∈ RE×kt−1 and Σ̃1:t−1 ∈ Rkt−1×kt−1

of the previous t− 1 tasks;
2 Compute the QR decomposition QtRt of (IE − Ũ1:t−1Ũ

⊤
1:t−1)Ht;

3 Set (Σtmp,Utmp) to the top-kt SVD components of // Algorithm 3
4 [

Σ̃1:t−1 Ũ⊤
t−1Ht

0 Rt

]
∈ R(kt−1+mt)×(kt−1+mt); (12)

5 Set Σ̃1:t ← Σtmp and Ũ1:t ← [Ũt−1 Qt]Utmp;
6 Ũ1:t ← The orthogonal factor of QR decomposition of Ũ1:t; // improve numerical stability

7 Output: (Ũ1:t, Σ̃1:t);

Remark 4. Since [Ũ1:t−1 Qt] and Utmp are orthogonal, Ũ1:t is expected to be orthogonal as well.
However, the multiplication Ũ1:t = [Ũt−1 Qt]Utmp might lose orthogonality due to numerical errors,
especially when t gets large. This is fixed by an extra post-processing step that orthogonalizes Ũ1:t.

Memory Complexity Analysis. The extra working memory of this approach is roughly:

• O(Emt +m2
t ), for the QR factors QtRt;

• O((kt−1 +mt)
2), for the matrix in (12) and its SVD factors;
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Algorithm 3: Truncated Singular Value Decomposition (TSVD)

1 Input: matrix H ∈ RE×m and desired output rank r ≤ min{E,m};
2 tmp← min{E,m};
3 Compute the SVD σ1u1v

⊤
1 + · · ·+ σtmputmpv

⊤
tmp of H;

4 Set Σ̃← diag(σ1, . . . , σr), Ũ ← [u1, . . . ,ur];
5 Output: (Ũ , Σ̃);

Hence, for large E, this is less than the O(E(kt−1 +mt)) memory used by the direct SVD method.

Time Complexity Analysis. The major cost is the SVD of (12), which takes O((kt−1 +mt)
3) time.

While in principle the QR orthogonalization for the post-processing of Ũ1:t takes O(E(kt−1 +mt)
2)

time, it is significantly faster than SVD as the constants behind its O(·) is very small. Therefore, one
would expect the SVD on the matrix of (12) in O((kt−1 +mt)

3) time should be much faster than the
SVD on the matrix [Ũ1:t−1Σ̃1:t−1, Ht], which needs O(E(kt−1+mt)

2) time, where E is far larger
than kt−1 +mt (e.g., E = 105 and kt−1 +mt = 104). This is true on a sequential machine, but their
running time difference is not significant for highly parallel GPU implementations in our experience
(e.g., computing the inner product between two E-dimensional vectors has similar running times to
computing the inner product between (kt−1 +mt)-dimensional vectors, due to parallelism). Hence,
for a parallel implementation, the main advantage of doing SVD on the matrix in (12) is that it takes
less working memory than SVD on [Ũ1:t−1Σ̃1:t−1, Ht].

Remark 5. Algorithm 3 can, in fact, be implemented by randomized linear algebra techniques
(Halko et al., 2011). Some of these techniques compute by design only the top k SVD factors.
Intuitively this could save time and memory if k is very small. One such method is conveniently
implemented in PyTorch as well (torch.svd_lowrank). However, in our rudimentary attempts
at using randomized approaches, we found this PyTorch routine does not seem to be as efficient or
accurate as our present implementation (we consistently set truncation percentage ζ to 25%). This
observation aligns with the PyTorch document of torch.svd_lowrank: In general, use the full-
rank SVD implementation torch.linalg.svd() for dense matrices due to its 10-fold higher performance
characteristics. The low-rank SVD will be useful for huge sparse matrices that torch.linalg.svd()
cannot handle. For the moment, we conclude that it needs deeper investigations to see whether
randomized techniques are suitable for the continual learning contexts.

C.2 CONTINUAL SOLVER FOR LORANPAC

The proposed algorithm is shown in Algorithm 4. Here are a few details that we have not yet
mentioned in the main paper. First, note that Algorithm 4 formally updates Mt ad Jt continually. At
Line 8 of Algorithm 4 we compute the label-feature covariance matrix J1 := Y1H

⊤
1 ∈ Rc1×E , and

then at lines 10 and 11 we update Jt−1 into Jt via Jt ← Jt−1 + Jtmp. The attentive reader might
find that Jt−1 is of size ct−1 × E while Jtmp is of size ct × E. But it could be that ct−1 < ct, so
it might not make sense to add Jt−1 and Jtmp as in Line 11. Note that we wrote Line 11 just for
simplicity. The implementation would pad ct − ct−1 zero rows to Jt−1 in a similar fashion to how
we extend Yt−1 into Yt when more classes are given, and this is what Line 11 should mean.

Second, we add an extra parameter rmax, to control the maximum allowable rank, that is the maximum
number of columns Ũ1:t is allowed to have. The purpose is to control the time complexity of
Algorithm 4 and allow it to run more efficiently on large datasets such as DomainNet (cf. Tables 7
and 8). We argue both the truncation percentage ζ and maximum allowable rank rmax are needed:
With ζ alone, the method might run slowly or even exceed the memory for large datasets such as
DomainNet (cf. Tables 7 and 8); with rmax alone, truncation is not activated before receiving rmax
samples, and numerical instability if it arises, can not be prevented before truncation is in effect.
Table 4 gives the values of ζ and rmax we use for each dataset.
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Dataset Truncation Percentage ζ Embedding Dimension E Maximum Allowable Rank rmax

CIFAR100 25% 105 10000
ImageNet-R 25% 105 10000
ImageNet-A 25% 105 10000
CUB-200 25% 105 10000
ObjectNet 25% 105 20000
OmniBenchmark 25% 105 20000
VTAB† 25% 105 10000
StanfordCars 25% 105 10000

Table 4: Hyperparameters we use for each dataset.

Algorithm 4: Continual Solver of LoRanPAC (concise version in Algorithm 1)

1 Input of Task t: Random ReLU features Ht ∈ RE×mt , label matrix Yt ∈ Rct×mt ,
truncation percentage ζ ∈ [0, 1], maximum allowable rank rmax;

2 For t← 1, 2, . . . :
3 Mt ←Mt−1 +mt; // update the total number of samples Mt

4 kt ← min{rmax, (1− ζ)Mt)}; // perserve kt SVD factors for the first t tasks
5 Form Bt as per (3);
6 (Ũ1:t, Σ̃1:t)← Top-kt SVD factors of Bt; // use Algorithm 3 if t = 1, or Algorithm 2 if t > 1

7 If t = 1: // Continual update of Jt := Y1:tH
⊤
1:t

8 J1 ← Output of Algorithm 5 run with inputs H1,Y1; // label-feature covariance of task 1
9 Else:

10 Jtmp ← Output of Algorithm 5 run with inputs Ht,Yt; // label-feature covariance of task t
11 Jt ← Jt−1 + Jtmp;

12 Form the linear classifier W̃t := Jt

(
Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
; // cf. (2) and (4)

D AUXILIARY LEMMAS

The following lemma provides an explicit expression for the difference between the continually
truncated factors Ũ1:tΣ̃

2
1:tŨ

⊤
1:t and covariance H1:tH

⊤
1:t.

Lemma 1. Let Bt be the matrix whose SVDs are truncated by Algorithm 4, as defined in (3). We
have U1 = Ũ1 and Σ1 = Σ̃1. Moreover, we have

H1:tH
⊤
1:t − Ũ1:tΣ̃

2
1:tŨ

⊤
1:t =

t∑
i=1

(
BiB

⊤
i − τki

(
BiB

⊤
i

))
.

Proof of Lemma 1. It should be clear that U1 = Ũ1 and Σ1 = Σ̃1. For every i = 1, . . . , t we have

Ũ1:iΣ̃
2
1:iŨ

⊤
1:i = τki

(
BiB

⊤
i

)
.

and therefore

Ũ1:iΣ̃
2
1:iŨ

⊤
1:i −BiB

⊤
i = τki

(
BiB

⊤
i

)
−BiB

⊤
i .
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Algorithm 5: Compute The Label-Feature Covariance Matrix

1 Input: matrix H = [h1, . . . ,hm] ∈ RE×m and label matrix Y ∈ Rc×m;
2 Convert Y into a vector of indices y = [y1, . . . , ym] such that the i-th column of Y is the yi-th

standard basis vector (i.e., one-hot vector with 1 at position yi);
3 Initialize S = [s1, . . . , sc] to be the E × c zero matrix;
4 For i = 1, . . . ,m: // parallel implementation via torch.Tensor.index_add_
5 Syi ← Syi + hi;
6 Output: S⊤; // S is equal to HY ⊤

A key observation is that summing the above equality over i = 2, . . . , t yields
t∑

i=2

(
Ũ1:iΣ̃

2
1:iŨ

⊤
1:i −BiB

⊤
i

)
=

t∑
i=2

(
τki

(
BiB

⊤
i

)
−BiB

⊤
i

)
⇔

t∑
i=2

(
Ũ1:iΣ̃

2
1:iŨ

⊤
1:i − Ũ1:i−1Σ̃

2
1:i−1Ũ

⊤
1:i−1 −HiH

⊤
i

)
=

t∑
i=2

(
τki

(
BiB

⊤
i

)
−BiB

⊤
i

)
⇔ Ũ1:tΣ̃

2
1:tŨ

⊤
1:t − Ũ1Σ̃

2
1Ũ

⊤
1 −H2:tH

⊤
2:t =

t∑
i=2

(
τki

(
BiB

⊤
i

)
−BiB

⊤
i

)
⇔ Ũ1:tΣ̃

2
1:tŨ

⊤
1:t −H1:tH

⊤
1:t = U1Σ

2

1U
⊤
1 −H1H

⊤
1 +

t∑
i=2

(
τki

(
BiB

⊤
i

)
−BiB

⊤
i

)
⇔ Ũ1:tΣ̃

2
1:tŨ

⊤
1:t −H1:tH

⊤
1:t =

t∑
i=1

(
τki

(
BiB

⊤
i

)
−BiB

⊤
i

)
.

(13)

The last equality also holds for t = 1. This finishes the proof.

The lemma below is a direct consequence of Von Neumann’s trace inequality, and its proof is omitted.
Lemma 2. Given two square matrices A,B with A positive semidefinite, we have

tr(AB) ≤ tr(A) · ∥B∥.

Lemma 3 presented below is elementary.
Lemma 3. Assume C is a positive semidefinite matrix. Then we have

tr(DACBD⊤) + tr(DB⊤CA⊤D⊤) ≤ tr(DACA⊤D⊤) + tr(DBCB⊤D⊤),

where A,B,C,D are matrices of compatible sizes. Therefore, it holds that

tr
(
D(A+B)C(A+B)D⊤) ≤ 2 tr(DACA⊤D⊤) + 2 tr(DBCB⊤D⊤).

The following two lemmas provide upper bounds on several terms appearing naturally in our main
results.
Lemma 4. Let Bt be defined in (3), γt in (5), and at in (6). Define

Dt :=

t∑
i=1

(
BiB

⊤
i − τki

(
BiB

⊤
i

))
. (14)

We have ∥∥∥DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:t

∥∥∥ ≤ t− 1

γt
,∥∥∥Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥∥ ≤ t− 1

γt
,

tr
(
DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
≤ 1

γt
min {Mt−1 − kt−1, (t− 1)kt} ,

tr
(
DtŨ1:tΣ̃

−4
1:t Ũ

⊤
1:t

)
≤ 1

µkt

(
BtB⊤

t

) · 1
γt

min {Mt−1 − kt−1, (t− 1)kt} .
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Proof of Lemma 4. It follows from definition that(
BiB

⊤
i − τki

(
BiB

⊤
i

))
Ũ1:t = 0,

hence DtŨ1:t = Dt−1Ũ1:t. This means∥∥∥DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:t

∥∥∥ =
∥∥∥Dt−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:t

∥∥∥
≤ ∥Dt−1∥ ·

∥∥∥Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:t

∥∥∥
= ∥Dt−1∥ ·

1

µkt

(
BtB⊤

t

) ,
where the last equality follows by definition. On the other hand, we have

∥Dt−1∥ ≤
t−1∑
i=1

µki+1

(
BiB

⊤
i

)
≤ (t− 1)

γt
µkt

(
BtB

⊤
t

)
.

Combining the above proves the first required equality. The second inequality follows similarly.

For the final trace inequality, we have (k0 := 0)

tr
(
DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
= tr

(
Dt−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
(i)
≤ tr(Dt−1) ·

∥∥∥Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:t

∥∥∥
=

t−1∑
i=1

mi+ki−1∑
j=ki+1

µj

(
BiB

⊤
i

) · 1

µkt

(
BtB⊤

t

)
≤ 1

γt

t−1∑
i=1

(mi + ki−1 − ki)

=
1

γt
(Mt−1 − kt−1),

where (i) holds as Dt−1 is positive semidefinite (cf. Lemma 2).

We can also bound tr
(
DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
alternatively as follows:

tr
(
DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
= tr

(
Dt−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
≤ ∥Dt−1∥ · tr(Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:t)

≤ (t− 1)kt
γt

Combining the two bounds on tr
(
DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
proves the third inequality. The fourth inequality

follows similarly.

Lemma 5. Using the notations in Lemma 4, we have

tr
(
DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
≤ t− 1

γ2
t

min {Mt−1 − kt−1, (t− 1)kt} ,∥∥DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥ ≤ at−1 ·
(
(t− 1)2

γ2
t

+
t− 1

γt

)
,∥∥(IE − Ũ1:tŨ

⊤
1:t)H1:tH

⊤
1:t(IE − Ũ1:tŨ

⊤
1:t)
∥∥ ≤ at,∥∥H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t

∥∥2
F ≤

(
t− 1

γ2
t

+
2

γt

)
min {Mt−1 − kt−1, (t− 1)kt}+ kt,

tr
(
Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
≤ 1

µkt

(
BtB⊤

t

) · (min {Mt−1 − kt−1, (t− 1)kt}
γt

+ kt

)
.
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Proof of Lemma 5. Since Dt−1 is positive semidefinite, let Lt−1L
⊤
t−1 be its Cholesky decomposition.

Then we have

tr
(
DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
= tr

(
Dt−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
= tr

(
Lt−1L

⊤
t−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tLt−1L

⊤
t−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
= tr

(
L⊤

t−1Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:tLt−1L

⊤
t−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tLt−1

)
(i)
≤ tr

(
L⊤

t−1Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:tLt−1

)
·
∥∥∥L⊤

t−1Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:tLt−1

∥∥∥
= tr

(
Dt−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
·
∥∥∥L⊤

t−1Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:tLt−1

∥∥∥
(ii)
≤ 1

γt
min {Mt−1 − kt−1, (t− 1)kt} ·

∥∥∥L⊤
t−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tLt−1

∥∥∥ .
In the above, (i) follows from Lemma 2, and (ii) follows from Lemma 4. Continuing with the above
inequality, we have ∥∥∥L⊤

t−1Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:tLt−1

∥∥∥ ≤ ∥Lt−1∥2 ·
1

µkt

(
BtB⊤

t

)
= ∥Dt−1∥ ·

1

µkt

(
BtB⊤

t

)
≤ t− 1

γt
.

Recall the fact DtŨ1:t = Dt−1Ũ1:t. The second inequality in Lemma 5 can be proved as follows:∥∥∥DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥∥
(i)
=
∥∥∥DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

(
Dt + Ũ1:tΣ̃

2
1:tŨ

⊤
1:t

)
Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥∥
=
∥∥∥DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt +DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥∥
≤ ∥Dt−1∥ ·

(∥∥∥Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:tDtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥∥+ ∥∥∥Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:tDt

∥∥∥)
≤ at−1 ·

(
(t− 1)2

γ2
t

+
t− 1

γt

)
.

In the above, (i) follows from Lemma 1.

The third inequality is proved as follows:∥∥(IE − Ũ1:tŨ
⊤
1:t)H1:tH

⊤
1:t(IE − Ũ1:tŨ

⊤
1:t)
∥∥

=
∥∥(IE − Ũ1:tŨ

⊤
1:t)(H1:tH

⊤
1:t − Ũ1:tΣ̃

2Ũ⊤
1:t)(IE − Ũ1:tŨ

⊤
1:t)
∥∥

=
∥∥(IE − Ũ1:tŨ

⊤
1:t)Dt(IE − Ũ1:tŨ

⊤
1:t)
∥∥

≤ ∥Dt∥ = at.

We now prove the fourth inequality:∥∥∥H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t

∥∥∥2
F

= tr
(
H1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
(i)
= tr

(
(DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t + Ũ1:tŨ

⊤
1:t)(DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t + Ũ1:tŨ

⊤
1:t)
)

= tr
(
DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t + 2DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
+ kt

(ii)
≤
(
t− 1

γ2
t

+
2

γt

)
min {Mt−1 − kt−1, (t− 1)kt}+ kt.
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In the above, (i) follows from Lemma 1, and (ii) follows from Lemma 4 and the first inequality we
just proved for Lemma 5.

The fifth inequality can be proved as follows:

tr
(
Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
(i)
= tr

(
Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:t(DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t + Ũ1:tŨ

⊤
1:t)
)

= tr
(
DtŨ1:tΣ̃

−4
1:t Ũ

⊤
1:t

)
+ tr

(
Σ̃−2

1:t

)
(ii)
≤ 1

µkt

(
BtB⊤

t

) · 1
γt

min {Mt−1 − kt−1, (t− 1)kt}+
kt

µkt
(BtB⊤

t

) .
Here, (i) holds as a result of Lemma 1 and (ii) follows from Lemma 4.

Lemma 6. Using the notations in Lemma 4, we have for any W that∥∥W (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IMt)H1:t

∥∥2
F ≤ 2 · ∥W ∥2F

(
at +

at−1(t− 1)

γt
+

at−1(t− 1)2

γ2
t

)
.

Proof. We have∥∥W (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IMt)H1:t

∥∥2

F

= tr
(
W (H1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IMt)H1:tH

⊤
1:t(Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:t − IMt)(W )⊤

)
(i)
≤ tr

(
W (DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t + Ũ1:tŨ

⊤
1:t − IE)H1:tH

⊤
1:t(Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt + Ũ1:tŨ

⊤
1:t − IE)(W )⊤

)
(ii)
≤ 2 tr

(
W (Ũ1:tŨ

⊤
1:t − IE)H1:tH

⊤
1:t(Ũ1:tŨ

⊤
1:t − IE)(W )⊤

)
+ 2 tr

(
WDtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt(W )⊤

)
(iii)
≤ 2 · ∥W ∥2F ·

∥∥(IE − Ũ1:tŨ
⊤
1:t)H1:tH

⊤
1:t(IE − Ũ1:tŨ

⊤
1:t)

∥∥
+ 2 · ∥W ∥2F ·

∥∥DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥
(iv)
≤ 2 · ∥W ∥2F · at + 2 · ∥W ∥2F · at−1 ·

(
(t− 1)2

γ2
t

+
t− 1

γt

)
= 2 · ∥W ∥2F

(
at +

at−1(t− 1)

γt
+

at−1(t− 1)2

γ2
t

)
.

In the above, (i) follows from Lemma 1, (ii) from Lemma 3, (iii) from Lemma 2, and (iv) from
Lemma 5. The proof is complete.

E PROOFS OF THEOREM 1 AND THEOREM 2

Proof of Theorem 1. Let IMt be the Mt ×Mt identity matrix. The training loss can be written as∥∥W̃tH1:t − Y1:t

∥∥2
F

=
∥∥Y1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − Y1:t

∥∥2
F

=
∥∥Y1:t(H

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − IMt

)
∥∥2

F

=
∥∥(W ∗

t H1:t + E1:t)(H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − IMt

)
∥∥2

F

≤ 2 ·
∥∥W ∗

t (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IMt)H1:t

∥∥2
F + 2 ·

∥∥E1:t(H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − IMt)

∥∥2
F.

We can now bound the first term by Lemma 6 as follows:∥∥W ∗
t (H1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IMt

)H1:t

∥∥2
F ≤ 2 · ∥W ∗

t ∥2F
(
at +

at−1(t− 1)

γt
+

at−1(t− 1)2

γ2
t

)
.
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The second term is bounded above as follows:

2 ·
∥∥E1:t(H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t − IMt

)
∥∥2

F

≤ 2 · ∥E1:t∥2 ·
∥∥(H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t − IMt)

∥∥2
F

≤ 2 · ∥E1:t∥2 ·
(
Mt − kt +

t− 1

γ2
t

min {Mt−1 − kt−1, (t− 1)kt}
)
,

where the first inequality follows from Lemma 2 and the last inequality from Proposition 1.

Proof of Theorem 2. Define Dt :=
∑t

i=1

(
BiB

⊤
i − τki

(
BiB

⊤
i

))
. Note that Dt is a symmetric and

positive semi-definite matrix.

Note that we have

Eh

[∥∥W̃th− y
∥∥2] = Eh

[∥∥W̃th−W ∗
t h− ϵ

∥∥2]
= 2 · Eh

[∥∥W̃th−W ∗
t h
∥∥2]+ 2 · ∥ϵ∥2,

so we next focus on bounding Eh

[∥∥W̃th−W ∗
t h
∥∥2]. With the E × E identity matrix IE and

Λ := E[hh⊤], we have

Eh

[
∥W̃th−W ∗

t h∥2
]

= Eh

[
∥Y1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:th−W ∗

t h∥2
]

= Eh

[
∥(W ∗

t H1:t + E1:t)H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:th−W ∗

t h∥2
]

= Eh

[
∥(W ∗

t H1:t + E1:t)H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:th−W ∗

t h∥2
]

≤ 2 · Eh

[
∥W ∗

t H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:th−W ∗

t h∥2
]
+ 2 · Eh

[
∥E1:tH⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:th∥2

]
≤ 2 · Eh

[
∥W ∗

t (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IE)h∥2

]
+ 2 · ∥E1:t∥2 · Eh

[
∥H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:th∥2

]
The term Eh∥H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:th∥2 can be bounded above as follows:

Eh∥H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:th∥2

= tr
(
H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tΛŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t

)
= tr

((
Λ− 1

Mt
H1:tH

⊤
1:t +

1

Mt
H1:tH

⊤
1:t

)
Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
(i)
≤
∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥ · tr(Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
+

1

Mt
tr
(
H1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
(ii)
≤
∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥ ·
(

1
γt

min {Mt−1 − kt−1, (t− 1)kt}+ kt

)
µkt

(BtB⊤
t

)
+

1

Mtγt

(
t− 1

γ2
tMt

+
2

γtMt

)
·min {Mt−1 − kt−1, (t− 1)kt}+

kt
Mt

=: Vt

Here, (i) follows from Lemma 2 and (ii) follows from Lemma 5.
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The term Eh

[
∥W ∗

t (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IE)h∥2

]
satisfies:

Eh

[
∥W ∗

t (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IE)h∥2

]
= tr

(
W ∗

t (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IE)Λ(Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:t − IE)(W

∗
t )

⊤
)

(i)
= tr

(
W ∗

t (DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:t + Ũ1:tŨ

⊤
1:t − IE)Λ(Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt + Ũ1:tŨ

⊤
1:t − IE)(W

∗
t )

⊤
)

(ii)
≤ 2 tr

(
W ∗

t (Ũ1:tŨ
⊤
1:t − IE)Λ(Ũ1:tŨ

⊤
1:t − IE)(W

∗
t )

⊤
)

+ 2 tr
(
W ∗

t DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tΛŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt(W

∗
t )

⊤
)

(iii)
≤ 2 · ∥W ∗

t (IE − Ũ1:tŨ
⊤
1:t)∥2F ·

∥∥(IE − Ũ1:tŨ
⊤
1:t)Λ(IE − Ũ1:tŨ

⊤
1:t)

∥∥
+ 2 · ∥W ∗

t ∥2F ·
∥∥DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tΛŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥
where the above three steps, (i), (ii), and (iii), follow from Lemma 1, Lemma 3, and Lemma 2
respectively. To bound Bt1 :=

∥∥(IE − Ũ1:tŨ
⊤
1:t)Λ(IE − Ũ1:tŨ

⊤
1:t)
∥∥, we have

Bt1 =

∥∥∥∥(IE − Ũ1:tŨ
⊤
1:t)
(
Λ− 1

Mt
Ũ1:tΣ̃

2
1:tŨ

⊤
1:t

)
(IE − Ũ1:tŨ

⊤
1:t)

∥∥∥∥
≤
∥∥∥∥Λ− 1

Mt
Ũ1:tΣ̃

2
1:tŨ

⊤
1:t

∥∥∥∥
≤
∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥+ 1

Mt
·
∥∥∥H1:tH

⊤
1:t − Ũ1:tΣ̃

2
1:tŨ

⊤
1:t

∥∥∥
=

∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥+ 1

Mt
· ∥Dt∥

=

∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥+ at
Mt

.

To bound Bt2 :=
∥∥DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tΛŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥, we have

Bt2 =
∥∥DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tΛŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥
=

∥∥∥∥DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:t

(
Λ− 1

Mt
H1:tH

⊤
1:t +

1

Mt
H1:tH

⊤
1:t

)
Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥∥∥
≤
∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥ · ∥∥Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:tDt

∥∥2
+

1

Mt

∥∥∥DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥∥
≤
∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥ · (t− 1)2

γ2
t

+ at−1 ·
(
(t− 1)2

γ2
t

+
t− 1

γt

)
,

where the last step follows from Lemma 5. Putting together, we have obtained

Eh

[
∥W ∗

t (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IE)h∥2

]
2 · ∥W ∗

t ∥2F
≤ Bt1 + Bt2

≤
∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥ · (1 + (t− 1)2

γ2
t

)
+

at−1

Mt
·
(
(t− 1)2

γ2
t

+
t− 1

γt

)
+

at
Mt

=: Bt.

Combining the above finishes the proof.

F THEORETICAL GUARANTEES UNDER GAUSSIAN ASSUMPTIONS

In this section, we prove slightly tighter results than Theorems 1 and 2 presented in the main paper.
The key idea is to make certain Gaussian assumptions on noise. Specifically, we assume both the
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training noise E1:t and test noise ϵ have i.i.d. N (0, ν2) entries. With these, we present and prove
Theorems 3 to 5 below.
Theorem 3. On top of the settings of Theorem 1, furthermore assume E1:t consists of i.i.d. N (0, ν2)

entries. Then the output W̃t = Y1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t of our method (4) satisfies

1

Mt
EE1:t

∥∥W̃tH1:t − Y1:t

∥∥2
F ≤ 2 · ∥W ∗

t ∥2F
(

at
Mt

+
at−1(t− 1)

γtMt
+

at−1(t− 1)2

γ2
tMt

)
(15)

+ ctν
2

(
(Mt − kt)

Mt
+

(t− 1)min {Mt−1 − kt−1, (t− 1)kt}
γ2
tMt

)
.

Proof of Theorem 3. Let IMt
be the Mt ×Mt identity matrix. The training loss can be written as

EE1:t

∥∥W̃tH1:t − Y1:t

∥∥2
F

= EE1:t

∥∥Y1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − Y1:t

∥∥2
F

= EE1:t

∥∥Y1:t(H
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − IMt)

∥∥2
F

= EE1:t

∥∥(W ∗
t H1:t + E1:t)(H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t − IMt)

∥∥2
F

=
∥∥W ∗

t (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IMt

)H1:t

∥∥2
F + EE1:t

∥∥E1:t(H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − IMt

)
∥∥2

F.

We can now bound the first term by Lemma 6 as follows:∥∥W ∗
t (H1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IMt)H1:t

∥∥2
F ≤ 2 · ∥W ∗

t ∥2F
(
at +

at−1(t− 1)

γt
+

at−1(t− 1)2

γ2
t

)
.

The second term can be bounded above as follows:

EE
∥∥E1:t(H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t − IMt

)
∥∥2

F

= EE tr
(
(H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t − IMt

)E1:t⊤E1:t(H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − IMt

)
)

= ctν
2 ·
∥∥∥H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t − IMt

∥∥∥2
F

≤ ctν
2 · (Mt − kt) + ctν

2 · t− 1

γ2
t

min {Mt−1 − kt−1, (t− 1)kt} .

The last inequality follows from Proposition 1. Combining the above finishes the proof.

While in Theorem 3 bounds the average training MSE loss 1
Mt

EE1:t

∥∥W̃tH1:t−Y1:t

∥∥2
F, an alternative

is to give a bound on 1
Mt

EE1:t

∥∥W̃tH1:t −W ∗
t H1:t

∥∥2
F. The latter term evaluates the difference

between the prediction of W̃t and the ground-truth W ∗
t on training data H1:t. The difference between

the two terms is that Y1:t = W ∗
t H1:t+E1:t is contaminated by noise. We bound 1

Mt
EE1:t

∥∥W̃tH1:t−
W ∗

t H1:t

∥∥2
F in the next result.

Theorem 4. On top of the settings of Theorem 1, furthermore assume E1:t consists of i.i.d. N (0, ν2)

entries. Then the output W̃t = Y1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t of our method (4) satisfies

1

Mt
EE1:t

∥∥W̃tH1:t −W ∗
t H1:t

∥∥2
F ≤ 2 · ∥W ∗

t ∥2F
(

at
Mt

+
at−1(t− 1)

γtMt
+

at−1(t− 1)2

γ2
tMt

)
+ctν

2·
(

kt
Mt

+

(
t− 1

γ2
tMt

+
2

γtMt

)
min {Mt−1 − kt−1, (t− 1)kt}

)
.

Proof of Theorem 4. We have

EE1:t

∥∥W̃tH1:t −W ∗
t H1:t

∥∥2
F

= EE1:t

∥∥Y1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t −W ∗

t H1:t

∥∥2
F

= EE1:t

∥∥W ∗
t H1:t(H

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − IMt

) + E1:tH⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t

∥∥2
F

=
∥∥W ∗

t (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IMt

)H1:t

∥∥2
F + EE1:t

∥∥E1:tH⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t

∥∥2
F.
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The first term is identical to that of Theorem 3, and it remains to bound the second term:

EE1:t

∥∥E1:tH⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t

∥∥2
F

= EE tr
(
H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:tE1:t⊤E1:tH⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t

)
= ctν

2 ·
∥∥∥H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t

∥∥∥2
F

≤ ctν
2 ·
(
t− 1

γ2
t

+
2

γt

)
min {Mt−1 − kt−1, (t− 1)kt}+ ctν

2 · kt.

The last inequality follows from Lemma 5.

Theorem 5. On top of the settings of Theorem 2, furthermore assume both E1:t and ϵ consists of i.i.d.
N (0, ν2) entries. Then the output W̃t = Y1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t of our method (4) satisfies

EE1:t,h,ϵ

∥∥W̃th− y
∥∥2 ≤ 2 · ∥W ∗

t ∥2F · Bt + ctν
2 · Vt + ctν

2. (16)

where Bt and Vt are defined in (10) and also shown below:

Bt =

∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥(1 + (t− 1)2

γ2
t

)
+

(
at
Mt

+
at−1(t− 1)

γtMt
+

at−1(t− 1)2

γ2
tMt

)

Vt =

∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥ ·
(

1
γt

min {Mt−1 − kt−1, (t− 1)kt}+ kt

)
µkt

(BtB⊤
t

)
+

kt
Mt

+

(
t− 1

γ2
tMt

+
2

γtMt

)
·min {Mt−1 − kt−1, (t− 1)kt} .

Proof of Theorem 5. Recall the definition of Dt in (14). Note that Dt is a symmetric and positive
semi-definite matrix.

Note that for any W ∈ Rct×E we have

EE1:t,h,ϵ

[
∥Wh− y∥2

]
= EE1:t,h,ϵ

[
∥Wh−W ∗

t h− ϵ∥2
]

= EE1:t,h

[
∥Wh−W ∗

t h∥2
]
+ ctν

2.

Denote by IE the E×E identity matrix. With W̃t = Y1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t and Y1:t = W ∗

t H1:t +
E1:t we obtain

EE1:t,h

[
∥W̃th−W ∗

t h∥2
]

= EE1:t,h

[
∥Y1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:th−W ∗

t h∥2
]

= EE1:t,h

[
∥(W ∗

t H1:t + E1:t)H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:th−W ∗

t h∥2
]

= EE1:t,h

[
∥(W ∗

t H1:t + E1:t)H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:th−W ∗

t h∥2
]

= Eh

[
∥W ∗

t H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:th−W ∗

t h∥2
]
+ EE1:t,h

[
∥E1:tH⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:th∥2

]
= Eh

[
∥W ∗

t (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IE)h∥2

]
+ ctν

2Eh

[
∥H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:th∥2

]
The rest of the proof is identical to that of Theorem 2.

G ADDITIONAL THEORETICAL RESULTS

Given the weight W̃t := Y1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t computed by our continual implementation in

Section 3, here we aim to derive upper bounds on the training MSE losses 1
Mt

∥∥W̃tH1:t − Y1:t

∥∥2
F

without the linear model assumption Y1:t = W ∗
t H1:t + E1:t as used in the main paper.
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First observe that∥∥W̃tH1:t − Y1:t

∥∥2
F =

∥∥Y1:t(H
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − IMt)

∥∥2
F,

where we recall IMt
is the Mt × Mt identity matrix. This motivates us to give a bound on

∥(H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − IMt

)∥2F:
Proposition 1. It holds for every t ≥ 1 that (M0 := 0, k0 := 0)∥∥∥H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t − IMt

∥∥∥2
F
≤Mt − kt +

t− 1

γ2
t

min {Mt−1 − kt−1, (t− 1)kt} .

Remark 6. The term Mt − kt is inevitable as we truncate Mt − kt eigenvalues. Indeed, Mt −
kt is precisely equal to ∥H⊤

1:tU1:tΣ
−2

1:tU
⊤
1:tH1:t − IMt∥2F, and it is the minimum of a rank-kt

approximation problem:
Mt − kt = min

L∈RMt×kt

∥LL⊤ − IMt
∥2F.

The term t−1
γ2
t
min {Mt−1 − kt−1, (t− 1)kt} arises as we solve LoRanPAC continually rather than

offline. With γt = 1, this term is upper bounded by (t − 1)(Mt−1 − kt−1). With γt = 1010 (as
discussed in the main paper), this term is negligible for even hundreds of tasks.

Proof of Proposition 1. From Lemma 1 it follows that

H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t = Ũ1:tŨ

⊤
1:t +DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t, (17)

where we recall Dt is defined as Dt =
∑t

i=1

(
BiB

⊤
i − τki

(
BiB

⊤
i

))
in (14). Then we have∥∥∥H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t − IMt

∥∥∥2
F

= tr
(
H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − 2H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t + IMt

)
= tr

(
H1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − 2H1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
+Mt

(17)
= tr

((
Ũ1:tŨ

⊤
1:t +DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)(
Ũ1:tŨ

⊤
1:t +DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

))
+Mt

− 2
(
Ũ1:tŨ

⊤
1:t +DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
= tr

(
DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − Ũ1:tŨ

⊤
1:t

)
+Mt

= tr
(
DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
+Mt − kt

(i)
≤ t− 1

γ2
t

min {Mt−1 − kt−1, (t− 1)kt}+Mt − kt

where (i) is due to Lemma 5.

A simple corollary of Proposition 1 now follows:

Corollary 1. The output W̃t of Algorithm 4 satisfies

1

Mt

∥∥W̃tH1:t − Y1:t

∥∥2
F ≤
∥Y ⊤

1:tY1:t∥
Mt

(
Mt − kt +

t− 1

γ2
t

min {Mt−1 − kt−1, (t− 1)kt}
)
.

Remark 7. In classification, the columns of Y1:t are one-hot vectors. Hence, up to permutation,
Y ⊤
1:tY1:t ∈ RMt×Mt is a block diagonal matrix with ct block, where the i-th diagonal block is a

ni × ni matrix of all ones 1ni
; here ni is the number of labels in class i. In other words, there exists

a permutation matrix Π such that

Y ⊤
1:tY1:t = Πdiag(1n1 ,1n2 , . . . ,1nct

)Π⊤.

Since the maximum eigenvalue of 1mi
is mi, we know

∥Y ⊤
1:tY1:t∥ = max

i=1,...,ct
{ni}.

Substitute this into Corollary 1 and we obtain
1

Mt

∥∥W̃tH1:t − Y1:t

∥∥2
F ≤

maxi=1,...,ct{ni}
Mt

(
Mt − kt +

t− 1

γ2
t

min {Mt−1 − kt−1, (t− 1)kt}
)
.
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It is also of interest to bound the distances between the SVD factors computed online and offline,
namely the distances between Σ̃1:t,Σ1:t and between Ũ1:t,U1:t. We do so in the next result.
Theorem 6. Let at be defined as in (6). For t ≥ 1 define

gapt := µkt

(
H1:tH

⊤
1:t

)
− µkt+1

(
H1:tH

⊤
1:t

)
. (18)

Then it always holds that ∥∥Σ2

1:t − Σ̃2
1:t

∥∥
∞ ≤ at−1. (19)

Moreover, if at−1 <
(
1− 1/

√
2
)

gapt, then for any t ≥ 1 we have

min
O∈O(k)

∥∥∥U1:t − Ũ1:tO
∥∥∥

F
≤
∥∥U1:tU

⊤
1:t − Ũ1:tŨ

⊤
1:t

∥∥ ≤ √2at−1

gapt
, (20)

where O(k) be the set of k × k orthogonal matrices, defined as

O(k) := {O ∈ Rk×k : O⊤O = OO⊤ = Ik}.

Proof of Theorem 6. It is clear that U1 = Ũ1 and Σ1 = Σ̃1. We now consider the case t ≥ 2.
Note that Ũ1:tΣ̃1:tŨ

⊤
1:t is the eigen decomposition of τkt

(Ũ1:t−1Σ̃
2
1:t−1Ũ

⊤
1:t−1 + HtH

⊤
t ), and

U1:tΣ1:tU
⊤
1:t is the eigen decomposition of τkt

(H1:tH
⊤
1:t). We can compute

H1:tH
⊤
1:t −

(
Ũ1:t−1Σ̃

2
1:t−1Ũ

⊤
1:t−1 +HtH

⊤
t

)
= H1:t−1H

⊤
1:t−1 − Ũ1:t−1Σ̃

2
1:t−1Ũ

⊤
1:t−1

(i)
=

t−1∑
i=1

(
BiB

⊤
i − τki

(
BiB

⊤
i

))
=: Dt,

where (i) follows from Lemma 1. We can therefore apply Weyl’s inequality to obtain∥∥∥Σ2

1:t − Σ̃2
1:t

∥∥∥
∞
≤ ∥Dt∥ = at−1.

This proves (19). On the other hand, (20) follows from the Davis-Kahan theorem (Davis & Kahan,
1970), or more precisely, from Corollary 2.8 of Chen et al. (2021).

G.1 RELATION BETWEEN THE OFFLINE AND ONLINE SOLUTIONS

Recall the definitions of the offline solution W t in (2) and the output W̃t of LoRanPAC in (4):

W t = Y1:tH
⊤
1:tU1:tΣ

−2

1:tU
⊤
1:t, W̃t = Y1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t.

Here we aim to bound the distance ∥W t − W̃t∥F. We consider the model Y1:t = W ∗
t H1:t; this is

the Y1:t = W ∗
t H1:t + E1:t with E1:t. Here we make this assumption for simplicity, and the result

here can be extended to the case with noise.

Recall the definition of gapt in (18):

gapt := µkt

(
H1:tH

⊤
1:t

)
− µkt+1

(
H1:tH

⊤
1:t

)
.

Based on Theorem 6, we prove the following result.

Theorem 7. Let at be defined as in (6) and gapt as in (18). Assume at−1 <
(
1− 1/

√
2
)

gapt.
Suppose Y1:t = W ∗

t H1:t. Then we have∥∥∥W t − W̃t

∥∥∥
F
≤ ∥W ∗

t ∥F ·

(√
2at−1

gapt

+
t− 1

γt

)
. (21)

Proof. Note that

H1:tH
⊤
1:tU1:tΣ

−2

1:tU
⊤
1:t = U1:tU

⊤
1:t

H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t = Ũ1:tŨ

⊤
1:t +DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t,
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where Dt is defined in (14) and the second equality follows from Lemma 1. So we have∥∥∥W t − W̃t

∥∥∥
F
=
∥∥∥W ∗

t H1:tH
⊤
1:tU1:tΣ

−2

1:tU
⊤
1:t −W ∗

t H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

∥∥∥
F

(22)

≤ ∥W ∗
t ∥F ·

∥∥∥H1:tH
⊤
1:tU1:tΣ

−2

1:tU
⊤
1:t −H1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

∥∥∥ (23)

= ∥W ∗
t ∥F ·

∥∥∥U1:tU
⊤
1:t − Ũ1:tŨ

⊤
1:t −DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

∥∥∥ (24)

≤ ∥W ∗
t ∥F ·

(∥∥∥U1:tU
⊤
1:t − Ũ1:tŨ

⊤
1:t

∥∥∥+ ∥∥∥DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:t

∥∥∥) (25)

≤ ∥W ∗
t ∥F ·

(∥∥∥U1:tU
⊤
1:t − Ũ1:tŨ

⊤
1:t

∥∥∥+ ∥∥∥DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:t

∥∥∥) (26)

≤ ∥W ∗
t ∥F ·

(√
2at−1

gapt
+

t− 1

γt

)
(27)

where the last inequality is due to Theorem 6 and Lemma 4. The proof is complete.

H REVIEW OF RELATED WORKS

In Appendix H.1 we review related work on CL. Recent surveys on CL include Parisi et al. (2019);
van de Ven et al. (2022); Shaheen et al. (2022); Zhou et al. (2024b); Wang et al. (2024); Shi et al.
(2024). See also the GitHub repo of Liu (2024) for an extensive list of CL papers.

In Appendix H.2 we review related work on random feature models.

H.1 MORE RELATED WORK ON CONTINUAL LEARNING

Many CL methods have been proposed without explicitizing the use of pre-trained models (Ruvolo
& Eaton, 2013; Kirkpatrick et al., 2017; Rebuffi et al., 2017; Lopez-Paz & Ranzato, 2017; Zeng
et al., 2019; Chaudhry et al., 2019; Yan et al., 2021; Saha et al., 2021; Douillard et al., 2022; Elenter
et al., 2023). An easy way to boost their performance is to adapt them for the context of pre-trained
models. There are two natural approaches to do so. One approach is to use the pre-trained model
as initialization and run these CL algorithms to fine-tune the pre-trained model; see, e.g., Li et al.
(2024). The other approach is to train a shallow network with the output features of the pre-trained
model and either of these CL algorithms. We do not explore these directions here. In what follows,
we review existing CL methods explicitly designed for leveraging pre-trained models, and we review
theoretical developments for CL as well.

Prior Work on CL with Pre-trained Models. The availability of pre-trained models has motivated
new insights into designing CL methods. CL methods such designed can be roughly divided into
two categories. In one category, the pre-trained model is completely frozen, and their output features
are used as inputs for a tailored CL method. A straightforward method in this category, known as
SimpleCIL (Zhou et al., 2023) or Nearest Mean Classifier (NMC) (Mensink et al., 2013; Rebuffi et al.,
2017; Panos et al., 2023; Janson et al., 2022), is to classify a test image based on the (cosine) distances
of its feature to class means of the training features. While this method is stable, hyperparameter-free,
and can handle long task sequences, to the best of our knowledge, it does not have theoretical
guarantees. Of course, RanPAC and LoRanPAC also fall into this category.1 Other methods in the
category include Ahrens et al. (2024); Prabhu et al. (2024). Both methods make certain modifications
on top of RanPAC:

• The method of Ahrens et al. (2024) replaces the random ReLU features with the concatena-
tion of the output features of intermediate layers. We identify that this generalizes the idea
of Pao & Takefuji (1992)2.

1Note that RanPAC might use first-session adaptation, which modifies the output features of the pre-trained
model, so one might not consider RanPAC as completely freezing the pre-trained model. However, such strategy
of first-session adaptation is applied only before the first task, and is not used during continual learning of tasks.
In other words, the model after first-session adaptation is completely frozen, and we might just view it as our
pre-trained model.
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• The method of Prabhu et al. (2024) replaces the random ReLU features with random Fourier
features (which were used by Rahimi & Recht (2007) for learning kernel machines), and
the ridge regression solver of RanPAC with linear discriminant analysis (LDA) (Hayes &
Kanan, 2020). Note that LDA optimizes an objective that is in general different from the
MSE training loss, for which Prabhu et al. (2024) have not provided theoretical guarantees.

Similarly to RanPAC, the methods of Ahrens et al. (2024); Prabhu et al. (2024) need O(E3) time per
task to invert the (regularized) E × E covariance matrix. Prabhu et al. (2024) uses E = 25000 in
their experiments, which might constitute the current computational limit of performing the inversion
(cf. Figs. 3 and 5). Also, both methods lack theoretical guarantees. In contrast, the running time of
our LoRanPAC method depends only linearly on E and can handle E ≥ 105 with stable performance
and theoretical guarantees.

In the other category of methods, the weights of the pre-trained models remain fixed, but the output
features of the pre-trained models are changed. The catch is that these methods either change the
input or change the network architecture. Such change could be applied layer-wise, therefore, in order
to describe the idea, it is the simplest to assume the pre-trained model f is a single-layer network.

• If we keep both the input and architecture fixed, then the network would take an input X
and output f(X).

• A popular way to change the input is to stack some trainable parameters Z with input X ,
where Z and X have the same number of columns. The network outputs f([X;Z]). Here,
it is implicitly assumed that f can take input matrices with different number of rows (i.e.,
different number of tokens). For instance, f can be a single-layer vision transformer. In this
case Z is often called (visual) prompts (Jia et al., 2022), and CL methods using this strategy
are often called prompt-based methods; see, e.g., (Wang et al., 2022b;c;a; Smith et al., 2023;
Wang et al., 2023; Jung et al., 2023; Tang et al., 2023; Gao et al., 2024b; Roy et al., 2024;
Kim et al., 2024).

• A popular way to change the architecture is to replace the input-output map X 7→ f(X)
with X 7→ f(X) + g(X), where g is some simple shallow network parametrized by the
extra trainable parameters. For instance, g could be a simple two-layer linear network of the
form g(X) = ABX or g(X) = A relu(BX), where A,B are trainable. In these case,
A,B are called adapters (Houlsby et al., 2019; Hu et al., 2022; Chen et al., 2022), and
CL methods using this strategy are often called adapter-based methods (Zhou et al., 2023;
2024a; Liang & Li, 2024; Tan et al., 2024; Gao et al., 2024a).

Clearly, prompt-based and adapter-based methods can both be viewed as expansion-based methods
that enlarge the capacity of a network in order to learn new tasks (Rusu et al., 2016; Yoon et al., 2018;
Li et al., 2019; Ramesh & Chaudhari, 2022).

Despite their popularity, both prompt-based and adapter-based methods need to solve highly non-
convex training problems, for which deriving informative theoretical guarantees is a significant
challenge. Their lack of theoretical guarantees makes them prone to unexpected failures. For
example, prompt-based methods such as L2P (Wang et al., 2022b), DualPrompt (Wang et al.,
2022c), CodaPrompt (Smith et al., 2023), have their performance highly sensitive to the choice
of hyperparameters and therefore to the pre-trained model in use (Wang et al., 2023), dataset, and
problem setting (cf. Table 1); indeed, a small perturbation in learning rates might change the accuracy
drastically (Zhang et al., 2023). While they are often equipped with dataset-specific hyperparameters
released by authors (cf. Appendix J), their instability still emerges when applied to a long sequence
of tasks. This is because new prompts or adapters are often needed to maintain high accuracy on new
tasks (Zhou et al., 2024a), but doing so eventually becomes infeasible. Indeed, to train on the 100
tasks of the CIFAR100 dataset in the CIL setting with one class given at a time (B-0, Inc-1), running
the adapter-based method of Zhou et al. (2024a), called EASE, with default hyperparameters, would
create more than 117M parameters for its growing number of adapters, while the pre-trained ViTs in
use have less than 87M parameters.

In Table 5 we summarize the conceptual differences of our approach from prior works.

Prior Work on CL Theory. Theoretical developments on CL have been chasing the current CL
practice, with a majority of the theory CL papers limiting themselves to the linear, two-layer, or kernel
setting (Doan et al., 2021; Heckel, 2022; Evron et al., 2022; Peng & Risteski, 2022; Lin et al., 2023;
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Table 5: Conceptual comparison to prior work.

Theoretical Guarantees? Stable? Can Handle Long Task Sequences?

L2P, Dual Prompt, CodaPrompt None No No
EASE None No No
SimpleCIL None Yes Yes
RanPAC None No No
LoRanPAC (Ours) Theorems 1 and 2 Yes Yes

Swartworth et al., 2023; Goldfarb et al., 2024; Zhao et al., 2024; Ding et al., 2024). While these works
cover various theoretical aspects (e.g., generalization bounds, sample complexity, and convergence
rates), there has arguably been a huge gap between their simplified settings and deep networks that
state-of-the-art CL methods use. On the other hand, we have seen that deep pre-trained models in
cascade with shallow trainable networks can provide competitive performance, thus it now makes
sense to revise and extend these theoretical contributions within this cascaded architecture, thereby
providing meaningful guarantees for learning the shallow networks. We believe this viewpoint would
greatly reduce the gap between the theory and practice in the current CL literature.

H.2 RANDOM VECTOR FUNCTIONAL LINK NETWORK AND RANDOM FEATURE MODELS

Here we review related works on random feature models. Recall our model is a two-layer network of
the form

X 7→W · relu(PX) (28)

where P is randomly generated and fixed, and W consists of trainable parameters.

Random Vector Functional Link Network. In independent efforts, Schmidt et al. (1992) and Pao &
Takefuji (1992) considered models of form (1). Schmidt et al. (1992) used the sigmoid activation
function ξ 7→ 1

1+exp(−ξ) , while Pao & Takefuji (1992) specified an arbitrary activation function as
inspired by Hornik et al. (1989) and stack the features X and H together (see, e.g., Section 2.1 of
Malik et al. (2023)).2 The model Pao & Takefuji (1992) proposed has been known as random vector
functional link (RVFL), and the model of Schmidt et al. (1992) is referred to, according to a recent
review (Malik et al., 2023), as Schmidt neural network (SNN).

Models of form (28) are best combined with MSE losses, as training W with P fixed amounts to
solving a least-squares problem, which admits a closed-form solution as shown by Schmidt et al.
(1992) and even earlier by Webb & Lowe (1990).

The model Schmidt et al. (1992) and Pao & Takefuji (1992) advocated was proposed, again, by
Huang et al. (2004; 2006) under the name extreme learning machine (ELM). While Huang et al.
(2004) claimed ELMs to be a new learning scheme in the paper title, it was criticized by (Wang &
Wan, 2008; Authors) that ELMs are ideas stolen from the last century (Schmidt et al., 1992; Pao &
Takefuji, 1992), which Huang et al. (2004) were aware of yet did not cite. Despite the criticism, and
perhaps because of its “fancy” name, ELMs had once been popular and attracted many follow-up
variants. We shall not review these variants here.

The model we considered, therefore, follows in spirit the framework put forth by Schmidt et al. (1992);
Pao & Takefuji (1992). Crucially, our approach is a modern instantiation of their framework (cf.
Table 6), where we consider larger-scale problems with ill-conditioned data, online solvers with GPU
implementations. But does it make sense to use the random ReLU features Ht := relu(PXt) rather
than the pre-trained features Xt for regression? Would the transformation P ∈ RE×d even harm the
pre-trained knowledge? McDonnell et al. (2023) empirically verified that having the first layer P is
beneficial to performance as long as E ≥ d, and the accuracy tends to be higher for larger E (see
Table A5 of Appendix F.6 of McDonnell et al. (2023)). While RanPAC is limited to E ≈ 104, our
approach is inherently more scalable, allowing us to take E = 105. The pursuit in higher embedding
dimension E brings us into the over-parameterized territory, where the corresponding MSE objective
has infinitely many solutions, and this is different from the classic works on RVFLs or SNNs that
largely focus on the case where there are just a few hundred neurons (e.g., E ≈ 100).

2Hence, the method of Ahrens et al. (2024) can be viewed as a modern variant of Pao & Takefuji (1992) as
Ahrens et al. (2024) stacks the output features of multiple intermediate layers for regression.
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Table 6: Comparison between our approach and classic methods for extreme learning machines.

Problem Scale Solver Data Compute Platform

Schmidt et al. (1992); Pao & Takefuji (1992) small offline well-conditioned CPU
LoRanPAC (Ours) large online ill-conditioned GPU

Random Feature Models. Model (28) is also studied under the name random feature model (RFM)
with the origin of RFMs often attributed to Rahimi & Recht (2007). The RFM is considered to be a
simple proxy model for understanding deep networks, and hence it has recently been popular (Belkin
et al., 2018; 2019; Bartlett et al., 2020; Hastie et al., 2022; Mei & Montanari, 2022; Tsigler & Bartlett,
2023). Some of these works make statistical assumptions on Xt and address technical challenges in
analyzing the nonlinear map W · relu(PXt).

Alternatively, one could conduct analysis conditioned on Ht := relu(PXt), which would be
more manageable as it reduces to linear models. For example, the work of Xu & Hsu (2019);
Huang et al. (2022); Bach (2024); Green & Romanov (2024) truncates the SVD factors of the
features before applying least-squares. This is similar to ours, with an important difference that
they apply LoRanPAC only once, while we apply it continually. Also, their results make statistical
(e.g., Gaussian) assumptions on H1:t, which could violate our context that H1:t is generated via
Ht := relu(PXt). In contrast, our results in the main paper, namely Theorems 1 and 2, make no
assumptions on H1:t and are therefore applicable to random feature models and to the pre-trained
models bridged with a random feature model.
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I DATASET DETAILS

For convenience and completeness, we collect some details about the datasets in Tables 7 and 8.

Table 7: Datasets used for class-incremental learning experiments. †: ObjectNet, OmniBenchmark,
and VTAB contain a large number of classes, and we use a subset of these datasets delivered by Zhou
et al. (2023); see their Table 4 and also Table A2 of McDonnell et al. (2023).

Dataset Name Origin Training Set Size Test Set Size # of Classes Link

CIFAR100 (Krizhevsky et al., 2009) 50,000 10,000 100 Here
ImageNet-R (Hendrycks et al., 2021a) 24,000 6,000 200 Here
ImageNet-A (Hendrycks et al., 2021b) 5,981 5,985 200 Here
CUB-200 (Wah et al., 2011) 9,430 2,358 200 Here
ObjectNet† (Barbu et al., 2019) 26,509 6,628 200 Here
OmniBenchmark† (Zhang et al., 2022) 89,697 5,985 300 Here
VTAB† (Zhai et al., 2019) 1,796 8,619 50 Here
StanfordCars (Krause et al., 2013) 8,144 8,041 196 Here

Table 8: Datasets used for domain-incremental learning. See Table A3 of McDonnell et al. (2023) for
even more details.

Dataset Name Origin Training Set Size Test Set Size # of Classes Link

CORe50 (Lomonaco & Maltoni, 2017) 119,894 44,972 50 Here
CDDB-Hard (Li et al., 2023) 16,068 5,353 2 Here
DomainNet (Peng et al., 2019) 409,832 176,743 345 Here

J EXPERIMENTAL SETUP DETAILS

The details of how we run each of the methods are specified as follows. For L2P, DualPrompt,
CodaPrompt, we use the hyperparameters available in the PILOT repo (Sun et al., 2023) for the
CIFAR100 and ImageNet-R datasets. Since no official hyperparameters are released for other datasets,
we simply use their respective hyperparameters of CIFAR100 for other datasets. One might notice
that these methods have large accuracy drops on other datasets, suggesting that they are sensitive to
hyperparameters and the good and dataset-specific hyperparameters, if they exist, are to be found
for these methods to perform well. This is an inherent drawback as they involve minimizing a
highly non-convex training objective. On the other hand, many other methods, including SimpleCIL,
RanPAC, and ours, are almost parameter-free. Specifically, the only hyperparameter of our approach
is the truncation threshold and its role is clearly explained in the main paper.

For joint linear classifiers, that is LC (X1:T ) or LC (H1:T ), we train for 20 epochs using the cross-
entropy loss, batch size 48, weight decay 0.0005, and SGD with the cosine annealing schedule. We
run LC (X1:T ) and LC (H1:T ) with different initial learning rates {0.001, 0.005, 0.01, 0.02, 0.03},
and take report the maximum accuracy (Table 9). Note that LC (X1:T ) and LC (H1:T ) are trained
using the cross-entropy loss, not the MSE loss. The reason is that the features H1:t are highly
ill-conditioned (Fig. 1), which makes SGD converge very slowly with the MSE loss. Comparing
this to (11), we conclude that the MSE loss in our setting is useful when the objective is minimized
via robust numerical computation techniques (e.g., our LoRanPAC implementation in Appendix C)
instead of SGD.

We also consider the idea of first-session adaptation. This idea introduces a few hyperparameters
such as the learning rate and schedule. We run experiments with two sets of hyperparameters, given
respectively by RanPAC and EASE. We attach the symbol † to the method name when we use the
hyperparameters of RanPAC (e.g., ADAM†, LoRanPAC†, RanPAC†). We attach the symbol ∗ when
we use the hyperparamters of EASE (e.g., LoRanPAC∗, EASE∗).

For RanPAC, the official hyperparameters given by McDonnell et al. (2023) vary for different datasets.
We try to unify the setup by keeping using the hyperparameters most frequently used by McDonnell
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Table 9: Accuracy of training joint linear classifiers given all data with different initial learning rates
{0.001, 0.005, 0.01, 0.02, 0.03} and the corresponding maximum accuracy. LC (X1:T ) trains a linear
classifier using all pre-trained features X1:T and LC (H1:T ) uses all embedded features.

LC (X1:T ) LC (H1:T )

0.001 0.005 0.01 0.02 0.03 Max 0.001 0.005 0.01 0.02 0.03 Max

ViTs pre-trained on ImageNet-1K (vit_base_patch16_224):
CIFAR100 86.39 87.56 87.47 87.09 86.99 87.56 87.76 86.68 86.36 86.75 86.46 87.76
ImageNet-R 70.25 72.42 72.22 72.02 71.52 72.42 73.00 71.08 71.18 70.70 71.15 73.00
ImageNet-A 54.64 58.85 58.46 57.67 56.55 58.85 59.25 56.16 56.09 56.48 56.42 59.25
CUB-200 82.32 87.62 88.59 88.63 88.76 88.76 88.72 88.13 88.08 88.17 87.83 88.72
ObjectNet 57.53 59.70 59.22 58.68 58.43 59.70 59.96 56.14 55.63 55.48 55.34 59.96
Omnibenchmark 76.11 79.00 79.55 79.43 79.50 79.55 80.02 79.62 79.57 79.62 79.43 80.02
VTAB 86.40 90.89 91.32 91.23 90.89 91.32 91.17 89.86 89.99 90.16 89.99 91.17
StanfordCars 39.56 62.54 69.29 72.86 74.12 74.12 72.43 73.65 73.54 72.81 72.49 73.65

ViTs pre-trained on ImageNet-21K (vit_base_patch16_224_in21k):
CIFAR100 86.15 86.78 86.33 85.86 85.17 86.78 85.80 85.16 85.05 85.31 85.4 85.80
ImageNet-R 67.22 68.63 67.12 65.90 65.28 68.63 68.65 68.00 68.17 68.23 67.78 68.65
ImageNet-A 46.68 51.42 50.03 49.24 48.58 51.42 51.15 50.16 49.44 48.98 49.64 51.15
CUB-200 85.58 88.89 89.06 88.72 88.21 89.06 89.31 88.17 88.63 88.46 88.51 89.31
ObjectNet 58.01 58.39 57.50 55.87 54.42 58.39 56.93 53.33 54.44 54.47 54.54 56.93
Omnibenchmark 78.95 79.67 79.73 79.45 79.33 79.73 79.62 79.26 79.11 78.91 79.05 79.62
VTAB 87.71 90.78 90.97 90.71 90.11 90.97 90.78 91.03 90.42 90.44 90.27 91.03
StanfordCars 44.80 64.22 68.06 68.92 68.71 68.92 69.38 67.64 67.65 67.79 67.39 69.38

et al. (2023). Specifically, we set the embedding dimension E to 10000 for RanPAC; note the
exception that McDonnell et al. (2023) run the CDDB experiments with E = 5000, even though
their Table A5 showed that larger E in general leads to higher accuracy on CIFAR100. The main
hyperparameters of RanPAC used for first-session adaptation are as follows:

{"tuned_epoch":20,
"init_lr":0.01,
"batch_size":48,
"weight_decay":0.0005}

We run ADAM†, LoRanPAC†, RanPAC† where first-session adaptation uses these hyperparameters
consistently for all datasets.

The EASE approach of Zhou et al. (2024a) performs fine-tuning, not just for the first session, but for
every session, in an interesting way. The hyperparameters in their released code vary for different
sessions and different datasets, and we refer the reader to the official GitHub repo of EASE for details.
We also run LoRanPAC∗ with the hyperparameters of EASE for first-session adaptation. Note that
since EASE does not show experiments on StanfordCars, or does not release hyperparameters on this
dataset, we run EASE with its CIFAR100 hyperparameters for StanfordCars; see also Table 10 of
Appendix K.1 where we tune the initial learning rates of EASE on StanfordCars, showing that the
accuracy is still low.

Finally, we note that in all tables, some approaches are marked in gray; they are not directly
comparable to our approach as the methodology can be very different and it is in fact possible to
combine one with another for even better performance. On the other hand, RanPAC is the most
related to our method, hence we highlight the comparison with the purple background.

K EXTRA EXPERIMENTS, FIGURES, AND TABLES

K.1 PERFORMANCE ON STANFORDCARS

It is observed in Table 1 that many methods exhibit significant performance drops on StanfordCars.
Are these methods inherently unable to handle this dataset, or is it our taking inappropriate hyper-
parameters that lead to poor performance? Note that the authors of these works did not test their

37



Published as a conference paper at ICLR 2025

Table 10: Accuracy of EASE with different initial learning rates {0.001, 0.005, 0.01, 0.02, 0.03} on
StanfordCars.

0.001 0.005 0.01 0.02 0.03

Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20

33.42 32.27 19.38 33.48 32.33 19.46 33.39 32.65 20.06 32.58 32.11 24.96 32.41 31.77 29.76

Table 11: Final accuracy of different methods using ViTs pre-trained on ImageNet-21K
(vit_base_patch16_224_in21k). Compare this with Table 1 of the main paper.

(Part 1) CIFAR100 (B-0) ImageNet-R (B-0) ImageNet-A (B-0) CUB-200 (B-0) Avg.
LC (X1:T ) 86.78 68.63 51.42 89.06 73.97
LC (H1:T ) 85.80 68.65 51.15 89.31 73.73

Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20

RanPAC 87.58 87.65 87.75 68.18 70.03 70.13 37.59 52.01 52.73 89.48 89.65 89.44 73.52
LoRanPAC 88.62 88.63 88.67 70.85 70.93 70.72 54.71 54.71 55.10 90.33 90.33 90.46 76.17

EASE∗ 85.85 87.67 89.47 70.27 74.53 75.88 43.05 47.53 54.51 86.77 86.81 85.50 73.99
RanPAC∗ 90.26 91.39 91.97 75.47 76.10 77.33 47.60 58.00 62.74 83.21 89.57 89.69 77.78
LoRanPAC∗ 90.55 91.88 92.39 76.48 76.82 77.25 56.95 58.85 62.74 90.63 90.71 90.67 79.66

(Part 2) ObjectNet (B-0) OmniBenchmark (B-0) VTAB (B-10) StanfordCars (B-16) Avg.
LC (X1:T ) 58.39 79.73 90.97 68.92 74.50
LC (H1:T ) 56.93 79.62 91.03 69.38 74.24

Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20

RanPAC 59.14 59.23 59.29 78.38 78.40 78.06 92.37 92.84 92.84 43.60 65.78 65.78 72.14
LoRanPAC 61.35 61.36 61.33 80.12 80.03 80.13 92.90 92.76 92.92 68.96 68.76 68.95 75.80

EASE∗ 54.98 57.50 60.35 72.88 73.50 73.87 88.24 93.46 93.43 35.43 34.62 37.32 64.63
RanPAC∗ 64.56 66.55 66.05 78.55 79.15 79.23 92.77 92.84 93.72 2.31 69.11 69.11 71.16
LoRanPAC∗ 66.76 66.67 66.93 80.55 80.82 81.55 93.85 93.79 93.76 71.46 71.58 71.71 78.29

methods on StanfordCars, nor they released the corresponding hyperparameters. To rule out the case
of hyperparameter misspecification, we take the EASE∗ method of Zhou et al. (2024a) for example,
and we run it with different initial learning rates {0.001, 0.005, 0.01, 0.02, 0.03} for the first task
(this hyperparameter is called init_lr in the JSON file of the code repo of Sun et al. (2023); all
other hyperparameters are set to the corresponding hyperparamters Zhou et al. (2024a) gave for
CIFAR100. The results are in Table 10. It shows that different initial learning rates for EASE do
not improve the performance on StanfordCars too much, suggesting that StanfordCars is perhaps
inherently difficult for these types of methods.

K.2 EXPERIMENTS WITH VIT FEATURES PRE-TRAINED ON IMAGENET-21K

Note that by default we use ViTs pre-trained on ImageNet-1K (vit_base_patch16_224). Here
in Table 11 we show experiments with ViTs pre-trained on ImageNet-21K. Comparing this with
Table 1, we obtain a similar conclusion that LoRanPAC is more stable than and outperforms RanPAC.

K.3 EXPERIMENTS THAT SHOW LORANPAC STABILIZES THE TRAINING LOSSES

In Fig. 2 of the main paper we showed that LoRanPAC has stable test accuracy by truncating the
SVD factors, compared to the nearly zero test accuracy of Min-Norm. In Fig. 4, we show that the
truncation also stabilizes the average training MSE losses 1

Mt
∥WH1:t − Y1:t∥2F, which eliminates

the numerical issues and furthermore enables generalization in test scenarios.

K.4 EXPERIMENTS ON DOMAIN-INCREMENTAL LEARNING (DIL)

Here we consider domain-incremental learning (DIL), where each task has images of all objects
collected from different sources or domains, e.g., objects in the images of task 1 could be hand-written
sketches of cars, and images of task 2 could be colored cars.
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Figure 4: The average training MSE loss 1
Mt
∥WH1:t − Y1:t∥2F of the incremental SVD solution to

Min-Norm explodes when eigenvalues of order 10−5 emerge (Fig. 1b). LoRanPAC (25%) truncates
25% minimum singular values and implements LoRanPAC online, stabilizing Min-Norm.

Table 12: Final accuracies of RanPAC and LoRanPAC with pre-trained ViTs for domain incremental
learning.

CORe50 CDDB-Hard DomainNet Avg.

RanPAC 94.98 75.14 64.20 78.11
LoRanPAC 96.06 79.21 67.18 80.82

We follow the work of McDonnell et al. (2023) to run domain-incremental learning experiments on
3 datasets, CORe50 (Lomonaco & Maltoni, 2017), CDDB-Hard (Li et al., 2023), and DomainNet
(Peng et al., 2019). The corresponding experimental results are shown in Table 12, from which we
observe a similar phenomenon: LoRanPAC is more stable and has higher accuracy.

K.5 SCALING LAWS OF THE EMBEDDING DIMENSION

Figure 5: Training times (in minutes) of LoRanPAC and RanPAC for different embedding dimensions
E. See also Fig. 3 in the main paper for similar results on the other four datasets.

Fig. 6 exhibits a scaling law where the accuracy of LoRanPAC grows with the embedding dimension
E. A similar phenomenon is also shown for RanPAC in Table A5 of Appendix F.6 of McDonnell
et al. (2023). However, the experiments of McDonnell et al. (2023) are limited to E = 15000 as
RanPAC is not scalable (cf. Figs. 3 and 5), and also limited to only the CIFAR100 dataset. Here,
since our LoRanPAC implementation is more stable and scalable, we can run it with E as large as
105, therefore visualizing the scaling phenomenon for eight different datasets in Fig. 6.

It is clearly tempting to scale the embedding dimension even more, but doing so brings up two
issues. First, a large E entails a large memory use, and will therefore eventually be infeasible.
Second, we have not found any significant performance gain with even larger E (e.g., E = 150000
or E = 200000), which is why we stopped at dimension E = 105. Note that enlarging E amounts
to increasing the width of the corresponding layer. It was suggested that increasing the width is
beneficial, theoretically (Peng et al., 2023) and empirically (Mirzadeh et al., 2022). On the other
hand, Fig. 6 suggests the benefit of increasing the width empirically diminishes, e.g., the accuracies
for E = 50K and E = 100K are comparable on ImageNet-A, CUB-200, VTAB, and StanfordCars.
This is empirically corroborated by Guha & Lakshman (2024) and theoretically confirmed by Hu
et al. (2024).

K.6 RUNNING TIMES

In Fig. 3 we compare the running times of several methods in addition to RanPAC (see Figs. 3
and 5). We see that LoRanPAC is faster than prompt-based methods (e.g., L2P, CodaPrompt) and
adapter-based methods (e.g., EASE) on CIFAR100, ImageNet-R, ImageNet-A, and CUB.
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Figure 6: Final accuracy of LoRanPAC for varying embedding dimensions E. See also Table 15 in
comparison to RanPAC.

Table 13: Running times (in minutes) of various methods on CIL datasets with q2 = 5 (Inc-5). This
is the same setting as Fig. 3.

CIFAR100 ImageNet-R ImageNet-A CUB

L2P 52.09 72.31 26.96 17.62
CodaPrompt 174.9 246.94 27.28 39.91
EASE 139.74 128.35 54.0 66.23
LoRanPAC (E = 100K) 31.24 27.0 1.29 3.73

K.7 MULTIPLE RUNS OF THE EXPERIMENTS

In Table 14 we report results under the the same setting of Table 1. We report the mean and standard
deviations over 3 random seeds.

Table 14: Final accuracy with pre-trained ViTs under the same setting of Table 1. Reported results
are mean and standard deviations over 3 random seeds. See also Table 1.

(Part 1) CIFAR100 (B-0) ImageNet-R (B-0) ImageNet-A (B-0) CUB-200 (B-0)

Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20

L2P 78.22±1.49 82.33±1.14 83.61±0.24 68.36±0.31 72.01±0.37 73.74±0.16 44.5±0.18 49.31±0.65 50.87±0.35 52.6±0.76 59.46±0.55 67.47±1.03

DualPrompt 80.39±0.59 83.92±0.12 85.58±0.7 67.67±0.4 71.58±0.25 72.6±0.16 49.24±1.1 53.59±0.19 56.46±0.28 53.04±1.32 61.96±2.04 68.39±1.25

CodaPrompt 82.53±0.51 85.85±0.43 87.62±0.2 67.74±0.33 72.31±0.37 74.67±0.33 33.42±0.56 48.56±0.76 58.29±0.93 38.48±0.29 58.61±0.87 70.67±1.38

SimpleCIL 80.48±0.0 80.48±0.0 80.48±0.0 63.47±0.0 63.47±0.0 63.47±0.0 58.72±0.0 58.72±0.0 58.72±0.0 80.45±0.0 80.45±0.0 80.45±0.0

RanPAC 86.93±0.15 87.06±0.04 87.02±0.06 71.95±0.13 71.85±0.06 72.29±0.23 60.11±3.03 61.07±1.4 61.71±0.32 88.07±0.33 87.53±0.33 87.83±0.54

LoRanPAC 88.21±0.02 88.23±0.03 88.24±0.04 73.62±0.1 73.6±0.13 73.67±0.02 62.63±0.08 62.96±0.19 62.89±0.23 89.2±0.11 89.16±0.16 89.14±0.18

ADAM† 83.44±0.22 84.81±0.2 86.03±0.13 63.8±0.11 64.94±0.06 70.82±0.51 58.72±0.0 58.7±0.03 58.86±0.19 80.48±0.02 80.69±0.02 80.99±0.12

RanPAC† 88.76±0.12 90.14±0.11 90.62±0.16 71.81±0.83 73.43±0.06 78.07±0.59 21.26±29.0 61.71±0.32 62.06±0.17 87.91±0.43 87.56±0.19 88.31±0.33

LoRanPAC† 89.62±0.08 90.85±0.12 91.54±0.07 73.76±0.19 74.58±0.04 78.79±0.58 62.56±0.4 62.76±0.38 62.98±0.32 89.17±0.02 89.24±0.04 89.36±0.07

EASE∗ 84.68±0.4 86.87±0.25 88.46±0.24 73.44±0.26 76.2±0.69 77.54±0.18 59.67±1.05 59.56±1.7 62.41±0.24 80.56±0.09 81.07±0.45 80.92±0.56

LoRanPAC∗ 89.97±0.44 90.89±0.11 91.58±0.06 78.42±0.26 80.07±0.35 81.48±0.13 63.18±0.17 64.12±0.34 65.81±0.2 89.1±0.07 89.24±0.11 89.38±0.05

(Part 2) ObjectNet (B-0) OmniBenchmark (B-0) VTAB (B-10) StanfordCars (B-16)

Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20

L2P 46.63±0.73 52.3±0.3 55.51±0.65 53.74±0.59 57.32±0.2 60.9±1.13 59.03±5.12 72.32±2.15 76.66±1.67 14.49±0.77 27.14±0.79 41.35±2.04

DualPrompt 47.71±0.4 52.83±0.67 56.03±0.54 56.56±0.48 59.45±0.24 62.4±0.3 64.67±4.34 75.98±3.22 79.58±3.09 11.91±0.46 18.92±0.76 29.04±3.23

CodaPrompt 46.7±0.37 54.32±0.79 59.26±0.39 59.33±0.67 64.87±0.65 68.37±0.45 62.39±0.58 74.93±0.6 85.24±0.52 7.89±0.17 11.63±0.35 29.46±1.43

SimpleCIL 51.66±0.0 51.66±0.0 51.66±0.0 70.19±0.0 70.19±0.0 70.19±0.0 82.53±0.0 82.53±0.0 82.53±0.0 35.46±0.0 35.46±0.0 35.46±0.0

RanPAC 58.15±0.17 58.17±0.33 58.21±0.43 77.74±0.09 77.48±0.1 77.45±0.2 91.53±0.14 91.77±0.08 91.77±0.13 55.53±3.65 71.55±0.11 71.54±0.12

LoRanPAC 60.71±0.09 60.67±0.16 60.61±0.12 79.63±0.09 79.65±0.04 79.76±0.04 92.47±0.01 92.56±0.06 92.53±0.04 74.23±0.11 74.35±0.13 74.28±0.09

ADAM† 52.2±0.15 53.78±0.59 55.9±0.09 70.53±0.04 70.43±0.14 70.25±0.18 82.58±0.05 82.58±0.05 82.58±0.05 35.56±0.04 35.56±0.04 35.56±0.04

RanPAC† 59.33±0.42 61.3±0.6 64.37±0.18 78.29±0.08 78.2±0.23 78.39±0.37 91.76±0.11 91.88±0.07 91.98±0.1 44.02±31.09 72.32±0.09 72.32±0.09

LoRanPAC† 61.43±0.17 63.29±0.74 66.24±0.38 79.85±0.16 80.19±0.24 80.08±0.2 92.57±0.03 92.54±0.02 92.59±0.09 74.67±0.18 74.66±0.21 74.67±0.33

EASE∗ 50.2±0.4 53.92±0.53 56.78±0.31 70.4±0.05 70.67±0.22 70.81±0.18 89.86±0.24 93.56±0.12 93.67±0.15 32.46±0.73 31.64±1.03 29.79±1.91

LoRanPAC∗ 63.67±0.6 66.52±0.79 66.96±0.27 80.07±0.37 80.34±0.17 80.41±0.37 93.16±0.67 93.17±0.67 93.16±0.7 75.63±0.22 75.56±0.14 75.67±0.24
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Table 15: Final accuracies of RanPAC and LoRanPAC with pre-trained ViTs. RanPAC takes its
default choice E = 10K, while for LoRanPAC we set three different values for E: E = 10K,
E = 50K, and E = 100K.

(Part 1) CIFAR100 (B-0) ImageNet-R (B-0) ImageNet-A (B-0) CUB-200 (B-0) Avg.

Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20

RanPAC 86.71 87.02 87.10 71.90 71.97 72.50 56.48 62.34 61.75 88.08 87.15 88.13 76.76

LoRanPAC (E = 10K) 87.48 87.49 87.42 70.77 70.85 70.48 58.85 58.46 59.38 86.73 86.85 87.19 76.00
LoRanPAC (E = 50K) 88.13 88.05 88.04 73.05 73.07 73.05 62.80 62.80 62.48 89.23 89.23 89.19 78.26
LoRanPAC (E = 100K) 88.18 88.18 88.21 73.67 73.72 73.63 62.74 63.20 63.20 89.36 89.27 89.23 78.55

(Part 2) ObjectNet (B-0) OmniBenchmark (B-0) VTAB (B-10) StanfordCars (B-16) Avg.

Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20

RanPAC 58.77 57.66 57.69 77.63 77.63 77.46 91.15 91.58 91.58 58.03 71.40 71.40 73.50

LoRanPAC (E = 10K) 57.97 57.82 58.06 76.79 76.96 76.91 91.89 91.81 91.91 64.03 64.43 64.72 72.78
LoRanPAC (E = 50K) 59.41 59.4 59.54 79.33 79.35 79.43 92.48 92.47 92.54 73.32 73.66 73.47 76.20
LoRanPAC (E = 100K) 60.83 60.86 60.77 79.50 79.60 79.70 92.46 92.55 92.56 74.21 74.39 74.39 76.82

(7a) The effective rank r1(H
⊤
1:tH1:t) as the number t of seen tasks increases.

(7b) The eigenvalues of H⊤
1:tH1:t arranged in descending order (t fixed).

Figure 7: The effective ranks of H⊤
1:tH1:t.

K.8 MORE FIGURES FOR DATA ANALYSIS

Recall µk(·) denotes the k-th largest eigenvalue of a matrix and Mt := m1 + · · ·mt. Define the
notion of effective rank, as by Tsigler & Bartlett (2023):

rk
(
H⊤

1:tH1:t

)
:=

∑
j≥k µj

(
H⊤

1:tH1:t

)
µk

(
H⊤

1:tH1:t

) , ∀k = 1, . . . ,Mt (29)

Note that r1(·) is the standard definition of effective rank (sometimes called stable rank), while rk(·)
generalizes it by only considering the eigenvalues starting from the k largest.

Fig. 7a plots the effective rank r1(H
⊤
1:tH1:t) as the number of tasks increases and Fig. 7b plots

rk(H
⊤
1:tH1:t) for different values of k. We observe similar curves on different datasets: r1(H⊤

1:tH1:t)
is smaller than 3, and rk(H

⊤
1:tH1:t) first increases and then decreases as a function of k.

Fig. 8 plots the top kt eigenvalues of BtB
⊤
t (recall that we only preserve top kt singular values of

Bt). It shows that the condition number is now of order 105 (1011/106), which is much smaller than
the condition number of H⊤

1:tH1:t.

Fig. 9 plots the normalized differences ∥Σ1:t − Σ̃1:t∥∞/∥Σ1:t∥∞ between the eigenvalues given
by LoRanPAC and its continual implementation (Algorithm 4). This empirically verifies that the
differences between the two are insignificant compared to the largest eigenvalue ∥Σ1:t∥∞ (just of
order 10−3). This experiment assists understanding Theorem 6.
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Figure 8: The eigenvalues of Σ̃1:t for t = 1, . . . , 9. These are by definition the top kt eigenvalues of
BtB

⊤
t . It shows that our continual implementation (Algorithm 4) prunes the smallest eigenvalues

(of order 10−5) so that the condition number is now of order 105 (1011/106); compare this figure
with Fig. 1a. In this experiment we truncate 25% of the eigenvalues; that is, given Mt, we select kt
such that kt/Mt = 75%.

Figure 9: Normalized differences ∥Σ1:t − Σ̃1:t∥∞/∥Σ1:t∥∞ between the eigenvalues given by
LoRanPAC and its continual implementation (Algorithm 4). This empirically verifies that the
differences between the two are insignificant compared to the largest eigenvalue ∥Σ1:t∥∞ (just of
order 10−3). See Fig. 8 and Fig. 1a. See also Theorem 6 where we formally bound the distances
∥Σ1:t − Σ̃1:t∥∞ for every t.

Fig. 10 plots the eigenvalues of H⊤
1:tH1:t ∈ RMt×Mt (Mt ≤ 104) with the embedding dimension E

varying in {10000, 25000, 50000, 75000}. It shows that the “shape” of the spectrum is similar for
different values of E and on different datasets (see also Fig. 1a for the case E = 105).

Fig. 11 depicts how the random embedding P ∈ RE×d and ReLU layer affect the spectrum of
the features. In Fig. 11a we plot the output features X ∈ Rd×M of the ImageNet-A dataset from
pre-trained ViTs (d = 768,M = 5981, E = 105). We see XX⊤ is relatively well-conditioned:
Its maximum eigenvalue is of order 105 and minimum eigenvalue of order 10. Fig. 11b shows that
X⊤P⊤PX ∈ RE×M is ill conditioned. This is because PX has rank at most d, and the smallest
M−d eigenvalues of X⊤P⊤PX should be zero, while we get these small and non-zero eigenvalues
in Fig. 11b due to numerical errors in (incremental) SVD; these eigenvalues should be truncated
(set to zero), in order to solve Min-Norm accurately. Fig. 11c shows that relu(PX) also has these
small and non-zero eigenvalues. While the rank of relu(PX) is unclear, its smallest yet non-zero
eigenvalues are likely inherent from PX , and we suggest truncating them as well. See also Table 16.

K.9 ABLATION STUDY ON RANDOM RELU FEATURES

In Table 16 we study the effects of the random ReLU model. Recall that, given the output features Xt

of the data of task t from a pre-trained model, we use the random ReLU features Ht := relu(PXt)
and labels Yt to train a linear classifier via continually solving Min-Norm or LoRanPAC. We could

Figure 10: Eigenvalues of H⊤
1:tH1:t ∈ RMt×Mt (Mt ≤ 104) with the embedding dimension E

varying in {10000, 25000, 50000, 75000}. We find that the “shape” of the spectrum is similar for
different E and on different datasets (see also Fig. 1a for the case E = 105).
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Figure 11: Feeding M data samples to a pre-trained model gives its d-dimensional output features
X ∈ Rd×M . Passing it through a random embedding layer P and a ReLU layer yields the ran-
dom ReLU features H ∈ RE×M . Plotted in (a), (b), (c), respectively, are eigenvalues of XX⊤,
X⊤P⊤PX , and H⊤H in descending order, where X consists of pre-trained ViT features of
the ImageNet-A dataset (d = 768,M = 5981, E = 105). It is seen that PX and ,H are more
ill-conditioned than X . See also Table 16.

instead use Xt or PXt or relu(Xt) as the features to train the linear classifier. To see the effects of
these alternative choices, we make Table 16 from which we have the following observations:

• The random ReLU features Ht gives the highest accuracy, while using the ReLU layer
alone or random embedding alone does not make improvements over the original pre-trained
features Xt.

• Solving Min-Norm via Incremental SVD exhibits numerical failures as soon as we use
random embedding P . This is because PX ∈ RE×M has rank at most d and we would
get some M − d small yet non-zero eigenvalues accounting for the numerical errors of
(incremental) SVD solvers (see, e.g., Fig. 11). While they damage the accuracy, truncating
these singular values and the corresponding singular vectors restores the performance.

Table 16: Final accuracy of Min-Norm and LoRanPAC when using different features, Xt ∈
Rd×mt , relu(Xt),PXt, and Ht := relu(PXt). Here P ∈ RE×d is a random Gaussian ma-
trix with N (0, 1) entries and E = 105, and Ht consists of random ReLU features we use by default.
Note that both Min-Norm and LoRanPAC are solved by the incremental SVD method, with a differ-
ence that the latter truncates the SVDs. Incremental SVD without truncation is not scalable enough
to handle all 50000 data samples of CIFAR100, so we mark “N.A.” in the table for Min-Norm.

CIFAR100 (B-0, Inc-10) ImageNet-R (B-0, Inc-20) ImageNet-A (B-0, Inc-20) CUB (B-0, Inc-20) Avg.

Final Accuracy of Min-Norm
Xt 85.11 69.22 58.92 84.90 74.54
relu(Xt) 84.07 66.43 55.23 84.14 72.47
PXt N.A. 1.35 2.37 0.55 N.A.
Ht N.A. 0.42 0.92 0.72 N.A.

Final Accuracy of LoRanPAC
Xt 84.61 68.23 59.45 84.14 74.11
relu(Xt) 83.51 66.20 56.62 84.01 72.59
PXt 78.96 48.50 42.73 63.15 58.33
Ht (default) 88.18 73.65 63.20 89.23 78.57

K.10 EXTRA EMPIRICAL STUDY OF RANPAC

In Appendix K.10.2, we analyze the training losses of RanPAC. In Appendix K.10.3 we show RanPAC
is unstable with respect to small increments, while LoRanPAC is more stable.

K.10.1 RANPAC IS UNSTABLE WITH RESPECT TO REGULARIZATION PARAMETER

In Fig. 12a, we show that RanPAC is unstable as it fails if the regularization λ is small. In Fig. 12b,
we extend the solution of (4) into JtŨ1:t(Σ̃

2
1:t + λIE)

−1Ũ⊤
1:t for ridge regression; this amounts to

RanPAC with truncation. This extension stabilizes RanPAC and is practically immune to changes in
the regularization parameter λ.
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(12a) RanPAC breaks down for the small regularization λ.

(12b) RanPAC with truncation (25%) has stable performance for varying regularization parameter λ.

Figure 12: We extend the solution of (4) into JtŨ1:t(Σ̃
2
1:t + λIE)

−1Ũ⊤
1:t for ridge regression; this

amounts to RanPAC with truncation. This extension stabilizes RanPAC.

Figure 13: The average training MSE loss 1
Mt
∥WH1:t − Y1:t∥2F of RanPAC for different ridge

regularization parameters λ ∈ {0, 1, 10, 100, 1000}. Compare this with Fig. 12 and Fig. 4.

K.10.2 TRAINING LOSSES OF RANPAC

Fig. 13 plots the training loss of RanPAC for different ridge regularization parameters λ ∈
{0, 1, 10, 100, 1000}. We observe that, In the case of λ = 0, the training loss of RanPAC is
smaller than 1. Fig. 4 shows that the incremental SVD implementation of Min-Norm could have
its training loss larger than 1010. This difference is because the incremental SVD implementation
(without truncation) can be unstable and accumulates errors over time, while RanPAC is imple-
mented by solving the normal equations W (H1:tH

⊤
1:t + λIE) = Y1:tH

⊤
1:t in variable W (the

covariances H1:tH
⊤
1:t and Y1:tH

⊤
1:t are updated continually). The advantage is that maintaining

H1:tH
⊤
1:t and Y1:tH

⊤
1:t is easy and does not entail numerical errors, so solving the normal equations

W (H1:tH
⊤
1:t + λIE) = Y1:tH

⊤
1:t directly is expected to be stable, as long as the solver invoked

is numerically stable (the built-in PyTorch solver is used). This appears to be the case, as RanPAC
maintains small training errors. On the other hand, the corresponding test accuracy can be nearly
zero with small λ (e.g., when λ = 0, 1 as shown in Fig. 12).

K.10.3 RANPAC IS UNSTABLE FOR CIL WITH THE SMALLEST INCREMENTS

In the experiments of the main paper, we see that RanPAC is unstable for small increments (e.g.,
Inc-5). Moreover, its instability is exacerbated in the extreme case Inc-1 (Table 2).

Here, we show similar experimental results in Figs. 14 to 17, suggesting that RanPAC is significantly
more unstable for Inc-1, Inc-2, and Inc-4. In particular, in the extreme case of Inc-1, RanPAC presents
failures on all datasets except CIFAR100 (as indicated by the verticle blue line in Figs. 14 to 17. On
the contrary, these figures, including Fig. 18, show that our LoRanPAC method is stable for different
small increments (1, 2, 4, 5).
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(14a) RanPAC (14b) LoRanPAC (14c) RanPAC (14d) LoRanPAC

Figure 14: Upper triangular accuracy matrices on CIFAR100 and ImageNet-R (Inc-1, 2, 4, 5).

(15a) RanPAC (15b) LoRanPAC (15c) RanPAC (15d) LoRanPAC

Figure 15: Upper triangular accuracy matrices on ImageNet-A and CUB-200 (Inc-1, 2, 4, 5).

45



Published as a conference paper at ICLR 2025

(16a) RanPAC (16b) LoRanPAC (16c) RanPAC (16d) LoRanPAC

Figure 16: Upper triangular accuracy matrices on ObjectNet and OmniBenchmark (Inc-1, 2, 4, 5).

(17a) RanPAC (17b) LoRanPAC (17c) RanPAC (17d) LoRanPAC

Figure 17: Upper triangular accuracy matrices on VTAB and StanfordCars (Inc-1, 2, 4, 5).
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Figure 18: Our LoRanPAC method is stable with respect to class increments of each task (Inc-1, 2,
4, 5), while the accuracy of RanPAC drops for smaller increments. The first two rows plot the total
accuracy. The last two rows plot the final accuracy. The figures here essentially plot the averages of
the upper triangular accuracy matrices (total accuracy) or its last column (final accuracy) of Figs. 14
to 17. The numerical values of the total and final accuracy for Inc-1 are shown in Table 2.
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