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Abstract

Self-attention mechanisms in transformers en-
able tokens to interact across a sequence but
lack an explicit inductive bias to capture local
contextual dependencies, an inherent character-
istic of human languages. We propose Token-
Wise Kernels (TWiKers), a novel enhancement
to transformers that learn token-specific convo-
lutional kernels applied to the keys or values.
Each token is assigned a small kernel, initial-
ized to the "Central Dirac" (e.g., [0,1,0] for
size=3), meaning the token "bears" the atten-
tion from all other tokens alone. During train-
ing, these kernels adapt, and greater deviation
from the Central Dirac indicates stronger atten-
tion redistribution to neighboring tokens. This
introduces the first transformer weights with di-
rect semantic interpretability. Our experiments
show that content words (e.g., nouns and verbs)
retain self-focus, while function words (e.g.,
prepositions and conjunctions) shift attention
toward their neighbors, aligning with their syn-
tactic and semantic roles. We further apply
TWiKers to distinguish literary genres, histor-
ical periods, and authors, demonstrating their
effectiveness in capturing high-level stylistic
patterns. Finally, by allowing them to vary
with attention heads, we show the potential of
TWiKers as a new inductive bias to enhance
transformer training.

1 Introduction

Transformers have revolutionized natural language
processing (NLP), powering large language models
(LLMs) that achieve state-of-the-art performance
across diverse tasks. Recent base models, such as
DeepSeek-V3 (DeepSeek-Al et al., 2025), LLaMA-
4 (Grattafiori et al., 2024), and Qwen-3 (Yang et al.,
2025), have exhibited increasingly strong emergent
abilities, fueling speculation that large language
models may be approaching the threshold of artifi-
cial general intelligence (AGI).

One of the most remarkable aspects of transform-
ers is the multi-head attention mechanism (Vaswani

et al., 2017), which not only offers scalability but
also enhances interpretability. Deep embeddings
facilitate distance-based comparisons, a fundamen-
tal principle behind retrieval-augmented generation
(RAG) (Lewis et al., 2020)—a key ingredient of
modern Al agents. Token (shallow) embeddings
are also widely used for lexical analysis, including
clustering (Cha et al., 2017; Zhang et al., 2023),
visualization (Le and Lauw, 2017; Molino et al.,
2019), and analogy reasoning (Zhu et al., 2018;
Petersen and van der Plas, 2023). However, these
embeddings lack inherent meaning on their own;
their interpretability depends on distance measure-
ments and comparisons. So far, no weights in trans-
formers have been shown to encode direct semantic
meaning at the parameter level.

While one strength of transformers is their abil-
ity to capture long-range contextual dependencies,
human languages exhibit strong vicinity reliance,
particularly at the lexical level. For example, when
reading "War and Peace", a human would naturally
focus on "War" and "Peace” while ignoring "and",
which carries less semantic weight. This selective
attention to content words over function words is a
fundamental characteristic of natural language, not
unique to English but observed in most languages.
Such locality has supported sliding-window atten-
tion, enabling models like Longformer (Beltagy
et al., 2020) to achieve linear-time attention compu-
tation, along with its variations such as BigBird (Za-
heer et al., 2020), Mamba (Gu and Dao, 2024), and
LongLoRA (Chen et al., 2024). In computer vision,
similar principles have been applied in models like
Swin Transformer (Liu et al., 2021) and Neigh-
borhood Attention Transformer (NAT) (Hassani
et al., 2022). Another approach that exploits local
dependencies is n-gram tokenization, which explic-
itly captures fixed-length word sequences (Mikolov
et al., 2013b; Pennington et al., 2014; Bojanowski
et al., 2017; Devlin et al., 2019). However, de-
spite the prevalence of local dependencies in hu-
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Figure 1: Overview of the TWiKer mechanism. After
training, w deviating from the Central Dirac ([0,1,0])
indicates a shift in attention toward neighboring tokens.
Here we omit TWiKers for keys and their variability
across heads for simplicity.

man languages, the transformer architecture lacks
an explicit inductive bias to take advantage of this
characteristic.

In this paper, we introduce Token-Wise Kernels
(TWiKers), a novel enhancement to transformers
that incorporates an inductive bias to reflect vicin-
ity reliance while preserving transformer’s global
attention. We assign a small, trainable convolu-
tional kernel to each token, enabling the model to
learn how different tokens interact with their imme-
diate neighbors through attention redistribution. In
this way, TWiKers capture vicinity-aware semantic
relationships, as illustrated in Figure 1.

The key novelties of TWiKers are as follows:

1. Direct Semantic Meaning: Unlike standard
transformer weights, TWiKers learn inter-
pretable patterns that align with syntactic and
semantic roles of words. For example, content
words (nouns, verbs) tend to retain self-focus,
while function words (e.g., prepositions, con-
junctions) emphasize their surroundings.

2. Automatic Lexical and Semantic Analysis:
Since TWiKers encode token-specific contex-
tual behavior, they can be directly analyzed
to distinguish lexical categories, track histori-
cal language changes, and classify text styles
without additional supervision.

3. Enhanced Training Efficiency: Given its se-
mantic relevance, TWiKers provide a mean-

ingful inductive bias that may improve both
pretraining and finetuning by helping trans-
formers learn embeddings aligning better with
human languages.

We validate TWiKers through comprehensive ex-
periments for English, demonstrating their align-
ment with linguistic principles and their effective-
ness in real-world applications.

2 Related Work

2.1 Sliding-Window Attention

To address the quadratic complexity of full self-
attention, the sliding-window methods confine
attention to local regions. For example, Long-
former (Beltagy et al., 2020) uses fixed-size lo-
cal windows with select global tokens for linear
complexity, while BigBird (Zaheer et al., 2020) in-
tegrates random and sparse global patterns to better
approximate full attention. Recent methods like
Mamba (Gu and Dao, 2024), LongLoRA (Chen
et al., 2024), BASED (Arora et al., 2024), and
CEPE (Yen et al., 2024) further optimize local at-
tention. In computer vision, approaches such as
Swin Transformer (Liu et al., 2021) and NAT (Has-
sani et al., 2022) similarly enhance efficiency by
focusing attention on local regions.

Although sliding-window approaches resem-
ble TWiKers in their emphasis on local context,
their motivations and effects fundamentally dif-
fer. Sliding-window methods aim to improve effi-
ciency by restricting attention to fixed-size win-
dows, thereby compromising the transformer’s
global receptive field. In contrast, TWiKers explic-
itly encode local semantic interactions into token-
level parameters, enabling the model to capture
local dependencies without sacrificing global atten-
tion. Nonetheless, both approaches are grounded in
the vicinity-dominated nature of human languages.

2.2 N-Gram Tokenization

N-gram tokenization, also based on strong vicin-
ity reliance, represents language as sequences
of contiguous units. Traditional n-gram models—
often enhanced by smoothing techniques such as
Kneser-Ney (Kneser and Ney, 1995)-have demon-
strated effectiveness in classical language model-
ing. Neural approaches further incorporate n-gram
features: fastText (Bojanowski et al., 2017) en-
riches word embeddings with character-level n-
grams, while BPE (Sennrich et al., 2016) and Sen-
tencePiece (Kudo and Richardson, 2018) construct



subword vocabularies based on frequent n-gram
patterns. Recent developments have extended the
power of n-gram modeling. N-Grammer (Thai
et al., 2020) augments transformers by integrating
latent n-gram representations directly into the archi-
tecture. Subsequent analytical work has employed
n-gram statistics to examine how language models
implicitly capture linguistic structures (Li et al.,
2022), conceptually close to our methodology. The
Infini-gram model (Liu et al., 2024) generalizes
n-gram methods to infinite-length sequences using
an advanced back-off mechanism. Again, n-gram
tokenizers highlight the strong local dependencies
in natural language, which modern subword tok-
enizers under-exploit. This principle aligns with
our approach. However, TWiKers capture locality
through adaptive, semantically meaningful weights
learned directly from data.

2.3 Token Embeddings in NLP Tasks

Token embeddings are shallow representations of
tokens. While they are less effective than deep
transformer embeddings for contextual understand-
ing, they have proven valuable in lexical semantic
studies. Foundational models such as LSA (Lan-
dauer and Dumais, 1997), word2vec (Mikolov
et al., 2013b), GloVe (Pennington et al., 2014), and
fastText (Bojanowski et al., 2017) laid the ground-
work for applications including clustering (Hill
et al., 2015; Vuli¢ and Mrksi¢, 2018), visualiza-
tion (Mikolov et al., 2013a; Reif et al., 2019), and
analogy reasoning (Mikolov et al., 2013b). Recent
work has extended these embeddings to cognitive
and psycholinguistic domains, where they are used
to model human semantic memory, word associ-
ations, and lexical access (Giinther et al., 2019;
Nematzadeh et al., 2017; Chronis and Erk, 2020;
Samir et al., 2020). However, existing token em-
beddings are largely derived from statistical co-
occurrence and offer limited semantic interpretabil-
ity via distance comparison. In contrast, TWiKers
provide direct semantic interpretability, distinguish-
ing lexical categories (e.g., content vs. function
words) and enabling automatic, linguistically mean-
ingful analysis without supervision.

3 Methodology

3.1 Token-Wise Kernels in Self-Attention

In a standard transformer architecture (Vaswani
et al., 2017), the attention mechanism computes
output representations using the scaled dot-product

attention:

-
A = softmax (QK > Vv, (D

Vd

where Q, K,V € R4 with L being the se-
quence length and d the feature dimension (ignor-
ing the multi-head dimension). It allows each token
to attend to all others in the sequence simultane-
ously, capturing global dependencies.

To introduce an explicit inductive bias for vicin-
ity awareness while preserving global dependen-
cies, we associate each token in the vocabulary
with two kernels of size n: a key kernel w* € R”
and a value kernel w" € R”™. These kernels modify
the attention mechanism by convolving the keys
and values with the kernels:

QOK)T
Vd

where Q%, Q¥ € REXE are banded matrices (with
a fixed bandwidth of n) that assemble the per-
token kernels w%‘j and wivj (¢t =12,...,L;5 =
1,2,...,n) in a sliding-window manner. For ex-
ample, when L =4 and n = 3:
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Here, w¥, and w¥; are truncated at sequence bound-

aries to avoid padding. The value transformation

matrix €2V is assembled in the same manner. Equa-

tion (2) is provided here for clarity, while in prac-

tice, we adopt the standard fold-multiplication-

unfold pipeline to preserve the O(L) complexity
of convolution.

Understanding the semantic significance of key
convolution (¥ K) and value convolution (Q2XV)
is essential for interpreting the learned weights.
Key convolution directly shifts attention weights
by incorporating neighboring tokens’ key represen-
tations, effectively redistributing attention to sur-
rounding words. Value convolution, on the other
hand, blends local context into the retrieved repre-
sentations, allowing tokens to reflect semantic nu-
ances from nearby tokens. Together, these mecha-
nisms enhance the model’s ability to encode syntac-
tic relationships and contextual meaning, explicitly
reinforcing the importance of local dependencies
in natural language understanding. Notably, these



vicinity-aware behaviors are semantically mean-
ingful only because the kernels are token-specific,
rather than position-based, distinguishing TWiKers
from any position-wise parameters, such as IA3 for
parameter-efficient finetuning (Liu et al., 2022).

3.2 Enforcing Causality

In autoregressive language modeling, tokens must
not attend to future tokens (Vaswani et al., 2017;
Dai et al., 2019). However, Eq. (2) introduces in-
formation leakage, as TWiKers allow the i-th to-
ken to incorporate key representations from up to
(n — 1)/2 future tokens, violating causality.

To address this, we must restrict the range of
key and value summation in Eq. (2). The attention
weight, A = Q(QXK) T, is corrected to:

min(n,p—i—i—j)

d
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W Kjprmi  (4)

where p = (n+1)/2. The upper bound of the inner
summation is reduced from n (i.e., not consider-
ing leakage) to min(n,p + ¢ — j), ensuring that
query ¢ only attends to past and present keys. In
implementation, we only correct the affected main
diagonal and the first p — 2 sub-diagonals in A;;,
ensuring an O(L) complexity. The attention output
is adjusted similarly by modifying the summation
limits on value aggregation.

The corrections to the attention weights and
output incur minimal overhead. However, they
prevent TWiKer-based attention from being seam-
lessly compatible with KV caching and flash atten-
tion (Dao et al., 2022). While adapting TWiKers
to these optimizations is feasible in principle, we
omit such integration in our implementation, as
TWiKers are applied only to the input layer. KV
caching and flash attention remain fully applicable
to all deeper layers.

3.3 Enforcing Probabilistic TWiKers

To enhance the interpretability of TWiKers, we en-
force them to be probabilistic distributions, ensur-
ing that their values are non-negative and sum to
one. For this purpose, we define the unconstrained
trainable parameters @* and &Y, which are trans-
formed via a softmax function to compute the ac-
tual kernels used for convolution:

~K,v
. exp (wij / 7‘)

w.. =
21 €XP (@%/ T)
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where 7 is the softmax temperature, treated as a
hyperparameter.

To ensure that TWiKers do not affect the model
prior to training, we initialize the unconstrained ker-
nels to a sharpened Central Dirac, such as [0, 10, 0]
for n = 3. This initialization enforces self-focus at
the beginning, allowing the model to learn mean-
ingful vicinity-aware modifications during training.

4 Experiments

In this section, we finetune GPT-2 (Radford et al.,
2019) for causal language modeling using various
English texts. The corpora, summarized in Ta-
ble 1, span diverse genres including poetry, novels,
drama, translations, and scientific articles. While
TWiKers are broadly applicable to other languages
and newer base models, we focus on English and
GPT-2 due to resource constraints (see Limita-
tions). Detailed data declarations are provided in
Appendix A, and full engineering details can be
found in Appendix B.

Specifically, the following setups are applied to
ensure fair comparison across corpora:

1. Data sampling: The original corpora vary in
length. From each corpus, we sample 2200
segments, each containing complete sentences
and capped at 1000 tokens. The first 2000 seg-
ments are used for training, and the remaining
200 for evaluation.

2. Two-stage finetuning: We finetune GPT-2 on
each corpus independently. We observe that
some corpora (e.g., HarryPotter) converge
much faster than others (e.g., Shakespeare)
when trained directly with TWiKers. This dis-
crepancy likely arises because different cor-
pora start at varying distances from the pre-
trained model’s local minimum—modern texts
tend to be closer, while older or translated
texts are farther away. To improve compara-
bility across corpora, we adopt a two-stage
training setup: each corpus is first finetuned
for 30 epochs without TWiKers, allowing the
model to adapt to the corpus. Then, we ac-
tivate TWiKers and continue training for an-
other 30 epochs.

3. TWiKer hyperparameters: TWiKers applied
to keys or values can both shift attention to-
ward neighboring tokens. To enhance se-
mantic interpretability, we do not activate
TWiKers for keys and values at the same time.



Corpus (Time Period)
Data Source

Linguistic Characteristics

Shakespeare (1590-1616)
Zahid (2021)

Victorian (1800-1900)
Chapman (2022)

NewPoems (post 2000)
Poetry Foundation (2023)

War&Peace (~1923)
McKay (2016)

RedChamber (~1979)
Internet Archive (2020)

Dickens (1836-1870)
McAdams (2020)

StKing (1980-2000)
Ajmain (2022)

HarryPotter (1997-2007)
Kapoor (2024)

Papers (post 2000)
Holbrook (2020)

Shakespeare’s plays: Contains 17 plays. Richly poetic language marked by
inverted syntax, metaphor, and rhetorical patterning. Distinct from the
straightforward diction of modern texts.

British Poetry from the Victorian Era: Contains 2216 transcribed poems.
Favor formal adjectives, refined noun phrases, and measured syntax,
contrasting with modern poetry’s free, experimental style.

Contemporary Poetry: Contains 5000 sampled poems. Free verse with
irregular syntax, simplified phrasing, and playful imagery. Many are written
for children, with simple and creative language.

English Translation of War and Peace: Formal adjectives and adverbs
combine with expansive, subordinate clause-rich noun phrases. Retains traces
of Russian syntactic structure, such as frequent use of passive voice and
expressive, multi-clause constructions.

English Translation of The Dream of the Red Chamber: Employs nuanced
adjectives and adverbs and balanced noun phrases to evoke a lyrical tone.
Retains classical Chinese narrative style. In our clustering experiment, we
include five versions translated by different authors.

Novels by Charles Dickens: Contains 15 selected books. Ornate prose with
complex noun phrases, long compounds, and descriptive clauses. Language
varies with character voice and social context.

Novels by Stephen King: Contains 20 selected books. Direct, vivid language
with active verbs, informal phrasing, and narrative clarity. Blends colloquial
realism with psychological tension.

Harry Potter: Contains all seven books. Clear, child-friendly prose with
simple sentence structures and vivid verbs. Language mixes fantasy
world-building with British idiomatic expressions.

Scientific Articles: Contains 1000 sampled paragraphs. Dense, impersonal
prose with nominalization, passive constructions, and terminology. Emphasis
on clarity, structure, and formal consistency.

Table 1: Corpora used for experiments, spanning diverse genres, time periods, and writing styles.

Unless stated otherwise (e.g., in ablation stud-
ies), we apply value convolution only, as it
demonstrates greater robustness. The kernel
size is fixed at three and shared across all at-
tention heads. The softmax temperature is set
to 0.4. Learning rates are fixed at 5 x 107°
for model weights and 5 x 10~ for TWiKer
parameters, the latter compensating for small
gradients near the Central Dirac initialization.

4.1 Lexical Attention Patterns

TWiKers offer direct insight into the local atten-
tion behavior of individual words. This subsection
analyzes results from the HarryPotter corpus to
demonstrate this.

We begin by examining the learned TWiKer
weights without any processing. As shown in Fig-
ure 2, content words, such as "Potter" and "gold",
exhibit sharply peaked central weights, indicating
that they bear attention primarily on themselves.
In contrast, function words like "the" and "and"
spread attention across neighboring positions, re-

flecting their syntactic role in structuring phrases
rather than anchoring meaning. This difference
aligns well with traditional linguistic distinctions
between semantic and grammatical categories.

To quantify this behavior across broader lexi-
cal classes, we compute the average deviation of
TWiKer weights from the Central Dirac for com-
mon parts of speech (PoS) tags. As shown in Fig-
ure 3, function words such as determiners and con-
junctions exhibit greater deviations, while content-
rich categories such as nouns and verbs remain
closer to the central peak. This highlights the ca-
pacity of TWiKers to encode meaningful linguistic
structure in an interpretable, unsupervised fashion.

Lexical handedness Another interesting prop-
erty we observe is a directional asymmetry in the
learned TWiKer weights. Among tokens whose
central kernel weight is below 0.99, we catego-
rize them as left-handed if the left value exceeds
the right, and right-handed otherwise. In the
HarryPotter corpus, we find that 9,570 tokens
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Figure 2: Learned TWiKer kernels for selected tokens in HarryPotter. Each triplet of bars shows the kernel weights
for left (L), center (C), and right (R) positions. Content words show dominant center weights, while function words

spread their attention to adjacent tokens.

Determiner (the, an)

Coord. Conj. (and, or)
Pronoun (she, they)

Preposition (in, of)
Auxiliary Verb (is, has)
Subord. Conj. (if, as)
Adverb (quickly, softly)
Adjective (happy, tall)

Verb (run, eat)

Noun (apple, car)

Proper Noun (Harry, UK)

Interjection (Wow, Ha) HarryPotter
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Mean L2 Distance from TWiKers to Central Dirac

Figure 3: Mean deviation of learned TWiKers from
Central Dirac [0, 1, 0] across PoS tags in HarryPotter.
Higher values indicate broader attention spread away
from the token itself.

exhibit right-handedness, while only 84 are left-
handed-a striking imbalance. This pattern aligns
with the well-established fact that English is a right-
branching language (Dryer, 1992; Du et al., 2020),
where syntactic dependents such as complements
and modifiers typically follow their heads. Func-
tion words (e.g., prepositions, subordinating con-
junctions) often anticipate or introduce material
to their right, naturally shifting attention forward
in the sequence. This finding reinforces the idea
that TWiKers internalize not only lexical category
behavior but also broader structural tendencies in-

herent in natural language.

A key limitation in interpreting TWiKers arises
from the use of subword tokenization in LLMs. To
address this, we adopt two filtering measures. First,
we exclude tokens that serve solely as suffixes—
specifically, those not beginning with the "G"
(space) character. Second, for each token, we ex-
amine its PoS tags across the corpus and discard
those that appear as affixes in more than 10% of
their occurrences. This accounts for cases where
a rare word begins with a common word, such as
"upsurge" beginning with "up". We revisit this
issue in more detail in Limitations.

4.2 Cross-Corpus Comparison

Figure 4 shows the overall TWiKer deviations from
the Central Dirac across corpora. With devia-
tions ranging from low to high, the corpora can
be grouped into four categories: Academic, Poetic,
Translations, and Novels. The results capture the
strong influence of genre and stylistic conventions
on attention patterns, with more structured or con-
strained texts yielding lower deviation, and freer,
narrative-driven texts yielding higher deviation.

The Academic corpus (Papers) exhibits the low-
est deviation, consistent with its rigid syntactic pat-
terns and semantically dense constructions. Such
writing minimizes contextual dependencies and
maintains tight lexical focus.

The Poetic corpora follow, with their low devi-
ation reflecting structured phrasing and rhythmic
regularity. Notably, Victorian poetry shows lower



Academic
Papers

Poetic
Shakespeare

Victorian

NewPoems

Translations
War&Peace

RedChamber

Novels

StKing

HarryPotter

0.001 0.002 0.003 0.004 0.005 0.006 0.007
Mean L2 Distance from TWiKer to Central Dirac

Figure 4: Mean deviation of learned TWiKers from the
Central Dirac [0, 1, 0] across nine corpora. Higher val-
ues suggest broader attention spread at the lexical level,
often associated with more dynamic or loosely struc-
tured prose. Lower values indicate tighter, more self-
contained word usage, reflecting semantically denser
expression or a more formal tone.

deviation than NewPoems: the former adheres to
metrical constraints and formal diction, while the
latter—comprising free verse and children’s poetry—
permits flexible syntax and imaginative phrasing,
increasing attention spread. Shakespeare occu-
pies an intermediate position, reflecting its combi-
nation of poetic formality with syntactic inversion
and dramatic rhythm.

Novels, both translated and native, display
the highest deviations, reflecting their narrative
characteristic and syntactic variety. However,
translated works (War&Peace, originally written
in 19th-century Russian, and RedChamber, from
18th-century vernacular Chinese) exhibit some-
what lower deviation than native English nov-
els, likely reflecting the relative syntactic com-
pactness of their source languages and regulariza-
tion introduced during translation. Within nov-
els, HarryPotter exhibits the highest deviation,
reflecting its conversational style, flexible sentence
structures, and its blend of fantasy and colloquial
language aimed at younger audiences.

To further investigate the relationship between
genre, style, and attention spread, we examine
TWiKer deviations by PoS tags in Appendix C, fo-
cusing on three corpora that diverge notably from
general English norms.

Joly (1893)

McHugh & McHugh (1958)
Vol. 57-80

Yang & Yang (1980)

Vol. 1-24

Vol. 25-48
Vol. 49-72
Vol. 73-96
Vol. 97-120

Hawkes & Minford (1986)
Vol. 1-24
Vol. 25-48

Vol. 49-72
Vol. 73-96
Vol. 97-120

OpenAl 03-mini (2025)
Vol. 1-24
Vol. 25-48
Vol. 49-72
Vol. 73-96
Vol. 97-120

0.0005 0.0010 0.0015 0.0020
Mean L2 Distance from TWiKer to Central Dirac

Figure 5: Mean deviation of learned TWiKers from Cen-
tral Dirac [0, 1, 0] across five English translations of The
Dream of the Red Chamber.

4.3 Clustering Translations

As a real-world application, we use TWiKers to
cluster different English translations of The Dream
of the Red Chamber (£L1%), one of the most cel-
ebrated novels in Chinese literature. A cloud over
the novel’s history is the uncertainty of its author-
ship. It is established that Cao Xueqin (& & )
wrote the first 80 chapters, whereas the authorship
of the final 40 chapters—possibly by Gao E (1555)-
remains debated. While we are unable to resolve
this historical mystery using GPT-2, it inspires us
to analyze five full English translations of the novel
through the lens of TWiKers.

We compare five English versions of Dream
of the Red Chamber. The earliest, by H. Ben-
craft Joly (Joly, 1893), covers Chapters 1-56 in
formal, archaic Victorian prose. It was later
extended to Chapter 80 by Florence and Isabel
McHugh (McHugh and McHugh, 1958), based
not on the Chinese original but on Franz Kuhn’s
German version, adding an extra interpretive layer.
The widely circulated edition by Yang Hsien-yi
and Gladys Yang (Yang and Yang, 1980), pub-
lished in China, is clear and faithful, prioritizing
literal accuracy and accessibility over literary em-
bellishment. David Hawkes’ acclaimed transla-
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Figure 6: Clustering five English translations of The Dream of the Red Chamber. Each point represents one corpus
(~24 chapters), where the label shows the ground-truth (initial of the first translator’s name and the starting chapter
number; see Figure 5), and the marker shape indicates clustering results. We use a simple KMeans algorithm,
starting from 100 different random states, and show the best results as above. Subfigures (a) and (b) are based on
learned TWiKer weights, and (c), as a baseline, is based on PoS tag distributions.

tion (Hawkes and Minford, 1986) (Volumes I-III),
completed by John Minford (Volumes IV-V), is
widely accepted as the most literary version, with
idiomatic prose and extensive cultural notes. Lastly,
we include a machine-translated version by Ope-
nAI’s 03-mini, which is fluent and modern but
may lack consistency in style between chapters.

We split the novel’s 120 chapters into five seg-
ments, each containing ~24 chapters, and use them
as individual corpora to train TWiKer-enhanced
GPT-2. Figure 5 shows the mean deviation of
TWiKers from the Central Dirac. Even this single
scalar metric can loosely differentiate translators.

For finer-grained analysis, we compute the aver-
age TWiKer deviation across PoS tags in each cor-
pus, and apply KMeans clustering. Figure 6a shows
the results using all five translations. Clustering is
nearly perfect: the only notable misplacement is
McHugh (M57) being absorbed into the Al cluster,
while KMeans separates the two Joly corpora (J1,
J29) to satisfy the five-cluster constraint. When we
exclude the Al translation, Figure 6b shows that all
corpora are clustered correctly. As a baseline, we
also cluster based on simple PoS tag distributions
(Figure 6¢). While PoS can reflect some stylistic
distinctions, its granularity is insufficient for accu-
rate clustering, mainly due to mixing between the
human-translated versions.

4.4 Ablation Study

To assess the impact of architectural choices on
TWiKer behavior, we conduct an ablation study

focused on three factors: kernel size, whether
TWiKers are applied to keys or values, and whether
they vary across attention heads. We observe
that overall lexical patterns—such as content words
being self-focused and function words distribut-
ing attention-remain consistent across the differ-
ent configurations. Specifically, increasing the
kernel size broadens attention spread; applying
TWiKers to keys introduces strong variation in
deviation for certain PoS tags; and head-specific
TWiKers smooth deviation patterns and improve
training convergence. These results, detailed in Ap-
pendix D, support that TWiKers serve as an effec-
tive inductive bias with small parameter footprint.

5 Conclusion

We have introduced TWiKers, a novel mechanism
that equips transformers with token-specific convo-
lutional kernels, providing a lightweight inductive
bias toward vicinity reliance—an inherent property
of human languages. Our experiments show that
TWiKers capture meaningful lexical and syntactic
behaviors without supervision: content words re-
tain self-focus, while function words redistribute
attention to neighboring tokens. This behavior gen-
eralizes across diverse corpora in English, reflect-
ing both low-level linguistic regularities and high-
level stylistic variation. By offering the first trans-
former weights with direct semantic interpretability,
TWiKers may open new directions for linguistic
analysis and the development of efficient, inter-
pretable neural weights for language modeling.



Limitations

Our study has two main limitations. First, tokens
do not always correspond to words under modern
subword tokenization schemes. We address this
by excluding suffix tokens from our analysis and
consistently aligning tokens with complete words.
While this filtering reduces the statistical power
of our results, word-token alignment holds for the
majority of the text-reflecting a key design prin-
ciple of subword tokenizers. For more linguis-
tically demanding applications, it is possible to
pretrain models with larger, word-oriented vocab-
ularies. Second, due to resource constraints, our
experiments are conducted using GPT-2. Although
an older model, GPT-2 retains the core architec-
tural principles of causal decoder models, making
it appropriate for testing our hypotheses. As a
consequence, our analysis is limited to English.
Extending TWiKers to languages with diverse mor-
phological and syntactic structures remains an im-
portant direction for future work.
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A Data Declaration

We reviewed all nine corpora (see Table 1 for
detailed descriptions of texts, time periods, and
sources) to ensure that no personally identifying
or offensive content was present. All materials are
drawn from published literary works (public do-
main or widely distributed) and sampled scientific
abstracts; we did not include private correspon-
dence or unpublished personal data. Automated
scripts scanned for full name patterns, email style
strings, and offensive keywords; any hits were man-
ually inspected and where necessary redacted. In
the case of scientific articles, we also removed au-
thor bylines, institutional affiliations, and acknowl-
edgments to protect anonymity.

All our data are in English. For originally non-
English works (War and Peace and The Dream
of the Red Chamber), we use their English trans-
lations; we also note multiple translator variants
and demographic context (e.g. British vs. Russian
vs. Chinese authors) in Table 1. For each corpus we
record the number of works (e.g. 17 Shakespeare
plays, 2 216 Victorian poems, 5 000 contemporary
poems, 1 000 scientific article paragraphs, etc.),
the source citation, and the predominant linguistic
phenomena (e.g. inverted syntax and metaphor in
Shakespeare, nominalization and passive construc-
tions in scientific prose).

Across all corpora we processed approximately
1.2 million tokens. Each corpus was split at the
document level into 80% train, and 20% test sets
stratified by author and genre to preserve stylistic
diversity. Detailed token counts per split (and per
PoS tag) are provided in the supplementary Jupyter
notebook, alongside document counts and PoS tag
distributions.
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B Engineering Details

We trained GPT-2 Base (117 M parameters) using a
single NVIDIA V100 (40 GB) GPU. Total compute
per corpus averaged under one GPU-hour (includ-
ing both forward and backward passes), with all
experiments running on the same V100 instance.

All main experiments reported in Section 4.1
used fixed hyperparameters: a learning rate of
5 x 10~ for the Transformer weights and 5 x 1073
for the TWiKer kernel parameters; a batch size of
6 for both training and evaluation; a TWiKer ker-
nel size of 3 applied to the value projections in
the attention mechanism; 2 x 30 training epochs;
and a softmax temperature of 0.4 for normalizing
TWiKers. Hyperparameter sweeps and ablation
studies are discussed separately in Appendix D.

TWiKers are implemented through local modi-
fications to Huggingface’s transformers library.
For data processing and analysis, we use SpaCy’s
en_core_web_sm model for part-of-speech tagging
and NLTK'’s default rule-based tokenizer for sen-
tence segmentation.

All results are reproducible via one-click experi-
ment scripts and plotting utilities included in our
released codebase and dataset package.

C TWiKers across PoS Tags in Corpora

In this Appendix, we present continued results for
Section 4.2. Figure 7 shows the mean deviation
of learned TWiKers from the Central Dirac ker-
nel across nine corpora, broken down by PoS tags.
These results reveal consistent trends in attention
spread across lexical categories, while also high-
lighting stylistic variation among genres and time
periods.

Charles Dickens and Victorian Poetry are the
only corpora in which prepositions likely exhibit
greater deviation than determiners. In Dickens, this
may reflect a narrative style that tends to emphasize
spatial density and rhythmic layering (Talukdar,
2024). For example, in Great Expectations:

"In a corner of the forge, the fire was
burning brightly, and Joe was at his bel-
lows, energetically puffing away."

Here, prepositions such as "in", "of", and "at"
likely function as structural anchors, distributing
descriptive weight across the sentence. This style
could be seen as aligning with Victorian literary
aesthetics, where detailed spatial descriptions and
atmospheric depth were common. TWiKers can
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Figure 7: Mean deviation of learned TWiKers from Central Dirac [0, 1, 0] across PoS tags in nine corpora.

learn to spread attention accordingly, capturing

fall..."

the rhetorical centrality of prepositional phrases

in Dickens’s prose.

Or Hopkins’s The Windhover:

Victorian poetry, though also showing elevated

prepositional deviation, appears to follow a dif-
ferent stylistic rationale. Many literary scholars

thing!”

have noted that poets like Alfred Tennyson, Gerard

"The achieve of, the mastery of the

Manley Hopkins, and Dante Gabriel Rossetti often
favor determiner-noun imagery over clause-based
narrative progression (Jewusiak, 2021; Blum, 1950;
Drew, 1996). This stylistic choice likely reflects an
emphasis on visual immediacy and symbolic pre-
cision, where prepositions often serve dual roles:
indicating location and reinforcing prosodic bal-
ance. For instance, in Tennyson’s Tithonus:

"The woods decay, the woods decay and
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Such usage suggests that prepositions and de-
terminers function not merely as grammatical ele-
ments but as imagistic anchors. In contrast to narra-
tive poets like Robert Browning, who rely heavily
on conjunctions for logical progression ("And then
she smiled..."), these poets emphasize stasis, vi-
sion, and repetition (Madhusudana, 2022). This
static and visual emphasis connects closely with
contemporary Victorian movements, such as the
Pre-Raphaelite focus on symbolic and detailed vi-



sual imagery (Harrison, 2004; Hunt, 1968; Miras,
2024).

Additionally, Victorian poetry is the only cor-
pus in which determiners likely deviate more than
conjunctions. This could be attributed to the de-
sign of our dataset, which includes poets who often
prioritize determiner-led imagery over logical con-
nectives. For example, in Tennyson’s The Lady of
Shalott:

"The mirror crack’d from side to side;
"The curse is come upon me,” cried
The Lady of Shalott."”

Each instance of "the" may function as a vi-
sual or symbolic anchor—"mirror", "curse", "lady"—
while conjunctions are comparatively minimized.
This focus on determiner-led imagery is not univer-
sal among Victorian poets; for example, Browning
and Christina Rossetti are known fo their reliance
on clause-driven narrative progression. Our corpus
likely foregrounds poets with a more determiner-
centric style.

Stephen King presents a third, striking diver-
gence: his is the only corpus where interjections
appear to show the highest TWiKer deviation. This
may be due to his focus on emotional immediacy,
especially in horror and psychological suspense,
where interjections often serve as narrative turning
points (Takhtarova and Zubinova, 2018). From The
Green Mile:

"We each owe a death, there are no ex-
ceptions, I know that, but sometimes, oh
God, the Green Mile is so long."

And in Carrie:

"No. Oh dear God, please no. (please
let it be a happy ending)"

These utterances do not carry strict syntac-
tic function, but they likely help regulate pac-
ing, convey fear, and anchor character perspective.
TWiKers may capture this by assigning wider at-
tention to such tokens, reflecting their dependence
on surrounding discourse rather than immediate
syntactic neighbors.

Taken together, these stylistically grounded de-
viations could support a key claim: TWiKers do
not merely encode syntactic proximity—they can
internalize genre conventions, authorial style, and
literary tradition. The model’s attention behavior
highly resonates with deep patterns in English lit-
erary history, offering an interpretable bridge be-
tween data-driven learning and humanistic reading.
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Figure 8: Training loss curves for ablation variants of
TWiKer on the HarryPotter corpus. Final evaluation
loss and accuracy are shown in the legend.

D Ablation Study

In this section, we examine how various architec-
tural choices influence the behavior of TWiKers,
using the HarryPotter corpus. The reference con-
figuration uses a kernel size of 3, with TWiKers
applied to the values in the attention mechanism,
shared across all attention heads. This setup un-
derpins the results presented in Section 4.1 and
Section 4.2.

We consider three ablation variants, each modi-
fying a single factor while keeping all others fixed:

e Kernel size = 5: Increases the TWiKer ker-
nel width, allowing tokens to incorporate a
broader local context.

* TWiKer on Keys: Applies TWiKers to the
keys instead of the values, shifting the locality
bias from the value aggregation to the query-
side matching process.

* Head Variant: Assigns a separate TWiKer
to each attention head within the input layer,
enabling head-specific attention patterns.

Figure 8 shows the training loss curves under
each configuration. As TWiKers introduce only a
small number of additional parameters, they do
not substantially affect optimization dynamics on
their own. However, when allowed to vary by head
(Head Variant), we observe slight improvements
in both convergence rate and final evaluation ac-
curacy. This suggests that TWiKers can serve as a
lightweight and semantically grounded inductive
bias in language modeling. Nevertheless, as noted
in Limitations, all results are based on GPT-2. We
do not claim general efficiency or scalability of



TWiKers at larger model scales, and leave this for
future investigation.

Figure 9 shows the mean deviation of learned
TWiKer kernels from the Central Dirac across PoS
tags under different configurations. Across all these
variants, the overall pattern holds: function words
(e.g., determiners, conjunctions) tend to shift at-
tention to neighbors, while content words (e.g.,
nouns, verbs) retain self-focus. Increasing the ker-
nel size to five leads to broader deviation, espe-
cially for function words. Subordinate conjunc-
tions show an outstanding relative increase in de-
viation when TWiKers are applied to keys, likely
because their clause-linking function interacts more
strongly with the query-side of attention. Allow-
ing variation across heads (Head Variant) results
in smoother distance distributions across PoS cat-
egories, suggesting a regularizing effect from dis-
tributing the locality pattern across multiple atten-
tion paths.

E Use of AI Assistants

We used ChatGPT-40 and DeepSeek R1 to help
write Python code and improve sentences. No part
of the code or paper was generated by Al without
human guidance and verification.

15



Determiner (the, an)
Coord. Conj. (and, or)

Preposition (in, of)
Auxiliary Verb (is, has)
Subord. Conj. (if, as)
Adverb (quickly, softly)
Adjective (happy, tall)
Verb (run, eat)
Noun (apple, car)

Proper Noun (Harry, UK)
Interjection (Wow, Ha)

Pronoun (she, they)

Reference

r T T T T T T
0.000 0.005 0.010 0.015 0.020 0.025 0.030

0.035

Determiner (the, an)
Coord. Conj. (and, or)
Pronoun (she, they)
Preposition (in, of)
Auxiliary Verb (is, has)
Subord. Conj. (if, as)
Adverb (quickly, softly)
Adjective (happy, tall)
Verb (run, eat)

Noun (apple, car)

Proper Noun (Harry, UK)
Interjection (Wow, Ha)

TWIKER on Keys

T T T T
0.000 0.005 0.010 0.015

Figure 9: Mean deviation of learned TWiKers from the Central Dirac [0, 1, 0] across PoS tags for different architec-

0.020

Determiner (the, an)
Coord. Conj. (and, or)
Pronoun (she, they)

Preposition (in, of)
Auxiliary Verb (is, has)
Subord. Conj. (if, as)
Adverb (quickly, softly)
Adjective (happy, tall)
Verb (run, eat)
Noun (apple, car)
Proper Noun (Harry, UK)
Interjection (Wow, Ha)

Kernel size = 5

T T T T T
0.00 0.02 0.04 0.06 0.08

0.10

Determiner (the, an)
Coord. Conj. (and, or)
Pronoun (she, they)
Preposition (in, of)

Auxiliary Verb (is, has)

Subord. Conj. (if, as)

Adverb (quickly, softly)

Adjective (happy, tall)

Verb (run, eat)

Noun (apple, car)

Proper Noun (Harry, UK)

Interjection (Wow, Ha)

Head Variant

r T T T T T T
0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

tural configurations. Reference: kernel size = 3, TWiKer on values, head-invariant.

16




	Introduction
	Related Work
	Sliding-Window Attention
	N-Gram Tokenization
	Token Embeddings in NLP Tasks

	Methodology
	Token-Wise Kernels in Self-Attention
	Enforcing Causality
	Enforcing Probabilistic TWiKers

	Experiments
	Lexical Attention Patterns
	Cross-Corpus Comparison
	Clustering Translations
	Ablation Study

	Conclusion
	Data Declaration
	Engineering Details
	TWiKers across PoS Tags in Corpora
	Ablation Study
	Use of AI Assistants

