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Abstract001

Self-attention mechanisms in transformers en-002
able tokens to interact across a sequence but003
lack an explicit inductive bias to capture local004
contextual dependencies, an inherent character-005
istic of human languages. We propose Token-006
Wise Kernels (TWiKers), a novel enhancement007
to transformers that learn token-specific convo-008
lutional kernels applied to the keys or values.009
Each token is assigned a small kernel, initial-010
ized to the "Central Dirac" (e.g., [0,1,0] for011
size=3), meaning the token "bears" the atten-012
tion from all other tokens alone. During train-013
ing, these kernels adapt, and greater deviation014
from the Central Dirac indicates stronger atten-015
tion redistribution to neighboring tokens. This016
introduces the first transformer weights with di-017
rect semantic interpretability. Our experiments018
show that content words (e.g., nouns and verbs)019
retain self-focus, while function words (e.g.,020
prepositions and conjunctions) shift attention021
toward their neighbors, aligning with their syn-022
tactic and semantic roles. We further apply023
TWiKers to distinguish literary genres, histor-024
ical periods, and authors, demonstrating their025
effectiveness in capturing high-level stylistic026
patterns. Finally, by allowing them to vary027
with attention heads, we show the potential of028
TWiKers as a new inductive bias to enhance029
transformer training.030

1 Introduction031

Transformers have revolutionized natural language032

processing (NLP), powering large language models033

(LLMs) that achieve state-of-the-art performance034

across diverse tasks. Recent base models, such as035

DeepSeek-V3 (DeepSeek-AI et al., 2025), LLaMA-036

4 (Grattafiori et al., 2024), and Qwen-3 (Yang et al.,037

2025), have exhibited increasingly strong emergent038

abilities, fueling speculation that large language039

models may be approaching the threshold of artifi-040

cial general intelligence (AGI).041

One of the most remarkable aspects of transform-042

ers is the multi-head attention mechanism (Vaswani043

et al., 2017), which not only offers scalability but 044

also enhances interpretability. Deep embeddings 045

facilitate distance-based comparisons, a fundamen- 046

tal principle behind retrieval-augmented generation 047

(RAG) (Lewis et al., 2020)–a key ingredient of 048

modern AI agents. Token (shallow) embeddings 049

are also widely used for lexical analysis, including 050

clustering (Cha et al., 2017; Zhang et al., 2023), 051

visualization (Le and Lauw, 2017; Molino et al., 052

2019), and analogy reasoning (Zhu et al., 2018; 053

Petersen and van der Plas, 2023). However, these 054

embeddings lack inherent meaning on their own; 055

their interpretability depends on distance measure- 056

ments and comparisons. So far, no weights in trans- 057

formers have been shown to encode direct semantic 058

meaning at the parameter level. 059

While one strength of transformers is their abil- 060

ity to capture long-range contextual dependencies, 061

human languages exhibit strong vicinity reliance, 062

particularly at the lexical level. For example, when 063

reading "War and Peace", a human would naturally 064

focus on "War" and "Peace" while ignoring "and", 065

which carries less semantic weight. This selective 066

attention to content words over function words is a 067

fundamental characteristic of natural language, not 068

unique to English but observed in most languages. 069

Such locality has supported sliding-window atten- 070

tion, enabling models like Longformer (Beltagy 071

et al., 2020) to achieve linear-time attention compu- 072

tation, along with its variations such as BigBird (Za- 073

heer et al., 2020), Mamba (Gu and Dao, 2024), and 074

LongLoRA (Chen et al., 2024). In computer vision, 075

similar principles have been applied in models like 076

Swin Transformer (Liu et al., 2021) and Neigh- 077

borhood Attention Transformer (NAT) (Hassani 078

et al., 2022). Another approach that exploits local 079

dependencies is n-gram tokenization, which explic- 080

itly captures fixed-length word sequences (Mikolov 081

et al., 2013b; Pennington et al., 2014; Bojanowski 082

et al., 2017; Devlin et al., 2019). However, de- 083

spite the prevalence of local dependencies in hu- 084
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Figure 1: Overview of the TWiKer mechanism. After
training, ω deviating from the Central Dirac ([0,1,0])
indicates a shift in attention toward neighboring tokens.
Here we omit TWiKers for keys and their variability
across heads for simplicity.

man languages, the transformer architecture lacks085

an explicit inductive bias to take advantage of this086

characteristic.087

In this paper, we introduce Token-Wise Kernels088

(TWiKers), a novel enhancement to transformers089

that incorporates an inductive bias to reflect vicin-090

ity reliance while preserving transformer’s global091

attention. We assign a small, trainable convolu-092

tional kernel to each token, enabling the model to093

learn how different tokens interact with their imme-094

diate neighbors through attention redistribution. In095

this way, TWiKers capture vicinity-aware semantic096

relationships, as illustrated in Figure 1.097

The key novelties of TWiKers are as follows:098

1. Direct Semantic Meaning: Unlike standard099

transformer weights, TWiKers learn inter-100

pretable patterns that align with syntactic and101

semantic roles of words. For example, content102

words (nouns, verbs) tend to retain self-focus,103

while function words (e.g., prepositions, con-104

junctions) emphasize their surroundings.105

2. Automatic Lexical and Semantic Analysis:106

Since TWiKers encode token-specific contex-107

tual behavior, they can be directly analyzed108

to distinguish lexical categories, track histori-109

cal language changes, and classify text styles110

without additional supervision.111

3. Enhanced Training Efficiency: Given its se-112

mantic relevance, TWiKers provide a mean-113

ingful inductive bias that may improve both 114

pretraining and finetuning by helping trans- 115

formers learn embeddings aligning better with 116

human languages. 117

We validate TWiKers through comprehensive ex- 118

periments for English, demonstrating their align- 119

ment with linguistic principles and their effective- 120

ness in real-world applications. 121

2 Related Work 122

2.1 Sliding-Window Attention 123

To address the quadratic complexity of full self- 124

attention, the sliding-window methods confine 125

attention to local regions. For example, Long- 126

former (Beltagy et al., 2020) uses fixed-size lo- 127

cal windows with select global tokens for linear 128

complexity, while BigBird (Zaheer et al., 2020) in- 129

tegrates random and sparse global patterns to better 130

approximate full attention. Recent methods like 131

Mamba (Gu and Dao, 2024), LongLoRA (Chen 132

et al., 2024), BASED (Arora et al., 2024), and 133

CEPE (Yen et al., 2024) further optimize local at- 134

tention. In computer vision, approaches such as 135

Swin Transformer (Liu et al., 2021) and NAT (Has- 136

sani et al., 2022) similarly enhance efficiency by 137

focusing attention on local regions. 138

Although sliding-window approaches resem- 139

ble TWiKers in their emphasis on local context, 140

their motivations and effects fundamentally dif- 141

fer. Sliding-window methods aim to improve effi- 142

ciency by restricting attention to fixed-size win- 143

dows, thereby compromising the transformer’s 144

global receptive field. In contrast, TWiKers explic- 145

itly encode local semantic interactions into token- 146

level parameters, enabling the model to capture 147

local dependencies without sacrificing global atten- 148

tion. Nonetheless, both approaches are grounded in 149

the vicinity-dominated nature of human languages. 150

2.2 N-Gram Tokenization 151

N-gram tokenization, also based on strong vicin- 152

ity reliance, represents language as sequences 153

of contiguous units. Traditional n-gram models– 154

often enhanced by smoothing techniques such as 155

Kneser-Ney (Kneser and Ney, 1995)–have demon- 156

strated effectiveness in classical language model- 157

ing. Neural approaches further incorporate n-gram 158

features: fastText (Bojanowski et al., 2017) en- 159

riches word embeddings with character-level n- 160

grams, while BPE (Sennrich et al., 2016) and Sen- 161

tencePiece (Kudo and Richardson, 2018) construct 162
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subword vocabularies based on frequent n-gram163

patterns. Recent developments have extended the164

power of n-gram modeling. N-Grammer (Thai165

et al., 2020) augments transformers by integrating166

latent n-gram representations directly into the archi-167

tecture. Subsequent analytical work has employed168

n-gram statistics to examine how language models169

implicitly capture linguistic structures (Li et al.,170

2022), conceptually close to our methodology. The171

Infini-gram model (Liu et al., 2024) generalizes172

n-gram methods to infinite-length sequences using173

an advanced back-off mechanism. Again, n-gram174

tokenizers highlight the strong local dependencies175

in natural language, which modern subword tok-176

enizers under-exploit. This principle aligns with177

our approach. However, TWiKers capture locality178

through adaptive, semantically meaningful weights179

learned directly from data.180

2.3 Token Embeddings in NLP Tasks181

Token embeddings are shallow representations of182

tokens. While they are less effective than deep183

transformer embeddings for contextual understand-184

ing, they have proven valuable in lexical semantic185

studies. Foundational models such as LSA (Lan-186

dauer and Dumais, 1997), word2vec (Mikolov187

et al., 2013b), GloVe (Pennington et al., 2014), and188

fastText (Bojanowski et al., 2017) laid the ground-189

work for applications including clustering (Hill190

et al., 2015; Vulić and Mrkšić, 2018), visualiza-191

tion (Mikolov et al., 2013a; Reif et al., 2019), and192

analogy reasoning (Mikolov et al., 2013b). Recent193

work has extended these embeddings to cognitive194

and psycholinguistic domains, where they are used195

to model human semantic memory, word associ-196

ations, and lexical access (Günther et al., 2019;197

Nematzadeh et al., 2017; Chronis and Erk, 2020;198

Samir et al., 2020). However, existing token em-199

beddings are largely derived from statistical co-200

occurrence and offer limited semantic interpretabil-201

ity via distance comparison. In contrast, TWiKers202

provide direct semantic interpretability, distinguish-203

ing lexical categories (e.g., content vs. function204

words) and enabling automatic, linguistically mean-205

ingful analysis without supervision.206

3 Methodology207

3.1 Token-Wise Kernels in Self-Attention208

In a standard transformer architecture (Vaswani209

et al., 2017), the attention mechanism computes210

output representations using the scaled dot-product211

attention: 212

A = softmax
(
QK⊤
√
d

)
V , (1) 213

where Q,K,V ∈ RL×d, with L being the se- 214

quence length and d the feature dimension (ignor- 215

ing the multi-head dimension). It allows each token 216

to attend to all others in the sequence simultane- 217

ously, capturing global dependencies. 218

To introduce an explicit inductive bias for vicin- 219

ity awareness while preserving global dependen- 220

cies, we associate each token in the vocabulary 221

with two kernels of size n: a key kernel ωk ∈ Rn 222

and a value kernel ωv ∈ Rn. These kernels modify 223

the attention mechanism by convolving the keys 224

and values with the kernels: 225

A = softmax
(
Q(ΩkK)⊤√

d

)
(ΩvV ), (2) 226

where Ωk,Ωv ∈ RL×L are banded matrices (with 227

a fixed bandwidth of n) that assemble the per- 228

token kernels ωk
ij and ωv

ij (i = 1, 2, . . . , L; j = 229

1, 2, . . . , n) in a sliding-window manner. For ex- 230

ample, when L = 4 and n = 3: 231

Ωk =

�
�ωk
11


ωk
12 ωk

13

ωk
21 ωk

22 ωk
23

ωk
31 ωk

32 ωk
33

ωk
41 ωk

42


�
�ωk
43

.

(3) 232

Here, ωk
11 and ωk

43 are truncated at sequence bound- 233

aries to avoid padding. The value transformation 234

matrix Ωv is assembled in the same manner. Equa- 235

tion (2) is provided here for clarity, while in prac- 236

tice, we adopt the standard fold-multiplication- 237

unfold pipeline to preserve the O(L) complexity 238

of convolution. 239

Understanding the semantic significance of key 240

convolution (ΩkK) and value convolution (ΩkV ) 241

is essential for interpreting the learned weights. 242

Key convolution directly shifts attention weights 243

by incorporating neighboring tokens’ key represen- 244

tations, effectively redistributing attention to sur- 245

rounding words. Value convolution, on the other 246

hand, blends local context into the retrieved repre- 247

sentations, allowing tokens to reflect semantic nu- 248

ances from nearby tokens. Together, these mecha- 249

nisms enhance the model’s ability to encode syntac- 250

tic relationships and contextual meaning, explicitly 251

reinforcing the importance of local dependencies 252

in natural language understanding. Notably, these 253
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vicinity-aware behaviors are semantically mean-254

ingful only because the kernels are token-specific,255

rather than position-based, distinguishing TWiKers256

from any position-wise parameters, such as IA3 for257

parameter-efficient finetuning (Liu et al., 2022).258

3.2 Enforcing Causality259

In autoregressive language modeling, tokens must260

not attend to future tokens (Vaswani et al., 2017;261

Dai et al., 2019). However, Eq. (2) introduces in-262

formation leakage, as TWiKers allow the i-th to-263

ken to incorporate key representations from up to264

(n− 1)/2 future tokens, violating causality.265

To address this, we must restrict the range of266

key and value summation in Eq. (2). The attention267

weight, A = Q(ΩkK)⊤, is corrected to:268

Aij =
d∑

l=1

Qil

min(n,p+i−j)∑
m=1

ωk
jmKj−p+m,l (4)269

where p = (n+1)/2. The upper bound of the inner270

summation is reduced from n (i.e., not consider-271

ing leakage) to min(n, p + i − j), ensuring that272

query i only attends to past and present keys. In273

implementation, we only correct the affected main274

diagonal and the first p − 2 sub-diagonals in Aij ,275

ensuring an O(L) complexity. The attention output276

is adjusted similarly by modifying the summation277

limits on value aggregation.278

The corrections to the attention weights and279

output incur minimal overhead. However, they280

prevent TWiKer-based attention from being seam-281

lessly compatible with KV caching and flash atten-282

tion (Dao et al., 2022). While adapting TWiKers283

to these optimizations is feasible in principle, we284

omit such integration in our implementation, as285

TWiKers are applied only to the input layer. KV286

caching and flash attention remain fully applicable287

to all deeper layers.288

3.3 Enforcing Probabilistic TWiKers289

To enhance the interpretability of TWiKers, we en-290

force them to be probabilistic distributions, ensur-291

ing that their values are non-negative and sum to292

one. For this purpose, we define the unconstrained293

trainable parameters ω̂k and ω̂v, which are trans-294

formed via a softmax function to compute the ac-295

tual kernels used for convolution:296

ωk,v
ij =

exp
(
ω̂k,v
ij /τ

)
∑n

m=1 exp
(
ω̂k,v
mj/τ

) , i = 1, 2, . . . , n,

(5)297

where τ is the softmax temperature, treated as a 298

hyperparameter. 299

To ensure that TWiKers do not affect the model 300

prior to training, we initialize the unconstrained ker- 301

nels to a sharpened Central Dirac, such as [0, 10, 0] 302

for n = 3. This initialization enforces self-focus at 303

the beginning, allowing the model to learn mean- 304

ingful vicinity-aware modifications during training. 305

4 Experiments 306

In this section, we finetune GPT-2 (Radford et al., 307

2019) for causal language modeling using various 308

English texts. The corpora, summarized in Ta- 309

ble 1, span diverse genres including poetry, novels, 310

drama, translations, and scientific articles. While 311

TWiKers are broadly applicable to other languages 312

and newer base models, we focus on English and 313

GPT-2 due to resource constraints (see Limita- 314

tions). Detailed data declarations are provided in 315

Appendix A, and full engineering details can be 316

found in Appendix B. 317

Specifically, the following setups are applied to 318

ensure fair comparison across corpora: 319

1. Data sampling: The original corpora vary in 320

length. From each corpus, we sample 2200 321

segments, each containing complete sentences 322

and capped at 1000 tokens. The first 2000 seg- 323

ments are used for training, and the remaining 324

200 for evaluation. 325

2. Two-stage finetuning: We finetune GPT-2 on 326

each corpus independently. We observe that 327

some corpora (e.g., HarryPotter) converge 328

much faster than others (e.g., Shakespeare) 329

when trained directly with TWiKers. This dis- 330

crepancy likely arises because different cor- 331

pora start at varying distances from the pre- 332

trained model’s local minimum–modern texts 333

tend to be closer, while older or translated 334

texts are farther away. To improve compara- 335

bility across corpora, we adopt a two-stage 336

training setup: each corpus is first finetuned 337

for 30 epochs without TWiKers, allowing the 338

model to adapt to the corpus. Then, we ac- 339

tivate TWiKers and continue training for an- 340

other 30 epochs. 341

3. TWiKer hyperparameters: TWiKers applied 342

to keys or values can both shift attention to- 343

ward neighboring tokens. To enhance se- 344

mantic interpretability, we do not activate 345

TWiKers for keys and values at the same time. 346
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Corpus (Time Period)
Data Source

Linguistic Characteristics

Shakespeare (1590–1616)
Zahid (2021)

Shakespeare’s plays: Contains 17 plays. Richly poetic language marked by
inverted syntax, metaphor, and rhetorical patterning. Distinct from the
straightforward diction of modern texts.

Victorian (1800–1900)
Chapman (2022)

British Poetry from the Victorian Era: Contains 2216 transcribed poems.
Favor formal adjectives, refined noun phrases, and measured syntax,
contrasting with modern poetry’s free, experimental style.

NewPoems (post 2000)
Poetry Foundation (2023)

Contemporary Poetry: Contains 5000 sampled poems. Free verse with
irregular syntax, simplified phrasing, and playful imagery. Many are written
for children, with simple and creative language.

War&Peace (~1923)
McKay (2016)

English Translation of War and Peace: Formal adjectives and adverbs
combine with expansive, subordinate clause-rich noun phrases. Retains traces
of Russian syntactic structure, such as frequent use of passive voice and
expressive, multi-clause constructions.

RedChamber (~1979)
Internet Archive (2020)

English Translation of The Dream of the Red Chamber: Employs nuanced
adjectives and adverbs and balanced noun phrases to evoke a lyrical tone.
Retains classical Chinese narrative style. In our clustering experiment, we
include five versions translated by different authors.

Dickens (1836–1870)
McAdams (2020)

Novels by Charles Dickens: Contains 15 selected books. Ornate prose with
complex noun phrases, long compounds, and descriptive clauses. Language
varies with character voice and social context.

StKing (1980–2000)
Ajmain (2022)

Novels by Stephen King: Contains 20 selected books. Direct, vivid language
with active verbs, informal phrasing, and narrative clarity. Blends colloquial
realism with psychological tension.

HarryPotter (1997–2007)
Kapoor (2024)

Harry Potter: Contains all seven books. Clear, child-friendly prose with
simple sentence structures and vivid verbs. Language mixes fantasy
world-building with British idiomatic expressions.

Papers (post 2000)
Holbrook (2020)

Scientific Articles: Contains 1000 sampled paragraphs. Dense, impersonal
prose with nominalization, passive constructions, and terminology. Emphasis
on clarity, structure, and formal consistency.

Table 1: Corpora used for experiments, spanning diverse genres, time periods, and writing styles.

Unless stated otherwise (e.g., in ablation stud-347

ies), we apply value convolution only, as it348

demonstrates greater robustness. The kernel349

size is fixed at three and shared across all at-350

tention heads. The softmax temperature is set351

to 0.4. Learning rates are fixed at 5 × 10−5352

for model weights and 5 × 10−3 for TWiKer353

parameters, the latter compensating for small354

gradients near the Central Dirac initialization.355

4.1 Lexical Attention Patterns356

TWiKers offer direct insight into the local atten-357

tion behavior of individual words. This subsection358

analyzes results from the HarryPotter corpus to359

demonstrate this.360

We begin by examining the learned TWiKer361

weights without any processing. As shown in Fig-362

ure 2, content words, such as "Potter" and "gold",363

exhibit sharply peaked central weights, indicating364

that they bear attention primarily on themselves.365

In contrast, function words like "the" and "and"366

spread attention across neighboring positions, re-367

flecting their syntactic role in structuring phrases 368

rather than anchoring meaning. This difference 369

aligns well with traditional linguistic distinctions 370

between semantic and grammatical categories. 371

To quantify this behavior across broader lexi- 372

cal classes, we compute the average deviation of 373

TWiKer weights from the Central Dirac for com- 374

mon parts of speech (PoS) tags. As shown in Fig- 375

ure 3, function words such as determiners and con- 376

junctions exhibit greater deviations, while content- 377

rich categories such as nouns and verbs remain 378

closer to the central peak. This highlights the ca- 379

pacity of TWiKers to encode meaningful linguistic 380

structure in an interpretable, unsupervised fashion. 381

Lexical handedness Another interesting prop- 382

erty we observe is a directional asymmetry in the 383

learned TWiKer weights. Among tokens whose 384

central kernel weight is below 0.99, we catego- 385

rize them as left-handed if the left value exceeds 386

the right, and right-handed otherwise. In the 387

HarryPotter corpus, we find that 9,570 tokens 388
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Figure 2: Learned TWiKer kernels for selected tokens in HarryPotter. Each triplet of bars shows the kernel weights
for left (L), center (C), and right (R) positions. Content words show dominant center weights, while function words
spread their attention to adjacent tokens.

Mean L2 Distance from TWiKers to Central Dirac

HarryPotter

0.005 0.01 0.015 0.02 0.025 0.03 0.035

Interjection (Wow, Ha)
Proper Noun (Harry, UK)

Noun (apple, car)
Verb (run, eat)

Adjective (happy, tall)
Adverb (quickly, softly)

Subord. Conj. (if, as)
Auxiliary Verb (is, has)

Preposition (in, of)
Pronoun (she, they)

Coord. Conj. (and, or)
Determiner (the, an)

Figure 3: Mean deviation of learned TWiKers from
Central Dirac [0, 1, 0] across PoS tags in HarryPotter.
Higher values indicate broader attention spread away
from the token itself.

exhibit right-handedness, while only 84 are left-389

handed–a striking imbalance. This pattern aligns390

with the well-established fact that English is a right-391

branching language (Dryer, 1992; Du et al., 2020),392

where syntactic dependents such as complements393

and modifiers typically follow their heads. Func-394

tion words (e.g., prepositions, subordinating con-395

junctions) often anticipate or introduce material396

to their right, naturally shifting attention forward397

in the sequence. This finding reinforces the idea398

that TWiKers internalize not only lexical category399

behavior but also broader structural tendencies in-400

herent in natural language. 401

A key limitation in interpreting TWiKers arises 402

from the use of subword tokenization in LLMs. To 403

address this, we adopt two filtering measures. First, 404

we exclude tokens that serve solely as suffixes– 405

specifically, those not beginning with the "Ġ" 406

(space) character. Second, for each token, we ex- 407

amine its PoS tags across the corpus and discard 408

those that appear as affixes in more than 10% of 409

their occurrences. This accounts for cases where 410

a rare word begins with a common word, such as 411

"upsurge" beginning with "up". We revisit this 412

issue in more detail in Limitations. 413

4.2 Cross-Corpus Comparison 414

Figure 4 shows the overall TWiKer deviations from 415

the Central Dirac across corpora. With devia- 416

tions ranging from low to high, the corpora can 417

be grouped into four categories: Academic, Poetic, 418

Translations, and Novels. The results capture the 419

strong influence of genre and stylistic conventions 420

on attention patterns, with more structured or con- 421

strained texts yielding lower deviation, and freer, 422

narrative-driven texts yielding higher deviation. 423

The Academic corpus (Papers) exhibits the low- 424

est deviation, consistent with its rigid syntactic pat- 425

terns and semantically dense constructions. Such 426

writing minimizes contextual dependencies and 427

maintains tight lexical focus. 428

The Poetic corpora follow, with their low devi- 429

ation reflecting structured phrasing and rhythmic 430

regularity. Notably, Victorian poetry shows lower 431
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Mean L2 Distance from TWiKer to Central Dirac

Papers

Shakespeare

Victorian
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RedChamber

Dickens

StKing

HarryPotter

Academic
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Novels

0.001 0.002 0.003 0.004 0.005 0.006 0.007

Figure 4: Mean deviation of learned TWiKers from the
Central Dirac [0, 1, 0] across nine corpora. Higher val-
ues suggest broader attention spread at the lexical level,
often associated with more dynamic or loosely struc-
tured prose. Lower values indicate tighter, more self-
contained word usage, reflecting semantically denser
expression or a more formal tone.

deviation than NewPoems: the former adheres to432

metrical constraints and formal diction, while the433

latter–comprising free verse and children’s poetry–434

permits flexible syntax and imaginative phrasing,435

increasing attention spread. Shakespeare occu-436

pies an intermediate position, reflecting its combi-437

nation of poetic formality with syntactic inversion438

and dramatic rhythm.439

Novels, both translated and native, display440

the highest deviations, reflecting their narrative441

characteristic and syntactic variety. However,442

translated works (War&Peace, originally written443

in 19th-century Russian, and RedChamber, from444

18th-century vernacular Chinese) exhibit some-445

what lower deviation than native English nov-446

els, likely reflecting the relative syntactic com-447

pactness of their source languages and regulariza-448

tion introduced during translation. Within nov-449

els, HarryPotter exhibits the highest deviation,450

reflecting its conversational style, flexible sentence451

structures, and its blend of fantasy and colloquial452

language aimed at younger audiences.453

To further investigate the relationship between454

genre, style, and attention spread, we examine455

TWiKer deviations by PoS tags in Appendix C, fo-456

cusing on three corpora that diverge notably from457

general English norms.458

0.0005 0.0010 0.0015 0.0020
Mean L2 Distance from TWiKer to Central Dirac

Vol. 1-28
Vol. 29-56

Vol. 57-80

Vol. 1-24
Vol. 25-48
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Vol. 1-24
Vol. 25-48

Vol. 49-72
Vol. 73-96

Vol. 97-120
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Vol. 25-48
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Joly (1893)

McHugh & McHugh (1958)
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Figure 5: Mean deviation of learned TWiKers from Cen-
tral Dirac [0, 1, 0] across five English translations of The
Dream of the Red Chamber.

4.3 Clustering Translations 459

As a real-world application, we use TWiKers to 460

cluster different English translations of The Dream 461

of the Red Chamber (红楼梦), one of the most cel- 462

ebrated novels in Chinese literature. A cloud over 463

the novel’s history is the uncertainty of its author- 464

ship. It is established that Cao Xueqin (曹雪芹) 465

wrote the first 80 chapters, whereas the authorship 466

of the final 40 chapters–possibly by Gao E (高鹗)– 467

remains debated. While we are unable to resolve 468

this historical mystery using GPT-2, it inspires us 469

to analyze five full English translations of the novel 470

through the lens of TWiKers. 471

We compare five English versions of Dream 472

of the Red Chamber. The earliest, by H. Ben- 473

craft Joly (Joly, 1893), covers Chapters 1-56 in 474

formal, archaic Victorian prose. It was later 475

extended to Chapter 80 by Florence and Isabel 476

McHugh (McHugh and McHugh, 1958), based 477

not on the Chinese original but on Franz Kuhn’s 478

German version, adding an extra interpretive layer. 479

The widely circulated edition by Yang Hsien-yi 480

and Gladys Yang (Yang and Yang, 1980), pub- 481

lished in China, is clear and faithful, prioritizing 482

literal accuracy and accessibility over literary em- 483

bellishment. David Hawkes’ acclaimed transla- 484
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(c) PoS-based, with AI translator

Figure 6: Clustering five English translations of The Dream of the Red Chamber. Each point represents one corpus
(∼24 chapters), where the label shows the ground-truth (initial of the first translator’s name and the starting chapter
number; see Figure 5), and the marker shape indicates clustering results. We use a simple KMeans algorithm,
starting from 100 different random states, and show the best results as above. Subfigures (a) and (b) are based on
learned TWiKer weights, and (c), as a baseline, is based on PoS tag distributions.

tion (Hawkes and Minford, 1986) (Volumes I-III),485

completed by John Minford (Volumes IV-V), is486

widely accepted as the most literary version, with487

idiomatic prose and extensive cultural notes. Lastly,488

we include a machine-translated version by Ope-489

nAI’s o3-mini, which is fluent and modern but490

may lack consistency in style between chapters.491

We split the novel’s 120 chapters into five seg-492

ments, each containing ∼24 chapters, and use them493

as individual corpora to train TWiKer-enhanced494

GPT-2. Figure 5 shows the mean deviation of495

TWiKers from the Central Dirac. Even this single496

scalar metric can loosely differentiate translators.497

For finer-grained analysis, we compute the aver-498

age TWiKer deviation across PoS tags in each cor-499

pus, and apply KMeans clustering. Figure 6a shows500

the results using all five translations. Clustering is501

nearly perfect: the only notable misplacement is502

McHugh (M57) being absorbed into the AI cluster,503

while KMeans separates the two Joly corpora (J1,504

J29) to satisfy the five-cluster constraint. When we505

exclude the AI translation, Figure 6b shows that all506

corpora are clustered correctly. As a baseline, we507

also cluster based on simple PoS tag distributions508

(Figure 6c). While PoS can reflect some stylistic509

distinctions, its granularity is insufficient for accu-510

rate clustering, mainly due to mixing between the511

human-translated versions.512

4.4 Ablation Study513

To assess the impact of architectural choices on514

TWiKer behavior, we conduct an ablation study515

focused on three factors: kernel size, whether 516

TWiKers are applied to keys or values, and whether 517

they vary across attention heads. We observe 518

that overall lexical patterns–such as content words 519

being self-focused and function words distribut- 520

ing attention–remain consistent across the differ- 521

ent configurations. Specifically, increasing the 522

kernel size broadens attention spread; applying 523

TWiKers to keys introduces strong variation in 524

deviation for certain PoS tags; and head-specific 525

TWiKers smooth deviation patterns and improve 526

training convergence. These results, detailed in Ap- 527

pendix D, support that TWiKers serve as an effec- 528

tive inductive bias with small parameter footprint. 529

5 Conclusion 530

We have introduced TWiKers, a novel mechanism 531

that equips transformers with token-specific convo- 532

lutional kernels, providing a lightweight inductive 533

bias toward vicinity reliance–an inherent property 534

of human languages. Our experiments show that 535

TWiKers capture meaningful lexical and syntactic 536

behaviors without supervision: content words re- 537

tain self-focus, while function words redistribute 538

attention to neighboring tokens. This behavior gen- 539

eralizes across diverse corpora in English, reflect- 540

ing both low-level linguistic regularities and high- 541

level stylistic variation. By offering the first trans- 542

former weights with direct semantic interpretability, 543

TWiKers may open new directions for linguistic 544

analysis and the development of efficient, inter- 545

pretable neural weights for language modeling. 546
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Limitations547

Our study has two main limitations. First, tokens548

do not always correspond to words under modern549

subword tokenization schemes. We address this550

by excluding suffix tokens from our analysis and551

consistently aligning tokens with complete words.552

While this filtering reduces the statistical power553

of our results, word-token alignment holds for the554

majority of the text-reflecting a key design prin-555

ciple of subword tokenizers. For more linguis-556

tically demanding applications, it is possible to557

pretrain models with larger, word-oriented vocab-558

ularies. Second, due to resource constraints, our559

experiments are conducted using GPT-2. Although560

an older model, GPT-2 retains the core architec-561

tural principles of causal decoder models, making562

it appropriate for testing our hypotheses. As a563

consequence, our analysis is limited to English.564

Extending TWiKers to languages with diverse mor-565

phological and syntactic structures remains an im-566

portant direction for future work.567
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A Data Declaration885

We reviewed all nine corpora (see Table 1 for886

detailed descriptions of texts, time periods, and887

sources) to ensure that no personally identifying888

or offensive content was present. All materials are889

drawn from published literary works (public do-890

main or widely distributed) and sampled scientific891

abstracts; we did not include private correspon-892

dence or unpublished personal data. Automated893

scripts scanned for full name patterns, email style894

strings, and offensive keywords; any hits were man-895

ually inspected and where necessary redacted. In896

the case of scientific articles, we also removed au-897

thor bylines, institutional affiliations, and acknowl-898

edgments to protect anonymity.899

All our data are in English. For originally non-900

English works (War and Peace and The Dream901

of the Red Chamber), we use their English trans-902

lations; we also note multiple translator variants903

and demographic context (e.g. British vs. Russian904

vs. Chinese authors) in Table 1. For each corpus we905

record the number of works (e.g. 17 Shakespeare906

plays, 2 216 Victorian poems, 5 000 contemporary907

poems, 1 000 scientific article paragraphs, etc.),908

the source citation, and the predominant linguistic909

phenomena (e.g. inverted syntax and metaphor in910

Shakespeare, nominalization and passive construc-911

tions in scientific prose).912

Across all corpora we processed approximately913

1.2 million tokens. Each corpus was split at the914

document level into 80% train, and 20% test sets915

stratified by author and genre to preserve stylistic916

diversity. Detailed token counts per split (and per917

PoS tag) are provided in the supplementary Jupyter918

notebook, alongside document counts and PoS tag919

distributions.920

B Engineering Details 921

We trained GPT-2 Base (117 M parameters) using a 922

single NVIDIA V100 (40 GB) GPU. Total compute 923

per corpus averaged under one GPU-hour (includ- 924

ing both forward and backward passes), with all 925

experiments running on the same V100 instance. 926

All main experiments reported in Section 4.1 927

used fixed hyperparameters: a learning rate of 928

5×10−5 for the Transformer weights and 5×10−3 929

for the TWiKer kernel parameters; a batch size of 930

6 for both training and evaluation; a TWiKer ker- 931

nel size of 3 applied to the value projections in 932

the attention mechanism; 2× 30 training epochs; 933

and a softmax temperature of 0.4 for normalizing 934

TWiKers. Hyperparameter sweeps and ablation 935

studies are discussed separately in Appendix D. 936

TWiKers are implemented through local modi- 937

fications to Huggingface’s transformers library. 938

For data processing and analysis, we use SpaCy’s 939

en_core_web_sm model for part-of-speech tagging 940

and NLTK’s default rule-based tokenizer for sen- 941

tence segmentation. 942

All results are reproducible via one-click experi- 943

ment scripts and plotting utilities included in our 944

released codebase and dataset package. 945

C TWiKers across PoS Tags in Corpora 946

In this Appendix, we present continued results for 947

Section 4.2. Figure 7 shows the mean deviation 948

of learned TWiKers from the Central Dirac ker- 949

nel across nine corpora, broken down by PoS tags. 950

These results reveal consistent trends in attention 951

spread across lexical categories, while also high- 952

lighting stylistic variation among genres and time 953

periods. 954

Charles Dickens and Victorian Poetry are the 955

only corpora in which prepositions likely exhibit 956

greater deviation than determiners. In Dickens, this 957

may reflect a narrative style that tends to emphasize 958

spatial density and rhythmic layering (Talukdar, 959

2024). For example, in Great Expectations: 960

"In a corner of the forge, the fire was 961

burning brightly, and Joe was at his bel- 962

lows, energetically puffing away." 963

Here, prepositions such as "in", "of", and "at" 964

likely function as structural anchors, distributing 965

descriptive weight across the sentence. This style 966

could be seen as aligning with Victorian literary 967

aesthetics, where detailed spatial descriptions and 968

atmospheric depth were common. TWiKers can 969
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Figure 7: Mean deviation of learned TWiKers from Central Dirac [0, 1, 0] across PoS tags in nine corpora.

learn to spread attention accordingly, capturing970

the rhetorical centrality of prepositional phrases971

in Dickens’s prose.972

Victorian poetry, though also showing elevated973

prepositional deviation, appears to follow a dif-974

ferent stylistic rationale. Many literary scholars975

have noted that poets like Alfred Tennyson, Gerard976

Manley Hopkins, and Dante Gabriel Rossetti often977

favor determiner-noun imagery over clause-based978

narrative progression (Jewusiak, 2021; Blum, 1950;979

Drew, 1996). This stylistic choice likely reflects an980

emphasis on visual immediacy and symbolic pre-981

cision, where prepositions often serve dual roles:982

indicating location and reinforcing prosodic bal-983

ance. For instance, in Tennyson’s Tithonus:984

"The woods decay, the woods decay and985

fall..." 986

Or Hopkins’s The Windhover: 987

"The achieve of, the mastery of the 988

thing!" 989

Such usage suggests that prepositions and de- 990

terminers function not merely as grammatical ele- 991

ments but as imagistic anchors. In contrast to narra- 992

tive poets like Robert Browning, who rely heavily 993

on conjunctions for logical progression ("And then 994

she smiled..."), these poets emphasize stasis, vi- 995

sion, and repetition (Madhusudana, 2022). This 996

static and visual emphasis connects closely with 997

contemporary Victorian movements, such as the 998

Pre-Raphaelite focus on symbolic and detailed vi- 999
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sual imagery (Harrison, 2004; Hunt, 1968; Miras,1000

2024).1001

Additionally, Victorian poetry is the only cor-1002

pus in which determiners likely deviate more than1003

conjunctions. This could be attributed to the de-1004

sign of our dataset, which includes poets who often1005

prioritize determiner-led imagery over logical con-1006

nectives. For example, in Tennyson’s The Lady of1007

Shalott:1008

"The mirror crack’d from side to side;1009

’The curse is come upon me,’ cried1010

The Lady of Shalott."1011

Each instance of "the" may function as a vi-1012

sual or symbolic anchor–"mirror", "curse", "lady"–1013

while conjunctions are comparatively minimized.1014

This focus on determiner-led imagery is not univer-1015

sal among Victorian poets; for example, Browning1016

and Christina Rossetti are known fo their reliance1017

on clause-driven narrative progression. Our corpus1018

likely foregrounds poets with a more determiner-1019

centric style.1020

Stephen King presents a third, striking diver-1021

gence: his is the only corpus where interjections1022

appear to show the highest TWiKer deviation. This1023

may be due to his focus on emotional immediacy,1024

especially in horror and psychological suspense,1025

where interjections often serve as narrative turning1026

points (Takhtarova and Zubinova, 2018). From The1027

Green Mile:1028

"We each owe a death, there are no ex-1029

ceptions, I know that, but sometimes, oh1030

God, the Green Mile is so long."1031

And in Carrie:1032

"No. Oh dear God, please no. (please1033

let it be a happy ending)"1034

These utterances do not carry strict syntac-1035

tic function, but they likely help regulate pac-1036

ing, convey fear, and anchor character perspective.1037

TWiKers may capture this by assigning wider at-1038

tention to such tokens, reflecting their dependence1039

on surrounding discourse rather than immediate1040

syntactic neighbors.1041

Taken together, these stylistically grounded de-1042

viations could support a key claim: TWiKers do1043

not merely encode syntactic proximity–they can1044

internalize genre conventions, authorial style, and1045

literary tradition. The model’s attention behavior1046

highly resonates with deep patterns in English lit-1047

erary history, offering an interpretable bridge be-1048

tween data-driven learning and humanistic reading.1049
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Figure 8: Training loss curves for ablation variants of
TWiKer on the HarryPotter corpus. Final evaluation
loss and accuracy are shown in the legend.

D Ablation Study 1050

In this section, we examine how various architec- 1051

tural choices influence the behavior of TWiKers, 1052

using the HarryPotter corpus. The reference con- 1053

figuration uses a kernel size of 3, with TWiKers 1054

applied to the values in the attention mechanism, 1055

shared across all attention heads. This setup un- 1056

derpins the results presented in Section 4.1 and 1057

Section 4.2. 1058

We consider three ablation variants, each modi- 1059

fying a single factor while keeping all others fixed: 1060

• Kernel size = 5: Increases the TWiKer ker- 1061

nel width, allowing tokens to incorporate a 1062

broader local context. 1063

• TWiKer on Keys: Applies TWiKers to the 1064

keys instead of the values, shifting the locality 1065

bias from the value aggregation to the query- 1066

side matching process. 1067

• Head Variant: Assigns a separate TWiKer 1068

to each attention head within the input layer, 1069

enabling head-specific attention patterns. 1070

Figure 8 shows the training loss curves under 1071

each configuration. As TWiKers introduce only a 1072

small number of additional parameters, they do 1073

not substantially affect optimization dynamics on 1074

their own. However, when allowed to vary by head 1075

(Head Variant), we observe slight improvements 1076

in both convergence rate and final evaluation ac- 1077

curacy. This suggests that TWiKers can serve as a 1078

lightweight and semantically grounded inductive 1079

bias in language modeling. Nevertheless, as noted 1080

in Limitations, all results are based on GPT-2. We 1081

do not claim general efficiency or scalability of 1082
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TWiKers at larger model scales, and leave this for1083

future investigation.1084

Figure 9 shows the mean deviation of learned1085

TWiKer kernels from the Central Dirac across PoS1086

tags under different configurations. Across all these1087

variants, the overall pattern holds: function words1088

(e.g., determiners, conjunctions) tend to shift at-1089

tention to neighbors, while content words (e.g.,1090

nouns, verbs) retain self-focus. Increasing the ker-1091

nel size to five leads to broader deviation, espe-1092

cially for function words. Subordinate conjunc-1093

tions show an outstanding relative increase in de-1094

viation when TWiKers are applied to keys, likely1095

because their clause-linking function interacts more1096

strongly with the query-side of attention. Allow-1097

ing variation across heads (Head Variant) results1098

in smoother distance distributions across PoS cat-1099

egories, suggesting a regularizing effect from dis-1100

tributing the locality pattern across multiple atten-1101

tion paths.1102

E Use of AI Assistants1103

We used ChatGPT-4o and DeepSeek R1 to help1104

write Python code and improve sentences. No part1105

of the code or paper was generated by AI without1106

human guidance and verification.1107
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Figure 9: Mean deviation of learned TWiKers from the Central Dirac [0, 1, 0] across PoS tags for different architec-
tural configurations. Reference: kernel size = 3, TWiKer on values, head-invariant.
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