
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BOUNDRL: EFFICIENT STRUCTURED TEXT SEGMEN-
TATION THROUGH REINFORCED BOUNDARY GENERA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

As structured texts become increasingly complex across diverse domains – from
technical reports to generative AI prompts – the need for text segmentation into
semantically meaningful components becomes critical. Such texts often contain
elements beyond plain language, including tables, code snippets, and placehold-
ers, which conventional sentence- or paragraph-level segmentation methods can-
not handle effectively. To address this challenge, we propose BoundRL, a novel
and efficient approach that jointly performs token-level text segmentation and la-
bel prediction for long structured texts. Instead of generating complete contents
for each segment, it generates only a sequence of starting tokens and reconstructs
the complete contents by locating these tokens within the original texts, thereby
reducing inference costs by orders of magnitude and minimizing hallucination. To
adapt the model for the output format, BoundRL performs reinforcement learn-
ing with verifiable rewards (RLVR) with a specifically designed reward that jointly
optimizes document reconstruction fidelity and semantic alignment. To mitigate
entropy collapse, it further constructs intermediate candidates by systematically
perturbing a fraction of generated sequences of segments to create stepping stones
toward higher-quality solutions. To demonstrate BoundRL’s effectiveness on par-
ticularly challenging structured texts, we focus evaluation on complex prompts
used for LLM applications. Experiments show that BoundRL enables small lan-
guage models (1.7B parameters) to outperform few-shot prompting of much larger
models. Moreover, RLVR with our designed reward yields significant improve-
ments over supervised fine-tuning, and incorporating intermediate candidates fur-
ther improves both performance and generalization.

1 INTRODUCTION

Text segmentation is the task of dividing a text into coherent segments, each covering a distinct topic
(Hearst, 1994). Beyond identifying segment boundaries, some approaches also predict the topic of
each segment (Arnold et al., 2019b; Barrow et al., 2020). These segments can help readers to better
understand the structure of long texts (Jeoung et al., 2025), QA systems to retrieve more relevant
contexts (Tiedemann & Mur, 2008; Wang et al., 2025), and summarization system to summarize
long documents (Moro & Ragazzi, 2022).

Most previous works frame text segmentation as sequence labeling (Hearst, 1994) or boundary clas-
sification (Lukasik et al., 2020) on the sentence or paragraph level. However, these methods assume
that texts can be cleanly divided into sentences or paragraphs in advance, which does not hold for
many real-world structured texts, such as technical reports or prompts for large language models
(LLMs). Such texts often contain tables, code snippets, and placeholders; which do not conform
to conventional sentence or paragraph structures, making existing formulations insufficient for in-
creasingly complex structured texts. A natural solution is to modify these methods to perform text
segmentation at the token level. However, sequence labeling on the token level tends to generate
very fragmented segments, while boundary classification requires an impractically large number of
classifications for each token. Recent work addresses token-level segmentation by instructing LLMs
to generate the full text of each segment (Schnabel & Neville, 2024; Jeoung et al., 2025). However,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Example Structured Document (LLM Prompt)

You	are	a	data	analyst	working	for	a	smart	home	device	company.	
Your	task	[truncated…<140	tokens>] based	on	this	analysis.	Follow	
these	steps	to	complete	the	task:
1.	Parse	the	JSON	data	provided	below,	which	contains	customer	
reviews	……
Here's	the	JSON	data	containing	customer	reviews:

{
"reviews":	[
{
"product_id":	"SH001",
"product_name":	"SmartHub	2000",
"category":	"Hub",
"rating":	4,
"review_text":	"Great	central	hub	for	all	my	smart	devices.	Easy	to	set	up	

and	use.	Wish	it	had	more	USB	ports	though."
},
[truncated…<131	tokens>]
]
}

To	assist	you	in	your	analysis,	you	can	use	the	following	function	
calls:

1.	analyze_sentiment(text:	str)	->	dict:
This	function	performs	sentiment	analysis	on	the	given	text	and	returns	a	

dictionary	with	positive,	negative,	and	neutral	scores.
2.	[truncated…<765	tokens>]

Please	provide	your	analysis	and	recommendations	in	a	clear,	concise	
manner.	Include	any	relevant	visualizations	generated	by	the	function	
calls.	Here	an	example	of	how	to	approach	this	task:

Input:	JSON	data	provided	above
[truncated…<485	tokens>]

Output:
Summary	Report:
1.	Most	frequently	mentioned	features:
- Easy	setup
- App	functionality

2.	Average	ratings	by	category:
- Hub:	4.0
- Thermostat:	5.0

[truncated….<168	tokens>]

Now,	please	analyze	the	provided	JSON	data	and	generate	a	comprehensive	
report	following	the	steps	and	examples	given	above.

Final Segmented Output

Instruction

You	are	a	data	analyst	working	for	a	smart	home	device	company.	Your	
task	[truncated…<140	tokens>] based	on	this	analysis.	Follow	these	
steps	to	complete	the	task:
1.	Parse	the	JSON	data	provided	below,	which	contains	customer	reviews	
……
Here's	the	JSON	data	containing	customer	reviews:

{
"reviews":	[
{
"product_id":	"SH001",
"product_name":	"SmartHub	2000",
"category":	"Hub",
"rating":	4,
"review_text":	"Great	central	hub	for	all	my	smart	devices.	Easy	to	set	up	and	

use.	Wish	it	had	more	USB	ports	though."
},
[truncated…<131	tokens>]
]
}

To	assist	you	in	your	analysis,	you	can	use	the	following	function	calls:

1.	analyze_sentiment(text:	str)	->	dict:
This	function	performs	sentiment	analysis	on	the	given	text	and	returns	a	

dictionary	with	positive,	negative,	and	neutral	scores.
2.	[truncated…<765	tokens>]

Example

Input:	JSON	data	provided	above
[truncated…<485	tokens>]
Output:
Summary	Report:
1.	Most	frequently	mentioned	features:
- Easy	setup
- App	functionality

2.	Average	ratings	by	category:
- Hub:	4.0
- Thermostat:	5.0	[truncated….<168	tokens>]

Now,	please	analyze	the	provided	JSON	data	and	generate	a	
comprehensive	report	following	the	steps	and	examples	given	above.

Context

Instruction

Context

Instruction

Boundary Generation
[instruction]	You	are	a	data	analyst	[SEP]	
[context] {\n		"reviews":	[\n				{\n						
"product_id":	[SEP] [instruction]	To	assist	
you [SEP]	[context] 1.	
analyze_sentiment(text:	str)	->	dict:
[instruction] Please	provide	your	analysis	
[SEP]	[example] Input:	JSON	data	provided	
above	[SEP]	[instruction] Now,	please	
analyze	the	provided	[SEP]	

BoundRL

Figure 1: Efficient output pattern used by BoundRL. Instead of generating complete segment text, it
only generates starting tokens for each segment and then reconstructs complete segments by locating
these tokens in the original text, which reduces inference costs and risks for hallucinations.

these methods incur prohibitive inference costs for long texts due to the necessity of regenerating
the entire input, and they are prone to hallucinations (Wang et al., 2024).

We introduce BoundRL, a novel approach that jointly performs token-level text segmentation and
label prediction for long structured texts, which we term structured text segmentation. As shown
in Fig. 1, BoundRL reformulates text segmentation as boundary generation and only generates a
sequence of starting tokens and label for each segment, then reconstructs full segments by locating
them in the input. Unlike approaches that generate every segment in full, this formulation reduces
inference costs by orders of magnitude – from O(|d|) to O(n) tokens, where |d| is the document
length, n is the average number of segments per document, and n is generally much smaller than
|d|. It also mitigates inherent hallucination risks during text generation.

Boundary generation training presents unique optimization challenges. Supervised fine-tuning
(SFT) can mistakenly penalize starting tokens that correspond to the right boundary positions and
provides insufficient penalties for minor token mismatches that cause failures in locating starting
tokens. BoundRL addresses this by reinforcement learning with verifiable rewards (RLVR) (Shao
et al., 2024), optimizing a reward function with two complementary dimensions: reconstruction
fidelity, which measures whether the text can be fully recovered from generated segments, and se-
mantic alignment which evaluates agreements between generated segments and annotated segments.

However, RLVR can suffer from entropy collapse (Cui et al., 2025), where generated sequences
of segments become trapped in narrow, low-reward regions during rollout. Although annotated se-
quence of segments provides high-reward examples, they are often too distant from the model’s
current generation distribution to enable effective learning. To mitigate this, BoundRL constructs
intermediate candidates by perturbing a fraction of generated sequences of segments through bound-
ary adjustments and label modifications as shown in Fig. 2, creating stepping stones that bridge the
gap between current generations and optimal solutions. This approach is particularly effective for
our reward function due to its dense, continuous nature.

To validate BoundRL on particularly challenging structured texts, we construct StructSeg, a
comprehensive dataset for structured text segmentation with 15.3K annotations encompassing syn-
thetic prompts and prompts from LangSmith 1 with text and label of each segment. Our evaluation
focuses on prompts for LLMs due to their extreme structural complexity – dense mixtures of natural
language instructions, code snippets, JSON formatting, and contextual data within compact formats,
making them unsuitable for sentence- or paragraph-level segmentation.

Our experiments show that relatively small models (1.7B-4B parameters) trained with
BoundRL outperforms few-shot prompting using much larger models (Claude-4 Sonnet (Anthropic,
2025)). Moreover, RLVR with our designed reward function brings significant performance and

1https://smith.langchain.com/hub/

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

…[context] {\n "reviews": [\n {\n "product_id": [SEP] [instruction] To assist…

BoundRL

Model

SFT

Candidate 1

Candidate 2

Candidate 3

Extend

Shorten

Replace

Reward

Reconstruction
Ratio

Exact Match

Character level
F1

Advantage and
Probability

SFT
Model

Original

Candidate 1

Intermediate
Candidate 2

Candidate 3

…[output_format] {\n "reviews": [\n {\n "product_id": [SEP] [instruction] To assist…

…[output_format] customer reviews:\n{\n "reviews": [\n {\n "product_id": [SEP]
[instruction] To assist…

…[output_format] {\n "reviews": [\n {\n "product_id": [SEP] [instruction] To assist…

Figure 2: RLVR workflow of BoundRL showing the dual-objective reward function and intermedi-
ate candidate construction. The reward function combines reconstruction ratio for measuring recon-
struction fidelity with exact match and character-level F1 scores for measuring semantic alignment.
To mitigate entropy collapse during rollout, BoundRL constructs intermediate candidates by per-
turbing generated segments through boundary adjustments and label modifications.

generalization improvement over SFT and the intermediate candidates can further improve the per-
formance of RLVR.

Our contributions are four-fold:

• A novel boundary-generation approach for structured text segmentation that reduces inference
costs from O(|d|) to O(n) tokens while reducing hallucination risks;

• A specifically designed reward function that jointly optimizes reconstruction fidelity and semantic
alignment for RLVR;

• Intermediate candidate construction that mitigates entropy collapse in RLVR through boundary
adjustments and label modifications;

• Comprehensive evaluation on StructSeg benchmark demonstrating BoundRL’s significant ef-
ficiency and accuracy improvements, with strong out-of-domain generalization.

2 RELATED WORK

Text segmentation Text segmentation aims to divide a text into coherent segments, where each
segment encompasses a distinct semantic unit or topic (Hearst, 1994). The task has been studied
across various domains, such as regular documents (Koshorek et al., 2018b) and dialogues (Xing &
Carenini, 2021). Arnold et al. (2019b); Barrow et al. (2020) extend the task by jointly modeling seg-
mentation and topic classification. In supervised settings, segmentation is often framed as sequence
labeling, where each sentence is labeled as a boundary or not (Koshorek et al., 2018a; Li et al., 2018).
Other works frame text segmentation as boundary classification task predicting whether a sentence
is a boundary based on its surrounding context (Lukasik et al., 2020). More recently, (Inan et al.,
2022; Duarte et al., 2024) frame the text segmentation as a generation task by generating the starting
sentence or paragraph indices of each segment. However, these approaches perform segmentation
on the sentence or paragraph level, which face limitations when applied to structured texts with code
snippets, structured data formats (JSON, XML) that do not follow boundary patterns of traditional
sentence or paragraph. As such, BoundRL performs text segmentation on the token level, making
it applicable to structured texts with diverse elements other than plain texts.

Text Segmentation Applications Text segmentation can benefit many downstream applications.
(Mao et al., 2025; Jeoung et al., 2025) propose taxonomies for segmenting LLM prompts and exam-
ine how different component orders affect final performance. In retrieval-based question-answering,
Tiedemann & Mur (2008); Duarte et al. (2024); Wang et al. (2025) apply text segmentation before
retrieval so that more relevant text units can be used for the following QA task. In summarization,
Moro & Ragazzi (2022) segment long documents into shorter chunks and summarize each chunk
separately, while Cho et al. (2022) find that jointly fine-tune a model to perform summarization and
text segmentation can further improve the summarization performance.

Reinforcement Learning with Verifiable Reward In comparison with RLHF, which relies on a
separate reward model to assign rewards (Ouyang et al., 2022), RLVR (Shao et al., 2024) uses a
rule-based reward function. This design makes RLVR particularly efficient for structured text seg-
mentation, as rewards can be directly computed by comparing generated and annotated segments.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

However, candidates generated during rollout suffer from being trapped in narrow, low-reward re-
gions; also known as entropy collapse (Cui et al., 2025). To mitigate such issue, Zhang et al. (2025)
propose to generate candidates conditioned on the prefix of reference data with varying lengths.
However, it requires generating as many candidates as there are segments in the input text, leading
to high training costs for structured text segmentation. Yan et al. (2025); Dong et al. (2025) addi-
tionally include reference candidates generated by a reference model, which can be too distant from
the model’s current generation distribution for effective learning. In contrast, BoundRL proposes to
generate intermediate candidates which are closer to the current distribution of generation.

3 PROBLEM STATEMENT

Structured text segmentation takes a structured text as input and generates a list of segments:

[(l1, t1), ..., (ln, tn)] = f(d), s.t. li ̸= li−1, ti ∩ ti−1 = ∅, ∀i = 2, ..., n (1)

where f denotes the segmentation system, d denotes the input structured text, ti denotes the text
of the i-th segment and li ∈ L denotes the semantic label of the i-th segment. L denotes the set
of potential labels for segments, which varies by domains. For our case study on prompts, labels
include ‘instruction’, ‘example’, ‘context’, ‘question’, and ‘output format’ as shown in Table 5.

4 METHOD

The training process of BoundRL consists of two stages: SFT followed by RLVR. Sec. 4.1 describes
how to adapt LLMs to an efficient output pattern for structured text segmentation via SFT. Sec.4.2
describes the reward design of RLVR. Sec. 4.3 describes the construction of intermediate candidates
for the rollout stage of RLVR.

4.1 EFFICIENT OUTPUT PATTERN FOR STRUCTURED TEXT SEGMENTATION

To enable efficient structured text segmentation, BoundRL formulates the task as boundary gen-
eration. Instead of regenerating full segment text, it produces only a sequence of starting tokens
and a label for each segment, then reconstructs the segments from the input as shown in Fig. 1.
Specifically, given an input structured text d, BoundRL tunes the LLM to generate a sequence of
starting tokens si and a label li for each segment: [(l̂i, ŝi)i=1:n] = LLM(d). To adapt LLMs for
boundary generation, BoundRL transforms the annotated text of each segment ti into corresponding
starting token sequences si. Sequence lengths of each segment are randomly sampled while ensur-
ing that each sequence of starting tokens is unique among each other to improve model robustness.
The LLMs are then fine-tuned using SFT on these transformed starting tokens sequences and their
corresponding labels.

BoundRL then reconstructs the text of each segment t̂i using the position of each sequence of
starting tokens ŝi in the input d. The reconstruction process operates iteratively. Specifically, for
the first sequence of starting tokens ŝ1, BoundRL locates it as its leftmost occurrence in the input
d. For each subsequent sequence ŝi, BoundRL locates it as its leftmost occurrence in document d
after the position of its previous segment to preserve ordering. The text of the i-th segment t̂i is then
extracted as the text span between sequences of starting tokens ŝi and ŝi+1. If the positions of either
ŝi or ŝi+1 cannot be found, the i-th segment will be discarded. Compared with regenerating full text
of each segment, BoundRL reduces hallucination risks inherent in text generation while reducing
inference cost from O(|d|) to O(n) tokens, where |d| ≫ n denotes the document length.

4.2 REWARD DESIGN OF REINFORCEMENT LEARNING

In this section, we describe the reward function used by BoundRL for RLVR. The reward func-
tion has two dimensions: reconstruction fidelity, which measures whether the input can be fully
recovered from generated segments, and semantic alignment which evaluates agreements between
generated segments and annotated segments.

To measure reconstruction fidelity, BoundRL uses the reconstruction ratio ρrec. The metric is cal-
culated as the proportion of the input text d that can be successfully reconstructed from the texts of

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

generated segments t̂i:

ρrec([(l̂i, t̂i)i=1:n], d) =

∑n
i=1 |t̂i|
|d|

(2)

where | ∗ | denotes the length of a text in character. The reconstruction ratio ρrec(∗) ranges from zero
to one, with higher values indicating more complete reconstruction of the input structured text d.

To measure semantic alignment, BoundRL uses two metrics. The first metric is the F-1 score of
exact match EM([(l̂i, t̂i)i=1:n], [(li, ti)i=1:n]) between generated segments [(l̂i, t̂i)i=1:n] and anno-
tated segments [(li, ti)i=1:n] (Tjong Kim Sang & De Meulder, 2003). A generated segment (l̂i, t̂i) is
considered an exact match to an annotated segment (lj , tj) if their texts and labels are the same. The
F1 score is then computed as the harmonic mean of precision (the fraction of generated segments
with at least one exact match) and recall (the fraction of annotated segments with at least one exact
match). However, the F-1 score of exact match EM(∗) can be too strict since minor token-level
differences between segment texts can lead to a mismatch. Therefore, BoundRL additionally uses
the character-level F-1 score F1char([(l̂i, d̂i)i=1:n], [(li, di)i=1:n]) motivated by part-of-speech (POS)
tagging (Marcus et al., 1993). The metric treats structured text segmentation as a character-level la-
beling task, where each character in the input text d is assigned a label from the set of potential labels
L, based on the segment it belongs to. Specifically, all characters in t̂i are assigned the label l̂i, and
likewise for annotated segments. The metric is then calculated as the weighted F-1 score between
character-level labels from generated segments and those from annotated segments. Both the F-1
score of exact match EM(∗) and the character-level F-1 score F1char(∗) range from zero to one, with
higher values indicating better alignment between generated segments and annotated segments.

The final reward r(∗) for the generated segments [(l̂i, d̂i)i=1:n] is calculated using both dimensions:

r([(l̂i, t̂i)i=1:n]) = ρrec([(l̂i, t̂i)i=1:n])×
EM([(l̂i, t̂i)i=1:n]) + F1char([(l̂i, t̂i)i=1:n])

2
(3)

For simplicity, the equation omits the input text d and the annotated segments [(li, ti)i=1:n]. The
reward encourages generated segments to accurately reproduce starting tokens for complete recon-
struction while getting close to annotated segments for high-quality segmentation.

4.3 CONSTRUCTION OF INTERMEDIATE CANDIDATE

In this section, we describe how BoundRL constructs and incorporate intermediate candidates dur-
ing the rollout stage of RLVR to mitigate entropy collapse. Specifically, BoundRL constructs in-
termediate candidates by perturbing generated candidate segmentations and selectively replaces the
originally generated candidate segmenetations with the intermediate candidates for the training.

An effective intermediate candidate should be in the middle between generated segments and anno-
tated segments to provide meaningful guidance and remain learnable. To construct such intermedi-
ate candidates, BoundRL first generates m candidate segmentations for an input text d following
standard RLVR practice, denoted as [(l̂i, t̂i)i=1:n]j for j = 1, . . . ,m. These candidate segmenta-
tions are ordered by descending reward r([(l̂i, t̂i)i=1:n]j). BoundRL then perturbs the candidate
segmentation with the medium-level reward: [(l̂i, t̂i)i=1:n]m2 . As shown in Fig. 2, three types of
perturbations are considered for each segment: (1) shortening the text t̂i by truncating one word
from either side, (2) extending the text t̂i by including additional one word from either side, or (3)
replacing the label l̂i with an alternative from the set of potential labels L, excluding labels already
assigned to neighboring segments. To shorten or extend the text of a segment t̂i, BoundRL modifies
the starting token sequences ŝi or ŝi+1 accordingly. Applying a single perturbation to each segment
creates a pool of potential intermediate candidates, each differing from the original by exactly one
perturbation. The potential intermediate candidate with the highest reward r(∗) is selected as final
the intermediate candidate, denoted as [(l̂i, d̂i)i=1:n]

pert
m
2

.

To avoid performance degradation from off-policy intermediate candidates, BoundRL employs a
selective replacement strategy. In each training batch, BoundRL replaces the original candidate
segmentations with the medium-level reward with the intermediate candidate for at most k input
texts. Replacement is allowed only when the intermediate candidate achieves a positive reward

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

gain over the original: r([(l̂i, d̂i)i=1:n]
pert
m
2

) − r([(l̂i, d̂i)i=1:n]m2) > 0. If more than k input texts
satisfy this criterion, BoundRL selects the top-k with the largest gains. For the selected cases,
BoundRL uses the intermediate candidate together with the remaining m − 1 generated candidate
segmentations in the following training; otherwise, all m original candidates are used. The strategy
preserves training stability while incorporating the most beneficial refinements.

5 EXPERIMENT SETUPS

5.1 STRUCTSEG

In this section, we describe the StructSeg, used as a case study of structured text segmentation.
It contains synthetic prompts and real-world prompts. The synthetic prompts are generated using
Claude 3.5 Sonnet (Anthropic, 2024), following a strategy that balances diversity and complexity.
To ensure diversity, we implement a multi-faceted sampling strategy that draws from varied prompt
types (system prompt, user prompt, combined), prompt modes (prompt template, full prompt, hy-
brid), and task types (e.g. classification, summarization), placeholder formats (e.g., {context} or
{{context}}), the number of examples, prompt lengths, format types, writing styles, and levels
of details. For complexity, we encourage the generated prompts to include varied structural ele-
ments, including nested json, code snippets, and placeholders, which make the prompts unsuitable
for sentence- or paragraph-level segmentation. The dataset includes multiple lengthy prompts, with
some containing around 2,000 words. More details of synthetic prompts are in App. A.6. For
real-world prompts, we collect them from Langchain-hub 2.

After collecting both synthetic and real-world prompts, we train a group of highly experienced hu-
man annotators to perform prompt segmentation and labeling. Each segment is assigned one of five
labels: ‘instruction’, ‘example’, ‘context’, ‘question’, or ‘output format’ (Table 5). This simplified
taxonomy captures the common structural elements of complex prompts (Mao et al., 2025; Jeoung
et al., 2025). To ensure high annotation quality, we develop step-by-step labeling instructions for
annotators. Annotators first decompose each prompt into mutually exclusive, non-overlapping seg-
ments. The segmentation should also be lossless, meaning that concatenating all components in
their original order reconstructs the original prompt exactly. Placeholders are extracted separately if
they are knowledge input, user questions, or contextual information. Then, annotators determine if
each of the segment is an instruction or few-shot examples. If neither applied, annotators will write
a description of the segment and then select the most appropriate label from the remaining labels.

Prompts Tokens Segments

Synthetic 15,132 900 6.1
Langchain 197 914 7.6

Table 1: Dataset statistics comparing syn-
thetic and real-world prompts.

We denote the subset of synthetic prompts as
Synthetic and the subset of real-world prompts
as Langchain. Tab. 1 reports the statistics of
these subsets, and Fig. 8 shows the distribution of
segment labels. For the Synthetic subset, we
use 14,732 prompts for training, 200 for validation,
and 200 for testing. For the Langchain subset,
all prompts are used exclusively for testing.

5.2 IMPLEMENTATION DETAILS

We evaluate BoundRL on three LLMs: Qwen3-1.7b, Qwen3-4b (Yang et al., 2025), and Llama-
3.1-8b-Instruct (Dubey et al., 2024). The training process has two stages:

Stage 1: Supervised Fine-tuning (SFT) All LLMs are first fine-tuned on the training set of
StructSeg for one epoch with a batch size of 16. We use learning rates of 2e-6 for Qwen3
models and 5e-7 for Llama-3.1-8b-Instruct.

Stage 2: Reinforcement Learning with Verifiable Rewards (RLVR) SFT-tuned models are then
tuned with RLVR using GRPO (Shao et al., 2024) without standard deviation-based reward scaling
(Liu et al., 2025). To control computational costs, we use a randomly sampled 25% subset of the
training data. Each training batch contains 6 input documents, with m = 4 candidate segmentation
generated per input text using temperature of 1.2 during rollout. For intermediate candidate con-

2https://smith.langchain.com/hub

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Method Synthetic Langchain Avg
ρrec EM Pk F1lab F1char ρrec EM Pk F1lab F1char

Qwen3-1.7b
SFT w/start 99.3 72.3 4.6 94.1 93.7 87.7 34.7 14.7 77.0 71.1 81.1
SFT w/end 96.0 64.8 6.0 92.0 89.3 77.7 26.5 19.5 71.1 63.9 75.6
SFT w/start+end 96.6 59.5 7.9 90.8 86.7 84.5 20.2 17.9 69.9 65.2 74.8
Qwen3-4b
SFT w/start 99.7 71.6 5.3 94.9 92.8 93.1 41.6 12.3 80.2 78.8 83.5
SFT w/end 98.1 67.8 4.6 93.7 92.5 91.5 39.9 13.0 79.0 78.5 82.3
SFT w/start+end 98.8 70.4 5.9 93.9 92.7 85.2 33.7 14.1 76.5 71.8 80.3
Llama-3.1-8b-Instruct
SFT w/start 99.6 71.8 4.9 94.3 93.4 95.9 28.4 13.4 79.7 80.7 82.5
SFT w/end 98.7 65.9 5.6 93.8 92.5 93.5 31.5 13.6 75.6 76.6 80.9
SFT w/start+end 97.8 62.9 6.2 90.8 91.4 87.7 25.1 17.1 71.4 72.3 77.6

Table 2: Evaluation of different output patterns. The best-performing output pattern is highlighted
in bold. SFT w/start, the output pattern used by BoundRL, consistently outperforms other patterns.

struction, we apply selective replacement with model-specific thresholds: k = 2 for Qwen3 models
and k = 1 for Llama-3.1. Learning rates are 1e-6 for Qwen3 models and 2e-7 for Llama-3.1. We
checkpoint every 0.2 epochs and select the best model based on validation performance.

During inference, the temperature is set to 0. We tune the hyperparameters based on their perfor-
mance on the validation set. More implementation details are in App. A.3.

6 EXPERIMENT RESULTS

6.1 EVALUATION OF OUTPUT PATTERNS

In this section, we evaluate output patterns for structured text segmentation by comparing LLMs
fine-tuned with SFT for different output patterns. We consider three output patterns: (i) SFT w/start,
which is used by BoundRL and outputs starting tokens of each segment; (ii) SFT w/end, which out-
puts ending tokens of each segment; (iii) SFT w/start+end, which outputs both starting and ending
tokens of each segment. We show examples of these output patterns in App. A.5.

For evaluation, we use the reconstruction ratio ρrec(∗), the F-1 score of exact match EM(∗) and the
character-level F-1 score F1char(∗) as described in Sec. 4.2. We additionally use character-level Pk

score (Beeferman et al., 1999) which measure the quality of segment boundaries, with the window
width set to half the average length of annotated segments following standard practice. We also use
F1lab, which is the micro-F1 score that compares the predicted label of each generated segment with
the label of the most overlapping annotated segment following Arnold et al. (2019a). Higher values
of all metrics except Pk indicate better performance, while lower Pk values are better. Results are
reported in percentage on the test set of the Synthetic subset and the Langchain subset, along
with the average of one minus Pk and other metrics across both subsets in Tab. 2.

Table 2 shows that SFT w/start, used by BoundRL, consistently outperforms other output patterns
across LLMs and datasets, with particular advantages in exact match scores. Contrarily, SFT w/s-
tart+end performs worse than both SFT w/start and SFT w/end, although it is supposed to be more
robust to token mismatches as it generates both boundaries of each segment. This suggests that re-
quiring simultaneous generation of starting and ending tokens imposes an excessive learning burden
that degrades performance.

6.2 EVALUATION OF BOUNDRL

In this section, we perform a comprehensive evaluation of BoundRL. We consider the following
training schemes: (i) SFT, where models are fine-tuned with SFT for one epoch to adapt the output
pattern of BoundRL; (ii) SFT w/2 epochs, where models are fine-tuned with SFT for two epochs;
(iii) NER, where models are fine-tuned for two epochs to predict the label for each token in the
prompt like named entity recognition (NER) (Li et al., 2020); (iv) SFT+RLVR, a two-stage fine-
tuning procedure as in BoundRL, but without intermediate candidates; (v) SFT+RLVRw/ high temp.,
the same as SFT+RLVR but with a higher sampling temperature of 1.5 during rollout; (vi) RL-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Method Synthetic Langchain Avg
ρrec EM Pk F1lab F1char ρrec EM Pk F1lab F1char

Prompting Baselines
Claude3.5-Sonnetfull 78.3 14.3 15.4 79.8 70.2 55.8 11.0 21.4 62.4 47.5 58.2
Claude3.5-Sonnetstart 50.0 16.9 25.2 73.8 47.2 48.1 11.4 23.4 61.3 41.1 50.1
Claude4-Sonnetfull 97.2 22.1 11.3 82.2 88.2 80.3 13.8 18.1 65.5 68.3 68.8
Calude4-Sonnetstart 90.1 22.8 13.6 79.8 81.8 87.0 18.3 18.1 67.9 71.6 68.8
Qwen3-1.7b
SFT 99.3 72.3 4.6 94.1 93.7 87.7 34.7 14.7 77.0 71.1 81.1
SFT w/2epochs 99.5 73.5 3.9 94.4 94.6 85.0 41.0 14.6 77.6 70.9 81.8
NER 100.0 34.1 6.5 81.5 94.8 100.0 8.9 19.9 57.4 86.7 73.7
SFT+RLVR 100.0 77.4 4.1 94.7 94.6 88.6 47.2 13.2 79.1 74.6 83.9
SFT+RLVRw/temp. 100.0 77.2 4.0 94.6 95.0 90.4 44.6 14.4 79.1 75.4 83.8
RL-PLUS 99.8 73.9 4.5 94.4 94.3 91.5 42.9 13.4 79.5 76.5 83.5
BoundRL 99.9 77.3 4.1 94.8 94.8 90.6 47.3 12.2 79.8 76.8 84.5
Qwen3-4b
SFT 99.7 71.6 5.3 94.9 92.8 93.1 41.6 12.3 80.2 78.8 83.5
SFT w/2epochs 99.7 73.0 4.3 95.2 94.2 91.3 40.7 12.1 83.6 78.2 84.0
NER 100.0 41.9 6.9 82.8 95.6 100.0 8.9 24.7 59.3 85.7 74.3
SFT+RLVR 99.7 77.6 4.6 94.6 93.7 92.7 52.4 10.6 82.3 82.1 86.0
SFT+RLVRw/temp. 99.7 77.3 4.9 94.4 93.3 87.6 47.0 12.5 77.6 74.2 83.4
RL-PLUS 99.7 76.6 4.2 94.3 94.1 94.8 51.0 10.8 81.5 83.1 86.0
BoundRL 99.7 78.3 4.0 94.8 94.7 94.1 52.4 10.3 82.5 83.3 86.6
Llama-3.1-8b-Instruct
SFT 99.6 71.8 4.9 94.3 93.4 95.9 28.4 13.4 79.7 80.7 82.5
SFT w/2epochs 99.9 72.8 4.5 94.3 94.2 95.6 31.9 13.2 78.9 79.5 82.9
NER 100.0 25.9 12.3 69.9 92.4 100.0 7.0 24.9 55.7 83.4 69.7
SFT+RLVR 100.0 73.9 4.1 94.7 94.6 96.4 40.2 11.7 77.3 82.1 84.3
SFT+RLVRw/temp. 99.7 72.7 4.1 94.0 94.6 91.8 43.3 13.0 77.5 78.9 83.5
RL-PLUS 100.0 73.0 4.4 94.4 94.3 95.9 37.9 11.7 78.0 82.7 84.0
BoundRL 100.0 76.1 4.4 94.4 94.1 96.3 42.8 11.5 78.0 82.1 84.8

Table 3: Evaluation of BoundRL across LLMs and datasets. The best-performing method for each
LLM is highlighted in bold. BoundRL consistently outperform both finetuning baselines and few-
shot prompting with much larger LLMs. The improvements are particularly big on the Langchain
subset, showing BoundRL’s superior generalization to real-world, out-of-domain prompts.

PLUS (Dong et al., 2025), which uses one sequence of annotated segments and three candidate
segmentations during rollout. Implementation details of these baselines are in A.4. For comparison,
we also consider few-shot prompting baselines using Claude3.5v2-sonnet (Anthropic, 2024) and
Claude4-sonnet (Anthropic, 2025). In this setting, the LLM is instructed to segment an input prompt
according to the target taxonomy and a provided example. We consider two output patterns: (i) full,
which outputs the complete text of each segment; and (ii) start, which outputs only the starting
tokens, as in BoundRL. The prompts used for these baselines are shown in Appendix A.2. The
results are in Table 3. Qualitative examples of these baselines are in App. A.8.

We observe that BoundRL with intermediate candidate construction consistently outperforms all
baselines. The difference between BoundRL and the second best-performing method (SFT+RLVR)
is statistically significant using paired t-test (p < 0.05), showing the importance of intermediate
candidates for effective RLVR training. We additionally show standard deviation of reward during
training and find that BoundRLcan mitigate the entropy collapse issue of RLVR in App. A.7.
In contrast, RL-PLUS, which uses annotated segments during rollout, has inconsistent results and
can even hurt performance. This may be because annotated segments are too out-of-distribution
to provide useful learning signals. Additionally, increasing temperature (SFT+RLVRw/temp.) cannot
further improve the performance, showing that the improvement brought by intermediate candidates
is not merely from increased exploration space but guided exploration.

We also observe that LLMs fine-tuned with RLVR consistently outperforms SFT-only models. The
difference between SFT+RLVR and SFT w/2epochs is a statistically significant using paired t-test
(p < 0.05). Most notably, the improvement becomes bigger on the Langchain subset (real-world
prompts), with RLVR showing 5-11% absolute improvements in exact match scores. Conversely,
doubling SFT training epochs (SFT w/2 epochs) yields marginal improvements on the in-domain
Synthetic subset but degrades performance on the Langchain subset for some LLMs, indicat-
ing overfitting. These results highlight RLVR’s superior generalization to out-of-distribution data.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Method Synthesis Langchain Avg
ρrec EM Pk F1lab F1char ρrec EM Pk F1lab F1char

Qwen3-1.7b
BoundRL 99.9 77.3 4.1 94.8 94.8 90.6 47.3 12.2 79.8 76.8 84.5
BoundRL w/ 2steps 99.9 78.0 4.4 94.8 94.7 88.6 45.7 13.6 80.5 75.0 83.9
BoundRL w/o select 99.7 76.9 4.5 94.6 94.1 89.9 45.3 12.2 79.8 76.5 84.0
BoundRL w/o middle 99.6 77.7 4.5 94.9 94.2 89.7 44.5 12.9 78.8 75.5 83.7
Qwen3-4b
BoundRL 99.7 78.3 4.0 94.8 94.7 94.1 52.4 10.3 82.5 83.3 86.6
BoundRL w/ 2steps 99.7 78.3 3.7 94.5 94.7 94.7 50.0 10.9 81.5 84.8 86.4
BoundRL w/o select 99.7 77.4 4.5 94.8 93.6 93.7 52.1 10.5 83.0 84.0 86.3
BoundRL w/o middle 99.7 77.7 4.2 94.8 94.2 94.6 50.7 11.0 81.4 84.1 86.2
Llama-3.1-8b-Instruct
BoundRL 100.0 76.1 4.4 94.4 94.1 96.3 42.8 11.5 78.0 82.1 84.8
BoundRL w/2steps 100.0 76.6 4.3 94.4 94.6 94.4 38.4 12.2 77.9 81.5 84.1
BoundRL w/o select 99.9 75.7 4.3 94.3 94.6 94.7 41.8 11.6 78.7 81.5 84.5
BoundRL w/o middle 99.9 74.7 4.4 94.0 94.2 95.5 43.2 12.1 77.6 81.8 84.4

Table 4: Ablation study of BoundRL. The best-performing method of each LLM is in bold.

We note that the smallest model (Qwen3-1.7b) fine-tuned with BoundRL significantly outperforms
the best-performing few-shot prompting baseline (Claude4-sonnet-full) with much more parameters.
The efficiency gains are also substantial. Prompting baselines that generate full segment text requires
an average of 1,170 tokens per input prompt on the Synthetic subset, while BoundRL requires
only 119 tokens, which corresponds to a 90% reduction in output tokens.

Although models fine-tuned with NER achieve high scores on the character-level F1, F1char, they
generally achieve low scores on exact match EM, Pk and F1lab. Analysis of the outputs shows that
models fine-tuned with NER tend to generate very fragmented and short segments, demonstrating
the effectiveness of framing structured text segmentation as a boundary generation task.

6.3 ABLATION STUDY OF BOUNDRL

In this section, we perform ablation study of BoundRL. We consider the following ablated versions
of BoundRL: (i) BoundRL w/ 2steps, which performs two perturbation steps to candidate segmen-
tations to generate intermediate candidates; (ii) BoundRL w/o select, which incorporates a inter-
mediate candidate for each input text in a batch without selective replacement; (iii) BoundRL w/o
middle, which generates intermediate candidates by perturbing a randomly sampled candidate seg-
mentation instead of the one with the medium-level reward. Implementation details of these ablated
versions are in App. A.9. The results are in Tab. 4.

Tab. 4 shows that BoundRL outperforms all ablated versions. Specifically, applying multiple per-
turbations when generating intermediate candidates (BoundRL w/ 2steps) and incorporating them
for all input texts (BoundRL w/o select) both hurt performance. The results show the importance of
controlling the distance between the current generation and intermediate candidates, which aligns
with our findings in Sec. 6.2 that directly using annotated segments does not improve performance.

7 CONCLUSIONS

We propose BoundRL, a novel framework that reformulates structured text segmentation as a
boundary generation problem. Instead of regenerating entire text segments, models generate only
the starting tokens of each segment, which substantially reduces inference costs and mitigates hal-
lucination risks. To adapt the model to this output format, BoundRL employs RLVR to jointly opti-
mize reconstruction fidelity and semantic alignment, while our intermediate candidate construction
strategy alleviates entropy collapse during training. In a challenging case study on LLM prompts,
BoundRL consistently outperforms fine-tuning baselines using SFT and RLVR as well as the few-
shot prompting baseline with much larger models.

Future work could extend the boundary generation paradigm to hierarchical document structures,
such as legal texts and technical reports, and explore few-shot annotation methods to lower annota-
tion effort in new domains. Due to its domain-agnostic design, BoundRL offers a foundation for
efficient structured text analysis across the expanding landscape of complex document processing.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 ETHICS STATEMENT

The human annotations were collected through hired annotators from a data annotation service.
Annotators were instructed to strictly refrain from including any biased, hateful, or offensive content
towards any race, gender, sex, or religion. The annotations passed through audits, where they were
examined by a separate group of annotators and reached a 89% agreement ratio.

REFERENCES

Anthropic. Claude 3.5 sonnet, 2024. URL https://www.anthropic.com/news/
claude-3-5-sonnet.

Anthropic. Introducing claude 4, 2025. URL https://www.anthropic.com/news/
claude-4.

Sebastian Arnold, Rudolf Schneider, Philippe Cudré-Mauroux, Felix A. Gers, and Alexander Löser.
SECTOR: A neural model for coherent topic segmentation and classification. Transactions of the
Association for Computational Linguistics, 7:169–184, 2019a. doi: 10.1162/tacl a 00261. URL
https://aclanthology.org/Q19-1011/.

Sebastian Arnold, Rudolf Schneider, Philippe Cudré-Mauroux, Felix A Gers, and Alexander Löser.
Sector: A neural model for coherent topic segmentation and classification. Transactions of the
Association for Computational Linguistics, 7:169–184, 2019b.

Joe Barrow, Rajiv Jain, Vlad Morariu, Varun Manjunatha, Douglas W Oard, and Philip Resnik. A
joint model for document segmentation and segment labeling. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 313–322, 2020.

Doug Beeferman, Adam Berger, and John Lafferty. Statistical models for text segmentation. Ma-
chine learning, 34(1):177–210, 1999.

Sangwoo Cho, Kaiqiang Song, Xiaoyang Wang, Fei Liu, and Dong Yu. Toward unifying text seg-
mentation and long document summarization. In Proceedings of the 2022 Conference on Empir-
ical Methods in Natural Language Processing, pp. 106–118, 2022.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
reasoning language models. arXiv preprint arXiv:2505.22617, 2025.

Yihong Dong, Xue Jiang, Yongding Tao, Huanyu Liu, Kechi Zhang, Lili Mou, Rongyu Cao, Ying-
wei Ma, Jue Chen, Binhua Li, et al. Rl-plus: Countering capability boundary collapse of llms in
reinforcement learning with hybrid-policy optimization. arXiv preprint arXiv:2508.00222, 2025.

André Duarte, João Marques, Miguel Graça, Miguel Freire, Lei Li, and Arlindo Oliveira. Lum-
berchunker: Long-form narrative document segmentation. In Findings of the Association for
Computational Linguistics: EMNLP 2024, pp. 6473–6486, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Marti A. Hearst. Multi-paragraph segmentation expository text. In 32nd Annual Meeting of the
Association for Computational Linguistics, pp. 9–16, Las Cruces, New Mexico, USA, June 1994.
Association for Computational Linguistics. doi: 10.3115/981732.981734. URL https://
aclanthology.org/P94-1002/.

Hakan Inan, Rashi Rungta, and Yashar Mehdad. Structured summarization: Unified text segmenta-
tion and segment labeling as a generation task. arXiv preprint arXiv:2209.13759, 2022.

Sullam Jeoung, Yueyan Chen, Yi Zhang, Shuai Wang, Haibo Ding, and Lin Lee Cheong. Prompt-
prism: A linguistically-inspired taxonomy for prompts. arXiv preprint arXiv:2505.12592, 2025.

10

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://aclanthology.org/Q19-1011/
https://aclanthology.org/P94-1002/
https://aclanthology.org/P94-1002/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Omri Koshorek, Adir Cohen, and Noam Mor Michael Rotman Jonathan Berant. Text segmentation
as a supervised learning task. In Proceedings of NAACL-HLT, pp. 469–473, 2018a.

Omri Koshorek, Adir Cohen, Noam Mor, Michael Rotman, and Jonathan Berant. Text segmentation
as a supervised learning task. In Marilyn Walker, Heng Ji, and Amanda Stent (eds.), Proceedings
of the 2018 Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 2 (Short Papers), pp. 469–473, New Orleans,
Louisiana, June 2018b. Association for Computational Linguistics. doi: 10.18653/v1/N18-2075.
URL https://aclanthology.org/N18-2075/.

Jing Li, Aixin Sun, and Shafiq Joty. Segbot: a generic neural text segmentation model with pointer
network. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp.
4166–4172, 2018.

Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li. A survey on deep learning for named entity
recognition. IEEE transactions on knowledge and data engineering, 34(1):50–70, 2020.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025.

Michal Lukasik, Boris Dadachev, Kishore Papineni, and Gonçalo Simões. Text segmentation by
cross segment attention. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.),
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 4707–4716, Online, November 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.emnlp-main.380. URL https://aclanthology.org/2020.
emnlp-main.380/.

Yuetian Mao, Junjie He, and Chunyang Chen. From prompts to templates: A systematic prompt
template analysis for real-world llmapps. arXiv preprint arXiv:2504.02052, 2025.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330, 1993. URL
https://aclanthology.org/J93-2004/.

Gianluca Moro and Luca Ragazzi. Semantic self-segmentation for abstractive summarization of
long documents in low-resource regimes. In Proceedings of the AAAI conference on artificial
intelligence, volume 36, pp. 11085–11093, 2022.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Tobias Schnabel and Jennifer Neville. Symbolic prompt program search: A structure-aware ap-
proach to efficient compile-time prompt optimization. arXiv preprint arXiv:2404.02319, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Jörg Tiedemann and Jori Mur. Simple is best: experiments with different document segmentation
strategies for passage retrieval. In Coling 2008: Proceedings of the 2nd workshop on Information
Retrieval for Question Answering, pp. 17–25, 2008.

Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In Proceedings of the Seventh Conference
on Natural Language Learning at HLT-NAACL 2003, pp. 142–147, 2003. URL https:
//aclanthology.org/W03-0419/.

11

https://aclanthology.org/N18-2075/
https://aclanthology.org/2020.emnlp-main.380/
https://aclanthology.org/2020.emnlp-main.380/
https://aclanthology.org/J93-2004/
https://aclanthology.org/W03-0419/
https://aclanthology.org/W03-0419/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Noah Wang, Feiyu Duan, Yibo Zhang, Wangchunshu Zhou, Ke Xu, Wenhao Huang, and Jie Fu.
PositionID: LLMs can control lengths, copy and paste with explicit positional awareness. In
Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Association for
Computational Linguistics: EMNLP 2024, pp. 16877–16915, Miami, Florida, USA, November
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.983.
URL https://aclanthology.org/2024.findings-emnlp.983/.

Zhitong Wang, Cheng Gao, Chaojun Xiao, Yufei Huang, Shuzheng Si, Kangyang Luo, Yuzhuo Bai,
Wenhao Li, Tangjian Duan, Chuancheng Lv, et al. Document segmentation matters for retrieval-
augmented generation. In Findings of the Association for Computational Linguistics: ACL 2025,
pp. 8063–8075, 2025.

Linzi Xing and Giuseppe Carenini. Improving unsupervised dialogue topic segmentation with
utterance-pair coherence scoring. In Haizhou Li, Gina-Anne Levow, Zhou Yu, Chitralekha
Gupta, Berrak Sisman, Siqi Cai, David Vandyke, Nina Dethlefs, Yan Wu, and Junyi Jessy Li
(eds.), Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and
Dialogue, pp. 167–177, Singapore and Online, July 2021. Association for Computational Lin-
guistics. doi: 10.18653/v1/2021.sigdial-1.18. URL https://aclanthology.org/2021.
sigdial-1.18/.

Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
Learning to reason under off-policy guidance. arXiv preprint arXiv:2504.14945, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Kaiyi Zhang, Ang Lv, Jinpeng Li, Yongbo Wang, Feng Wang, Haoyuan Hu, and Rui Yan.
Stephint: Multi-level stepwise hints enhance reinforcement learning to reason. arXiv preprint
arXiv:2507.02841, 2025.

12

https://aclanthology.org/2024.findings-emnlp.983/
https://aclanthology.org/2021.sigdial-1.18/
https://aclanthology.org/2021.sigdial-1.18/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 TAXONOMY USED FOR PROMPTS

Label Definition

Instruction Guidance on how to process and respond to queries.
Example Examples of what the input and corresponding output should look like.
Context Background information and context that the model needs to refer to.
Question Queries or questions provided specifically by users
Output Format The type, format, or style of the output

Table 5: Example taxonomy for structured prompt segmentation used in StructSeg. Different
domains may employ alternative taxonomies appropriate to their document types and analysis needs.

A.2 IMPLEMENTATION DETAILS OF CLAUDE

In this section, we describe the implementation details for Claude3.5-sonnet-v2 and Claude4-sonnet
for the prompt segmentation task. The prompts used by the models first give a detailed definition
for each label used by our taxonomy and then instructs the model to extract segments following
the definitions. As described in Sec. 6.2, the models are required to output either the full text of
each segment or the starting tokens of each segment as BoundRL. To help model better understand
the required output format, the prompts also include a randomly sampled prompt and its expected
output format from the training set of StructSeg. The prompt for outputting the full text of each
segment is shown in Figs 4. The prompt for outputting the starting tokens of each segment is shown
in Fig. 4. The temperature during inference is set to 0.

A.3 IMPLEMENTATION DETAILS OF BOUNDRL

In this section, we describe additional implementation details of BoundRL. To help model better
adapt to the prompt segmentation task, we give models a meta instruction in addition to the prompt to
be segmented. The meta instruction includes a brief definition of each segment type and an example
of required output format. The meta instruction that requires the model to output starting tokens of
each segment is shown in Fig. 5.

For both SFT and reinforcement learning, BoundRL sets the maximum gradient norm as 0.1 and
the weight decay as 0.01. BoundRL uses the linear learning rate scheduler with a warmup ratio
of 0.03. We tune the hyperparameters of BoundRL in stages. We first select the hyperparameters
of SFT based on the performance of models that are finetuned SFT on the validation set. With
the SFT hyperparameters fixed, we then tune the hyperparameters of RLVR, followed by those for
intermediate candidate construction, using the same process.

During the rollout stage of reinforcement learning, we notice that candidate segmentation might
contain repetitive end of response tokens or segments after end of response tokens, which might hurt
the training stability if are directly used for training. To address the issue, all generated candidate
segmentations are truncated at the first end of response token.

To shorten or extend the text of a segment t̂i, BoundRL modifies the starting token sequences ŝi
or ŝi+1 accordingly. Specifically, to shorten the text of a segment t̂i on the left side by one word,
BoundRL truncates the first word of the starting token sequence ŝi. To shorten the text of a segment
t̂i on the right side by one word, BoundRL prepends to ŝi+ 1 the word immediately before it. To
extend the text of a segment t̂i on the right side by one word, BoundRL truncates the first word
of the starting token sequence ŝi+1. To extend the text of a segment t̂i on the left side by one
word, BoundRL prepends to ŝi the word immediately before it. Therefore, When constructing
intermediate candidates, BoundRLdoes not shorten or extending the text of a segment with only
one word. We will also modify the neighboring starting token sequences accordingly if there is a
overlap between starting token sequences after modifications.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.4 IMPLEMENTATION DETAILS OF BASELINES

Unless otherwise specified, SFT and SFT w/2epochs use the same hyper-parameters as the SFT
training stage of BoundRL. The label schema of our NER baseline is motivated by (Tjong Kim Sang
& De Meulder, 2003), which uses ‘B-X’, ‘I-X’, and ‘O’. However, since all tokens in a prompt
belong to a segment in the text segmentation task, we use ‘B-X’ to represent the beginning token
of each segment and ‘I-X’ to represent the remaining tokens of each segment. To predict the label
of each token, the output of the final layer for each token is feed into a single-layer MLP following
the common practice. Other hyper-parameters of the NER baseline is the same as the SFT training
stage of BoundRL. For RL-PLUS, we replace one originally generated candidate segmentation with
a sequence of annotated segments. The temperature to control the weight of advantage function is
1.0. Unless otherwise specified, RL-PLUS, SFT+RLVR, and SFT+RLVRw/ high temp. all use GRPO
without reward scaling based on standard deviation and the same hyper-parameters as BoundRL for
a fair comparison.

A.5 IMPLEMENTATION DETAILS OF OTHER OUTPUT PATTERNS

In this section, we provide implementation details for output patterns other than the output pattern
used by BoundRL (‘start’). Specifically, for the ‘end’ output pattern, the model should first generate
a label and then a sequence of ending tokens for each segment. The text of the i-th segment t̂i is
then extracted as the text span between the positions of the i − 1-th and i-th sequence of ending
tokens. For the ‘start+end’, the model should first output a label and then output a sequence of
starting tokens and a sequence of ending tokens. The text of the i-th segment t̂i is then extracted
as the text span between the positions of the i-th sequence of starting tokens and the i-th sequence
of ending tokens. We show the meta instruction that requires the model to output ending tokens
of each segment in Fig. 6 and meta instruction that requires the model to output both starting and
ending tokens of each segment in Fig. 7. We also show an example text and corresponding expected
outputs for different output patterns in Fig. 9.

A.6 GENERATION OF SYNTHETIC PROMPTS

When generating the synthetic prompts, we implement a multi-faceted sampling strategy that draws
from varied prompt types (system prompt, user prompt, combined), prompt modes (prompt template,
full prompt, hybrid), and task types (e.g. classification, summarization), placeholder formats (e.g.,
{context} or {{context}}), the number of examples (zero, one, few), prompt lengths, writing
styles, and levels of details. The full list of the task types, writing styles, prompt lengths, format
types, and level of details are shown in Tab. 6.

A.7 STANDARD DEVIATION OF REWARDS DURING TRAINING

In this section, we compare the standard deviation of rewards of SFT+RLVR and BoundRL during
training to evaluate whether BoundRL can mitigate the entropy collapse issue of RLVR. Specifi-
cally, we show the curve of standard deviation of rewards among candidate segmentations generated
during rollout along the training. We show the curve of SFT+RLVR and BoundRL in Fig.10. From
the figure, we find that the standard deviation of rewards of SFT+RLVR quickly becomes very small,
while that of BoundRL remains stable throughout training. The results show that intermediate can-
didates help BoundRL mitigate the entropy collapse issue of RLVR.

A.8 QUALITATIVE EXAMPLES

In this section, we show qualitative examples of BoundRL and other baselines. Specifically, we an
example prompt, its corresponding annotated segments, the raw output and reconstructed segments
for each method in Fig. 11.

A.9 IMPLEMENTATION DETAILS OF ABLATION STUDIES

In this section, we provide more implementation details of the ablated versions of BoundRL. In
BoundRL w/ 2steps, we construct the intermediate candidates by selecting the first perturbation

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

step that has the biggest reward gain over the original candidate segmentation with the medium-
level reward. We then select the second perturbation that has the biggest reward gain when the first
perturbation step is applied. The intermediate candidate is then constructed by applying the first
and second perturbation steps on the original candidate segmentation. For BoundRL w/o select, we
incorporate intermediate candidates for all input texts where the intermediate candidate has a positive
reward gain over the original generated candidate segmentation, rather than restricting replacement
to the top-k cases. For BoundRL w/o middle, we construct intermediate candidates by perturbing a
randomly sampled candidate segmentation instead of the one with the medium-level reward. Other
design choices for these ablated versions are the same as those for BoundRL for a fair comparison.

A.10 USAGE OF LLMS IN WRITING

In this paper, we use LLMs solely to polish our draft. We do not use LLMs for research ideation,
retrieval, or discovery.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Segment the following prompt into different categories and referring to their descriptions:
<categories>
* <option>instruction</option>: Including 1/ profile/role that the model is acting as; 2/ Core intent of the
prompt; 3/ workflow or steps and processes the model should follow to complete the task; 4/ restrictions
on what the model must adhere to when generating responses
* <option>context</option>: Background information and context that the model needs to refer to. This
can include 1/ background or supplementary input that helps set the stage for the task but is not the
primary focus. 2/ Knowledge input - The core content that the prompt directly processes or manipulates; 3/
Metadata/Short Phrases - Brief inputs or settings that define specific parameters or goals for the task.
* <option>question</option>: Queries or questions provided specifically by users. The questions that are
part of the template should not be labeled as question but as instruction.
* <option>examples</option>: Providing the AI model with concrete examples of the desired input-output
pattern before asking it to perform a similar task. These examples demonstrate the expected format, style,
and reasoning pattern, helping the model understand and replicate the desired behavior. A example must
contain both concrete input and output. If either input or output is missing, it should not be labeled as
example but be labeled as . If input or output does not have actual content, it should not be labeled as
example.
* <option>output_format</option>: Specific requirement of the type, format, or style of the output, such
as the exact json format or function calling language. A general requirement like 'the output should be in
json format' should not be labeled as output_format.
</categories>
<notes>
* Do not separate consecutive prompt segments if they belong to the same category. Make them into one
component.
* If unclear, or you are looking at less meaningful text pieces between different components, label it as
instruction
* Must keep the text of each component exactly the same as the original prompt.
* Your response between <segmentation_annotation> </segmentation_annotation> must be parsable by
Python's ast.literal_eval(). Avoid use single quotes within text of each component.
</notes>
<example>
<example_prompt>
{example_prompt}
</example_prompt>
<example_segmentation>
{example_segmentation}
</example_segmentation>
</example>
<prompt_to_analyze>
{prompt_to_analyze}
</prompt_to_analyze>
<segmentation_annotation>
[{{

'relative_order': 0,
'text': [text of component 1],
'type': [type of component 1, given categories only],

}},
...
{{

'relative_order': N,
'text': [text of component N],
'type': [type of component N, given categories only],

}},
]
</segmentation_annotation>
provide your annotated answer enclosed in <segmentation_annotation></segmentation_annotation> XML
tags.

Figure 3: Prompt used by Claude to extract the full text of each segment

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Segment the following prompt into different categories and referring to their descriptions:

<categories>

* <option>instruction</option>: Including 1/ profile/role that the model is acting as; 2/ Core intent of the prompt; 3/

workflow or steps and processes the model should follow to complete the task; 4/ restrictions on what the model must

adhere to when generating responses

* <option>context</option>: Background information and context that the model needs to refer to. This can include 1/

background or supplementary input that helps set the stage for the task but is not the primary focus. 2/ Knowledge input -

The core content that the prompt directly processes or manipulates; 3/ Metadata/Short Phrases - Brief inputs or settings

that define specific parameters or goals for the task.

* <option>question</option>: Queries or questions provided specifically by users. The questions that are part of the

template should not be labeled as question but as instruction.

* <option>examples</option>: Providing the AI model with concrete examples of the desired input-output pattern before

asking it to perform a similar task. These examples demonstrate the expected format, style, and reasoning pattern, helping

the model understand and replicate the desired behavior. A example must contain both concrete input and output. If

either input or output is missing, it should not be labeled as example but be labeled as . If input or output does not have

actual content, it should not be labeled as example.

* <option>output_format</option>: Specific requirement of the type, format, or style of the output, such as the exact json

format or function calling language. A general requirement like 'the output should be in json format' should not be labeled

as output_format.

</categories>

<notes>

* Do not separate consecutive prompt segments if they belong to the same category. Make them into one segment.

* If unclear, or you are looking at less meaningful text pieces between different segments, label it as instruction

* Only output starting words (less than 10 words) of each segment instead of outputting the whole segment

* Must keep the starting words of each segment exactly the same as the corresponding words of the original prompt.

* The extracted segments should be in the order as they are in the original prompt.

* Your response between <segmentation_annotation> </segmentation_annotation> must be parsable by Python's

ast.literal_eval(). Avoid use single quotes within text of each component.

</notes>

<example>

<example_prompt>

{example_prompt}

</example_prompt>

<example_segmentation>

{example_segmentation}

</example_segmentation>

</example>

<prompt_to_analyze>

{prompt_to_analyze}

</prompt_to_analyze>

<segmentation_annotation>

[{{

'relative_order': 0,

'text': [starting words of segment 1],

'type': [type of segment 1, given categories only],

}},

...

{{

'relative_order': N,

'text': [starting words of segment N],

'type': [type of segment N, given categories only],

}}]

</segmentation_annotation>

provide your annotated answer enclosed in <segmentation_annotation></segmentation_annotation> XML tags.

Figure 4: Prompt used by Claude to extract the starting tokens of each segment

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

You are requested to segment a prompt into following categories:

(1) instruction: A guidance on how to process and respond to queries.

(2) context: Background information and context that the model needs
to refer to.

(3) question: Queries or questions provided specifically by users.

(4) examples: Examples of what the input / output should look like.

(5) output_format: The type, format, or style of the output.

You should output the segments of a prompt in the form of
[category_1]start_tokens_1%<separator>%\n[category_2]start_tokens_2...\
n[category_N]start_tokens_N, where 'category_1' denotes the predicted
category for segment 1 and 'start_tokens_1' denotes the start tokens of
segment 1.

Given the following LLM prompt, please follow the instruction above to
complete the data field extraction task.

Figure 5: Meta instruction used by BoundRL to output starting tokens of each segment.

You are requested to segment a prompt into following categories:

(1) instruction: A guidance on how to process and respond to queries.

(2) context: Background information and context that the model needs
to refer to.

(3) question: Queries or questions provided specifically by users.

(4) examples: Examples of what the input / output should look like.

(5) output_format: The type, format, or style of the output.

You should output the segments of a prompt in the form of
[category_1]end_tokens_1%<separator>%\n[category_2]end_tokens_2...\n
[category_N]end_tokens_N, where 'category_1' denotes the predicted
category for segment 1 and 'end_tokens_1' denotes the end tokens of
segment 1.

Given the following LLM prompt, please follow the instruction above to
complete the data field extraction task.

Figure 6: Meta instruction used by BoundRL to output ending tokens of each segment.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

You are requested to segment a prompt into following categories:
(1) instruction: A guidance on how to process and respond to queries.
(2) context: Background information and context that the model needs
to refer to.
(3) question: Queries or questions provided specifically by users.
(4) examples: Examples of what the input / output should look like.
(5) output_format: The type, format, or style of the output.

You should output the segments of a prompt in the form of
[category_1]start_tokens_1%<separator>%end_tokens_1[/category_1]\n...\
n[category_N]start_tokens_N%<separator>%end_tokens_N[/category_N],
where 'category_1' denotes the predicted category for segment 1,
'start_tokens_1' denotes the start tokens of segment 1, and
'end_tokens_1' denotes the end tokens of segment 1.

Given the following LLM prompt, please follow the instruction above to
complete the data field extraction task.

Figure 7: Meta instruction used by BoundRL to output both starting and ending tokens of each
segment.

Figure 8: Distribution of segment labels across our dataset showing the proportion of each label type
in both synthetic prompts (Synthetic) and real-world prompts (Langchain).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Prompt:Your a trivia expert. Answer questions precise and quick. Use this format:

Q: [Question]
A: [Answer]
Confidence: [0-100%]
Fun Fact: [Related interesting tidbit]

Now, answer these trivia questions:

1. What's the capital of France?
2. Who painted the Mona Lisa?
3. In what year did World War II end?
4. What's the largest planet in our solar system?
5. Who wrote the play "Romeo and Juliet"?

Provide answers for all 5 questions using the specified format. Don't skip any parts of the format. Be concise but accurate in your
responses.

Start:[instruction]Your a trivia expert.
Answer questions %<separator>%
[question]1. What's the capital of France?
2. Who %<separator>%
[instruction]Provide answers for all 5
questions %<separator>%

End:[instruction]answer these trivia
questions: %<separator>%
[question]Who wrote the play "Romeo and
Juliet"? %<separator>%
[instruction]but accurate in your responses.
%<separator>%

Start+End:[instruction]Your a trivia expert.
Answer questions %<separator>% answer
these trivia questions:[/instruction]
[question]1. What's the capital of France?
2. Who %<separator>% Who wrote the play
"Romeo and Juliet"?[/question]
[instruction]Provide answers for all 5
questions %<separator>% but accurate in
your responses.[/instruction]

Figure 9: An example text and expected outputs for different output patterns.

(a) Qwen3-1.7b (b) Qwen3-4b (c) Llama3.1-8b-Instruct

Figure 10: The standard deviation of rewards during training for BoundRL and SFT+RLVR. Inter-
mediate candidates help BoundRL mitigate the entropy collapse issue of RLVR.

Prompt: You are a supervisor tasked with managing a conversation between the following workers: {members}. Given the following user request, respond with the worker to act next. Here
are the descriptions for each worker:

{worker_desc}
Workers must complete a task and report their results and status.
NEVER reply with FINISH if AI provides no response.
NOTE: Stop if messages are repeating after three attempts.
Given the conversation above, who should act next?
Or should we FINISH?
Select one of: {options}

Annotation: [{'text': 'You are a supervisor tasked with managing a conversation between the following workers:', 'type': 'instruction'}, {'text': '{members}', 'type': 'context'}, {'text': '. Given the
following user request, respond with the worker to act next. Here are the descriptions for each worker:', 'type': 'instruction'}, {'text': '{worker_desc}', 'type': 'context'}, {'text': 'Workers must
complete a task and report their results and status.\n NEVER reply with FINISH if AI provides no response.\n NOTE: Stop if messages are repeating after three attempts.\n\n Given the
conversation above, who should act next?\n Or should we FINISH? \n Select one of:', 'type': 'instruction'}, {'text': '{options}', 'type': 'context'}]

SFT w/2epochs
Raw output: [instruction]You are a
supervisor tasked with %<separator>%
[context]{members} %<separator>%
[instruction]Given the following user request,
%<separator>%
[context]{worker_desc} %<separator>%
[instruction]Workers must complete a task
and %<separator>%
[context]Or should we %<separator>%
[instruction]Select one of: %<separator>%
[context]{options} %<separator>%
Reconstucted Segment: [{'text': '', 'label':
'instruction'}, {'text': '', 'label': 'context'},
{'text': 'You are a supervisor tasked with
managing a conversation between the
following workers:', 'label': 'instruction'},
{'text': '{worker_desc}', 'label': 'context'},
{'text': 'Workers must complete a task and
report their results and status.\n NEVER
reply with FINISH if AI provides no
response.\n NOTE: Stop if messages are
repeating after three attempts.\n\n Given
the conversation above, who should act
next?', 'label': 'instruction'}, {'text': 'Or should
we FINISH?', 'label': 'context'}, {'text': 'Select
one of:', 'label': 'instruction'}, {'text':
'{options}', 'label': 'context'}]

SFT+RLVR
Raw output: [instruction]You are a
supervisor tasked with %<separator>%
[context]{members} %<separator>%
[instruction]Given the following user
%<separator>%
[context]{worker_desc} %<separator>%
[instruction]Workers must complete a task
and %<separator>%
[question]Or should we %<separator>%
[instruction]Select one of: %<separator>%
[context]{options} %<separator>%
Reconstucted Segment: [{'text': 'You are a
supervisor tasked with managing a
conversation between the following
workers:', 'label': 'instruction'}, {'text':
'{members}.', 'label': 'context'}, {'text': 'Given
the following user request, respond with the
worker to act next. Here are the descriptions
for each worker:', 'label': 'instruction'}, {'text':
'{worker_desc}', 'label': 'context'}, {'text':
'Workers must complete a task and report
their results and status.\n NEVER reply with
FINISH if AI provides no response.\n NOTE:
Stop if messages are repeating after three
attempts.\n\n Given the conversation above,
who should act next?', 'label': 'instruction'},
{'text': 'Or should we FINISH?', 'label':
'question'}, {'text': 'Select one of:', 'label':
'instruction'}, {'text': '{options}', 'label':
'context'}]

RL-PLUS
Raw output: [instruction]You are a
supervisor tasked with %<separator>%
[context]{members} %<separator>%
[instruction]Given the following user
%<separator>%
[context]{worker_desc} %<separator>%
[instruction]Workers must complete a task
and %<separator>%
[context] %<separator>%
[instruction]Or should we %<separator>%
[context]{options} %<separator>%
Reconstucted Segment: [{'text': 'You are a
supervisor tasked with managing a
conversation between the following
workers:', 'label': 'instruction'}, {'text':
'{members}.', 'label': 'context'}, {'text': 'Given
the following user request, respond with the
worker to act next. Here are the descriptions
for each worker:', 'label': 'instruction'}, {'text':
'{worker_desc}', 'label': 'context'}, {'text':
'Workers must complete a task and report
their results and status.\n NEVER reply with
FINISH if AI provides no response.\n NOTE:
Stop if messages are repeating after three
attempts.\n\n Given the conversation above,
who should act next?', 'label': 'instruction'},
{'text': 'Or should we FINISH? \n Select one
of:', 'label': 'instruction'}, {'text': '{options}',
'label': 'context'}]

BoundRL
Raw output: [instruction]You are a
supervisor tasked %<separator>%
[context]{members} %<separator>%
[instruction]Given the following user
%<separator>%
[context]{worker_desc} %<separator>%
[instruction]Workers must complete a task
and %<separator>%
[context]{options} %<separator>%
Reconstucted Segment:[{'text': 'You are a
supervisor tasked with managing a
conversation between the following
workers:', 'label': 'instruction'}, {'text':
'{members}.', 'label': 'context'}, {'text': 'Given
the following user request, respond with the
worker to act next. Here are the descriptions
for each worker:', 'label': 'instruction'}, {'text':
'{worker_desc}', 'label': 'context'}, {'text':
'Workers must complete a task and report
their results and status.\n NEVER reply with
FINISH if AI provides no response.\n NOTE:
Stop if messages are repeating after three
attempts.\n\n Given the conversation above,
who should act next?\n Or should we FINISH?
\n Select one of:', 'label': 'instruction'}, {'text':
'{options}', 'label': 'context'}]

Figure 11: Qualitative examples of BoundRL and other baselines.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Factor Values
task type ’named entity recognition’, ’current events knowledge’, ’document similarity comparison’, ’bug detection’, ’grammar

and spell checking’, ’code refactoring’, ’parameter extraction’, ’software development’, ’webhook handling’, ’clini-
cal note summarization’, ’table relationship inference’, ’trivia answering’, ’anything you can think that a user might
need help with’, ’web development’, ’general productivity assistant’, ’spam detection’, ’scientific concept explana-
tion’, ’mathematical problem solving’, ’email thread summarization’, ’multi-option reasoning’, ’genre classification’,
’research paper abstracting’, ’classification’, ’database schema understanding’, ’general coding assistance’, ’text sim-
plification’, ’keyword extraction’, ’news categorization’, ’multi-API orchestration’, ’fact-checking’, ’sentiment anal-
ysis’, ’citation finding’, ’meeting minutes generation’, ’news article summarization’, ’fact verification’, ’legal docu-
ment summarization’, ’complex query generation’, ’toxicity detection’, ’factoid QA’, ’technical domain QA’, ’semantic
search’, ’geographic knowledge QA’, ’logical reasoning tasks’, ’text generation’, ’text style transfer’, ’function call-
ing’, ’contextual recommendations’, ’language detection’, ’api authentication’, ’evidence extraction’, ’table-based QA’,
’data filtering’, ’code review’, ’biographical information retrieval’, ’open book qa (RAG), where a document is pro-
vided and a quesiton must be answered, but don\’t explicitly mention ”open book qa”’, ’dialogue summarization’,
’topic classification’, ’code explanation’, ’code security enhancements’, ’data type validation’, ’anomaly detection in
text’, ’common sense reasoning’, ’code generation’, ’metaphor generation and interpretation’, ’document type clas-
sification’, ’ai coding assistant’, ’poetry and song lyrics generation’, ’customer feedback summarization’, ’general
programming ai assistance’, ’code completion’, ’chart/graph interpretation’, ’automated essay scoring’, ’paraphrasing’,
’closed book qa, but don\’t explicitly mention ”closed book qa”’, ’multi-hop reasoning’, ’input sanitzation’, ’content
moderation’, ’SQL query optimization’, ’api endpoint selection’, ’context-dependent reasoning’, ’error handling’, ’in-
tent classification’, ’summarization’, ’emotion classification’, ’cross-document QA’, ’multi-document summarization’,
’text2sql’, ’text completion’, ’code summarization’, ’reading comprehension’, ’historical fact retrieval’, ’video transcript
summarization’

writing styles ’to contain several noticeable grammatical errorsin direct and curt way’, ’to contain several noticeable grammatical
errors’, ’in direct and curt way’, ’to have lots of typos’, ’in a well-formed style’

format type ’a mixture of markdown and formatting seen in the example prompts provided above’, ’a mixture of a formatting
structure of your choice and section subtitles’, ’a mixture of JSON or nested JSON and other’, ’markdown’, ’a mixture
of JSON or nested JSON and markdown’, ’YAML-style formatting’, ’a mixture of a formatting structure of your choice
and other’, ’a mixture of markdown and section headers’, ’a mixture of formatting seen in the example prompts provided
above and section subtitles’, ’a mixture of other and markdown’, ’a mixture of XML tags and coding’, ’a mixture of
coding and XML tags’, ’a mixture of section subtitles and a formatting structure of your choice’, ’a mixture of JSON
or nested JSON and coding’, ’a mixture of a formatting structure of your choice and markdown’, ’a mixture of section
subtitles and coding’, ’a mixture of formatting seen in the example prompts provided above and JSON or nested JSON’,
’a mixture of XML tags and section subtitles’, ’a mixture of XML tags and formatting seen in the example prompts
provided above’, ’a mixture of section headers and formatting seen in the example prompts provided above’, ’a mixture
of a formatting structure of your choice and coding’, ’pseudo-code’, ’a mixture of coding and a formatting structure
of your choice’, ’a mixture of coding and JSON or nested JSON’, ’a mixture of markdown and coding’, ’a mixture of
other and JSON or nested JSON’, ’a mixture of XML tags and a formatting structure of your choice’, ’section subtitles’,
’a mixture of other and a formatting structure of your choice’, ’a mixture of section headers and section subtitles’, ’a
mixture of other and coding’, ’a mixture of section subtitles and markdown’, ’a mixture of section subtitles and other’,
’a mixture of coding and section headers’, ’a mixture of section headers and a formatting structure of your choice’,
’a mixture of section headers and coding’, ’chain-of-thought styling’, ’capital letters to highlight important details’, ’a
mixture of other and section subtitles’, ’a mixture of XML tags and JSON or nested JSON’, ’XML tags’, ’a mixture
of coding and other’, ’a mixture of other and formatting seen in the example prompts provided above’, ’a mixture of
formatting seen in the example prompts provided above and section headers’, ’a mixture of a formatting structure of your
choice and XML tags’, ’a mixture of formatting seen in the example prompts provided above and other’, ’a formatting
structure of your choice’, ’a mixture of section headers and XML tags’, ’a mixture of XML tags and markdown’, ’a
mixture of JSON or nested JSON and a formatting structure of your choice’, ’a mixture of markdown and a formatting
structure of your choice’, ’JSON or nested JSON’, ’a mixture of a formatting structure of your choice and section
headers’, ’a mixture of JSON or nested JSON and section headers’, ’a mixture of coding and formatting seen in the
example prompts provided above’, ’a mixture of JSON or nested JSON and formatting seen in the example prompts
provided above’, ’a mixture of section subtitles and section headers’, ’a mixture of JSON or nested JSON and XML
tags’, ’a mixture of other and XML tags’, ’a mixture of XML tags and other’, ’a mixture of section headers and JSON
or nested JSON’, ’a mixture of markdown and JSON or nested JSON’, ’a mixture of a formatting structure of your
choice and formatting seen in the example prompts provided above’, ’a mixture of section subtitles and XML tags’,
’table-based formatting’, ’a mixture of a formatting structure of your choice and JSON or nested JSON’, ’a mixture
of section headers and other’, ’a mixture of formatting seen in the example prompts provided above and markdown’,
’a mixture of formatting seen in the example prompts provided above and a formatting structure of your choice’, ’a
mixture of section headers and markdown’, ’a mixture of markdown and section subtitles’, ’a mixture of markdown
and XML tags’, ’tree-style hierarchical formatting’, ’a mixture of section subtitles and formatting seen in the example
prompts provided above’, ’a mixture of coding and markdown’, ’a mixture of section subtitles and JSON or nested
JSON’, ’coding’, ’a mixture of other and section headers’, ’a mixture of coding and section subtitles’, ’a mixture of
markdown and other’, ’formatting seen in the example prompts provided above’, ’a mixture of XML tags and section
headers’, ’a mixture of formatting seen in the example prompts provided above and XML tags’, ’section headers’, ’a
mixture of JSON or nested JSON and section subtitles’, ’a mixture of formatting seen in the example prompts provided
above and coding’

prompt length ’less than 150 words’, ’150 to 500 words’, ’500 to 1000 words’, ’around 1000 words’, ’1000 to 2000 words’
level of detail ’basic level of detail, meaning it can just give minimal descriptions of things’, ’moderate level of detail, meaning it

goes a bit in-depth into things’, ’detailed, meaning you should describe things thoroughly and do not give short names
or descriptions’, ’very detailed, meaning everything is described very in-depth and production-level detail is included’,
’extremely technically detailed, meaning as many specific details should be present as possible, including technical
jargon, production-level of context, and complicated descriptions’

Table 6: Full list of factors and corresponding potential values used for generating of synthetic
prompts.

21

	Introduction
	Related Work
	Problem Statement
	Method
	Efficient Output Pattern for Structured Text Segmentation
	Reward Design of Reinforcement Learning
	Construction of Intermediate Candidate

	Experiment Setups
	StructSeg
	Implementation Details

	Experiment Results
	Evaluation of Output Patterns
	Evaluation of BoundRL
	Ablation Study of BoundRL

	Conclusions
	Ethics Statement
	Appendix
	Taxonomy Used for Prompts
	Implementation Details of Claude
	Implementation Details of BoundRL
	Implementation Details of Baselines
	Implementation Details of Other Output Patterns
	Generation of Synthetic Prompts
	Standard Deviation of Rewards during Training
	Qualitative Examples
	Implementation Details of Ablation Studies
	Usage of LLMs in Writing

