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ABSTRACT

As structured texts become increasingly complex across diverse domains – from
technical reports to generative AI prompts – the need for text segmentation into
semantically meaningful components becomes critical. Such texts often contain
elements beyond plain language, including tables, code snippets, and placehold-
ers, which conventional sentence- or paragraph-level segmentation methods can-
not handle effectively. To address this challenge, we propose BoundRL, a novel
and efficient approach that jointly performs token-level text segmentation and la-
bel prediction for long structured texts. Instead of generating complete contents
for each segment, it generates only a sequence of starting tokens and reconstructs
the complete contents by locating these tokens within the original texts, thereby
reducing inference costs by orders of magnitude and minimizing hallucination. To
adapt the model for the output format, BoundRL performs reinforcement learn-
ing with verifiable rewards (RLVR) with a specifically designed reward that jointly
optimizes document reconstruction fidelity and semantic alignment. To mitigate
entropy collapse, it further constructs intermediate candidates by systematically
perturbing a fraction of generated sequences of segments to create stepping stones
toward higher-quality solutions. To demonstrate BoundRL’s effectiveness on par-
ticularly challenging structured texts, we focus evaluation on complex prompts
used for LLM applications. Experiments show that BoundRL enables small lan-
guage models (1.7B parameters) to outperform few-shot prompting of much larger
models. Moreover, RLVR with our designed reward yields significant improve-
ments over supervised fine-tuning, and incorporating intermediate candidates fur-
ther improves both performance and generalization.

1 INTRODUCTION

Text segmentation is the task of dividing a text into coherent segments, each covering a distinct topic
(Hearst, 1994). Beyond identifying segment boundaries, some approaches also predict the topic of
each segment (Arnold et al., 2019b; Barrow et al., 2020). These segments can help readers to better
understand the structure of long texts (Jeoung et al., 2025), QA systems to retrieve more relevant
contexts (Tiedemann & Mur, 2008; Wang et al., 2025), and summarization system to summarize
long documents (Moro & Ragazzi, 2022).

Most previous works frame text segmentation as sequence labeling (Hearst, 1994) or boundary clas-
sification (Lukasik et al., 2020) on the sentence or paragraph level. However, these methods assume
that texts can be cleanly divided into sentences or paragraphs in advance, which does not hold for
many real-world structured texts, such as technical reports or prompts for large language models
(LLMs). Such texts often contain tables, code snippets, and placeholders; which do not conform
to conventional sentence or paragraph structures, making existing formulations insufficient for in-
creasingly complex structured texts. A natural solution is to modify these methods to perform text
segmentation at the token level. However, sequence labeling on the token level tends to generate
very fragmented segments, while boundary classification requires an impractically large number of
classifications for each token. Recent work addresses token-level segmentation by instructing LLMs
to generate the full text of each segment (Schnabel & Neville, 2024; Jeoung et al., 2025). However,
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Example Structured Document (LLM Prompt)

You	are	a	data	analyst	working	for	a	smart	home	device	company.	
Your	task	[truncated…<140	tokens>] based	on	this	analysis.	Follow	
these	steps	to	complete	the	task:
1.	Parse	the	JSON	data	provided	below,	which	contains	customer	
reviews	……
Here's	the	JSON	data	containing	customer	reviews:

{
"reviews":	[
{
"product_id":	"SH001",
"product_name":	"SmartHub	2000",
"category":	"Hub",
"rating":	4,
"review_text":	"Great	central	hub	for	all	my	smart	devices.	Easy	to	set	up	

and	use.	Wish	it	had	more	USB	ports	though."
},
[truncated…<131	tokens>]
]
}

To	assist	you	in	your	analysis,	you	can	use	the	following	function	
calls:

1.	analyze_sentiment(text:	str)	->	dict:
This	function	performs	sentiment	analysis	on	the	given	text	and	returns	a	

dictionary	with	positive,	negative,	and	neutral	scores.
2.	[truncated…<765	tokens>]

Please	provide	your	analysis	and	recommendations	in	a	clear,	concise	
manner.	Include	any	relevant	visualizations	generated	by	the	function	
calls.	Here	an	example	of	how	to	approach	this	task:

Input:	JSON	data	provided	above
[truncated…<485	tokens>]

Output:
Summary	Report:
1.	Most	frequently	mentioned	features:
- Easy	setup
- App	functionality

2.	Average	ratings	by	category:
- Hub:	4.0
- Thermostat:	5.0

[truncated….<168	tokens>]

Now,	please	analyze	the	provided	JSON	data	and	generate	a	comprehensive	
report	following	the	steps	and	examples	given	above.

Final Segmented Output

Instruction

You	are	a	data	analyst	working	for	a	smart	home	device	company.	Your	
task	[truncated…<140	tokens>] based	on	this	analysis.	Follow	these	
steps	to	complete	the	task:
1.	Parse	the	JSON	data	provided	below,	which	contains	customer	reviews	
……
Here's	the	JSON	data	containing	customer	reviews:

{
"reviews":	[
{
"product_id":	"SH001",
"product_name":	"SmartHub	2000",
"category":	"Hub",
"rating":	4,
"review_text":	"Great	central	hub	for	all	my	smart	devices.	Easy	to	set	up	and	

use.	Wish	it	had	more	USB	ports	though."
},
[truncated…<131	tokens>]
]
}

To	assist	you	in	your	analysis,	you	can	use	the	following	function	calls:

1.	analyze_sentiment(text:	str)	->	dict:
This	function	performs	sentiment	analysis	on	the	given	text	and	returns	a	

dictionary	with	positive,	negative,	and	neutral	scores.
2.	[truncated…<765	tokens>]

Example 

Input:	JSON	data	provided	above
[truncated…<485	tokens>]
Output:
Summary	Report:
1.	Most	frequently	mentioned	features:
- Easy	setup
- App	functionality

2.	Average	ratings	by	category:
- Hub:	4.0
- Thermostat:	5.0	[truncated….<168	tokens>]

Now,	please	analyze	the	provided	JSON	data	and	generate	a	
comprehensive	report	following	the	steps	and	examples	given	above.

Context

Instruction

Context

Instruction

Boundary Generation
[instruction]	You	are	a	data	analyst	[SEP]	
[context] {\n		"reviews":	[\n				{\n						
"product_id":	[SEP] [instruction]	To	assist	
you [SEP]	[context] 1.	
analyze_sentiment(text:	str)	->	dict:
[instruction] Please	provide	your	analysis	
[SEP]	[example] Input:	JSON	data	provided	
above	[SEP]	[instruction] Now,	please	
analyze	the	provided	[SEP]	

BoundRL

Figure 1: Efficient output pattern used by BoundRL. Instead of generating complete segment text, it
only generates starting tokens for each segment and then reconstructs complete segments by locating
these tokens in the original text, which reduces inference costs and risks for hallucinations.

these methods incur prohibitive inference costs for long texts due to the necessity of regenerating
the entire input, and they are prone to hallucinations (Wang et al., 2024).

We introduce BoundRL, a novel approach that jointly performs token-level text segmentation and
label prediction for long structured texts, which we term structured text segmentation. As shown
in Fig. 1, BoundRL reformulates text segmentation as boundary generation and only generates a
sequence of starting tokens and label for each segment, then reconstructs full segments by locating
them in the input. Unlike approaches that generate every segment in full, this formulation reduces
inference costs by orders of magnitude – from O(|d|) to O(n) tokens, where |d| is the document
length, n is the average number of segments per document, and n is generally much smaller than
|d|. It also mitigates inherent hallucination risks during text generation.

Boundary generation training presents unique optimization challenges. Supervised fine-tuning
(SFT) can mistakenly penalize starting tokens that correspond to the right boundary positions and
provides insufficient penalties for minor token mismatches that cause failures in locating starting
tokens. BoundRL addresses this by reinforcement learning with verifiable rewards (RLVR) (Shao
et al., 2024), optimizing a reward function with two complementary dimensions: reconstruction
fidelity, which measures whether the text can be fully recovered from generated segments, and se-
mantic alignment which evaluates agreements between generated segments and annotated segments.

However, RLVR can suffer from entropy collapse (Cui et al., 2025), where generated sequences
of segments become trapped in narrow, low-reward regions during rollout. Although annotated se-
quence of segments provides high-reward examples, they are often too distant from the model’s
current generation distribution to enable effective learning. To mitigate this, BoundRL constructs
intermediate candidates by perturbing a fraction of generated sequences of segments through bound-
ary adjustments and label modifications as shown in Fig. 2, creating stepping stones that bridge the
gap between current generations and optimal solutions. This approach is particularly effective for
our reward function due to its dense, continuous nature.

To validate BoundRL on particularly challenging structured texts, we construct StructSeg, a
comprehensive dataset for structured text segmentation with 15.3K annotations encompassing syn-
thetic prompts and prompts from LangSmith 1 with text and label of each segment. Our evaluation
focuses on prompts for LLMs due to their extreme structural complexity – dense mixtures of natural
language instructions, code snippets, JSON formatting, and contextual data within compact formats,
making them unsuitable for sentence- or paragraph-level segmentation.

Our experiments show that relatively small models (1.7B-4B parameters) trained with
BoundRL outperforms few-shot prompting using much larger models (Claude-4 Sonnet (Anthropic,
2025)). Moreover, RLVR with our designed reward function brings significant performance and

1https://smith.langchain.com/hub/
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…[context] {\n  "reviews": [\n    {\n      "product_id": [SEP] [instruction] To assist…

BoundRL
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…[output_format] {\n  "reviews": [\n    {\n      "product_id": [SEP] [instruction] To assist…

…[output_format] customer reviews:\n{\n  "reviews": [\n    {\n      "product_id": [SEP] 
[instruction] To assist…

…[output_format] {\n  "reviews": [\n    {\n      "product_id": [SEP] [instruction] To assist…

Figure 2: RLVR workflow of BoundRL showing the dual-objective reward function and intermedi-
ate candidate construction. The reward function combines reconstruction ratio for measuring recon-
struction fidelity with exact match and character-level F1 scores for measuring semantic alignment.
To mitigate entropy collapse during rollout, BoundRL constructs intermediate candidates by per-
turbing generated segments through boundary adjustments and label modifications.

generalization improvement over SFT and the intermediate candidates can further improve the per-
formance of RLVR.

Our contributions are four-fold:

• A novel boundary-generation approach for structured text segmentation that reduces inference
costs from O(|d|) to O(n) tokens while reducing hallucination risks;

• A specifically designed reward function that jointly optimizes reconstruction fidelity and semantic
alignment for RLVR;

• Intermediate candidate construction that mitigates entropy collapse in RLVR through boundary
adjustments and label modifications;

• Comprehensive evaluation on StructSeg benchmark demonstrating BoundRL’s significant ef-
ficiency and accuracy improvements, with strong out-of-domain generalization.

2 RELATED WORK

Text segmentation Text segmentation aims to divide a text into coherent segments, where each
segment encompasses a distinct semantic unit or topic (Hearst, 1994). The task has been studied
across various domains, such as regular documents (Koshorek et al., 2018b) and dialogues (Xing &
Carenini, 2021). Arnold et al. (2019b); Barrow et al. (2020) extend the task by jointly modeling seg-
mentation and topic classification. In supervised settings, segmentation is often framed as sequence
labeling, where each sentence is labeled as a boundary or not (Koshorek et al., 2018a; Li et al., 2018).
Other works frame text segmentation as boundary classification task predicting whether a sentence
is a boundary based on its surrounding context (Lukasik et al., 2020). More recently, (Inan et al.,
2022; Duarte et al., 2024) frame the text segmentation as a generation task by generating the starting
sentence or paragraph indices of each segment. However, these approaches perform segmentation
on the sentence or paragraph level, which face limitations when applied to structured texts with code
snippets, structured data formats (JSON, XML) that do not follow boundary patterns of traditional
sentence or paragraph. As such, BoundRL performs text segmentation on the token level, making
it applicable to structured texts with diverse elements other than plain texts.

Text Segmentation Applications Text segmentation can benefit many downstream applications.
(Mao et al., 2025; Jeoung et al., 2025) propose taxonomies for segmenting LLM prompts and exam-
ine how different component orders affect final performance. In retrieval-based question-answering,
Tiedemann & Mur (2008); Duarte et al. (2024); Wang et al. (2025) apply text segmentation before
retrieval so that more relevant text units can be used for the following QA task. In summarization,
Moro & Ragazzi (2022) segment long documents into shorter chunks and summarize each chunk
separately, while Cho et al. (2022) find that jointly fine-tune a model to perform summarization and
text segmentation can further improve the summarization performance.

Reinforcement Learning with Verifiable Reward In comparison with RLHF, which relies on a
separate reward model to assign rewards (Ouyang et al., 2022), RLVR (Shao et al., 2024) uses a
rule-based reward function. This design makes RLVR particularly efficient for structured text seg-
mentation, as rewards can be directly computed by comparing generated and annotated segments.

3
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However, candidates generated during rollout suffer from being trapped in narrow, low-reward re-
gions; also known as entropy collapse (Cui et al., 2025). To mitigate such issue, Zhang et al. (2025)
propose to generate candidates conditioned on the prefix of reference data with varying lengths.
However, it requires generating as many candidates as there are segments in the input text, leading
to high training costs for structured text segmentation. Yan et al. (2025); Dong et al. (2025) addi-
tionally include reference candidates generated by a reference model, which can be too distant from
the model’s current generation distribution for effective learning. In contrast, BoundRL proposes to
generate intermediate candidates which are closer to the current distribution of generation.

3 PROBLEM STATEMENT

Structured text segmentation takes a structured text as input and generates a list of segments:

[(l1, t1), ..., (ln, tn)] = f(d), s.t. li ̸= li−1, ti ∩ ti−1 = ∅, ∀i = 2, ..., n (1)

where f denotes the segmentation system, d denotes the input structured text, ti denotes the text
of the i-th segment and li ∈ L denotes the semantic label of the i-th segment. L denotes the set
of potential labels for segments, which varies by domains. For our case study on prompts, labels
include ‘instruction’, ‘example’, ‘context’, ‘question’, and ‘output format’ as shown in Table 5.

4 METHOD

The training process of BoundRL consists of two stages: SFT followed by RLVR. Sec. 4.1 describes
how to adapt LLMs to an efficient output pattern for structured text segmentation via SFT. Sec.4.2
describes the reward design of RLVR. Sec. 4.3 describes the construction of intermediate candidates
for the rollout stage of RLVR.

4.1 EFFICIENT OUTPUT PATTERN FOR STRUCTURED TEXT SEGMENTATION

To enable efficient structured text segmentation, BoundRL formulates the task as boundary gen-
eration. Instead of regenerating full segment text, it produces only a sequence of starting tokens
and a label for each segment, then reconstructs the segments from the input as shown in Fig. 1.
Specifically, given an input structured text d, BoundRL tunes the LLM to generate a sequence of
starting tokens si and a label li for each segment: [(l̂i, ŝi)i=1:n] = LLM(d). To adapt LLMs for
boundary generation, BoundRL transforms the annotated text of each segment ti into corresponding
starting token sequences si. Sequence lengths of each segment are randomly sampled while ensur-
ing that each sequence of starting tokens is unique among each other to improve model robustness.
The LLMs are then fine-tuned using SFT on these transformed starting tokens sequences and their
corresponding labels.

BoundRL then reconstructs the text of each segment t̂i using the position of each sequence of
starting tokens ŝi in the input d. The reconstruction process operates iteratively. Specifically, for
the first sequence of starting tokens ŝ1, BoundRL locates it as its leftmost occurrence in the input
d. For each subsequent sequence ŝi, BoundRL locates it as its leftmost occurrence in document d
after the position of its previous segment to preserve ordering. The text of the i-th segment t̂i is then
extracted as the text span between sequences of starting tokens ŝi and ŝi+1. If the positions of either
ŝi or ŝi+1 cannot be found, the i-th segment will be discarded. Compared with regenerating full text
of each segment, BoundRL reduces hallucination risks inherent in text generation while reducing
inference cost from O(|d|) to O(n) tokens, where |d| ≫ n denotes the document length.

4.2 REWARD DESIGN OF REINFORCEMENT LEARNING

In this section, we describe the reward function used by BoundRL for RLVR. The reward func-
tion has two dimensions: reconstruction fidelity, which measures whether the input can be fully
recovered from generated segments, and semantic alignment which evaluates agreements between
generated segments and annotated segments.

To measure reconstruction fidelity, BoundRL uses the reconstruction ratio ρrec. The metric is cal-
culated as the proportion of the input text d that can be successfully reconstructed from the texts of
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generated segments t̂i:

ρrec([(l̂i, t̂i)i=1:n], d) =

∑n
i=1 |t̂i|
|d|

(2)

where | ∗ | denotes the length of a text in character. The reconstruction ratio ρrec(∗) ranges from zero
to one, with higher values indicating more complete reconstruction of the input structured text d.

To measure semantic alignment, BoundRL uses two metrics. The first metric is the F-1 score of
exact match EM([(l̂i, t̂i)i=1:n], [(li, ti)i=1:n]) between generated segments [(l̂i, t̂i)i=1:n] and anno-
tated segments [(li, ti)i=1:n] (Tjong Kim Sang & De Meulder, 2003). A generated segment (l̂i, t̂i) is
considered an exact match to an annotated segment (lj , tj) if their texts and labels are the same. The
F1 score is then computed as the harmonic mean of precision (the fraction of generated segments
with at least one exact match) and recall (the fraction of annotated segments with at least one exact
match). However, the F-1 score of exact match EM(∗) can be too strict since minor token-level
differences between segment texts can lead to a mismatch. Therefore, BoundRL additionally uses
the character-level F-1 score F1char([(l̂i, d̂i)i=1:n], [(li, di)i=1:n]) motivated by part-of-speech (POS)
tagging (Marcus et al., 1993). The metric treats structured text segmentation as a character-level la-
beling task, where each character in the input text d is assigned a label from the set of potential labels
L, based on the segment it belongs to. Specifically, all characters in t̂i are assigned the label l̂i, and
likewise for annotated segments. The metric is then calculated as the weighted F-1 score between
character-level labels from generated segments and those from annotated segments. Both the F-1
score of exact match EM(∗) and the character-level F-1 score F1char(∗) range from zero to one, with
higher values indicating better alignment between generated segments and annotated segments.

The final reward r(∗) for the generated segments [(l̂i, d̂i)i=1:n] is calculated using both dimensions:

r([(l̂i, t̂i)i=1:n]) = ρrec([(l̂i, t̂i)i=1:n])×
EM([(l̂i, t̂i)i=1:n]) + F1char([(l̂i, t̂i)i=1:n])

2
(3)

For simplicity, the equation omits the input text d and the annotated segments [(li, ti)i=1:n]. The
reward encourages generated segments to accurately reproduce starting tokens for complete recon-
struction while getting close to annotated segments for high-quality segmentation.

4.3 CONSTRUCTION OF INTERMEDIATE CANDIDATE

In this section, we describe how BoundRL constructs and incorporate intermediate candidates dur-
ing the rollout stage of RLVR to mitigate entropy collapse. Specifically, BoundRL constructs in-
termediate candidates by perturbing generated candidate segmentations and selectively replaces the
originally generated candidate segmenetations with the intermediate candidates for the training.

An effective intermediate candidate should be in the middle between generated segments and anno-
tated segments to provide meaningful guidance and remain learnable. To construct such intermedi-
ate candidates, BoundRL first generates m candidate segmentations for an input text d following
standard RLVR practice, denoted as [(l̂i, t̂i)i=1:n]j for j = 1, . . . ,m. These candidate segmenta-
tions are ordered by descending reward r([(l̂i, t̂i)i=1:n]j). BoundRL then perturbs the candidate
segmentation with the medium-level reward: [(l̂i, t̂i)i=1:n]m2 . As shown in Fig. 2, three types of
perturbations are considered for each segment: (1) shortening the text t̂i by truncating one word
from either side, (2) extending the text t̂i by including additional one word from either side, or (3)
replacing the label l̂i with an alternative from the set of potential labels L, excluding labels already
assigned to neighboring segments. To shorten or extend the text of a segment t̂i, BoundRL modifies
the starting token sequences ŝi or ŝi+1 accordingly. Applying a single perturbation to each segment
creates a pool of potential intermediate candidates, each differing from the original by exactly one
perturbation. The potential intermediate candidate with the highest reward r(∗) is selected as final
the intermediate candidate, denoted as [(l̂i, d̂i)i=1:n]

pert
m
2

.

To avoid performance degradation from off-policy intermediate candidates, BoundRL employs a
selective replacement strategy. In each training batch, BoundRL replaces the original candidate
segmentations with the medium-level reward with the intermediate candidate for at most k input
texts. Replacement is allowed only when the intermediate candidate achieves a positive reward

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

gain over the original: r([(l̂i, d̂i)i=1:n]
pert
m
2

) − r([(l̂i, d̂i)i=1:n]m2 ) > 0. If more than k input texts
satisfy this criterion, BoundRL selects the top-k with the largest gains. For the selected cases,
BoundRL uses the intermediate candidate together with the remaining m − 1 generated candidate
segmentations in the following training; otherwise, all m original candidates are used. The strategy
preserves training stability while incorporating the most beneficial refinements.

5 EXPERIMENT SETUPS

5.1 STRUCTSEG

In this section, we describe the StructSeg, used as a case study of structured text segmentation.
It contains synthetic prompts and real-world prompts. The synthetic prompts are generated using
Claude 3.5 Sonnet (Anthropic, 2024), following a strategy that balances diversity and complexity.
To ensure diversity, we implement a multi-faceted sampling strategy that draws from varied prompt
types (system prompt, user prompt, combined), prompt modes (prompt template, full prompt, hy-
brid), and task types (e.g. classification, summarization), placeholder formats (e.g., {context} or
{{context}}), the number of examples, prompt lengths, format types, writing styles, and levels
of details. For complexity, we encourage the generated prompts to include varied structural ele-
ments, including nested json, code snippets, and placeholders, which make the prompts unsuitable
for sentence- or paragraph-level segmentation. The dataset includes multiple lengthy prompts, with
some containing around 2,000 words. More details of synthetic prompts are in App. A.6. For
real-world prompts, we collect them from Langchain-hub 2.

After collecting both synthetic and real-world prompts, we train a group of highly experienced hu-
man annotators to perform prompt segmentation and labeling. Each segment is assigned one of five
labels: ‘instruction’, ‘example’, ‘context’, ‘question’, or ‘output format’ (Table 5). This simplified
taxonomy captures the common structural elements of complex prompts (Mao et al., 2025; Jeoung
et al., 2025). To ensure high annotation quality, we develop step-by-step labeling instructions for
annotators. Annotators first decompose each prompt into mutually exclusive, non-overlapping seg-
ments. The segmentation should also be lossless, meaning that concatenating all components in
their original order reconstructs the original prompt exactly. Placeholders are extracted separately if
they are knowledge input, user questions, or contextual information. Then, annotators determine if
each of the segment is an instruction or few-shot examples. If neither applied, annotators will write
a description of the segment and then select the most appropriate label from the remaining labels.

Prompts Tokens Segments

Synthetic 15,132 900 6.1
Langchain 197 914 7.6

Table 1: Dataset statistics comparing syn-
thetic and real-world prompts.

We denote the subset of synthetic prompts as
Synthetic and the subset of real-world prompts
as Langchain. Tab. 1 reports the statistics of
these subsets, and Fig. 8 shows the distribution of
segment labels. For the Synthetic subset, we
use 14,732 prompts for training, 200 for validation,
and 200 for testing. For the Langchain subset,
all prompts are used exclusively for testing.

5.2 IMPLEMENTATION DETAILS

We evaluate BoundRL on three LLMs: Qwen3-1.7b, Qwen3-4b (Yang et al., 2025), and Llama-
3.1-8b-Instruct (Dubey et al., 2024). The training process has two stages:

Stage 1: Supervised Fine-tuning (SFT) All LLMs are first fine-tuned on the training set of
StructSeg for one epoch with a batch size of 16. We use learning rates of 2e-6 for Qwen3
models and 5e-7 for Llama-3.1-8b-Instruct.

Stage 2: Reinforcement Learning with Verifiable Rewards (RLVR) SFT-tuned models are then
tuned with RLVR using GRPO (Shao et al., 2024) without standard deviation-based reward scaling
(Liu et al., 2025). To control computational costs, we use a randomly sampled 25% subset of the
training data. Each training batch contains 6 input documents, with m = 4 candidate segmentation
generated per input text using temperature of 1.2 during rollout. For intermediate candidate con-

2https://smith.langchain.com/hub

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Method Synthetic Langchain Avg
ρrec EM Pk F1lab F1char ρrec EM Pk F1lab F1char

Qwen3-1.7b
SFT w/start 99.3 72.3 4.6 94.1 93.7 87.7 34.7 14.7 77.0 71.1 81.1
SFT w/end 96.0 64.8 6.0 92.0 89.3 77.7 26.5 19.5 71.1 63.9 75.6
SFT w/start+end 96.6 59.5 7.9 90.8 86.7 84.5 20.2 17.9 69.9 65.2 74.8
Qwen3-4b
SFT w/start 99.7 71.6 5.3 94.9 92.8 93.1 41.6 12.3 80.2 78.8 83.5
SFT w/end 98.1 67.8 4.6 93.7 92.5 91.5 39.9 13.0 79.0 78.5 82.3
SFT w/start+end 98.8 70.4 5.9 93.9 92.7 85.2 33.7 14.1 76.5 71.8 80.3
Llama-3.1-8b-Instruct
SFT w/start 99.6 71.8 4.9 94.3 93.4 95.9 28.4 13.4 79.7 80.7 82.5
SFT w/end 98.7 65.9 5.6 93.8 92.5 93.5 31.5 13.6 75.6 76.6 80.9
SFT w/start+end 97.8 62.9 6.2 90.8 91.4 87.7 25.1 17.1 71.4 72.3 77.6

Table 2: Evaluation of different output patterns. The best-performing output pattern is highlighted
in bold. SFT w/start, the output pattern used by BoundRL, consistently outperforms other patterns.

struction, we apply selective replacement with model-specific thresholds: k = 2 for Qwen3 models
and k = 1 for Llama-3.1. Learning rates are 1e-6 for Qwen3 models and 2e-7 for Llama-3.1. We
checkpoint every 0.2 epochs and select the best model based on validation performance.

During inference, the temperature is set to 0. We tune the hyperparameters based on their perfor-
mance on the validation set. More implementation details are in App. A.3.

6 EXPERIMENT RESULTS

6.1 EVALUATION OF OUTPUT PATTERNS

In this section, we evaluate output patterns for structured text segmentation by comparing LLMs
fine-tuned with SFT for different output patterns. We consider three output patterns: (i) SFT w/start,
which is used by BoundRL and outputs starting tokens of each segment; (ii) SFT w/end, which out-
puts ending tokens of each segment; (iii) SFT w/start+end, which outputs both starting and ending
tokens of each segment. We show examples of these output patterns in App. A.5.

For evaluation, we use the reconstruction ratio ρrec(∗), the F-1 score of exact match EM(∗) and the
character-level F-1 score F1char(∗) as described in Sec. 4.2. We additionally use character-level Pk

score (Beeferman et al., 1999) which measure the quality of segment boundaries, with the window
width set to half the average length of annotated segments following standard practice. We also use
F1lab, which is the micro-F1 score that compares the predicted label of each generated segment with
the label of the most overlapping annotated segment following Arnold et al. (2019a). Higher values
of all metrics except Pk indicate better performance, while lower Pk values are better. Results are
reported in percentage on the test set of the Synthetic subset and the Langchain subset, along
with the average of one minus Pk and other metrics across both subsets in Tab. 2.

Table 2 shows that SFT w/start, used by BoundRL, consistently outperforms other output patterns
across LLMs and datasets, with particular advantages in exact match scores. Contrarily, SFT w/s-
tart+end performs worse than both SFT w/start and SFT w/end, although it is supposed to be more
robust to token mismatches as it generates both boundaries of each segment. This suggests that re-
quiring simultaneous generation of starting and ending tokens imposes an excessive learning burden
that degrades performance.

6.2 EVALUATION OF BOUNDRL

In this section, we perform a comprehensive evaluation of BoundRL. We consider the following
training schemes: (i) SFT, where models are fine-tuned with SFT for one epoch to adapt the output
pattern of BoundRL; (ii) SFT w/2 epochs, where models are fine-tuned with SFT for two epochs;
(iii) NER, where models are fine-tuned for two epochs to predict the label for each token in the
prompt like named entity recognition (NER) (Li et al., 2020); (iv) SFT+RLVR, a two-stage fine-
tuning procedure as in BoundRL, but without intermediate candidates; (v) SFT+RLVRw/ high temp.,
the same as SFT+RLVR but with a higher sampling temperature of 1.5 during rollout; (vi) RL-
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Method Synthetic Langchain Avg
ρrec EM Pk F1lab F1char ρrec EM Pk F1lab F1char

Prompting Baselines
Claude3.5-Sonnetfull 78.3 14.3 15.4 79.8 70.2 55.8 11.0 21.4 62.4 47.5 58.2
Claude3.5-Sonnetstart 50.0 16.9 25.2 73.8 47.2 48.1 11.4 23.4 61.3 41.1 50.1
Claude4-Sonnetfull 97.2 22.1 11.3 82.2 88.2 80.3 13.8 18.1 65.5 68.3 68.8
Calude4-Sonnetstart 90.1 22.8 13.6 79.8 81.8 87.0 18.3 18.1 67.9 71.6 68.8
Qwen3-1.7b
SFT 99.3 72.3 4.6 94.1 93.7 87.7 34.7 14.7 77.0 71.1 81.1
SFT w/2epochs 99.5 73.5 3.9 94.4 94.6 85.0 41.0 14.6 77.6 70.9 81.8
NER 100.0 34.1 6.5 81.5 94.8 100.0 8.9 19.9 57.4 86.7 73.7
SFT+RLVR 100.0 77.4 4.1 94.7 94.6 88.6 47.2 13.2 79.1 74.6 83.9
SFT+RLVRw/temp. 100.0 77.2 4.0 94.6 95.0 90.4 44.6 14.4 79.1 75.4 83.8
RL-PLUS 99.8 73.9 4.5 94.4 94.3 91.5 42.9 13.4 79.5 76.5 83.5
BoundRL 99.9 77.3 4.1 94.8 94.8 90.6 47.3 12.2 79.8 76.8 84.5
Qwen3-4b
SFT 99.7 71.6 5.3 94.9 92.8 93.1 41.6 12.3 80.2 78.8 83.5
SFT w/2epochs 99.7 73.0 4.3 95.2 94.2 91.3 40.7 12.1 83.6 78.2 84.0
NER 100.0 41.9 6.9 82.8 95.6 100.0 8.9 24.7 59.3 85.7 74.3
SFT+RLVR 99.7 77.6 4.6 94.6 93.7 92.7 52.4 10.6 82.3 82.1 86.0
SFT+RLVRw/temp. 99.7 77.3 4.9 94.4 93.3 87.6 47.0 12.5 77.6 74.2 83.4
RL-PLUS 99.7 76.6 4.2 94.3 94.1 94.8 51.0 10.8 81.5 83.1 86.0
BoundRL 99.7 78.3 4.0 94.8 94.7 94.1 52.4 10.3 82.5 83.3 86.6
Llama-3.1-8b-Instruct
SFT 99.6 71.8 4.9 94.3 93.4 95.9 28.4 13.4 79.7 80.7 82.5
SFT w/2epochs 99.9 72.8 4.5 94.3 94.2 95.6 31.9 13.2 78.9 79.5 82.9
NER 100.0 25.9 12.3 69.9 92.4 100.0 7.0 24.9 55.7 83.4 69.7
SFT+RLVR 100.0 73.9 4.1 94.7 94.6 96.4 40.2 11.7 77.3 82.1 84.3
SFT+RLVRw/temp. 99.7 72.7 4.1 94.0 94.6 91.8 43.3 13.0 77.5 78.9 83.5
RL-PLUS 100.0 73.0 4.4 94.4 94.3 95.9 37.9 11.7 78.0 82.7 84.0
BoundRL 100.0 76.1 4.4 94.4 94.1 96.3 42.8 11.5 78.0 82.1 84.8

Table 3: Evaluation of BoundRL across LLMs and datasets. The best-performing method for each
LLM is highlighted in bold. BoundRL consistently outperform both finetuning baselines and few-
shot prompting with much larger LLMs. The improvements are particularly big on the Langchain
subset, showing BoundRL’s superior generalization to real-world, out-of-domain prompts.

PLUS (Dong et al., 2025), which uses one sequence of annotated segments and three candidate
segmentations during rollout. Implementation details of these baselines are in A.4. For comparison,
we also consider few-shot prompting baselines using Claude3.5v2-sonnet (Anthropic, 2024) and
Claude4-sonnet (Anthropic, 2025). In this setting, the LLM is instructed to segment an input prompt
according to the target taxonomy and a provided example. We consider two output patterns: (i) full,
which outputs the complete text of each segment; and (ii) start, which outputs only the starting
tokens, as in BoundRL. The prompts used for these baselines are shown in Appendix A.2. The
results are in Table 3. Qualitative examples of these baselines are in App. A.8.

We observe that BoundRL with intermediate candidate construction consistently outperforms all
baselines. The difference between BoundRL and the second best-performing method (SFT+RLVR)
is statistically significant using paired t-test (p < 0.05), showing the importance of intermediate
candidates for effective RLVR training. We additionally show standard deviation of reward during
training and find that BoundRLcan mitigate the entropy collapse issue of RLVR in App. A.7.
In contrast, RL-PLUS, which uses annotated segments during rollout, has inconsistent results and
can even hurt performance. This may be because annotated segments are too out-of-distribution
to provide useful learning signals. Additionally, increasing temperature (SFT+RLVRw/temp.) cannot
further improve the performance, showing that the improvement brought by intermediate candidates
is not merely from increased exploration space but guided exploration.

We also observe that LLMs fine-tuned with RLVR consistently outperforms SFT-only models. The
difference between SFT+RLVR and SFT w/2epochs is a statistically significant using paired t-test
(p < 0.05). Most notably, the improvement becomes bigger on the Langchain subset (real-world
prompts), with RLVR showing 5-11% absolute improvements in exact match scores. Conversely,
doubling SFT training epochs (SFT w/2 epochs) yields marginal improvements on the in-domain
Synthetic subset but degrades performance on the Langchain subset for some LLMs, indicat-
ing overfitting. These results highlight RLVR’s superior generalization to out-of-distribution data.
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Method Synthesis Langchain Avg
ρrec EM Pk F1lab F1char ρrec EM Pk F1lab F1char

Qwen3-1.7b
BoundRL 99.9 77.3 4.1 94.8 94.8 90.6 47.3 12.2 79.8 76.8 84.5
BoundRL w/ 2steps 99.9 78.0 4.4 94.8 94.7 88.6 45.7 13.6 80.5 75.0 83.9
BoundRL w/o select 99.7 76.9 4.5 94.6 94.1 89.9 45.3 12.2 79.8 76.5 84.0
BoundRL w/o middle 99.6 77.7 4.5 94.9 94.2 89.7 44.5 12.9 78.8 75.5 83.7
Qwen3-4b
BoundRL 99.7 78.3 4.0 94.8 94.7 94.1 52.4 10.3 82.5 83.3 86.6
BoundRL w/ 2steps 99.7 78.3 3.7 94.5 94.7 94.7 50.0 10.9 81.5 84.8 86.4
BoundRL w/o select 99.7 77.4 4.5 94.8 93.6 93.7 52.1 10.5 83.0 84.0 86.3
BoundRL w/o middle 99.7 77.7 4.2 94.8 94.2 94.6 50.7 11.0 81.4 84.1 86.2
Llama-3.1-8b-Instruct
BoundRL 100.0 76.1 4.4 94.4 94.1 96.3 42.8 11.5 78.0 82.1 84.8
BoundRL w/2steps 100.0 76.6 4.3 94.4 94.6 94.4 38.4 12.2 77.9 81.5 84.1
BoundRL w/o select 99.9 75.7 4.3 94.3 94.6 94.7 41.8 11.6 78.7 81.5 84.5
BoundRL w/o middle 99.9 74.7 4.4 94.0 94.2 95.5 43.2 12.1 77.6 81.8 84.4

Table 4: Ablation study of BoundRL. The best-performing method of each LLM is in bold.

We note that the smallest model (Qwen3-1.7b) fine-tuned with BoundRL significantly outperforms
the best-performing few-shot prompting baseline (Claude4-sonnet-full) with much more parameters.
The efficiency gains are also substantial. Prompting baselines that generate full segment text requires
an average of 1,170 tokens per input prompt on the Synthetic subset, while BoundRL requires
only 119 tokens, which corresponds to a 90% reduction in output tokens.

Although models fine-tuned with NER achieve high scores on the character-level F1, F1char, they
generally achieve low scores on exact match EM, Pk and F1lab. Analysis of the outputs shows that
models fine-tuned with NER tend to generate very fragmented and short segments, demonstrating
the effectiveness of framing structured text segmentation as a boundary generation task.

6.3 ABLATION STUDY OF BOUNDRL

In this section, we perform ablation study of BoundRL. We consider the following ablated versions
of BoundRL: (i) BoundRL w/ 2steps, which performs two perturbation steps to candidate segmen-
tations to generate intermediate candidates; (ii) BoundRL w/o select, which incorporates a inter-
mediate candidate for each input text in a batch without selective replacement; (iii) BoundRL w/o
middle, which generates intermediate candidates by perturbing a randomly sampled candidate seg-
mentation instead of the one with the medium-level reward. Implementation details of these ablated
versions are in App. A.9. The results are in Tab. 4.

Tab. 4 shows that BoundRL outperforms all ablated versions. Specifically, applying multiple per-
turbations when generating intermediate candidates (BoundRL w/ 2steps) and incorporating them
for all input texts (BoundRL w/o select) both hurt performance. The results show the importance of
controlling the distance between the current generation and intermediate candidates, which aligns
with our findings in Sec. 6.2 that directly using annotated segments does not improve performance.

7 CONCLUSIONS

We propose BoundRL, a novel framework that reformulates structured text segmentation as a
boundary generation problem. Instead of regenerating entire text segments, models generate only
the starting tokens of each segment, which substantially reduces inference costs and mitigates hal-
lucination risks. To adapt the model to this output format, BoundRL employs RLVR to jointly opti-
mize reconstruction fidelity and semantic alignment, while our intermediate candidate construction
strategy alleviates entropy collapse during training. In a challenging case study on LLM prompts,
BoundRL consistently outperforms fine-tuning baselines using SFT and RLVR as well as the few-
shot prompting baseline with much larger models.

Future work could extend the boundary generation paradigm to hierarchical document structures,
such as legal texts and technical reports, and explore few-shot annotation methods to lower annota-
tion effort in new domains. Due to its domain-agnostic design, BoundRL offers a foundation for
efficient structured text analysis across the expanding landscape of complex document processing.
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8 ETHICS STATEMENT

The human annotations were collected through hired annotators from a data annotation service.
Annotators were instructed to strictly refrain from including any biased, hateful, or offensive content
towards any race, gender, sex, or religion. The annotations passed through audits, where they were
examined by a separate group of annotators and reached a 89% agreement ratio.
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A APPENDIX

A.1 TAXONOMY USED FOR PROMPTS

Label Definition

Instruction Guidance on how to process and respond to queries.
Example Examples of what the input and corresponding output should look like.
Context Background information and context that the model needs to refer to.
Question Queries or questions provided specifically by users
Output Format The type, format, or style of the output

Table 5: Example taxonomy for structured prompt segmentation used in StructSeg. Different
domains may employ alternative taxonomies appropriate to their document types and analysis needs.

A.2 IMPLEMENTATION DETAILS OF CLAUDE

In this section, we describe the implementation details for Claude3.5-sonnet-v2 and Claude4-sonnet
for the prompt segmentation task. The prompts used by the models first give a detailed definition
for each label used by our taxonomy and then instructs the model to extract segments following
the definitions. As described in Sec. 6.2, the models are required to output either the full text of
each segment or the starting tokens of each segment as BoundRL. To help model better understand
the required output format, the prompts also include a randomly sampled prompt and its expected
output format from the training set of StructSeg. The prompt for outputting the full text of each
segment is shown in Figs 4. The prompt for outputting the starting tokens of each segment is shown
in Fig. 4. The temperature during inference is set to 0.

A.3 IMPLEMENTATION DETAILS OF BOUNDRL

In this section, we describe additional implementation details of BoundRL. To help model better
adapt to the prompt segmentation task, we give models a meta instruction in addition to the prompt to
be segmented. The meta instruction includes a brief definition of each segment type and an example
of required output format. The meta instruction that requires the model to output starting tokens of
each segment is shown in Fig. 5.

For both SFT and reinforcement learning, BoundRL sets the maximum gradient norm as 0.1 and
the weight decay as 0.01. BoundRL uses the linear learning rate scheduler with a warmup ratio
of 0.03. We tune the hyperparameters of BoundRL in stages. We first select the hyperparameters
of SFT based on the performance of models that are finetuned SFT on the validation set. With
the SFT hyperparameters fixed, we then tune the hyperparameters of RLVR, followed by those for
intermediate candidate construction, using the same process.

During the rollout stage of reinforcement learning, we notice that candidate segmentation might
contain repetitive end of response tokens or segments after end of response tokens, which might hurt
the training stability if are directly used for training. To address the issue, all generated candidate
segmentations are truncated at the first end of response token.

To shorten or extend the text of a segment t̂i, BoundRL modifies the starting token sequences ŝi
or ŝi+1 accordingly. Specifically, to shorten the text of a segment t̂i on the left side by one word,
BoundRL truncates the first word of the starting token sequence ŝi. To shorten the text of a segment
t̂i on the right side by one word, BoundRL prepends to ŝi+ 1 the word immediately before it. To
extend the text of a segment t̂i on the right side by one word, BoundRL truncates the first word
of the starting token sequence ŝi+1. To extend the text of a segment t̂i on the left side by one
word, BoundRL prepends to ŝi the word immediately before it. Therefore, When constructing
intermediate candidates, BoundRLdoes not shorten or extending the text of a segment with only
one word. We will also modify the neighboring starting token sequences accordingly if there is a
overlap between starting token sequences after modifications.
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A.4 IMPLEMENTATION DETAILS OF BASELINES

Unless otherwise specified, SFT and SFT w/2epochs use the same hyper-parameters as the SFT
training stage of BoundRL. The label schema of our NER baseline is motivated by (Tjong Kim Sang
& De Meulder, 2003), which uses ‘B-X’, ‘I-X’, and ‘O’. However, since all tokens in a prompt
belong to a segment in the text segmentation task, we use ‘B-X’ to represent the beginning token
of each segment and ‘I-X’ to represent the remaining tokens of each segment. To predict the label
of each token, the output of the final layer for each token is feed into a single-layer MLP following
the common practice. Other hyper-parameters of the NER baseline is the same as the SFT training
stage of BoundRL. For RL-PLUS, we replace one originally generated candidate segmentation with
a sequence of annotated segments. The temperature to control the weight of advantage function is
1.0. Unless otherwise specified, RL-PLUS, SFT+RLVR, and SFT+RLVRw/ high temp. all use GRPO
without reward scaling based on standard deviation and the same hyper-parameters as BoundRL for
a fair comparison.

A.5 IMPLEMENTATION DETAILS OF OTHER OUTPUT PATTERNS

In this section, we provide implementation details for output patterns other than the output pattern
used by BoundRL (‘start’). Specifically, for the ‘end’ output pattern, the model should first generate
a label and then a sequence of ending tokens for each segment. The text of the i-th segment t̂i is
then extracted as the text span between the positions of the i − 1-th and i-th sequence of ending
tokens. For the ‘start+end’, the model should first output a label and then output a sequence of
starting tokens and a sequence of ending tokens. The text of the i-th segment t̂i is then extracted
as the text span between the positions of the i-th sequence of starting tokens and the i-th sequence
of ending tokens. We show the meta instruction that requires the model to output ending tokens
of each segment in Fig. 6 and meta instruction that requires the model to output both starting and
ending tokens of each segment in Fig. 7. We also show an example text and corresponding expected
outputs for different output patterns in Fig. 9.

A.6 GENERATION OF SYNTHETIC PROMPTS

When generating the synthetic prompts, we implement a multi-faceted sampling strategy that draws
from varied prompt types (system prompt, user prompt, combined), prompt modes (prompt template,
full prompt, hybrid), and task types (e.g. classification, summarization), placeholder formats (e.g.,
{context} or {{context}}), the number of examples (zero, one, few ), prompt lengths, writing
styles, and levels of details. The full list of the task types, writing styles, prompt lengths, format
types, and level of details are shown in Tab. 6.

A.7 STANDARD DEVIATION OF REWARDS DURING TRAINING

In this section, we compare the standard deviation of rewards of SFT+RLVR and BoundRL during
training to evaluate whether BoundRL can mitigate the entropy collapse issue of RLVR. Specifi-
cally, we show the curve of standard deviation of rewards among candidate segmentations generated
during rollout along the training. We show the curve of SFT+RLVR and BoundRL in Fig.10. From
the figure, we find that the standard deviation of rewards of SFT+RLVR quickly becomes very small,
while that of BoundRL remains stable throughout training. The results show that intermediate can-
didates help BoundRL mitigate the entropy collapse issue of RLVR.

A.8 QUALITATIVE EXAMPLES

In this section, we show qualitative examples of BoundRL and other baselines. Specifically, we an
example prompt, its corresponding annotated segments, the raw output and reconstructed segments
for each method in Fig. 11.

A.9 IMPLEMENTATION DETAILS OF ABLATION STUDIES

In this section, we provide more implementation details of the ablated versions of BoundRL. In
BoundRL w/ 2steps, we construct the intermediate candidates by selecting the first perturbation
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step that has the biggest reward gain over the original candidate segmentation with the medium-
level reward. We then select the second perturbation that has the biggest reward gain when the first
perturbation step is applied. The intermediate candidate is then constructed by applying the first
and second perturbation steps on the original candidate segmentation. For BoundRL w/o select, we
incorporate intermediate candidates for all input texts where the intermediate candidate has a positive
reward gain over the original generated candidate segmentation, rather than restricting replacement
to the top-k cases. For BoundRL w/o middle, we construct intermediate candidates by perturbing a
randomly sampled candidate segmentation instead of the one with the medium-level reward. Other
design choices for these ablated versions are the same as those for BoundRL for a fair comparison.

A.10 USAGE OF LLMS IN WRITING

In this paper, we use LLMs solely to polish our draft. We do not use LLMs for research ideation,
retrieval, or discovery.
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Segment the following prompt into different categories and referring to their descriptions:
<categories>
* <option>instruction</option>: Including 1/ profile/role that the model is acting as; 2/ Core intent of the 
prompt; 3/ workflow or steps and processes the model should follow to complete the task; 4/ restrictions 
on what the model must adhere to when generating responses
* <option>context</option>: Background information and context that the model needs to refer to. This 
can include 1/ background or supplementary input that helps set the stage for the task but is not the 
primary focus. 2/ Knowledge input - The core content that the prompt directly processes or manipulates; 3/ 
Metadata/Short Phrases - Brief inputs or settings that define specific parameters or goals for the task.
* <option>question</option>: Queries or questions provided specifically by users. The questions that are 
part of the template should not be labeled as question but as instruction.
* <option>examples</option>: Providing the AI model with concrete examples of the desired input-output 
pattern before asking it to perform a similar task. These examples demonstrate the expected format, style, 
and reasoning pattern, helping the model understand and replicate the desired behavior. A example must 
contain both concrete input and output. If either input or output is missing, it should not be labeled as 
example but be labeled as . If input or output does not have actual content, it should not be labeled as 
example.
* <option>output_format</option>: Specific requirement of the type, format, or style of the output, such 
as the exact json format or function calling language. A general requirement like 'the output should be in 
json format' should not be labeled as output_format.
</categories>
<notes>
* Do not separate consecutive prompt segments if they belong to the same category. Make them into one 
component.
* If unclear, or you are looking at less meaningful text pieces between different components, label it as 
instruction
* Must keep the text of each component exactly the same as the original prompt.
* Your response between <segmentation_annotation> </segmentation_annotation> must be parsable by 
Python's ast.literal_eval(). Avoid use single quotes within text of each component.
</notes>
<example>
<example_prompt>
{example_prompt}
</example_prompt>
<example_segmentation>
{example_segmentation}
</example_segmentation>
</example>
<prompt_to_analyze>
{prompt_to_analyze}
</prompt_to_analyze>
<segmentation_annotation>
[{{

'relative_order': 0,
'text': [text of component 1],
'type': [type of component 1, given categories only],

}},
...
{{

'relative_order': N,
'text': [text of component N],
'type': [type of component N, given categories only],

}},
]
</segmentation_annotation>
provide your annotated answer enclosed in <segmentation_annotation></segmentation_annotation> XML 
tags.

Figure 3: Prompt used by Claude to extract the full text of each segment
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Segment the following prompt into different categories and referring to their descriptions:

<categories>

* <option>instruction</option>: Including 1/ profile/role that the model is acting as; 2/ Core intent of the prompt; 3/ 

workflow or steps and processes the model should follow to complete the task; 4/ restrictions on what the model must 

adhere to when generating responses

* <option>context</option>: Background information and context that the model needs to refer to. This can include 1/ 

background or supplementary input that helps set the stage for the task but is not the primary focus. 2/ Knowledge input -

The core content that the prompt directly processes or manipulates; 3/ Metadata/Short Phrases - Brief inputs or settings 

that define specific parameters or goals for the task.

* <option>question</option>: Queries or questions provided specifically by users. The questions that are part of the 

template should not be labeled as question but as instruction.

* <option>examples</option>: Providing the AI model with concrete examples of the desired input-output pattern before 

asking it to perform a similar task. These examples demonstrate the expected format, style, and reasoning pattern, helping 

the model understand and replicate the desired behavior. A example must contain both concrete input and output. If 

either input or output is missing, it should not be labeled as example but be labeled as . If input or output does not have 

actual content, it should not be labeled as example.

* <option>output_format</option>: Specific requirement of the type, format, or style of the output, such as the exact json 

format or function calling language. A general requirement like 'the output should be in json format' should not be labeled 

as output_format.

</categories>

<notes>

* Do not separate consecutive prompt segments if they belong to the same category. Make them into one segment.

* If unclear, or you are looking at less meaningful text pieces between different segments, label it as instruction

* Only output starting words (less than 10 words) of each segment instead of outputting the whole segment

* Must keep the starting words of each segment exactly the same as the corresponding words of the original prompt.

* The extracted segments should be in the order as they are in the original prompt.

* Your response between <segmentation_annotation> </segmentation_annotation> must be parsable by Python's 

ast.literal_eval(). Avoid use single quotes within text of each component.

</notes>

<example>

<example_prompt>

{example_prompt}

</example_prompt>

<example_segmentation>

{example_segmentation}

</example_segmentation>

</example>

<prompt_to_analyze>

{prompt_to_analyze}

</prompt_to_analyze>

<segmentation_annotation>

[{{

'relative_order': 0,

'text': [starting words of segment 1],

'type': [type of segment 1, given categories only],

}},

...

{{

'relative_order': N,

'text': [starting words of segment N],

'type': [type of segment N, given categories only],

}}]

</segmentation_annotation>

provide your annotated answer enclosed in <segmentation_annotation></segmentation_annotation> XML tags.

Figure 4: Prompt used by Claude to extract the starting tokens of each segment
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You are requested to segment a prompt into following categories:

(1) instruction: A guidance on how to process and respond to queries.

(2) context: Background information and context that the model needs 
to refer to. 

(3) question: Queries or questions provided specifically by users.

(4) examples: Examples of what the input / output should look like.

(5) output_format: The type, format, or style of the output. 

You should output the segments of a prompt in the form of 
[category_1]start_tokens_1%<separator>%\n[category_2]start_tokens_2...\
n[category_N]start_tokens_N, where 'category_1' denotes the predicted 
category for segment 1 and 'start_tokens_1' denotes the start tokens of 
segment 1.

Given the following LLM prompt, please follow the instruction above to 
complete the data field extraction task.

Figure 5: Meta instruction used by BoundRL to output starting tokens of each segment.

You are requested to segment a prompt into following categories:

(1) instruction: A guidance on how to process and respond to queries.

(2) context: Background information and context that the model needs 
to refer to. 

(3) question: Queries or questions provided specifically by users.

(4) examples: Examples of what the input / output should look like.

(5) output_format: The type, format, or style of the output. 

You should output the segments of a prompt in the form of 
[category_1]end_tokens_1%<separator>%\n[category_2]end_tokens_2...\n
[category_N]end_tokens_N, where 'category_1' denotes the predicted 
category for segment 1 and 'end_tokens_1' denotes the end tokens of 
segment 1.

Given the following LLM prompt, please follow the instruction above to 
complete the data field extraction task.

Figure 6: Meta instruction used by BoundRL to output ending tokens of each segment.
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You are requested to segment a prompt into following categories:
(1) instruction: A guidance on how to process and respond to queries.
(2) context: Background information and context that the model needs 
to refer to. 
(3) question: Queries or questions provided specifically by users.
(4) examples: Examples of what the input / output should look like.
(5) output_format: The type, format, or style of the output. 

You should output the segments of a prompt in the form of 
[category_1]start_tokens_1%<separator>%end_tokens_1[/category_1]\n...\
n[category_N]start_tokens_N%<separator>%end_tokens_N[/category_N], 
where 'category_1' denotes the predicted category for segment 1, 
'start_tokens_1' denotes the start tokens of segment 1, and 
'end_tokens_1' denotes the end tokens of segment 1.

Given the following LLM prompt, please follow the instruction above to 
complete the data field extraction task.

Figure 7: Meta instruction used by BoundRL to output both starting and ending tokens of each
segment.

Figure 8: Distribution of segment labels across our dataset showing the proportion of each label type
in both synthetic prompts (Synthetic) and real-world prompts (Langchain).
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Prompt:Your a trivia expert. Answer questions precise and quick. Use this format:

Q: [Question]
A: [Answer]
Confidence: [0-100%]
Fun Fact: [Related interesting tidbit]

Now, answer these trivia questions:

1. What's the capital of France?
2. Who painted the Mona Lisa?
3. In what year did World War II end?
4. What's the largest planet in our solar system?
5. Who wrote the play "Romeo and Juliet"?

Provide answers for all 5 questions using the specified format. Don't skip any parts of the format. Be concise but accurate in your 
responses.

Start:[instruction]Your a trivia expert. 
Answer questions %<separator>%
[question]1. What's the capital of France?
2. Who %<separator>%
[instruction]Provide answers for all 5 
questions %<separator>%

End:[instruction]answer these trivia 
questions: %<separator>%
[question]Who wrote the play "Romeo and 
Juliet"? %<separator>%
[instruction]but accurate in your responses. 
%<separator>%

Start+End:[instruction]Your a trivia expert. 
Answer questions %<separator>% answer 
these trivia questions:[/instruction]
[question]1. What's the capital of France?
2. Who %<separator>% Who wrote the play 
"Romeo and Juliet"?[/question]
[instruction]Provide answers for all 5 
questions %<separator>% but accurate in 
your responses.[/instruction]

Figure 9: An example text and expected outputs for different output patterns.

(a) Qwen3-1.7b (b) Qwen3-4b (c) Llama3.1-8b-Instruct

Figure 10: The standard deviation of rewards during training for BoundRL and SFT+RLVR. Inter-
mediate candidates help BoundRL mitigate the entropy collapse issue of RLVR.

Prompt: You are a supervisor tasked with  managing a conversation between the following workers:  {members}. Given the following user request, respond with the worker to act next. Here 
are the descriptions for  each worker:

{worker_desc}
Workers must complete a task and report their results and status.
NEVER reply with FINISH if AI provides no response.
NOTE: Stop if messages are repeating after three attempts.
Given the conversation above, who should act next?
Or should we FINISH? 
Select one of: {options}

Annotation: [{'text': 'You are a supervisor tasked with  managing a conversation between the following workers:', 'type': 'instruction'}, {'text': '{members}', 'type': 'context'}, {'text': '. Given the 
following user  request, respond with the worker to act next. Here are the descriptions for  each worker:', 'type': 'instruction'}, {'text': '{worker_desc}', 'type': 'context'}, {'text': 'Workers must 
complete a task and report their results and status.\n  NEVER reply with FINISH if AI provides no response.\n  NOTE: Stop if messages are repeating after three attempts.\n\n  Given the 
conversation above, who should act next?\n  Or should we FINISH? \n  Select one of:', 'type': 'instruction'}, {'text': '{options}', 'type': 'context'}]

SFT w/2epochs
Raw output: [instruction]You are a 
supervisor tasked with %<separator>%
[context]{members} %<separator>%
[instruction]Given the following user request, 
%<separator>%
[context]{worker_desc} %<separator>%
[instruction]Workers must complete a task 
and %<separator>%
[context]Or should we %<separator>%
[instruction]Select one of: %<separator>%
[context]{options} %<separator>%
Reconstucted Segment: [{'text': '', 'label': 
'instruction'}, {'text': '', 'label': 'context'}, 
{'text': 'You are a supervisor tasked with  
managing a conversation between the 
following workers:', 'label': 'instruction'}, 
{'text': '{worker_desc}', 'label': 'context'}, 
{'text': 'Workers must complete a task and 
report their results and status.\n  NEVER 
reply with FINISH if AI provides no 
response.\n  NOTE: Stop if messages are 
repeating after three attempts.\n\n  Given 
the conversation above, who should act 
next?', 'label': 'instruction'}, {'text': 'Or should 
we FINISH?', 'label': 'context'}, {'text': 'Select 
one of:', 'label': 'instruction'}, {'text': 
'{options}', 'label': 'context'}]

SFT+RLVR
Raw output: [instruction]You are a 
supervisor tasked with %<separator>%
[context]{members} %<separator>%
[instruction]Given the following user 
%<separator>%
[context]{worker_desc} %<separator>%
[instruction]Workers must complete a task 
and %<separator>%
[question]Or should we %<separator>%
[instruction]Select one of: %<separator>%
[context]{options} %<separator>%
Reconstucted Segment: [{'text': 'You are a 
supervisor tasked with  managing a 
conversation between the following 
workers:', 'label': 'instruction'}, {'text': 
'{members}.', 'label': 'context'}, {'text': 'Given 
the following user  request, respond with the 
worker to act next. Here are the descriptions 
for  each worker:', 'label': 'instruction'}, {'text': 
'{worker_desc}', 'label': 'context'}, {'text': 
'Workers must complete a task and report 
their results and status.\n  NEVER reply with 
FINISH if AI provides no response.\n  NOTE: 
Stop if messages are repeating after three 
attempts.\n\n  Given the conversation above, 
who should act next?', 'label': 'instruction'}, 
{'text': 'Or should we FINISH?', 'label': 
'question'}, {'text': 'Select one of:', 'label': 
'instruction'}, {'text': '{options}', 'label': 
'context'}]

RL-PLUS
Raw output: [instruction]You are a 
supervisor tasked with %<separator>%
[context]{members} %<separator>%
[instruction]Given the following user 
%<separator>%
[context]{worker_desc} %<separator>%
[instruction]Workers must complete a task 
and %<separator>%
[context] %<separator>%
[instruction]Or should we %<separator>%
[context]{options} %<separator>%
Reconstucted Segment: [{'text': 'You are a 
supervisor tasked with  managing a 
conversation between the following 
workers:', 'label': 'instruction'}, {'text': 
'{members}.', 'label': 'context'}, {'text': 'Given 
the following user  request, respond with the 
worker to act next. Here are the descriptions 
for  each worker:', 'label': 'instruction'}, {'text': 
'{worker_desc}', 'label': 'context'}, {'text': 
'Workers must complete a task and report 
their results and status.\n  NEVER reply with 
FINISH if AI provides no response.\n  NOTE: 
Stop if messages are repeating after three 
attempts.\n\n  Given the conversation above, 
who should act next?', 'label': 'instruction'}, 
{'text': 'Or should we FINISH? \n  Select one 
of:', 'label': 'instruction'}, {'text': '{options}', 
'label': 'context'}]

BoundRL
Raw output: [instruction]You are a 
supervisor tasked %<separator>%
[context]{members} %<separator>%
[instruction]Given the following user 
%<separator>%
[context]{worker_desc} %<separator>%
[instruction]Workers must complete a task 
and %<separator>%
[context]{options} %<separator>%
Reconstucted Segment:[{'text': 'You are a 
supervisor tasked with  managing a 
conversation between the following 
workers:', 'label': 'instruction'}, {'text': 
'{members}.', 'label': 'context'}, {'text': 'Given 
the following user  request, respond with the 
worker to act next. Here are the descriptions 
for  each worker:', 'label': 'instruction'}, {'text': 
'{worker_desc}', 'label': 'context'}, {'text': 
'Workers must complete a task and report 
their results and status.\n  NEVER reply with 
FINISH if AI provides no response.\n  NOTE: 
Stop if messages are repeating after three 
attempts.\n\n  Given the conversation above, 
who should act next?\n  Or should we FINISH? 
\n  Select one of:', 'label': 'instruction'}, {'text': 
'{options}', 'label': 'context'}]

Figure 11: Qualitative examples of BoundRL and other baselines.
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Factor Values
task type ’named entity recognition’, ’current events knowledge’, ’document similarity comparison’, ’bug detection’, ’grammar

and spell checking’, ’code refactoring’, ’parameter extraction’, ’software development’, ’webhook handling’, ’clini-
cal note summarization’, ’table relationship inference’, ’trivia answering’, ’anything you can think that a user might
need help with’, ’web development’, ’general productivity assistant’, ’spam detection’, ’scientific concept explana-
tion’, ’mathematical problem solving’, ’email thread summarization’, ’multi-option reasoning’, ’genre classification’,
’research paper abstracting’, ’classification’, ’database schema understanding’, ’general coding assistance’, ’text sim-
plification’, ’keyword extraction’, ’news categorization’, ’multi-API orchestration’, ’fact-checking’, ’sentiment anal-
ysis’, ’citation finding’, ’meeting minutes generation’, ’news article summarization’, ’fact verification’, ’legal docu-
ment summarization’, ’complex query generation’, ’toxicity detection’, ’factoid QA’, ’technical domain QA’, ’semantic
search’, ’geographic knowledge QA’, ’logical reasoning tasks’, ’text generation’, ’text style transfer’, ’function call-
ing’, ’contextual recommendations’, ’language detection’, ’api authentication’, ’evidence extraction’, ’table-based QA’,
’data filtering’, ’code review’, ’biographical information retrieval’, ’open book qa (RAG), where a document is pro-
vided and a quesiton must be answered, but don\’t explicitly mention ”open book qa”’, ’dialogue summarization’,
’topic classification’, ’code explanation’, ’code security enhancements’, ’data type validation’, ’anomaly detection in
text’, ’common sense reasoning’, ’code generation’, ’metaphor generation and interpretation’, ’document type clas-
sification’, ’ai coding assistant’, ’poetry and song lyrics generation’, ’customer feedback summarization’, ’general
programming ai assistance’, ’code completion’, ’chart/graph interpretation’, ’automated essay scoring’, ’paraphrasing’,
’closed book qa, but don\’t explicitly mention ”closed book qa”’, ’multi-hop reasoning’, ’input sanitzation’, ’content
moderation’, ’SQL query optimization’, ’api endpoint selection’, ’context-dependent reasoning’, ’error handling’, ’in-
tent classification’, ’summarization’, ’emotion classification’, ’cross-document QA’, ’multi-document summarization’,
’text2sql’, ’text completion’, ’code summarization’, ’reading comprehension’, ’historical fact retrieval’, ’video transcript
summarization’

writing styles ’to contain several noticeable grammatical errorsin direct and curt way’, ’to contain several noticeable grammatical
errors’, ’in direct and curt way’, ’to have lots of typos’, ’in a well-formed style’

format type ’a mixture of markdown and formatting seen in the example prompts provided above’, ’a mixture of a formatting
structure of your choice and section subtitles’, ’a mixture of JSON or nested JSON and other’, ’markdown’, ’a mixture
of JSON or nested JSON and markdown’, ’YAML-style formatting’, ’a mixture of a formatting structure of your choice
and other’, ’a mixture of markdown and section headers’, ’a mixture of formatting seen in the example prompts provided
above and section subtitles’, ’a mixture of other and markdown’, ’a mixture of XML tags and coding’, ’a mixture of
coding and XML tags’, ’a mixture of section subtitles and a formatting structure of your choice’, ’a mixture of JSON
or nested JSON and coding’, ’a mixture of a formatting structure of your choice and markdown’, ’a mixture of section
subtitles and coding’, ’a mixture of formatting seen in the example prompts provided above and JSON or nested JSON’,
’a mixture of XML tags and section subtitles’, ’a mixture of XML tags and formatting seen in the example prompts
provided above’, ’a mixture of section headers and formatting seen in the example prompts provided above’, ’a mixture
of a formatting structure of your choice and coding’, ’pseudo-code’, ’a mixture of coding and a formatting structure
of your choice’, ’a mixture of coding and JSON or nested JSON’, ’a mixture of markdown and coding’, ’a mixture of
other and JSON or nested JSON’, ’a mixture of XML tags and a formatting structure of your choice’, ’section subtitles’,
’a mixture of other and a formatting structure of your choice’, ’a mixture of section headers and section subtitles’, ’a
mixture of other and coding’, ’a mixture of section subtitles and markdown’, ’a mixture of section subtitles and other’,
’a mixture of coding and section headers’, ’a mixture of section headers and a formatting structure of your choice’,
’a mixture of section headers and coding’, ’chain-of-thought styling’, ’capital letters to highlight important details’, ’a
mixture of other and section subtitles’, ’a mixture of XML tags and JSON or nested JSON’, ’XML tags’, ’a mixture
of coding and other’, ’a mixture of other and formatting seen in the example prompts provided above’, ’a mixture of
formatting seen in the example prompts provided above and section headers’, ’a mixture of a formatting structure of your
choice and XML tags’, ’a mixture of formatting seen in the example prompts provided above and other’, ’a formatting
structure of your choice’, ’a mixture of section headers and XML tags’, ’a mixture of XML tags and markdown’, ’a
mixture of JSON or nested JSON and a formatting structure of your choice’, ’a mixture of markdown and a formatting
structure of your choice’, ’JSON or nested JSON’, ’a mixture of a formatting structure of your choice and section
headers’, ’a mixture of JSON or nested JSON and section headers’, ’a mixture of coding and formatting seen in the
example prompts provided above’, ’a mixture of JSON or nested JSON and formatting seen in the example prompts
provided above’, ’a mixture of section subtitles and section headers’, ’a mixture of JSON or nested JSON and XML
tags’, ’a mixture of other and XML tags’, ’a mixture of XML tags and other’, ’a mixture of section headers and JSON
or nested JSON’, ’a mixture of markdown and JSON or nested JSON’, ’a mixture of a formatting structure of your
choice and formatting seen in the example prompts provided above’, ’a mixture of section subtitles and XML tags’,
’table-based formatting’, ’a mixture of a formatting structure of your choice and JSON or nested JSON’, ’a mixture
of section headers and other’, ’a mixture of formatting seen in the example prompts provided above and markdown’,
’a mixture of formatting seen in the example prompts provided above and a formatting structure of your choice’, ’a
mixture of section headers and markdown’, ’a mixture of markdown and section subtitles’, ’a mixture of markdown
and XML tags’, ’tree-style hierarchical formatting’, ’a mixture of section subtitles and formatting seen in the example
prompts provided above’, ’a mixture of coding and markdown’, ’a mixture of section subtitles and JSON or nested
JSON’, ’coding’, ’a mixture of other and section headers’, ’a mixture of coding and section subtitles’, ’a mixture of
markdown and other’, ’formatting seen in the example prompts provided above’, ’a mixture of XML tags and section
headers’, ’a mixture of formatting seen in the example prompts provided above and XML tags’, ’section headers’, ’a
mixture of JSON or nested JSON and section subtitles’, ’a mixture of formatting seen in the example prompts provided
above and coding’

prompt length ’less than 150 words’, ’150 to 500 words’, ’500 to 1000 words’, ’around 1000 words’, ’1000 to 2000 words’
level of detail ’basic level of detail, meaning it can just give minimal descriptions of things’, ’moderate level of detail, meaning it

goes a bit in-depth into things’, ’detailed, meaning you should describe things thoroughly and do not give short names
or descriptions’, ’very detailed, meaning everything is described very in-depth and production-level detail is included’,
’extremely technically detailed, meaning as many specific details should be present as possible, including technical
jargon, production-level of context, and complicated descriptions’

Table 6: Full list of factors and corresponding potential values used for generating of synthetic
prompts.
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