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Abstract

The development of reinforcement learning (RL) algorithms has been largely driven by1
ambitious challenge tasks and benchmarks. Games have dominated RL benchmarks2
because they present relevant challenges, are inexpensive to run and easy to understand.3
While games such as Go and Atari have led to many breakthroughs, they often do not di-4
rectly translate to real-world embodied applications. In recognising the need to diversify5
RL benchmarks and addressing complexities that arise in embodied interaction scenarios,6
we introduce Assistax: an open-source benchmark designed to address challenges arising7
in assistive robotics tasks. Assistax uses JAX’s hardware acceleration for significant8
speed-ups for learning in physics-based simulations. In terms of open-loop wall-clock9
time Assistax runs up to 370× faster, compared to CPU-based alternatives, when vec-10
torising training runs. Assistax conceptualises the interaction between an assistive robot11
and an active human patient using multi-agent RL to train a population of diverse partner12
agents against which an embodied robotic agent’s zero-shot coordination capabilities13
can be tested. Extensive evaluation and hyperparameter tuning for popular continuous14
control RL and MARL algorithms provide reliable baselines and establish Assistax as a15
practical benchmark for advancing RL research for assistive robotics.16

1 Introduction17

Assistive robotics (Chen et al., 2013; Savage, 2022) aims to develop autonomous systems that aid18
human users in performing various daily activities. For example, a healthcare application could be19
bed bathing where a robot is tasked with washing a human user who has a mobility impairment20
and cannot complete the task by themselves. The robot must account for both the user’s behaviour21
and preferences like the duration and intensity of contact. Such a robot should also be capable22
of completing this it’s tasks across a wide range of different human’s, for example, if the robot is23
deployed in a care home the robot will be attending to multiple different users. As it is infeasible to24
individually train robots for each human they may encounter over their life-cycle, we wish to design a25
robot that is capable of interacting with any other agent it may encounter. This is challenging because26
the robot must act and coordinate with a user (another agent) in the context of limited or no prior27
experience and knowledge.28

Benchmarks play a crucial role in advancing reinforcement learning (RL) by providing structured29
challenges and enabling comparative evaluation; in particular, a series of game benchmarks has30
been instrumental in driving innovation in the field (Bellemare et al., 2013; Mnih et al., 2013; Silver31
et al., 2016; Vinyals et al., 2019; Berner et al., 2019). We have also seen great success in robot32
simulation based learning for manipulation and locomotion tasks (Rajeswaran et al., 2018; Tan et al.,33
2018). Physics engines like MuJoCo (Todorov et al., 2012; Coumans, 2015; Makoviychuk et al.,34
2021) provide essential tools for exploring continuous control tasks in 3D environments, forming35
the backbone of numerous simulated tasks in robotics and reinforcement learning benchmarks.36
While continuos control benchmarks have established themselves in a single-agent setting, they have37
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Table 1: Assistax comparison with related benchmarks. Assistax supports algorithms for single-
agent reinforcement learning (SARL), multi-agent reinforcement learning (MARL), and zero-shot
coordination (ZSC) (a special case of ad-hoc teamwork (AHT)) in a 3D environment with continuous
actions and hardware acceleration.

Benchmarks Algorithms Environment

SARL MARL ZSC
Continuous

actions 3D
Hardware

acceleration

DM Control (Tunyasuvunakool et al., 2020) ✓ ✗ ✗ ✓ ✗ ✗
Bi-DexHands (Chen et al., 2022) ✓ ✓ ✗ ✓ ✓ ✓

RLBench (James et al., 2020) ✓ ✗ ✗ ✓ ✓ ✗
Robotsuite (Zhu et al., 2020b) ✓ ✗ ✗ ✓ ✓ ✗

Gymnax (Lange, 2022) ✓ ✗ ✗ ✓ ✗ ✓
SMAC (Samvelyan et al., 2019) ✗ ✓ ✗ ✗ ✗ ✗

JaxMARL (Rutherford et al., 2024a) ✗ ✓ ✗ ✓ ✓ ✓
Hanabi (Bard et al., 2019) ✗ ✓ ✓ ✗ ✗ ✗

Assistive Gym (Erickson et al., 2019b) ✓ ✓ ✗ ✓ ✓ ✗

Assistax (ours) ✓ ✓ ✓ ✓ ✓ ✓

yet to make a similar impact in multi-agent settings and in particular in modelling human-robot38
interaction. For the assistive tasks we are interested in we require interaction policies that are robust39
when interacting with previously unseen other agents, a problem widely studies as ad-hoc teamwork40
(AHT) (Mirsky et al., 2022).41

A key consideration when developing a benchmark for assistive robotics is the ability to rapidly42
prototype and evaluate various algorithms. This is particularly important for RL algorithms as they43
require a large number of interactions with the environment and multiple runs for rigorous evaluation44
and hyperparameter tuning (Colas et al., 2019; Agarwal et al., 2021). Because of this, various RL45
benchmarks have focused on designing environments that can utilise hardware acceleration allowing46
for agent environment GPU/TPU collocation and greater parallelisation, resulting in faster training47
and evaluation by several orders of magnitude when compared to using CPU-based alternatives48
(Rutherford et al., 2024b; Lange, 2022; Chen et al., 2022).49

In light of these advancements and to foster research in assistive robotics using RL this paper50
introduces Assistax - a hardware-accelerated RL benchmark for assistive robotics. This benchmark51
offers unique combinations of features from the environment and algorithm points of view compared52
to similar benchmarks (see Table 1). Assistax utilizes the JAX (Bradbury et al., 2018) Python53
library and MuJoCo’s MJX physics engine taking full advantage of hardware acceleration for54
research-friendly RL training pipelines. This benchmark focuses on real-world assistive robotics55
scenarios (Erickson et al., 2019a) and provides baselines for training and evaluating algorithms for56
agents trained using popular single-agent RL (SARL) and multi-agent RL (MARL). We also provide57
baselines for zero-shot coordination (ZSC) a special case of AHT by testing SARL algorithms when58
trained and evaluated against disjoint pre-trained partner-agent populations. We also provide the59
parameters for our partner-agent population for future use. To the best of our knowledge, Assistax60
is the first hardware-accelerated benchmark targeting assistive robotics and AHT. This benchmark61
contributes to the development of RL algorithms in assistive robotics by providing an effective62
hardware-accelerated environment with accompanying tasks and baselines.63

2 Background and Related Work64

Hardware-Accelerated RL Benchmarks. Many environments leverage hardware acceleration (Bet-65
tini et al., 2022; Richmond et al., 2023; Mittal et al., 2023), but often restrict themselves to 2D66
domains or discrete state and action spaces. Assistax uses the JAX Python library (Bradbury et al.,67
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2018) for easy parallelization via vmap (vectorization) and pmap (multi-device distribution). Ad-68
ditionally, MuJoCo’s MJX enables collocating agents and environments on GPUs/TPUs, removing69
CPU-GPU memory transfers and enhancing performance through JAX’s JIT compilation. Existing70
JAX-based RL environments include Gymnax (Lange, 2022), Pgx (Koyamada et al., 2023), and71
MuJoCo-based benchmarks (Freeman et al., 2021; Zakka et al., 2025). JaxMARL (Rutherford et al.,72
2024b) specifically targets MARL, achieving significant speedups.73

Multi-Agent Reinforcement Learning. MARL considers multiple RL agents interacting and learn-74
ing in an environment simultaneously (Albrecht et al., 2024). The Decentralized Partially Observable75
Markov Decision Process (Dec-POMDP) (Oliehoek & Amato, 2016) is the canonical representation76
of the decision-making problem in MARL. It is a tuple ⟨N ,S, {Ai}i∈N , T, p0, {Ωi}i∈N , O,R, γ⟩77
where: N is the set of agents; S is the state space; Ai is the action space for agent i; T (st+1 | st, at)78
is the state transition probability function; p0(s0) is the initial state distribution; Ωi is the observation79
space for agent i; O(ot | st, at−1) is the observation probability function; R(st, at) is the team80
reward function; and γ ∈ [0, 1] is the discount factor. In Dec-POMDP, at every time-step t all agents81

i ∈ N take an action ait, each of these actions forms the joint action at = (a1t , a
2
t , . . . , a

|N |
t ). After82

the action at is taken, the state transitions to the next state st+1 given by the transition probability83
function st+1 ∼ T (· | st, at). Each agent receives an observation oit+1 given by the observation84
probability function ot ∼ O(· | st, at−1) and receives the reward rt given by the team reward function85
R(st, at). Joint actions are sampled from the joint policy π = (π1, ..., π|N |) i.e., at ∼ π(·|ht), where86

ht = (h1
t , ..., h

|N |
t ) is the joint history. The history of each agent i ∈ N consists of all observations87

and actions up until the current timestep hi = (oi0, a
i
0, o

i
1, a

i
1, . . . o

i
t). In Dec-POMDP, the objective88

is to maximize the discounted cumulative rewards over a finite/infinite horizon.89

Ad-hoc Teamwork. AHT is the problem of controlling a single agent or a subset of agents within a90
team, to maximize the team’s returns across a broad distribution of previously unknown teammate91
types (Mirsky et al., 2022). A teammate type refers to the distinct set of behavioural policies,92
capabilities, and preferences that define how a teammate operates and collaborates within a shared93
task (Stone et al., 2010). Zero-Shot Coordination (ZSC), a special case of AHT, requires agents94
to coordinate with unseen partners without adaptation, typically generalizing from training with95
a limited set of partner policies (Hu et al., 2021). Existing benchmarks (e.g., Hanabi (Bard et al.,96
2019)) often lack the complexity needed for assistive robotics, which involves continuous actions and97
multi-agent interactions in 3D environments. Assistax specifically addresses these complexities.98

3 Assistax99

(a) Scratch (b) Bed Bath (c) Arm Assist

Figure 1: Suite of hardware-accelerated simulated environments and tasks provided by Assistax.

Assistax is a Python library that provides hardware-accelerated environments in the domain of100
assistive robotics together with accompanying baseline algorithm implementation.101
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3.1 Environments102

Tasks The visualization of the Assistax task suite is given in Figure 1. Inspired by Assistive Gym103
(Erickson et al., 2019b), Assistax implements Scratch, Bed Bath, and Arm Assist tasks, representing104
real-world assistive robotic scenarios between a human and a robot as well. Although the task goals105
are the same as in Assistive Gym, our implementations differ in terms of the observation space and106
the reward function (see Appendix A). Currently, MJX scales poorly in scenarios involving many107
collisions, resulting in significant slowdowns when simulating deformable bodies such as cloth,108
liquids, or detailed mesh interactions. However, we anticipate that future advances in MJX will109
enable the simulation of more complex tasks, such as robotic dressing. Each task is modelled as110
Dec-POMDP with two agents. Assistax strives to reuse all relevant components between tasks, to111
clearly distinguish which individual complexities each task offers. The more detail description of112
each task is as follows:113

• Scratch (Figure 1(a)): A scratching target is randomly sampled on the surface of the human’s right114
arm. The robot must move its end-effector to this position and apply a specified force. The human115
can move its arm to make the target more accessible to the robot.116

• Bed Bath (Figure 1(b)): We provide target bath points distributed along the surface of the human’s117
arm. The robot must reach each point and apply a certain force to activate the next point. The aim118
is to reach (’wipe’) all points before the end of an episode.119

• Arm Assist (Figure 1(c)): The robot must help the human lift its right arm back into a comfortable120
position on the bed. In this task the human is too weak to complete the task on their own and thus121
requires the robot. The robot has to learn to align its end-effector with a target section of the arm122
(shown in green on Figure 1(c)), and then move the human arm until the green and blue targets123
overlap.124

Agents The Assistax environment supports robot and human agents. The robot agent takes the form125
of a Franka Emika Panda robot arm for all environments with its base model taken from MuJuCo126
menagerie (Zakka et al., 2022). For each task, we implement custom end-effectors, which do not127
have controllable joints. The robot agent is torque-controlled with 7 joints Arobot := [−1, 1]7. The128
human model is taken from the Brax humanoid tasks (Freeman et al., 2021) and is also torque-129
controlled. Note that when referring to the “human” we mean the agent controlling the human130
model. For the human we restrict the action space to the shoulder and elbow joints of the right arm131
Ahuman := [−1, 1]3, which are most relevant for the tasks. Following Assistive Gym, Assistax132
simulates tremors, joint weakness and limited range of motion in an attempt to replicate real-world133
challenges for assistive healthcare tasks.134

3.2 Algorithms and Baselines135

Overview Assistax takes inspiration from JaxMARL (Rutherford et al., 2024b) for straightforward136
single-file implementations of continuous RL algorithms. We conduct extensive hyperparameter137
tuning for each of these implementations to ensure a reliable benchmark (see Appendix B for details).138

SARL and MARL Algorithms Assistax includes implementations of PPO (Schulman et al., 2017)139
and SAC (Haarnoja et al., 2018) as baseline SARL algorithms for continuous control tasks. For both140
SARL algorithms, we provide MARL variants, including Independent (IPPO, ISAC) and Multi-Agent141
(MAPPO, MASAC) approaches. The RL agent training pipeline is optimized for JAX, leveraging its142
vmap functionality to vectorize across multiple environments, as well as parallelize training across143
multiple seeds and hyperparameter settings.144

ZSC Baseline Assistax is also designed for benchmarking of ZSC. We use our MARL algorithms145
to train a population of potential team-mate human agents Π with varying disability parameters a146
summary of this can be seen in Table 6. We train our SARL algorithms on a random half of this147
partner agent population Πtrain and evaluate against the unseen half denoted as Πtest. More formally148
we train for the following objective (Rahman et al., 2024):149
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Scratching Arm Assist Bed Bathing

MAPPO
72
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72

MASAC
54

MASAC
54

MAPPO
32
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32

Figure 2: The treemap visualization of the partner agent population for different tasks trained using
different MARL algorithms.

πi∗(Πtrain) = argmax
πi

Eπ−i∼U(Πtrain),ai
t∼πi,a

−i
t ∼π−i,T,O

[ ∞∑
t=0

γtR(at, st, at+1)

]
.

We then evaluate the measure MΠtest which measures the robustness of the πi∗ when paired with150
unseen agents uniformly sampled from Πtest. Which we define as:151

MΠtest = Eπ−i∼U(Πtest),ai
t∼πi∗ (Πtrain),a−i

t ∼π−i,T,O

[ ∞∑
t=0

γtR(at, st, at+1)

]
.

Assistax provides the parameters of pre-trained partner policies, allowing the benchmark users to train152
SARL algorithms in a multi-agent setting against an active pre-trained teammate where pre-trained153
refers to an already trained teammate policy using MARL.154

3.3 Optimized computation155

Assistax prioritises simulation efficiency over high fidelity, a trade-off made to speed up RL training156
pipelines. This trade-off is currently necessary as MuJoCo’s MJX has some limitations, most notable157
for our use-case is the poor scaling with the number of collisions making mesh collisions unfeasible.158
As RL typically requires extensive interaction with the environment, it makes sense to focus on159
simulation speed, which enables researchers to train policies faster, do rigorous hyperparameter160
tuning, and run more experiments. Although this trade-off sacrifices some physical accuracy, it161
improves the library’s utility for RL research by making these more complex environments much162
more attractive from a computation-cost perspective. Key trade-offs include1:163

1. Primitive geometries: We simplify objects by fitting them with primitive geometries (e.g., capsules164
for the Franka arm, boxes for wheelchairs and beds). These shapes reduce computational overhead165
while maintaining task relevance.166

2. Collision Optimization: We selectively disable collisions between geometries that are unlikely to167
interact during an episode, further improving simulation efficiency.168

See Figure 8 in the Appendix A.1 for more information on collisions and primitive geometries.169

4 Experiments170

In this section we benchmark our algorithms. We evaluate how well our MARL algorithms perform171
when they are co-trained. We also evaluate the diversity of co trained policies to see whether MARL172

1While this is set by default these can be adjusted to increase the physical fidelity of the tasks by leveraging the MuJoCo
XML API, providing flexibility for higher-fidelity requirements.
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Figure 3: Learning curves for training MARL baselines. All curves show inter-quartile means ± 95%
stratified-bootstrap CIs over 16 seeds.

training leads to different conventions or stratagies between the two agents, by analysing the cross-173
play returns for a population of trained agents for each task. Lastly we also benchmark SARL174
algorithms for Zero-Shot Co-ordination in line with Section 3.2.175

4.1 MARL Experiments176

We provide evaluation for four baseline MARL algorithms across all three tasks, where we constrain177
the robot and the human with shared rewards. We evaluate MASAC, ISAC, MAPPO and IPPO, each178
with no parameter sharing and simple feed-forward architectures. While we do not evaluate other179
architectures we do provide implementations for each algorithms with a RNN architecture as well as180
parameter sharing options.181

We conduct extensive hyperparameter tuning, testing at least 168 different hyperparameter settings182
for each algorithm-environment pair. We perform a random sweep for continuous hyperparameters183
and select a few reasonable settings for discrete hyperparameters. The final hyperparameters used,184
along with the results of the sweeps, can be found in the appendix. Below, we present the results185
for algorithms using the optimized hyperparameters from the sweep. We show learning curves and186
final returns for baseline algorithms Figure 3. PPO variants typically outperform SAC algorithms187
which present much higher variance in their performance. This discrepency is likely a symptom of188
challenges that arise for off-policy algorithms due to the non-stationarity introduced by other learning189
agents (Lowe et al., 2017).190

Table 2: MARL baseline evaluation using final interquartile mean (IQM) returns with 95% confidence
interval. Values in bold denote best-performing algorithms for each task. Upper Bound shows the
theoretical upper bound of returns for each task i.e. by obtaining the maximum possible reward at
each time-step.

Algorithm \ Task Scratching Bed Bath Arm Assist

MAPPO 945.80[804.52, 949.37] 109.52[106.84, 111.73] 2621.95[1310.16, 3204.55]

IPPO 939.51[933.97, 957.97] 117.16[112.44, 120.24] 4101.31[3027.48, 4347.11]

MASAC 708.87[502.33, 831.42] 98.71[79.64, 116.76] 910.21[370.89, 1890.83]

ISAC 84.12[29.61, 305.65] 64.68[22.06, 96.35] 325.68[297.88, 616.79]

Upper Bound 1,135 1,052 11,346

4.2 ZSC Experiments191

Assistax also provides a baseline for the ZSC capabilities of single-agent versions of PPO and SAC.192
We take inspiration from RL domain randomization benchmarks like ProcGen (Cobbe et al., 2019)193
and the domain randomization techniques used for sim-to-real transfer in robotics applications (Tobin194
et al., 2017). We randomize the ’human’ policy that the single-agent robot sees during training.195
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Figure 4: Cross-play matrices obtained by computing the returns (averaged over 16 seeds) when
robot agents trained in one team are paired with human agents trained in another team. The order of
agents in each graph has been permuted using a hierarchical clustering algorithm to show the strategy
clusters more clearly.

(a) Strategy 1 (b) Strategy 2

Figure 5: Two emerging strategies for bedbathing, which are mutually incompatible. Strategy 5(a)
and 5(b) have a mean episode return of 122.6 and 118.5 respectively this however drops to below 60
when the different strategies are matched with eachother.

At each reset of the environment, a random partner policy is sampled from the train set of partner196
policies.197

Using Assistax’s hardware acceleration we are able to pre-train 434 active ‘human’ policies using198
our MARL baselines and by varying disability parameters (See Table 2 for an overview of the agent199
population and see Table 6 in the appendix for more details). For each algorithm and task, we train200
partner agents with 9 different disability settings which limit the joint strength and range of motion of201
the elbow.202

Through co-trained MARL we obtain cross-play matrices which show that for the scratching (Figure203
4(a)) and bed-bathing tasks (Figure 4(b)) distinct strategies emerge, such that there are certain groups204
of agents whose policies are incompatible with each other. Figure 5 showcases one such example205
from the bed-bathinig task. Nevertheless, we note that few distinct clusters emerge, suggesting that206
the tasks do not require a high degree of coordination. For example, the scratching task requires the207
robot to navigate to a scratching target, while the human makes this target more accessible to the208
robot’s end-effector. The simplicity of this task means that there are few distinct optimal strategies209
for solving the task. The arm-assist task in particular does not require complex coordination between210
the human and robot, as Figure 4(c) shows that the human contributes little to task success. As a211
consequence, the returns depend mainly on the performance of the robot.212

4.3 Runtime Experiments213

A key benefit of implementing the environment in JAX is the significant speed-up in training pipelines,214
as it allows reinforcement learning to leverage hardware acceleration. In terms of wall-clock time215
a typical IPPO training run of 30 million environment time-steps takes roughly 20 minutes when216
using 512 vectorized environments; in comparison the equivalent training run for Assistive gym (with217
RLlib multiprocessing Liang et al. (2018)) take 8.3 hours, resulting in an approximate speed up of218
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Figure 6: ZSC Performance of PPO on all three tasks. Showing IQM returns and stratified 95%
bootstrapped CI across 16 seeds.

this translates into an approximate speed up of 25× over the original assistive-gym. Figure 7 shows219
how the scaling of the steps per second scale with the number of vectorized environment for an IPPO220
training run. Table 3 shows the open-loop speeds compared with assistive gym, in which we run the221
environments with no RL training.222

Figure 7: Steps per second and number of vec-
torized environments for IPPO training pipeline
using a single A100 (40GB).

Table 3: Task speed when taking random actions
for 10 million timesteps with 512 vectorized en-
vironments using an Nvidia A100 (40GB) GPU.
Relative speedup is against Assistive Gym with a
single environment.

Task SPS Relative Speedup
Scratch 26,953 116.6×
Bed bath 34,218 370.8×
Arm assist 34,097 238.19×

5 Conclusion223

This paper introduced a hardware-accelerated RL benchmark for assistive robotics. The presented224
task suite and experiments demonstrate that continuous, physics-based 3D environments can, from a225
computational-cost perspective, compete with simpler, game-like settings commonly used in SARL226
and MARL, thereby enabling faster research iteration and more thorough evaluations. Specifically227
for AHT, we focused on the case of ZSC, providing a baseline for future advancements in assistive228
robotics. The benefits of hardware acceleration enable efficient training of large numbers of embodied229
agents; to the best of our knowledge, Assistax is the only benchmark facilitating investigation of ZSC230
for distinct embodied agents. This positions Assistax as the benchmark of choice not only for RL231
research in assistive robotics but also more broadly within RL and AHT.232

Limitations and Future Work There is a trade-off between the algorithm’s runtime and the environ-233
ment’s fidelity which may come at the cost of replicating real-world scenarios. Off-policy algorithms234
like SAC are require careful consideration of the sampling/replay ratio when parallelising across many235
simulations(Rutherford et al., 2024b). Further, our benchmark tasks are not long-horizon and are236
often extensions of reach tasks with additional complexities introduced by the multi-agent interaction.237
Designing reward functions for more complex longer horizon tasks remains very challenging.238
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A Benchmark Details239

Code is available at: https://github.com/anonym-nips/assistax240

We provide details about the observation space and the reward function for different Assistax tasks.241

Observation Space.242

A summary of the observations for each task is shown in Table 4. In our benchmark, we consider243
3 types of observations: proprioception, tactile, and ground-truth information from the simulator.244
Proprioception is information relating to robot configuration. It is computed from the robot’s internal245
sensors. Assistax considers tactile observation of the net contact forces between the end-effector246
and the human arm, expressed as a force vector in the MuJoCo contact frame. Observations about247
the other body forces are not included. Ground truth refers to the privileged information available248
in simulation but requires estimation in the real world (e.g. end-effector to object distance, human249
joint angles). Subscripts R and H denote robot and human respectively. The end-effector is chosen250
to be an imaginary frame at the end of the robotic arm chosen. Note that Arm Assist has a larger251
observation space to take into account the increased task complexity. For this task, we provide the252
rotation matrix between the end-effector and the target on the human arm (green in Figure 1(c)) to253
influence the robot to lift the arm in a particular way. We also provide an additional distance target254
for the second phase of bringing the arm back to the waist target position (blue in Figure 1(c)).255

Table 4: Observations space overview. Assistax uses three types of observations: proprioception
(prop.), tactile, and ground-truth (gt.) information from the simulator.

Type Symbol Description Dimension Task
Scratch Bed Bath Arm Assist

prop. θR robot joint angles 7 ✓ ✓ ✓
˙θR robot joint velocities 7 ✓ ✓ ✓

xee end-effector position 3 ✓ ✓ ✓
qee end-effector quaternion 4 ✓ ✓ ✓

tactile fee end-effector force 3 ✓ ✓ ✓

gt. θH human joint angles 9 ✓ ✓ ✓
˙θH human joint velocities 9 ✓ ✓ ✓

xHlower
human lower arm position 3 ✓ ✓ ✓

xHupper
human upper arm position 3 ✓ ✓ ✓

xee_t
end-effector to
target distance 3 ✓ ✓ ✓

dee_t
end-effector to target
euclidean distance 1 ✓ ✓ ✓

Ree_t
end-effector to target
angular distance 9 ✗ ✗ ✓

xH_t′
human arm to waist
target distance 3 ✗ ✗ ✓

dH_t′
human arm to waist
target euclidean distance 1 ✗ ✗ ✓

Reward function. The reward for each task at every timestep is given as a linear combination of256
different components involving numerical and indicator functions (e.g., the end-effector being close257
to the target). A constant numeric value scales each of the components. The summary of the reward258
components used is given in Table 5.259
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Table 5: Reward component overview. Each component is evaluated using the equation and scaled
when computing the reward. In equations σ is a scaling factor we set to 0.1, vee is the end-effector
velocity, [·] is the indicator function and f∗ and v∗ are the target forces and velocities, respectively.

Component Symbol Equation Scale Task

Sc
ra

tc
h

B
ed

B
at

h

A
rm

A
ss

is
t

Reach
target rt exp (−d2

ee

σ ) 1 ✓ ✓ ✓

Scratch rs [dee_t < 0.1] ·
(
vee
v∗ exp (−vee

v∗ )
)
·
(

fee
f∗ exp (− fee

f∗ )
)

1 ✓ ✗ ✗

Wipe rw [dee_t < 0.1] · [fee > 0] 1 ✗ ✓ ✗
Reach
waist rt′ 1− tanh (

dH_t′

σ ) 10 ✗ ✗ ✓

Rotation rR norm(Ree_t) 0.1 ✗ ✗ ✓

Table 6: Composition of Partner Agent Population

Algorithm / Tasks Scratching Bed Bathing Arm Assistance Total

n = 198 % n = 118 % n = 118 % n = 434 %

IPPO
Disability Setting 1 8 4.0 8 6.8 8 6.8 24 5.5
Disability Setting 2 8 4.0 8 6.8 8 6.8 24 5.5
Disability Setting 3 8 4.0 8 6.8 8 6.8 24 5.5
Disability Setting 4 8 4.0 8 6.8 8 6.8 24 5.5
Disability Setting 5 8 4.0 0 0 0 0 8 4.0
Disability Setting 6 8 4.0 0 0 0 0 8 4.0
Disability Setting 7 8 4.0 0 0 0 0 8 4.0
Disability Setting 8 8 4.0 0 0 0 0 8 4.0
Disability Setting 9 8 4.0 0 0 0 0 8 4.0

IPPO Total 72 36.4 32 27.1 32 27.1 136 31.3
MAPPO

Disability Setting 1 8 4.0 8 6.8 8 6.8 24 5.5
Disability Setting 2 8 4.0 8 6.8 8 6.8 24 5.5
Disability Setting 3 8 4.0 8 6.8 8 6.8 24 5.5
Disability Setting 4 8 4.0 8 6.8 8 6.8 24 5.5
Disability Setting 5 8 4.0 0 0 0 0 8 4.0
Disability Setting 6 8 4.0 0 0 0 0 8 4.0
Disability Setting 7 8 4.0 0 0 0 0 8 4.0
Disability Setting 8 8 4.0 0 0 0 0 8 4.0
Disability Setting 9 8 4.0 0 0 0 0 8 4.0

MAPPO Total 72 36.4 32 27.1 32 27.1 136 31.3
MASAC

Disability Setting 1 6 5.1 6 5.1 6 5.1 18 4.1
Disability Setting 2 6 5.1 6 5.1 6 5.1 18 4.1
Disability Setting 3 6 5.1 6 5.1 6 5.1 18 4.1
Disability Setting 4 6 5.1 6 5.1 6 5.1 18 4.1
Disability Setting 5 6 5.1 6 5.1 6 5.1 18 4.1
Disability Setting 6 6 5.1 6 5.1 6 5.1 18 4.1
Disability Setting 7 6 5.1 6 5.1 6 5.1 18 4.1
Disability Setting 8 6 5.1 6 5.1 6 5.1 18 4.1
Disability Setting 9 6 5.1 6 5.1 6 5.1 18 4.1

MASAC Total 54 45.8 54 45.8 54 27.3 162 37.3

Composition of Partner Population for ZSC The Table 6 shows the overview of the partner agent260
population provided by Assitax. The agents are trained using different MARL algorithms with261
varying disability settings.262
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A.1 Simulation Fidelity263

See Figure 8 for an example of how we set collisions in Assistax and how we use primitive geometries264
instead of mesh collisions.265

Figure 8: Shows the scratch-itch task with primitive geometries. Green geometries collide with
both green and red geometries while blue geometries collide with blue and red geometries. Gray
geometries have collision disabled.

B Hyperparameters266

We run hyperparameter sweeps for all our algorithms task pairs providing confidence in our baseline267
results. For each algorithm and each task we test at least 168 different configuration, each config-268
uration is tested on 3 seeds. Below we provide plots and the chosen hyperparameters setting for269
the baselines. We use the same hyperparameter settings for each task as there was no meaninguful270
difference between tasks.271

B.1 Hyperparameter Sweep Results272

In Figures 9, 10 11, 12, and 13 we show the results chosen hyper-parameter sweeps.273

For MASAC we run some additional ablations to show some intuitions on why the Q-learning rate is274
more indicative of performance than the policy learning rate although these results lack statistical275
significance, and are not directly relevant to the benchmark.276

While we do not show additional plots our the hyper-parameters chosen for our algorithms in277
Tables 7, 10, 9, and 10 were chosen by sweeping 168 different hyper-parameter settings across 3278
continuous and 1 discrete hyper-parameter for PPO based algorithms and 2 continuous and three279
discrete hyper-parameters for the SAC based algorithms.280
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Table 7: Hyperparameter settings for IPPO algorithm

Hyperparameter Value

Number of steps per rollout 64
Number of parallel environments 1024
PPO epochs per update 4
Number of minibatches 4
Learning rate 1× 10−3

Learning rate annealing False
Entropy coefficient 1× 10−4

PPO clipping epsilon (ϵ) 0.31
Scale clipping epsilon False
Ratio clipping epsilon False
Discount factor (γ) 0.99
GAE lambda (λ) 0.95
Value function coefficient 1.0
Max gradient norm 0.5
Adam optimizer epsilon 1× 10−8

Table 8: Hyperparameter settings for MAPPO algorithm

Hyperparameter Value

Number of steps per rollout 128
Number of parallel environments 1024
PPO epochs per update 4
Number of minibatches 4
Learning rate 4.4× 10−3

Learning rate annealing False
Entropy coefficient 2.7× 10−4

PPO clipping epsilon (ϵ) 0.11
Scale clipping epsilon False
Ratio clipping epsilon False
Discount factor (γ) 0.99
GAE lambda (λ) 0.95
Value function coefficient 1.0
Max gradient norm 0.5
Adam optimizer epsilon 1× 10−8
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Table 9: Hyperparameter settings for MASAC algorithm

Hyperparameter Value

Number of steps per rollout 256
Number of parallel environments 64
Exploration steps 5000
Policy update delay 4
Replay buffer size 106

Batch size 128
Policy learning rate 3× 3−4

Q-function learning rate 1× 2−4

Alpha learning rate 3× 3−4

Max gradient norm 10
Target smoothing coefficient (τ ) 0.005
Discount factor (γ) 0.99
SAC updates per iteration 32
Rollout length 8
Automatic entropy tuning (Autotune) True
Target entropy scale 5.0
Initial alpha 0.1

Table 10: Hyperparameter settings for ISAC algorithm

Hyperparameter Value

Exploration steps 5000
Policy update delay 4
Replay buffer size 106

Batch size 128
Policy learning rate 3× 10−4

Q-function learning rate 1× 10−3

Alpha learning rate 3× 10−4

Max gradient norm 10
Target smoothing coefficient (τ ) 0.005
Discount factor (γ) 0.99
SAC updates per iteration 32
Rollout length 8
Automatic entropy tuning (Autotune) True
Target entropy scale 5.0
Initial alpha 0.1
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Figure 9: Area under curve returns (mean training returns) for IPPO in the scratching task. We show
two plots for continuous hyper-parameters and group by discrete hyper-parameters
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Figure 10: Area under curve returns (mean training returns) for MAPPO in the arm assist task. We
show three plots for continuous hyper-parameters.
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Figure 11: Area under curve (mean training returns) for MASAC on the Scratchitch task. We show
two plots for the policy and critic learning rates. The hyper-parameter values are on the X-axis while
AUC returns on the Y axis. Points are grouped by further hyper-parameter settings

C Additional ZSC Results281

In Figure 14 we show the ZSC results for SAC in all three environments. We note similar trends to282
PPO in that the ZSC performance is very strong and there is no real discrepancy between the train283
and test sets.284

D Additional Related Work (Robot Learning)285

Robot Learning There is a significant interest in using learning as a means of designing generalist286
robot policies (Octo Model Team et al., 2024; Kim et al., 2024; Black et al., 2024) that enable287
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Figure 12: Ablation to check whether the Q-learning rate is more important for than the Policy
learning rate for MASAC. We group points based on the proximity to the best Q value we find from
our sweeps.
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Figure 13: Violin plots showing flattened hyperparameter returns and grouped by different hyperpa-
rameter settings. In general this shows small improvements when increasing the number of epochs
and batch size and worse performance for larger rollout lengths.
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Figure 14: ZSC Performance of SAC on all three tasks. Showing IQM returns and stratified 95%
bootstrapped CI across 16 seeds.

robots to act in the real world. These policies are learned using RL (Kober et al., 2013) and288
imitation learning (Osa et al., 2018) by utilizing data collected in the real world (O’Neill et al.,289
2024), simulation (Mandlekar et al., 2023; Maddukuri et al., 2025), and the internet (McCarthy et al.,290
2024). There exist various robot learning frameworks and benchmarks focusing on tasks in table-top291
manipulation and mobile robotics (Chen et al., 2022; James et al., 2020; Zhu et al., 2020a; Sferrazza292
et al., 2024) with increased interest in everyday household environments (Li et al., 2021; Szot et al.,293
2021; Gu et al., 2023; Nasiriany et al., 2024). Assistax focuses on human-robot interaction scenarios294
requiring close contact and coordination between human and the robot (Chao et al., 2022; Thumm295
et al., 2024). Our assistive tasks are directly inspired by Assistive Gym (Erickson et al., 2019b) but296
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our design philosophy is different driven by a need to design RL-first benchmark that can leverage297
hardware acceleration. Applying contemporary robot learning in human-robot interaction scenarios298
is still challenging partially due to a lack of efficient simulators that capture physical interaction with299
an active human (Tang et al., 2025). Assistax aims to fill this gap by providing a benchmark which300
allows for evaluating and developing novel robot learning techniques within the context of physical301
human-robot interaction.302
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