
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

LoRD: Low-Rank Decomposition of Monolingual Code LLMs for One-Shot
Compression

Anonymous Authors1

Abstract

We propose using low-rank matrix decomposition
(LoRD), which splits a large matrix into a prod-
uct of two smaller matrices, to compress neural
network models and thereby enhance inference
speed. Unlike quantization, LoRD maintains fully
differentiable, trainable parameters and leverages
efficient floating-point operations. We investigate
its advantages for compressing Large Language
Models (LLMs) for monolingual code generation,
demonstrating that linear layer ranks can be re-
duced by up to 39.58% with less than a 1% in-
crease in perplexity. Specifically, we use LoRD to
compress the StarCoder 16B model to 13.2B pa-
rameters with no performance drop and to 12.3B
parameters with minimal performance drop in the
HumanEval Pass@1 score, all within 10 minutes
on a single A100 GPU. The compressed mod-
els achieve up to a 22.35% inference speedup
with just a single line of code change in Hugging
Face’s implementation with Pytorch backend.

1. Introduction
Code LLMs are becoming essential tools for enhancing de-
velopers’ productivity in LLM-assisted products like Copi-
lots(Peng et al., 2023) and in LLM-based agents(Wang et al.,
2023). However, their large size (e.g., 34B parameter pub-
licly available models (Rozière et al., 2023) and 175B+
proprietary ones (Chen et al., 2021a)) leads to high oper-
ational costs and slow inference, particularly for Copilot
applications.

The need for smaller and faster LLM models motivated a
variety of recent methods for model compression and infer-
ence speed-up. Quantization (Frantar et al., 2023; Dettmers
et al., 2023b) reduces the number of bits per weight param-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

eter by lowering precision; it can significantly compress
LLMs and speed up inference in low-batch decoding phases
(Kim et al., 2023). Pruning compresses models by remov-
ing connections from neural networks, thereby sparsifying
the weight matrices. Distillation trains a smaller model
using a larger teacher model for supervision but requires
significant computational resources for retraining. In this
work, we propose using eigenvector-based compression, re-
ferred to as LOw Rank Decomposition (LoRD) for Code
LLMs. This method does not require expensive retraining
and addresses several limitations of quantization and prun-
ing. Low-Rank Decomposition factorizes a dense matrix of
a neural network as a product of two smaller dense matri-
ces. The LoRD model can leverage the highly optimized
floating-point dense matrix multiplication kernels (NVIDIA,
2007; Blackford et al., 2002) that have been written for mod-
ern hardware. In contrast, quantized models often require
specialized hardware-dependent implementation in order to
enable fast inference. Moreover, the neural network remain-
ing fully-differentiable and all the parameters remaining
trainable even after compression, unlike quantization.

Several previous works have attempted to apply matrix de-
composition methods like SVD, Tucker or Kronecker de-
composition for compression (Ben Noach and Goldberg,
2020; Tahaei et al., 2022; Edalati et al., 2022). However,
these have been limited to small language models like Bert
(Devlin et al., 2019) and GPT2 (Radford et al., 2019), and
have shown success only on narrow task-specific use cases
or after retraining of neural network, often only with teacher-
guided distillation supervision. These works have observed
that weight matrices are not low rank and adapt methods
like Singular Value Decomposition for data-aware decom-
position of weights (Chen et al., 2021b; Hsu et al., 2022;
Yu and Wu, 2023). We adapt these approaches for Large
Language Models over Python code, and show that these
models can be low-rank decomposed to compress and speed
up inference without the need for retraining entire neural
network.

To summarize, the contributions of this work are as follows:
This work studies low-rank decomposition across two fami-
lies of code LLMs - StarCoder and CodeGen (section 2.2)
for varying parameter sizes, establishing the potential for

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

LoRD: Low-Rank Decomposition of Monolingual Code LLMs for One-Shot Compression

(a) Perplexity vs % Rank Reduction for Code-
Gen Models.

(b) Perplexity vs % Rank Reduction for Star-
Coder Models.

Figure 1. Perplexity vs % Reduction in Rank for Different Models.

reducing the rank of models through decomposition. It ex-
amines these trends across different kinds of linear layers
in a transformer block, observing the potential for up to a
39.58% rank reduction with less than a 1% change in per-
plexity. Next, we proposes various considerations regarding
layer selection, grouping, and optimal rank for compressing
the models to achieve optimal compression and inference
speedup (section A.3). Notably, the StarCoder 16B model,
scoring 31.67 in HumanEval Pass@1 (Chen et al., 2021a), is
compressed to 13.2B parameters with a similar HumanEval
score of 31.57, and further down to 12.3B parameters with
a score of 29.22 (section 3.2). LoRD models offer an in-
ference speedup of as high as 22.35% with just one line of
change in huggingface’s transformer library (section 3.3). It
demonstrates that these LoRD models can be further com-
pressed via the near-lossless quantization method of SpQR
(Dettmers et al., 2023b) to reduce their precision to 8 and
4 bits without any further reduction in HumanEval perfor-
mance (section A.6.1). Finally, these decomposed models
also reduce the memory requirements of adapter finetuning
by 21.2% over QLoRA (section A.5).

2. Code LLMs are Low Rank Decomposable
2.1. Experimental Settings

We limit ourselves to evaluating the Python code-writing
capabilities of monolingual code LLMs. We take Python
calibration dataset from the stack (Kocetkov et al., 2022)
and consider the corresponding subset of the stack smol
(Bigcode, 2022) as validation data. We filter out those se-
quences which are less than 1024 tokens or 10240 charac-
ters in length. In our case study, we consider the CodeGen
mono and StarCoder model families. The CodeGen mono
models are available in various sizes with 350M, 2B, 6B,
and 16B parameters. On the other hand, StarCoder models
include a specialized version of StarCoderBase 16B, which
is a 16B model further trained on Python code sourced from
the stack dataset’s training split. Additionally, within the

StarCoder family, we include StarCoderBase models at 3B
and 7B parameter scales, due to the lack of their monolin-
gual counterparts. All our experiments were performed on
a single A100 GPU.

2.2. Change in Perplexity across Reduction in Rank

For studying the trends of increase in perplexity with a
reduction in rank across different model sizes focusing on
CodeGen and StarCoder models as case studies. We set a
fixed low-rank r for all the layers. Later, we will discuss
how to achieve optimal compression and inference speedup
via low-rank decomposition in section §3.

Results: Analysis of the perplexity versus rank reduction
trends in both CodeGen and StarCoder as depicted in Fig-
ures 1(a) and 1(b) show the trends of increase in perplexity
across reduction in rank of the weight matrix. For the largest
models in both families, we observe only about a 1% in-
crease in perplexity for 10% reduction in rank, and upto
35% reduction in rank for less than 10% increase in per-
plexity. However, the smallest model i.e. CodeGen Mono
350M can only be decomposed to 35% rank reduction for
a similar drop in perplexity. We observe that the perplexity
changes much slower for larger models as the % rank re-
duces, and hence can be compressed more. This is similar to
observations in quantization and pruning (Li et al., 2020). It
should be noted that for most models, more than 50% leads
to significant output quality degradation. The detailed table
is provided in appendix A.5

3. Consideration for Optimal Compression
and Speedup through Decomposition

In this section, We discuss how to adapt the low rank decom-
position optimally for model size reduction and achieving
inference speedup without significant reduction in models’
output quality. Following (Kim et al., 2023), memory band-
width is assumed to be the bottleneck for inference, making
speedups for decoding directly proportional to the size of

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

LoRD: Low-Rank Decomposition of Monolingual Code LLMs for One-Shot Compression

(a) CodeGen 16B. (b) StarCoder 16B.

Figure 2. Parameter Reduction vs perplexity for decomposition across various layers.

the transformer model.

3.1. Low-Rank Decomposition in Transformer: To
which weight matrices do we apply LoRD?

LoRD can be applied to any subset of weight matrices in a
neural network. Transformer models have varying aspect
ratios across their linear layers: α = 1.00 for output pro-
jections after attention, α = 0.96 for multi-query attention
projections, α = 0.25 for typical MLP projections with an
expansion factor of 4, and as low as α = 0.12 for the em-
bedding and language model head projection in CodeGen
16B with a vocab size of 51,200. Figure 4 (in appendix)
plots the % change in model sizes across various percentage
reductions in rank for matrices with different aspect ratios.

For square and near-square matrices, a small rank reduc-
tion doubles the size of the linear layer after decomposition.
Only after a 50% reduction does the size after decomposi-
tion match the original matrix. A significant degradation in
performance is observed at this level of rank decomposition,
as discussed in §2.2. All the previous works on smaller
models, address this by retraining the model (Yu and Wu,
2023; Chen et al., 2021b; Hsu et al., 2022; Ben Noach and
Goldberg, 2020), often via knowledge distillation super-
vision (Hinton et al., 2015; Sanh et al., 2019) on specific
narrow tasks. However, retraining is infeasible for larger
models, prompting us to skip decomposing matrices with
very high aspect ratios, such as output projection or multi-
query attention. In contrast, the weights in MLP achieve
parity at only 20% rank reduction. While embedding and
LM head layers can be compressed through decomposition,
as has been done for smaller transformer models (Baevski
and Auli, 2019; Lan et al., 2020), they contribute only a
very small portion of the model’s weight. Therefore, we do
not consider decomposing these matrices. Below, we will
describe the set of considerations and analyses for helping
with optimal compression via LoRD.

Weight Sharing and Aspect Ratio Reduction through
Layer Grouping: To reduce the aspect ratio of matrices,

we group layers with the same input vector to share the same
bottleneck matrix after decomposition. This enables re-use
of computation and sharing of weights, thereby reducing
the aspect ratio and achieving compression with lower rank
reduction. Candidate layers for grouping include the query,
key and value projection matrices in multi-headed attention
with aspect ratio reduced to α = 0.33 and the gating layer
in SwiGLU (Shazeer, 2020) with the first linear layer of
MLP in models like LLaMa (Touvron et al., 2023) with
α = 0.1875.

Layer Sensitivity for Optimal Low-Rank Decomposition:
We conduct empirical analyses to study the sensitivity of
different layers to low-rank decomposition across the largest
model among the two model families. Figure 2 illustrates
the increase in perplexity versus reduction in model parame-
ters. Decomposing all linear layers achieves the parity point
much later than any single linear layer with a low aspect
ratio. For CodeGen, the attention weight matrix (query, key,
and value projections) offers the least increase in perplexity
for the highest drop in parameter count. This makes these
these layers most suitable for decomposition, showing less
than 1% increase in perplexity even after 39.58% rank re-
duction. We also observe the mlp2 (downscaling mlp) suited
better for decomposition over mlp1 (upscaling mlp), making
mlp2 a promising candidate for low-rank decomposition in
the StarCoder model.

Preferred ranks for efficient computation: On modern
hardware accelerators like GPU and their corresponding
software stacks, matrix multiplication kernels are faster.
Given their dimensions are divisible by a high factor of 2.

3.2. Performance on LoRD models

We perform low-rank decomposition on the largest models
of the StarCoder and CodeGen families (16B), varying the
ranks for both. The detailed framework for building com-
pressed LoRD models are provided in Appendix A.4. We
consider decomposing layers that offer the most parameter
reduction (§A.3) with the least increase in perplexity - MLP

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

LoRD: Low-Rank Decomposition of Monolingual Code LLMs for One-Shot Compression

Table 1. Human Eval Score of LoRD across StarCoder and CodeGen.
StarCoder 16B CodeGen 16B Mono

Model Type Rank Pass @ 1 Pass @ 10 Model Type Rank Pass @ 1 Pass @ 10

Base Model 6144 31.67 48.28 Base Model 6144 29.02 46.34
LoRDCoder 14.9B 4480 33.18 48.41 LoRDCoder 15.9B 4480 29.08 46.95
LoRDCoder 14.5B 4096 31.69 45.12 LoRDCoder 15.6B 4096 28.90 46.24
LoRDCoder 13.8B 3584 30.90 47.56 LoRDCoder 15.1B 3584 28.54 45.73
LoRDCoder 13.2B 3072 31.57 45.36 LoRDCoder 14.7B 3072 27.99 43.29
LoRDCoder 12.6B 2560 29.84 42.31 LoRDCoder 14.3B 2560 27.32 45.12
LoRDCoder 12.3B 2304 29.22 40.12 LoRDCoder 14.1B 2304 27.07 41.46

2 for StarCoder and attention for CodeGen. We report the
Pass@1 and Pass@10 scores over the Human Eval dataset
(Chen et al., 2021a) using the code-eval GitHub repo (Bacaj,
2023) in Table 1.

Results: We observe that StarCoder models can be low-
rank decomposed to 13.2B parameters (50% rank reduction)
with no drop in Pass@1 performance. CodeGen models also
exhibit a consistent trend in Human Evaluation performance
when assessed in terms of rank reduction. However, when
comparing reductions in parameter count, CodeGen models
experience a significant decline in HumanEval scores due
to the higher aspect ratio of the decomposed matrix. It
noteworthy that certain compressed models exhibit a slight
improvement in Pass@1 compared to the base model. This
trend of slight enhancement resulting from compression
is also observed across various metrics and benchmarks
in other compression efforts (Frantar and Alistarh, 2023;
Cerebras, 2022).

3.3. Speedup from LoRD

Next, we examine the inference speedup of the models over
the standard cuBLAS floating point kernels. We use the
standard Huggingface implementation (Wolf et al., 2020)
of Starcoder with pytorch backend (Paszke et al., 2019)
utilizing standard cuBLAS kernels on A100 GPUs. LoRD
decomposed models were implemented by modifying just
one line of code to replace an MLP with an extra linear layer
1 for inference. We benchmark over 1024 tokens and 512
tokens sequence, averaged across 10 runs with warm up of
3 runs. The relative time taken and model size were plotted
against the reduction in rank, as shown in Figure 3.

Results: Inference speedups as high as 22.35% are observed
for decomposed models. Generally, the lines in the graph
exhibit a downward slope, indicating that a reduction in
rank beyond 25% typically results in decreased inference
time and model size. However, it’s important to note that
the underlying hardware, as well as associated software
kernels, significantly influence the speedup gains. We notice
huge gains, when the rank is rounded off to a multiple of
higher power of 2 (like 4096 and 2560 at 33% and 58%
rank reduction), despite slight reduction in model size. In

1
nn.Linear(in, out) -> nn.Sequential(nn.Linear(in,

rank), nn.Linear(rank, out))

Figure 3. Time and Model size of StarCoder 16B across ranks.

contrast, for certain ranks with multiples of lower powers
of 2 (like 3584 and 2304 at 41% and 62% rank reduction)
are slower than those at slightly higher ranks. It is worth
noting that the impact of hardware inefficient matrix shape
is less significant for longer tokens sequence of 1024. This
is a consequence of O(n2) attention overhead starting to
become more significant, especially in the absence of SoTA
attention implementation techniques (Rabe and Staats, 2021;
Dao et al., 2022; Dao, 2023).

4. Conclusion
We investigated the compression of monolingual code gen-
eration model family using one-shot compression paradigm:
low-rank decomposition. Analyzing the change in perplex-
ity with the change in rank across model families such as
StarCoder and CodeGen, as well as their individual layers.
We observed that the rank of these models can be reduced
by up to 39.58% with less than a 1% change in perplex-
ity. Subsequently, we proposed considerations for one-shot
compression of these models using LoRD, achievable un-
der 10 minutes on Nvidia A100 GPUs. We compressed
StarCoder 16B to 13.2B parameters with no drop in Hu-
manEval pass@1 and only a minor drop in HumanEval
pass@1 to 12.3B parameters, achieving speedups of up to
22.35%. Furthermore, the LoRD models are compatible
with near-lossless quantization techniques such as SpQR,
offering additional gains from quantization-based compres-
sion in addition to those from decomposition.

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

LoRD: Low-Rank Decomposition of Monolingual Code LLMs for One-Shot Compression

References
A. Bacaj. code-eval. https://github.com/
abacaj/code-eval, July 2023.

A. Baevski and M. Auli. Adaptive input representations for
neural language modeling. In International Conference
on Learning Representations, 2019. URL https://
openreview.net/forum?id=ByxZX20qFQ.

M. Ben Noach and Y. Goldberg. Compressing pre-trained
language models by matrix decomposition. In Proceed-
ings of the 1st Conference of the Asia-Pacific Chapter of
the Association for Computational Linguistics and the
10th International Joint Conference on Natural Language
Processing, pages 884–889, Suzhou, China, Dec. 2020.
Association for Computational Linguistics. URL https:
//aclanthology.org/2020.aacl-main.88.

P. Bigcode. The stack smol, 2022. URL
https://huggingface.co/datasets/
bigcode/the-stack-smol.

L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C.
Whaley, J. Demmel, J. Dongarra, I. Duff, S. Hammarling,
G. Henry, et al. An updated set of basic linear algebra
subprograms (blas). ACM Transactions on Mathematical
Software, 28(2):135–151, 2002.

T. Cerebras. Creating sparse gpt-3 mod-
els with iterative pruning, 11 2022. URL
https://www.cerebras.net/blog/
creating-sparse-gpt-3-models-with-iterative-pruning.

S. Chaudhary. Code instructions dataset. https:
//huggingface.co/datasets/sahil2801/
code_instructions_120k, Jun 2023.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto,
J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brock-
man, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf,
G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder,
M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Win-
ter, P. Tillet, F. P. Such, D. Cummings, M. Plappert,
F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss,
A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin,
S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr,
J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Rad-
ford, M. Knight, M. Brundage, M. Murati, K. Mayer,
P. Welinder, B. McGrew, D. Amodei, S. McCandlish,
I. Sutskever, and W. Zaremba. Evaluating large language
models trained on code, 2021a.

P. Chen, H.-F. Yu, I. Dhillon, and C.-J. Hsieh. Drone:
Data-aware low-rank compression for large nlp mod-
els. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
P. Liang, and J. W. Vaughan, editors, Advances

in Neural Information Processing Systems, vol-
ume 34, pages 29321–29334. Curran Associates, Inc.,
2021b. URL https://proceedings.neurips.
cc/paper_files/paper/2021/file/
f56de5ef149cf0aedcc8f4797031e229-Paper.
pdf.

T. Dao. Flashattention-2: Faster attention with better paral-
lelism and work partitioning, 2023.

T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Re. Flashat-
tention: Fast and memory-efficient exact attention with
IO-awareness. In A. H. Oh, A. Agarwal, D. Belgrave,
and K. Cho, editors, Advances in Neural Information Pro-
cessing Systems, 2022. URL https://openreview.
net/forum?id=H4DqfPSibmx.

T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer.
Qlora: Efficient finetuning of quantized llms, 2023a.

T. Dettmers, R. Svirschevski, V. Egiazarian, D. Kuznedelev,
E. Frantar, S. Ashkboos, A. Borzunov, T. Hoefler, and
D. Alistarh. Spqr: A sparse-quantized representation for
near-lossless llm weight compression, 2023b.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota, June 2019. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/
N19-1423. URL https://aclanthology.org/
N19-1423.

A. Edalati, M. Tahaei, A. Rashid, V. Nia, J. Clark, and
M. Rezagholizadeh. Kronecker decomposition for GPT
compression. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 219–226, Dublin, Ire-
land, May 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.acl-short.24. URL https:
//aclanthology.org/2022.acl-short.24.

R. Feng, K. Zheng, Y. Huang, D. Zhao, M. Jordan, and
Z.-J. Zha. Rank diminishing in deep neural networks.
In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, edi-
tors, Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?
id=tIqzLFf3kk.

E. Frantar and D. Alistarh. Sparsegpt: Massive language
models can be accurately pruned in one-shot, 2023.

E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh. OPTQ:
Accurate quantization for generative pre-trained trans-
formers. In The Eleventh International Conference

https://github.com/abacaj/code-eval
https://github.com/abacaj/code-eval
https://openreview.net/forum?id=ByxZX20qFQ
https://openreview.net/forum?id=ByxZX20qFQ
https://aclanthology.org/2020.aacl-main.88
https://aclanthology.org/2020.aacl-main.88
https://huggingface.co/datasets/bigcode/the-stack-smol
https://huggingface.co/datasets/bigcode/the-stack-smol
https://www.cerebras.net/blog/creating-sparse-gpt-3-models-with-iterative-pruning
https://www.cerebras.net/blog/creating-sparse-gpt-3-models-with-iterative-pruning
https://huggingface.co/datasets/sahil2801/code_instructions_120k
https://huggingface.co/datasets/sahil2801/code_instructions_120k
https://huggingface.co/datasets/sahil2801/code_instructions_120k
https://proceedings.neurips.cc/paper_files/paper/2021/file/f56de5ef149cf0aedcc8f4797031e229-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f56de5ef149cf0aedcc8f4797031e229-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f56de5ef149cf0aedcc8f4797031e229-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f56de5ef149cf0aedcc8f4797031e229-Paper.pdf
https://openreview.net/forum?id=H4DqfPSibmx
https://openreview.net/forum?id=H4DqfPSibmx
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/2022.acl-short.24
https://aclanthology.org/2022.acl-short.24
https://openreview.net/forum?id=tIqzLFf3kk
https://openreview.net/forum?id=tIqzLFf3kk

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

LoRD: Low-Rank Decomposition of Monolingual Code LLMs for One-Shot Compression

on Learning Representations, 2023. URL https://
openreview.net/forum?id=tcbBPnfwxS.

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge
in a neural network, 2015.

Y.-C. Hsu, T. Hua, S. Chang, Q. Lou, Y. Shen, and H. Jin.
Language model compression with weighted low-rank
factorization. In International Conference on Learning
Representations, 2022. URL https://openreview.
net/forum?id=uPv9Y3gmAI5.

E. J. Hu, yelong shen, P. Wallis, Z. Allen-Zhu, Y. Li,
S. Wang, L. Wang, and W. Chen. LoRA: Low-rank adap-
tation of large language models. In International Confer-
ence on Learning Representations, 2022. URL https:
//openreview.net/forum?id=nZeVKeeFYf9.

S. Kim, C. Hooper, A. Gholami, Z. Dong, X. Li, S. Shen,
M. W. Mahoney, and K. Keutzer. Squeezellm: Dense-
and-sparse quantization, 2023.

D. Kocetkov, R. Li, L. B. Allal, J. Li, C. Mou, C. M. Ferran-
dis, Y. Jernite, M. Mitchell, S. Hughes, T. Wolf, D. Bah-
danau, L. von Werra, and H. de Vries. The stack: 3 tb of
permissively licensed source code, 2022.

Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and
R. Soricut. Albert: A lite bert for self-supervised learning
of language representations. In International Conference
on Learning Representations, 2020. URL https://
openreview.net/forum?id=H1eA7AEtvS.

Z. Li, E. Wallace, S. Shen, K. Lin, K. Keutzer, D. Klein,
and J. E. Gonzalez. Train large, then compress: Re-
thinking model size for efficient training and inference
of transformers. In Proceedings of the 37th International
Conference on Machine Learning, ICML’20. JMLR.org,
2020.

E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou,
S. Savarese, and C. Xiong. Codegen: An open large lan-
guage model for code with multi-turn program synthesis.
In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.
net/forum?id=iaYcJKpY2B_.

C. NVIDIA. Compute unified device architecture
(cuda). Website, 2007. URL https://developer.
nvidia.com/cuda-toolkit. Accessed: 2023-09-
17.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
and S. Chintala. PyTorch: An Imperative Style, High-
Performance Deep Learning Library, chapter ., page .
Curran Associates Inc., Red Hook, NY, USA, 2019.

G. Penedo, Q. Malartic, D. Hesslow, R. Cojocaru, A. Cap-
pelli, H. Alobeidli, B. Pannier, E. Almazrouei, and J. Lau-
nay. The refinedweb dataset for falcon llm: Outperform-
ing curated corpora with web data, and web data only,
2023.

S. Peng, E. Kalliamvakou, P. Cihon, and M. Demirer. The
impact of ai on developer productivity: Evidence from
github copilot, 2023.

M. N. Rabe and C. Staats. Self-attention does not need
o(n2) memory, 2021.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and
I. Sutskever. Language models are unsupervised multitask
learners. OpenAI Blog, 1(8), 2019.

B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E.
Tan, Y. Adi, J. Liu, T. Remez, J. Rapin, A. Kozhevnikov,
I. Evtimov, J. Bitton, M. Bhatt, C. C. Ferrer, A. Grattafiori,
W. Xiong, A. Défossez, J. Copet, F. Azhar, H. Touvron,
L. Martin, N. Usunier, T. Scialom, and G. Synnaeve.
Code llama: Open foundation models for code, 2023.

V. Sanh, L. Debut, J. Chaumond, and T. Wolf. Distilbert,
a distilled version of bert: smaller, faster, cheaper and
lighter, 2019.

N. Shazeer. Glu variants improve transformer, 2020.

B. Shen, J. Zhang, T. Chen, D. Zan, B. Geng, A. Fu,
M. Zeng, A. Yu, J. Ji, J. Zhao, Y. Guo, and Q. Wang.
Pangu-coder2: Boosting large language models for code
with ranking feedback, 2023.

M. Sun, Z. Liu, A. Bair, and J. Z. Kolter. A simple and
effective pruning approach for large language models,
2023.

M. Tahaei, E. Charlaix, V. Nia, A. Ghodsi, and M. Reza-
gholizadeh. KroneckerBERT: Significant compression
of pre-trained language models through kronecker de-
composition and knowledge distillation. In Proceedings
of the 2022 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 2116–2127, Seat-
tle, United States, July 2022. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2022.naacl-main.
154. URL https://aclanthology.org/2022.
naacl-main.154.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A.
Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro,
F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lam-
ple. Llama: Open and efficient foundation language
models, 2023.

https://openreview.net/forum?id=tcbBPnfwxS
https://openreview.net/forum?id=tcbBPnfwxS
https://openreview.net/forum?id=uPv9Y3gmAI5
https://openreview.net/forum?id=uPv9Y3gmAI5
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://aclanthology.org/2022.naacl-main.154
https://aclanthology.org/2022.naacl-main.154

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

LoRD: Low-Rank Decomposition of Monolingual Code LLMs for One-Shot Compression

L. Wang, C. Ma, X. Feng, Z. Zhang, H. Yang, J. Zhang,
Z. Chen, J. Tang, X. Chen, Y. Lin, W. X. Zhao, Z. Wei,
and J.-R. Wen. A survey on large language model based
autonomous agents, 2023.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue,
A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz,
J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jer-
nite, J. Plu, C. Xu, T. Le Scao, S. Gugger, M. Drame,
Q. Lhoest, and A. Rush. Transformers: State-of-the-
art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pages
38–45, Online, Oct. 2020. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2020.emnlp-demos.
6. URL https://aclanthology.org/2020.
emnlp-demos.6.

H. Yu and J. Wu. Compressing transformers: Features
are low-rank, but weights are not! Proceedings of
the AAAI Conference on Artificial Intelligence, 37(9):
11007–11015, Jun. 2023. doi: 10.1609/aaai.v37i9.
26304. URL https://ojs.aaai.org/index.
php/AAAI/article/view/26304.

A. Appendix
A.1. Background on Low-Rank Decomposition

Let L denote the linear layer of an LLM model, associated
with the weights W ∈ Rd1×d2 and bias b ∈ Rd1×1, and let
dmin = min(d1, d2) and dmax = max(d1, d2). A low-rank
decomposition (a.k.a. low-rank factorization) of L yields
a new layer L̃, with two weight matrices A ∈ Rr×d2 and
B ∈ Rd1×r, and a bias b̃ ∈ Rd1×1, where r << dmin, such
that for a batch of n input vectors, X ∈ Rd2×n, the batch
of output vectors Y ∈ Rd1×n is given by

Y = L̃(X) = BAX + b̃ ≈ L(X) = WX + b. (1)

The Singular Value Decomposition (SVD) offers the best
r-rank approximation of matrix W ∈ Rd1×d2 . First W can
be decomposed as W = USV T , where U ∈ Rd1×d1 and
V ∈ Rd2×d2 are orthogonal matrices and S ∈ Rd1×d2 is a
diagonal matrix of singular values with entries in decreasing
order. Selecting the top k singular values and associated
vectors gives a decomposition of W into a product of two
low-rank matrices W ≈ BA as follows

W = (U:,:rS:r,:r)︸ ︷︷ ︸
B∈Rd1×r

(V:r,:)︸ ︷︷ ︸
A∈Rr×d2

, (2)

where :a,:b denotes a slice operation over a matrix that gives
its first a rows and b columns.

Eigendecomposition is another decomposition method. We
can represent the eigendecomposition of a square matrix
Ŵ ∈ Rd1×d1 as Ŵ = QΛQT , if Ŵ is positive semi-
definite. Here Q ∈ Rd1×d1 is an orthogonal matrix whose
columns are the eigenvectors of W , and Λ ∈ Rd1×d1 is a di-
agonal matrix whose entries are the eigenvalues of W sorted
in decreasing order. Similar to SVD, we can decompose
Ŵ as a product of two low ranked matrices Ŵ ≈ BA by
retaining only the largest r eigenvalues (and corresponding
eigenvectors) as follows:

Ŵ = (Q:,:rΛ:r,:r)︸ ︷︷ ︸
B∈Rd1×r

(QT
:r,:)︸ ︷︷ ︸

A∈Rr×d1

(3)

Since Q is orthonormal and the eigenvalues Λ are sorted in
descending order, Q:,:rQ

T
:,:r≈ I where I is identity matrix

of dimension d1.

SVD gives the optimal low-rank decomposition of matrix in
terms of Frobenius norm; however it does not take the data
distribution into account. Approaches like weighted SVD
(Hsu et al., 2022) and SVD over both weight and data (Chen
et al., 2021b) have been proposed but are prohibitively ex-
pensive to scale to larger models for their requirement of
backpropagation over calibration dataset. SVD over very
large weight matrices is also very computationally expen-
sive. So, we instead leverage the observation that activations
in transformers are low-ranked (Feng et al., 2022) and adapt
the more heuristically driven approach of Atomic Feature
Mimicking (AFM) (Yu and Wu, 2023) that creates low rank
matrices conditioned on a small amount of calibration data.
Specifically, consider the eigen-decomposition of covari-
ance over Y as

E[yyT]− E[y]E[y]T = Q̂Λ̂Q̂T (4)

Here Q̂ is a matrix of its eigenvectors, hence Q̂:,:rQ̂
T
:,:r ≈

I. Using this, we can write the output vector Y as Y ≈
Q̂:,:rQ̂

T
:,:rY . By writing Y in terms of W , X and b from

Equation 1, we have:

Y ≈ Q̂:,:rQ̂
T
:,:rWX + Q̂:,:rQ̂

T
:,:rb (5)

Comparing to Equation 1, this gives us B = Q̂:,:r ∈ Rd1×r,
A = Q̂T

:,:rW ∈ Rr×d2 and b̃ = Q̂:,:rQ̂
T
:,:rb ≈ b. This

approach is also straightforward to adapt for LLMs like
LLaMa (Touvron et al., 2023), Falcon (Penedo et al., 2023),
CodeLLaMa (Rozière et al., 2023) which do not have a bias
term in the linear layer by setting b̃ to zero vector.

A.2. Dataset and Model

Our study focuses on evaluating Python, one of the most
popular programming languages. This choice is driven by
the popularity and availability of datasets, open monomod-
els, and more comprehensive evaluation suites compared to
other languages.

https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://ojs.aaai.org/index.php/AAAI/article/view/26304
https://ojs.aaai.org/index.php/AAAI/article/view/26304

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

LoRD: Low-Rank Decomposition of Monolingual Code LLMs for One-Shot Compression

A.2.1. DATASET

The Stack (Kocetkov et al., 2022) is a large dataset of
permissively licensed source code in 30 programming lan-
guages created by the BigCode Project for training code-
generating AI systems.

Stack Smol(Bigcode, 2022): A small subset (0.1%) of the
dataset from the Stack comprises 10,000 random samples
from each programming language in the original dataset.

In this paper, we utilize a calibration dataset derived from
Python subset of the Stack. For validation purposes, we
rely on the Python subset of Stack Smol. We also filter out
sequences that are less than 1024 or 10240 characters in
length.

A.2.2. MODELS

In this paper, we consider the following Code models for
experimentation

CodeGen {350M, 2B, 6B, 16B}-Mono (Nijkamp et al.,
2023) is family of an open-source autoregressive language
model for program synthesis trained sequentially on code
dataset. We specifically use Codegen Mono family of mod-
els, which are initialized with CodeGen-Multi and further
pre-trained on a Python programming language dataset. In
our study, we use four different sizes of the CodeGen Mono
family: 350M, 2B, 6B, and 16B.

StarCoderbase is a family of open-source models trained
on over 80 programming languages from The Stack dataset.
These models employ Multi Query Attention and were
trained using the Fill-in-the-Middle objective, with a context
window of 8,192 tokens. In this study, we use and refer the
StarCoderBase 3B and 7B models as StarCoder 3B and 7B,
respectively due to the unavailability of their Python fine-
tuned counterpart. The StarCoder 16B model is a version of
the StarCoderBase 16B model that has been further trained
on a Python dataset. It should be noted that this model hasn’t
been further trained on Python datasets. However, our re-
sults for this model are consistent with the results of models
that have been further fine-tuned on Python Datasets.

A.3. Key concepts for compression through
Decomposition

Threshold for Effective size reduction: Consider a weight
matrix W ∈ Rd1×d2 of a transformer layer with low rank
decomposed A ∈ Rr×d2 and B ∈ Rd1×r. The number of
parameters before and after decomposition respectively
are d1d2 and r(d1 + d2). Therefore, if r > d1d2

(d1+d2)
, (i.e a

decomposition with small rank reduction), then the size of
the model after decomposition can even be higher than the
original models.

Impact of Matrix Aspect Ratio on Compression: Let the
ratio of the smaller dimension to the larger dimension of
the matrix (i.e. the aspect ratio) be α = dmin

dmax
. For square

matrix, α = 1 and for tall or fat matrices α << 1.

The percentage change in parameters from decomposition,
in terms of percent change in rank %∆r = 100 ∗ dmin−r

dmin
%

and aspect ratio can be expressed as:

100 ∗ r(dmax + dmin)− dmaxdmin

dmaxdmin
= 100α− (1 + α)%∆r

(6)

It should be noted that change in parameters from decom-
position can either be positive (the number of parameters
increased after decomposition), or negative (the number
of parameters decreased after decomposition). In order
to achieve model compression and consequently inference
speedups, one would want a very high negative percentage
change in parameters.

Figure 4. Parity Point across various aspect ratios (α) of the differ-
ent linear layers in transformers.

Parity Point for Compression: Using Eq. 6, one can ob-
serve that little reduction in rank may lead to an increase
in model parameters instead of decreasing. For instance,
square matrices (α = 1) will have 100% increase (i.e dou-
bling in size), then %∆r → 0+ and only after the rank is
reduced by more than 50%, will the Parity Point of the rank
reduction be reached, that offers same or lesser number of
a parameter in the decomposed layer as the original matrix.
This parity point for tall or fat matrices (α → 0+), can be
achieved with a very small percent reduction in rank and can
start giving a reduction in model size. For compression to be
achieved, we would want to reduce the rank by an amount
to cross this parity point threshold. However, reducing the

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

LoRD: Low-Rank Decomposition of Monolingual Code LLMs for One-Shot Compression

rank by a lot can degrade performance significantly. So we
must take the aspect ratio into account, in order to achieve
compression without much reduction in rank.

A.4. Compressed LoRD Models

In this section, we provide a framework for creating opti-
mally compressed LoRD models that are used to create
a family of LoRD models for both StarCoder 16B and
CodeGen16B-Mono.

Algorithm 1 LoRD model framework

1: Input: Large language model M , target rank reduction
percentage r, proxy dataset D

2: Output: Compressed language model M ′

3: Perform Layer Grouping to reduce aspect ratio.
4: Calculate the aspect ratios α of all layers
5: Identify critical layer(s) L in M (using layer sensitivity

test and α)
6: for each layer l in L do
7: Compute rank k of weight matrix Wl

8: Set target rank k′ = (1− r)× k
9: Invoke Low Rank Decomposition Step on layer l

with M , D, and k′

10: Update M with compressed layer weights and biases
11: end for
12: Evaluate M ′ performance (e.g., Pass@k, perplexity)
13: Optionally, adjust r and repeat steps 2-6 for desired

compression-performance trade-off
14: Return M ′

Algorithm 2 Low Rank Decomposition Step (Adopted
Atomic Feature Mimicking for LLMs)

1: Input: Original model M with weight W in the l-th
layer, calibration dataset D, pre-set rank k.

2: Output: Two decomposed layer with weights B and A
.

3: for each sample x in D do
4: Forward pass M(x) to get the output feature y in the

l-th layer and update E[yyT] and E[y].
5: end for
6: Calculate the eigenvectors Q̂ based on Eq. 4.
7: Extract the first k columns of Q̂ into Q̂k, and obtain

B = Q̂k, and A = Q̂T
kW .

8: Return B,A.

A.5. Parameter Efficient tuning of LoRD models

We test the potential for using LoRD to further reduce the
memory usage over existing parameter-efficient techniques.
We consider the code instruction dataset (Chaudhary, 2023)
and filter those examples that pertains to python program-

ming language. We use QLoRA (Dettmers et al., 2023a),
which is an even more memory efficient version of LoRA
(Hu et al., 2022) (shown in figure 5)storing the weights
in quantized format, for fine-tuning for 1 epoch. We com-
pare results from fine-tuning two of the decomposed models
LoRDCoder 13.2B and LoRDCoder 12.3B model to the
StarCoder model. We observe a HumanEval pass@1 of
37.80 and 37.62 across LoRDCoder 13.2B and LoRDCoder
12.3B fine-tuning, competitive to the performance of 37.74
offered by StarCoder model.

A.6. Combining LoRD with Quantization and Pruning

A.6.1. QUANTIZATION

While LoRD enables compression at similar precision levels,
we study whether the decomposed models can be further
compressed through quantization. Table 2 shows the Hu-
manEval pass@1 results for the different LoRDCoder (from
StarCoder 16B) across 8 and 4 bit quantization levels, us-
ing near-lossless quantization technique of SpQR (Dettmers
et al., 2023b).

We observe that the LoRD models can be combined with
quantization for further compression, showing no perfor-
mance drop for 8-bit and very little performance drop on 4-
bit quantization for majority. Slight increase in HumanEval
after quantization is also observed, similar to Pangu-Coder2
(Shen et al., 2023).

Table 2. Human Eval score of quantized LoRDCoder models
Model Pass@1 Pass@1 Pass@1

(FP16) (8-bit) (4-bit)

LoRDCoder 14.9B 33.18 33.17 32.01
LoRDCoder 14.5B 31.69 31.58 32.74
LoRDCoder 13.8B 30.90 31.10 30.73
LoRDCoder 13.2B 31.57 31.52 32.01
LoRDCoder 12.6B 29.84 29.87 30.22
LoRDCoder 12.3B 29.22 29.14 29.45

A.6.2. PRUNING

To explore the possibility of further compressing the LoRD
models, we investigated their potential for additional spar-
sification. This is performed using state-of-the-art (SoTA)
LLM pruning methods as described by Sun et al. (2023).
The experimental results (shown in figure 6), particularly
on the HumanEval benchmark, suggest that pruned LoRD
models (LoRDCoder) maintain competitive performance
compared to traditionally pruned models (e.g., StarCoder).
This indicates that LoRD is not only effective as a standalone
compression strategy but also as a foundational technique
that can be combined with pruning for greater efficiency and
retention of performance in the future.

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

LoRD: Low-Rank Decomposition of Monolingual Code LLMs for One-Shot Compression

d x d
d x r’

r’ x d

d x r’

r’ x d

d x r

r x d

d

r’

h

x

d

r’

h

x

rLoRD
Weights

a) LoRA b) LoRD + LoRA

P r e t r a i n e d
W e i g h t s

A R X R

Y R

W R
X R

Y R B R

Figure 5. Comparing LoRA vs LoRD + LoRA.

Figure 6. Model params vs human eval pass@1 across different
sparsity.

A.7. Comparison of Storage Efficiency of pruned and
LoRD models.

In this section, we delve into a comparative analysis be-
tween pruning and LoRD (Low-Rank Decomposition) Mod-
els. Traditional pruning techniques, which create sparse
matrices by setting certain weights to zero, only show bene-
fits in model size and inference speed at high sparsity levels.
In contrast, the LoRD (Low-Rank Decomposition) compres-
sion technique offers a promising alternative by maintaining
dense matrices that are inherently more compatible with
the matrix multiplication operations on GPUs. This section
compares the efficacy of LoRD with traditional unstructured
pruning methods in terms of parameter reduction, and model
size efficiency.

Pruned models produce sparse matrix weights in the neural

network. Matrix multiplication over sparse matrices is much
slower than the resulting dense matrices in LoRD on most
GPUs. Dense matrices, in addition avoid representation
format overhead that sparse matrices incur from parameter
reduction 2 and often requires specialized kernels for reduc-
ing this overhead (Dettmers et al., 2023b). Dense matrix
multiplication is also easier to implement than sparse matrix
multiplication, especially over quantized models.

The LoRD compression approach not only reduces the pa-
rameter count but also significantly decreases the model
size when compared to pruned models using various sparse
formats. We quantified this by considering a 4-bit quantized
model size across similar parameter counts and evaluated
the storage requirements for LoRD compressed models ver-
sus traditionally pruned models in three sparse formats:
PyTorch’s CSR, SpQR’s custom kernels, and a hypothetical
bitmask representation.

• PyTorch CSR Format: The CSR format, while being
the most efficient sparse format in PyTorch, stores
indices of nonzero elements at 64 bits. For a 4-bit
quantized model, this accumulates to more than 68
bits per parameter due to the inability of PyTorch to
support CSR matrices at lower than 16-bit precision.
Comparatively, LoRD compressed models can save up
to 96 GB at the same parameter count, highlighting a
significant efficiency in storage.

2This overhead in sparse matrix occurs from having to store
indices/bitmasks to indicate which values are present and not. This
can be very significant at low levels of sparsity. PyTorch’s sparse
formats (CSR, CSC, COO) all store indices at int64 format, and
for moderate levels of sparsity (<50%), the sparse matrix takes up
more space than a dense matrix with zero-ed out values.

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

LoRD: Low-Rank Decomposition of Monolingual Code LLMs for One-Shot Compression

Figure 7. 4-bit Quantized Model Size vs Parameter Count

• SpQR Sparse Kernels: These kernels, designed for
floating-point matrices, store indices at 16 bits. Assum-
ing these could support 4-bit quantization, the storage
per nonzero element would exceed 20 bits. The LoRD
models demonstrated a potential saving of up to 24.6
GB compared to SpQR’s format, even before its inte-
gration into mainstream libraries like bitsandbytes.

• Bitmask Sparse Format: Although using a bitmask
for nonzero elements leads to a low 5 bits per parameter
for a 4-bit quantized model, this method suffers from
practical deployment challenges such as the lack of
supportive low-level software and difficulties in paral-
lelization. LoRD models outperform this method by at
least 28% in storage efficiency at equivalent parameter
counts.

A.8. Limitations of LoRD

In our study, several limitations of the LoRD (Low-Rank De-
composition) method for neural network compression have
been identified. First, we observed a notable performance
degradation at high levels of rank reduction. Moreover, the
effectiveness of LoRD is constrained by the aspect ratios
of weight matrices. Our findings indicate that compressing
square or near-square matrices is inefficient, and in certain
cases, small rank reductions can increase model size due
to the inherent aspect ratio of these matrices. Additionally,
the application of LoRD across different transformer archi-
tectures requires sensitivity analysis of individual layers to
determine optimal sections for decomposition. This vari-
ability limits the method’s generalizability across diverse
transformer architectures, necessitating tailored sensitivity
analyses for each model type.

A.9. Perplexity and Reduction in Ranks

We present the changes in perplexity, parameter count, and
percentile ranking resulting from rank reduction. Table 3
details this for the StarCoder model, while Table 4 presents
it for the CodeGen models.

Table 3. Perplexity and Parameter Count Variations in StarCoder
Models Across Rank Reduction

Name Rank Percent Rank Layers perplexity Params

StarCoder-16B 1856 69.79 all 5.002 6.76B
StarCoder-16B 2432 60.42 all 3.56 8.75B
StarCoder-16B 3072 50.00 all 2.698 10.96B
StarCoder-16B 3712 39.58 all 2.278 13.17B
StarCoder-16B 4288 30.21 all 2.064 15.15B
StarCoder-16B 4288 30.21 all 2.064 15.15B
StarCoder-16B 4928 19.79 all 1.935 17.36B
StarCoder-16B 5504 10.42 all 1.888 19.35B
StarCoder-16B 6144 0 all 1.86 21.56B

StarCoder-7B 1664 59.38 all 4.228 4.26B
StarCoder-7B 2048 50.00 all 3.289 5.19B
StarCoder-7B 2432 40.63 all 2.766 6.12B
StarCoder-7B 2880 29.69 all 2.437 7.20B
StarCoder-7B 3264 20.31 all 2.293 8.13B
StarCoder-7B 3712 9.38 all 2.231 9.22B
StarCoder-7B 4096 0 all 2.208 10.15B

StarCoder-3B 1152 59.09 all 4.932 1.81B
StarCoder-3B 1408 50.00 all 3.862 2.17B
StarCoder-3B 1664 40.91 all 3.189 2.54B
StarCoder-3B 1984 29.55 all 2.718 2.99B
StarCoder-3B 2048 27.27 all 2.663 3.09B
StarCoder-3B 2240 20.45 all 2.563 3.36B
StarCoder-3B 2304 18.18 all 2.541 3.45B
StarCoder-3B 2560 9.09 all 2.486 3.82B
StarCoder-3B 2816 0 all 2.463 4.19B

Table 4. Perplexity and Parameter Count Variations in CodeGen
Models Across Rank Reduction

Name Rank Percent Rank Layers Perplexity Params

CodeGen-16B-mono 1856 69.79 all 3.037 6.93B
CodeGen-16B-mono 2432 60.42 all 2.556 8.76B
CodeGen-16B-mono 3072 50.00 all 2.218 10.90B
CodeGen-16B-mono 3712 39.58 all 1.989 13.04B
CodeGen-16B-mono 4288 30.21 all 1.857 14.96B
CodeGen-16B-mono 4928 19.79 all 1.770 17.10B
CodeGen-16B-mono 5504 10.42 all 1.728 19.03B
CodeGen-16B-mono 6144 0 all 1.706 21.17B

CodeGen-6B-mono 1280 68.75 all 3.425 2.77B
CodeGen-6B-mono 1664 59.38 all 2.814 4.02B
CodeGen-6B-mono 2048 50.00 all 2.458 4.85B
CodeGen-6B-mono 2432 40.63 all 2.218 5.68B
CodeGen-6B-mono 2880 29.69 all 2.037 6.65B
CodeGen-6B-mono 3264 20.31 all 1.946 7.48B
CodeGen-6B-mono 3712 9.38 all 1.888 8.45B
CodeGen-6B-mono 4096 0 all 1.863 9.28B

CodeGen-2B-mono 768 70 all 4.443 2.78B
CodeGen-2B-mono 1024 60 all 3.384 1.61B
CodeGen-2B-mono 1280 50 all 2.877 1.94B
CodeGen-2B-mono 1536 40 all 2.546 2.28B
CodeGen-2B-mono 1792 30 all 2.311 2.61B
CodeGen-2B-mono 2048 20 all 2.155 2.95B
CodeGen-2B-mono 2304 10 all 2.063 3.28B
CodeGen-2B-mono 2560 0 all 2.015 3.62B

CodeGen-350M-mono 384 62.5 all 6.332 230.99M
CodeGen-350M-mono 512 50 all 4.153 272.95M
CodeGen-350M-mono 640 37.5 all 3.333 314.90M
CodeGen-350M-mono 704 31.25 all 3.095 335.88M
CodeGen-350M-mono 832 18.75 all 2.797 377.83M
CodeGen-350M-mono 896 12.5 all 2.706 398.81M
CodeGen-350M-mono 1024 0 all 2.600 440.76M

