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ABSTRACT

In this work, we introduce a novel evaluation paradigm for Large Language Models
(LLMs) that compels them to transition from a traditional question-answering role,
akin to a student, to a solution-scoring role, akin to a teacher. This paradigm, fo-
cusing on "reasoning about reasoning," termed meta-reasoning, shifts the emphasis
from result-oriented assessments, which often neglect the reasoning process, to a
more comprehensive evaluation that effectively distinguishes between the cognitive
capabilities of different models. Our meta-reasoning process mirrors "system-2"
slow thinking, requiring careful examination of assumptions, conditions, calcu-
lations, and logic to identify mistakes. This paradigm enables one to transform
existed saturated, non-differentiating benchmarks that might be leaked in data pre-
training stage to evaluation tools that are both challenging and robust against data
contamination. To prove our point, we applied our paradigm to GSM8K dataset and
developed the MR-GSM8K benchmark. Our extensive analysis includes several
state-of-the-art models from both open-source and commercial domains, uncov-
ering fundamental deficiencies in their training and evaluation methodologies.
Specifically, we found the OpenAI o1 models which possess characteristics of
"system-2" thinking excel the other SOTA models by more than 20 absolute points
in our benchmark, supporting our deficiency hypothesis.

1 INTRODUCTION
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Figure 1: Model performances on GSM8K measured in accuracy versus performances on MR-
GSM8K measured in MR-Score. Note that some models score near zero in our benchmark, high-
lighting the limitations of current training and evaluation paradigms.
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Pretrained on trillions of tokens and equipped with billions of parameters, today’s large language
models (OpenAI, 2023; Anthropic, 2023; Touvron et al., 2023) are capable of generating coherent
texts and achieving super-human performances in many tasks (Bubeck et al., 2023; Hendrycks et al.,
2021). With the aim of differentiating cognitive abilities among models, math questions are often
chosen as a proxy evaluation task. However, despite the complexity and diversity of these math
problems, recent state-of-the-art LLMs (OpenAI, 2023; Yu et al., 2023; Gou et al., 2023) have
achieved accuracy rates exceeding 80% (Luo et al., 2023) on multi-step math reasoning datasets like
GSM8K (Cobbe et al., 2021).

Upon detailed examination of the design principles and objectives of current math datasets, we
identified several key shortcomings. Firstly, the majority of these datasets focus on result-oriented
metrics, scoring accuracy based solely on the final answer, without considering the underlying
reasoning process. With the emergence of the chain of thought methodology (Wei et al., 2022) and
its derivative techniques (Chen et al., 2022; Yao et al., 2023) as the de facto standard for evaluating
reasoning processes, we argue that the result-driven evaluation method may be insufficient for a
comprehensive assessment of intended cognitive and reasoning capabilities. Secondly, a recent study
(Paster, 2023) suggests that some LLMs, which achieved state-of-the-art performances in GSM8K
and MATH (Hendrycks et al., 2021) benchmarks, demonstrate unexpectedly low performance when
facing newly released Hungarian high school exams. This raises concerns about data contamination
and potential overfitting to the benchmarks, and it challenges the efficacy of these benchmarks in
differentiating model capabilities.

In response to these identified limitations, we introduced a novel paradigm that shifts the role of the
evaluated model from a question-answering student to a solution-scoring teacher. Specifically, instead
of delivering potential solutions to given questions, which may be subject to data contamination issues,
the evaluated models are now presented with question-solution pairs and tasked with determining
solution correctness, identifying potential first error steps, and providing reasons for errors. This
paradigm shift challenges the evaluated models to engage in meta-reasoning about different reasoning
processes, a concept we term "meta-reasoning" in this paper.

Following this design principle, we have developed a new benchmark named Meta-Reasoning-
GSM8K (MR-GSM8K) and proposed a novel metric called MR-Score. Our benchmark, character-
ized by instances manually labeled by experts and rigorously reviewed, serves as a robust tool for
both qualitative and quantitative assessments of language models. Our findings indicate that most
state-of-the-art models demonstrate a significant performance decline in this more nuanced assess-
ment. As demonstrated in Figure-1, although state-of-the-art models exhibit comparable performance
in GSM8K, there is considerable variance in their effectiveness on our benchmark, with discrepancies
up to more than tenfold.

We argue that our evaluation paradigm not only introduces a metric that are robust against over-fitting
and more effectively differentiates models based on their reasoning processes rather than mere
computational outcomes, but it also exposes fundamental deficiencies within current evaluation and
training methodologies. First, as detailed in Section-5, our experiments revealed that specialized math
models struggle to generalize their reasoning abilities to our new paradigm, regardless of whether they
are directed by specific instructions or through few-shot in-context learning. Second, our empirical
findings indicate that current models still engage in superficial mathematical reasoning, exhibiting
flaws such as a lack of ontological understanding Toh et al. (2023), susceptibility to the reversal curse
Berglund et al. (2023b), and inadequate global comprehension of solution spaces. These issues may
be symptoms of a missing system-2 thinking ability Kahneman (2011), where the model fails to
engage in slow, deliberate reasoning needed to thoroughly examine assumptions, conditions, and
logic for deep error detection. In support of our hypothesis, We empirically found OpenAI o1 models
OpenAI (2024) which possesses traits of "system-2" thinking lead in our benchmark by a large margin
than other SOTA models.

In conclusion, our paper significantly contributes to the field in the following ways:

• We introduce a novel evaluation principle, the accompanying open-source benchmark MR-
GSM8k, and the metric MR-Score.

• We demonstrate the effective transformation of an existing benchmark (e.g., GSM8K) and
how such modification can lead to robust evaluation against potential overfitting and data
contamination.
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• We conduct comprehensive experiments on an array of state-of-the-art models using the MR-
GSM8k benchmark, highlighting critical shortcomings in current training and evaluation
paradigms.

• Through analysis of cognitive levels and examination of holistic coverage on the solution
space, we emphasize the need for benchmarks that go beyond surface-level evaluations,
fostering more sophisticated and nuanced AI development.

2 RELATED WORKS

Complex reasoning tasks, such as math problems, have long been recognized as effective proxies
for gauging the cognitive abilities of language models Sharples et al. (1989); Koncel-Kedziorski
et al. (2016); Szegedy (2020); Polu & Sutskever (2020); Miao et al. (2020); Hendrycks et al. (2021);
Cobbe et al. (2021). These tasks require the ability to understand symbols and text, dissect problems
into logically connected sub-problems, combine results, and synthesize final solutions. They engage
cognitive functions such as pattern induction, formula recall, deductive rule application, and abstract
symbolic reasoning.

GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021) have been prominent benchmarks
for evaluating the math reasoning capabilities of large language models (LLMs) in recent years. The
chain of thought approach, proposed by Wei et al. (2022), addresses multi-step reasoning tasks by
breaking them down into manageable steps. Stanford Alpaca (Taori et al., 2023) has popularized
the knowledge distillation method of cloning abilities from ChatGPT (OpenAI, 2022) by generating
related QA pairs. WizardMath (Luo et al., 2023) further refined this distillation by specifying the
difficulties of the QA pairs in the generation process. Mammoth (Yue et al., 2023) combines chain of
thought and program of thought, finetuning its models with answers generated by GPT-4 (OpenAI,
2023) in either natural or code language. MetaMath (Yu et al., 2023) broadens the variety of question
types by introducing forward/backward reasoning variations.

Despite significant advancements in math reasoning, evidence suggests that large language models
may not fully master reasoning or even understand their own outputs. For example, Dziri et al.
(2023) found that LLMs fail to generalize to questions of varying complexity from their training data.
Arkoudas (2023) demonstrated that, despite occasional analytical brilliance, GPT-4 is still severely
limited in its reasoning capabilities. Similarly, Huang et al. (2023) and Yen & Hsu (2023) have
shown that ChatGPT struggles to judge the correctness of math problem solutions. However, our
work focuses on constructing a qualitative and quantitative evaluation framework and discusses the
evaluation principles and deficiencies of the current training paradigm in greater depth.

3 DATASET CONSTRUCTION

3.1 CONSTRUCTION

Question Types: The MR-GSM8k consists of three distinct types of questions. The first type includes
original GSM8K instances, sampled directly from the dataset Cobbe et al. (2021). The second type
modifies GSM8K questions to include prompts requesting code solutions, as explored in Yue et al.
(2023). The third type, termed reversed reasoning Yu et al. (2023), involves concealing one of the
inputs and asking for solutions that compute the missing input using the provided original answer.
These variations were selected for their potential to broaden the scope of reasoning methodologies
in LLMs. The "Program of Thought" approach, which includes code solutions, was proposed by
Madaan et al. (2022) and has been empirically validated as an effective framework for math reasoning
Yue et al. (2023); Gou et al. (2023). Reversed reasoning, a method that tests whether models can
effectively learn backward relationships, has been recently emphasized in studies such as Berglund
et al. (2023a), presenting additional challenges for these systems.

Solution: For each question collected, we used MetaMath-7B Yu et al. (2023) with a temperature
setting of 1 to generate step-by-step solutions. We found this setting results in outputs with decent
accuracy and nuanced mistakes that we would like the annotators and evaluated models to figure
out. Intentionally, we targeted a result accuracy of approximately 50% for the collected question-
solution pairs, ensuring a balance between correct outcomes and those arising from flawed reasoning
processes.
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### Instruction:

• An electronics seller bought 5 phones 
for $700 each and gives the seller 
$4000 in dollar bills. How much will the 
seller give back in change? Let's write a 
program.

### Instruction:

• An electronics seller bought 5 phones 
for $700 each and gives the seller 
$4000 in dollar bills. How much will the 
seller give back in change? 

### Instruction:

• An electronics seller bought 5 phones for 
$700 each and gives the seller $X in dollar 
bills. How much will the seller give back in 
change? If we know the answer to the 
above question is 500, what is the value of 
unknown variable 'X'?

Input 
Question

Output
Solution

GPT4-Grading 
Output

### Response:

• "Step 1: total_amount_paid = 5 * 700",
• "Step 2: total_amount_given = 4000",
• "Step 3: change = total_amount_given - 

total_amount_paid",
• "Step 4: print(change)"

### Response:

• "Step 1: The seller bought 5 phones for 
5*700 = $<<5*700=3500>>3500.",

• "Step 2: …….",
• "Step 3:……",
• "Step 4: The seller will give back $3500-

$4000 = $<<3500-4000=500>>500 in 
change."

### Response:

• "Step 1: The seller bought 5 phones for 
$700 each, so…….",

• "Step 2: The seller gives the seller $X in 
dollar bills, so ……",

• "Step 3: ……",
• "Step 4: Solving for X, we get: X = 4000.",
• "Step 5: The value of X is 4000.",

• Final Judgement: Wrong
• First Error Step: Step 3
• Error Analysis: The student has 

misunderstood the concept of 
calculating change. It is not possible to 
get a negative change. Instead, the 
student should have checked if the 
total amount given was less than the 
total amount required and then 
calculated the additional amount 
required.

• Final Judgement: Correct
• First Error Step: N/A
• Error Analysis: N/A

• Final Judgement: Correct
• First Error Step: N/A
• Error Analysis: N/A

Original GSM8KPOT GSM8K REVERSED GSM8K

Figure 2: Structure of the MR-GSM8k benchmark and its evaluation paradigm.

3.2 ANNOTATION

For each collected question-solution pair, a panel of selected annotators was recruited to review each
question-solution pair for its reasoning process and determine the following fields:

Solution Correctness: Solutions that yield a final output differing from the established ground truth
are automatically marked as incorrect. However, in cases where the solution’s final output aligns with
the ground truth, annotators are tasked with reviewing the entire reasoning path. Their objective is to
ascertain whether the correct output is the result of a logical and sensible reasoning process.

First Error Step: This attribute is applicable for solutions with either an unmatched final output or
a matched final output underpinned by flawed reasoning. Annotators identify the initial step in the
reasoning process where the logic deviates from correctness. In line with the approach of Lightman
et al. (2023), we dissected GSM8K solutions into discrete steps, each marked by a newline character,
and indexed them accordingly. Each step is then categorized as positive, neutral, or negative. Positive
and neutral steps represent stages in the reasoning process where the correct final output remains
attainable, whereas negative steps indicate a divergence from the path leading to the correct solution.

Error Analysis: Beyond identifying the first erroneous step, annotators are also responsible for
conducting an in-depth analysis of the reasoning that led to the error. This involves an examination of
the solution’s reasoning flow, focusing on the cause of the initial error and what the correct line of
reasoning should have been at that juncture. This error analysis is subsequently compared against
the reasoning errors identified by the evaluated models during testing, to assess their accuracy and
validity.

3.3 QUALITY CONTROL

Annotators: Our panel of annotators is both well-trained and highly selective. Each candidate
is required to thoroughly review our annotation manual (see Appendix-D for details) and watch
a demonstration video. Following this, candidates undergo a trial labeling process using a small,
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Table 1: MR-GSM8K statistics: The first two columns are the numbers of correct and incorrect
solutions. The following two columns hold the averaged lengths of questions and solutions, which are
measured in number of words. The last two column shows the averaged solution steps and averaged
first error steps of the annotated solutions.

Question Types Correct Incorrect Q Length S Length S Steps First Error Steps
Original 693 725 46.9 100.5 7. 3.4
POT 113 109 45.1 34.9 6.5 3.9
Reverse 622 737 62.4 157.0 11.3 4.5
Total 1428 1571 51.5 97.5 8.3 3.9

hold-out dataset. Recruitment decisions are based on performance during this trial. Additionally, four
quality control supervisors, including the first author, are designated to address queries and monitor
the labeling quality throughout the project.

Annotation Procedure: Every question in the MR-GSM8K undergoes multiple levels of scrutiny
before being used in the evaluation process. Initially, each question is labeled twice by different
annotators to ensure consistency. Any discrepancies in labeling, particularly regarding solution
correctness or the identification of the first error step, are flagged and reviewed by a quality control
supervisor. Furthermore, 50 percent of the labeled questions are randomly selected for a second
round of quality control to identify and eliminate any inconsistent error steps or reasons. In the final
stage of quality control, approximately 10 percent of the questions are manually inspected by the
authors to ensure accuracy. This rigorous process ensures that any questions with incorrect error steps
or reasoning are rectified before inclusion in the final dataset.

3.4 DATASET STATISTICS

Table-1 presents the statistics of MR-GSM8K, illustrating the distribution of correct and incorrect
solutions across the three different types of questions. It is noteworthy that the reversed question
type exhibits a significantly longer average question length due to its construction methodology. This
type of question, due to its complex nature, also tends to have longer solution lengths as indicated in
the table. Conversely, questions classified under the Program-of-Thought category, which typically
require code solutions, have the shortest solution lengths, reflecting the concise and succinct nature
of coding language. Despite these variations in average solution lengths and step counts, the average
position of the first error step remains remarkably consistent across all question types.

4 EVALUATION PROCESS & METRIC

Evaluation As illustrated in Figure-2, instead of simply solving a given question, the evaluated
models are now presented with a question and a paired potential solution to score (e.g., the upper
light blue part in the figure). Specifically, the evaluated model (e.g., the lower white part) is required
to predict the correctness of the solution. If the solution is deemed incorrect, the model must further
identify the first-error-step and explain the error-reason. The solution-correctness and first-error-step
are scored automatically based on comparison with manual annotations. Only when the evaluated
model correctly identifies an incorrect solution and its first-error-step will its error-reason be further
examined, either manually or automatically by models (see our discussion on the robustness of
automatic error reason scoring in Appendix-A).

Metrics To provide a unified and normalized score reflecting the overall competence of the evaluated
model, we propose a novel metric named MR-Score, consisting of three sub-metrics. Given the
progressive nature of the evaluation process, the design of these sub-metrics mirrors this step-by-step
approach, with each sub-metric correlating with but focusing on different aspects of the task. The first
sub-metric evaluates the model’s ability to assess overall solution correctness, the second sub-metric
measures the accuracy of identifying the first-error-step, and the third sub-metric assesses the quality
of the model’s explanation of the error. This progressive structure ensures that each stage of the
reasoning evaluation is captured, providing a comprehensive reflection of the model’s ability to
perform detailed, stepwise analysis of the solution.

5
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The first sub-metric is the Matthews Correlation Coefficient (MCC, Matthews (1975)) for binary
classification of solution-correctness.

MCC =
TP × TN − FP × FN√

(TP + FP )× (TP + FN)× (TN + FP )× (TN + FN)
(1)

Here, TP, TN, FP, and FN represent true positive, true negative, false positive, and false negative,
respectively. The MCC score ranges from -1 to +1, where -1 indicates total disagreement between
prediction and observation, 0 suggests performance near random, and +1 denotes perfect prediction.
In the context of this paper, negative values are interpreted as no better than random guesses, and 0 is
set as the cut-off threshold for normalization purposes. Note that biased behavior, such as always
predicting solutions as correct, will then result in an MCC score of 0 instead of ∼50% to ensure
robustness.

The second metric is the accuracy of the first-error-step prediction and unlike the binary prediction of
correctness in the first metric, this is a dynamic multiple-choice problem:

ACCstep =
Ncorrect_first_error_step

Nincorrect_sols
(2)

The third metric calculates the accuracy of identifying both the correct first-error-step and the error-
reason. This metric is essentially an open-ended problem, requiring either a human or a model to
evaluate the accuracy of the provided reasoning behind the error, as it involves nuanced judgment
beyond step identification:

ACCreason =
Ncorrect_error_reason

Nincorrect_sols
(3)

MR-Score is a weighted combination of these three metrics:

MR-Score = w1 ∗max(0,MCC) + w2 ∗ACCstep + w3 ∗ACCreason (4)

The weights w1, w2, and w3 are chosen empirically to maximize differentiation between model
performances by taking the difficulties of each task into account. For an extended discussion on the
design of MR-Score, please refer to Appendix-C.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

To evaluate the performance of different language models on our benchmark, we selected models
from diverse backgrounds. These models vary greatly in size, ranging from a few billion parameters,
such as Qwen-v1.5-1.8B Bai et al. (2023), to 70 billion parameters like Llama3-70B Touvron et al.
(2023), and up to 236 billion parameters as seen in Deepseek-v2-236B Bi et al. (2024). Additionally,
to contrast performances between models fine-tuned from general instructions and those specialized in
in-domain math problems, we included representative math models from the open-source community,
such as WizardMath-v1.1-7B Luo et al. (2023), MAmmoTH-70B Yue et al. (2023), DeepseekMath-
7B-RL Shao et al. (2024), and MetaMath-70B Yu et al. (2023). Furthermore, to explore the differences
between commercial and open-source models, we included models from the OpenAI GPT family
OpenAI (2022) and o1 family OpenAI (2024), as well as the Anthropic Claude-3 series Anthropic
(2023).

Each model was evaluated under a zero-shot setting to assess their ability to follow instructions and
their mathematical reasoning capabilities. Given that some evaluated models are not fine-tuned for
general instruction following, we also tested each model under a few-shot setting to leverage their
in-context learning abilities for understanding mathematical reasoning (see our prompts in Figure-4
and 5 in the Appendix). To ensure reproducibility and minimize variance, the inference temperature
was set to zero across all models except o1 series, whose temperature is hardcoded to 1 in APIs.
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Table 2: Evaluation results on MR-GSM8K. SC-TPR and SC-TNR stand for the true positive and
true negative rate for the solution correctness determination. K stands for number of demos in our
prompts and bold number indicates the best performance within the corresponding model groups.

Model SC-TPR SC-TNR MCC ACCstep ACCreason MR-Score
k=0 k=3 k=0 k=3 k=0 k=3 k=0 k=3 k=0 k=3 k=0 k=3

Open-Source Small

Qwen-1.8B 21.8 33.3 0.1 3.9 0. 0. 0. 0.4 0. 0. 0. 0.1
Phi3-3.8B 11.3 62.6 98.5 72.6 20.4 35.4 32.9 26.3 18.0 13.9 22.9 21.9

Open-Source Medium

Deepseek-Math-7B-RL 77.3 2.4 52.3 0.4 30.4 0. 9.8 0.1 5.1 0.1 11.6 0.1
WizardMath-v1.1-7B 99.3 6.7 0.5 0.6 0.0 0.0 0.3 0.2 0.3 0.1 0.2 0.1
Llama3-8B 3.2 40.9 98.3 80.3 5.1 23.1 29.1 23.3 15.0 11.6 17.2 17.4

Open-Source Large

MAmmoTH-70B 88.0 89.8 23.1 2.8 14.6 0.0 3.9 0.3 1.8 0.3 5.0 0.2
MetaMath-70B 7.8 0.0 0.3 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
Llama3-70B 67.6 89.3 83.0 66.0 51.3 56.4 38.9 33.5 32.7 25.7 38.3 34.2
Qwen1.5-72B 83.7 87.7 57.1 52.4 42.0 42.5 19.1 23.1 13.5 15.8 20.9 23.3
Deepseek-v2-236B 60.1 88.2 87.2 61.5 49.4 51.2 26.8 32.4 23.8 28.3 29.8 34.1

Closed-Source LLMs

Claude3-Haiku 70.4 99.0 51.7 8.1 22.5 16.7 17.2 2.3 11.3 1.8 15.3 4.9
GPT-3.5-Turbo 16.3 59.7 93.8 65.7 16.2 25.5 30.6 21.0 20.3 13.0 22.6 17.9
Claude3-Sonnet 35.1 88.4 89.8 44.8 30.0 36.5 25.2 18.8 19.9 15.6 23.5 20.8
GPT-4-Turbo 69.5 83.0 91.8 84.2 63.3 67.2 48.8 51.7 46.3 48.1 50.5 53.0
o1-mini-2024-09-12 93.3 93.3 95.6 94.8 89.0 88.1 67.6 67.6 62.2 61.8 69.2 68.8
o1-preview-2024-09-12 89.3 84.4 96.8 95.6 86.6 80.8 68.3 69.5 65.7 66.6 70.7 70.3

5.2 EXPERIMENT RESULTS

Our evaluation results are presented in Table-2. Key observations from our study are as follows:

Overall Performance: As depicted in the table, o1 series of models significantly outperforms all
other models across both open-source and closed-source domains. Among the open-source models,
Llama3-70B exhibits the closest performance to o1, yet it still lags by more than 30 absolute points in
MR-Score. In the small to medium model size category, Phi3-3.8B outshines others, even surpassing
the scores of Claude3-Haiku. Notably, most specialized models we evaluated, though finetuned
specifically with GSM8K data and its augmentation, failed to adapt to our evaluation paradigm
and systematically under-performed compared to the generalized chat models. Despite similar
levels of success on GSM8K, as illustrated in Figure-1, all models tested show a significant drop in
performance in our benchmark, resulting in a much wider differentiation in scores.

Performance by Model Size: Contrary to the common belief that larger models inherently possess
greater capabilities, our findings challenge this notion. Specifically, Phi3-3.8B performed substantially
better than other models at the 7B level and achieved comparable performance with Qwen1.5-72B,
which is approximately twenty times larger. A similar trend is observed between Llama3-70B and
Deepseek-v2-236B, with Llama3-70B outperforming the latter in both zero-shot and few-shot settings.
These results suggest that while model size is an important factor in reasoning ability, the quality of
pretraining data and the application of data synthesis techniques such as knowledge distillation may
also play crucial roles.

Specialized Math Models: Within the open-source community, a multitude of models are dedicated
to math reasoning, employing various fine-tuning techniques and datasets. Despite this, most
models failed significantly in our benchmark. Specifically, WizardMath-v1.1-7B and MetaMath-70B
appeared overfitted to the GSM8K response format and were unable to adhere to our evaluation
instructions, both with and without few-shot demonstrations. Conversely, Deepseek-Math-7B-RL
and MAmmoTH-70B managed to comprehend our complex evaluation instructions and achieved
decent performance.
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Few Shot Demonstrations: Given that the MR-GSM8K benchmark poses significant challenges in
complex instruction-following in addition to mathematical reasoning, we explored whether providing
few-shot demonstrations could enhance the performance of specialized models as demonstrated by
Figure-5 and Figure-6. However, as indicated in Table-2, the few-shot setting proved detrimental
to all tested models. Although Deepseek-Math-7B-RL and MAmmoTH-70B demonstrated minor
performance in the zero-shot setting, they struggled to adhere to the desired task instructions in
the few-shot setting, reverting to the question-answering paradigm when presented with extended
context and demonstrations. Similarly, few-shot examples did not aid WizardMath-v1.1-7B and
MetaMath-70B in adhering to the expected scoring and reasoning format. These specialized models
exhibited a strong tendency to revert to the question-answering paradigm, an issue not as prevalent
in general chat models. This tendency suggests that fine-tuning on a narrowly focused dataset,
often sampled or augmented from specific math datasets like GSM8K, may lead to overfitting to
a particular input/output data distribution, resulting in only a superficial mastery of mathematical
reasoning. Despite the close similarity between MR-GSM8K and the datasets these models were
exposed to, their underperformance highlights a critical shortcoming in the generalization capabilities
of reasoning abilities developed through specialized fine-tuning.

For general chat models, the impact of few-shot demonstrations varied significantly across models,
even within the same family, with outcomes ranging from slight improvements to notable deteriora-
tions. No consistent pattern emerged, indicating that improvements do not uniformly correlate with
model size or initial benchmark performance.

In Context Learning Bias: An intriguing outcome from our few-shot experiments is the significant
impact this setting had on the models’ propensity to score solutions as correct or incorrect. Analyzing
the true positive rate (TPR) and true negative rate (TNR) in the solution correctness task, we
empirically observed that most models except for o1 series exhibited an increase in TPR while
concurrently showing a reduction in TNR under the three-shot setting. This trend can likely be
attributed to the composition of our few-shot examples, which included two correct solutions and
one incorrect solution, suggesting that the distribution of correctness within these examples may
influence model predictions. To verify our conjecture, we conducted an ablation study on the
number of correct solutions and the result shows strong correlation with our proposal (see Figure-7 in
Appendix for more details). This susceptibility of language models to the distribution of few-shot
examples highlights a fundamental flaw in the current reasoning paradigms: rather than making
scoring decisions based purely on reasoning, most models appear to be swayed by the few-shot
examples. This influence might also account for the generally worse performance observed in the
few-shot experiments compared to the zero-shot settings, where such biases are absent.

6 DISCUSSION

6.1 CASE STUDIES ON REASONING FAILURES

In Appendix-D, we provide several case studies of responses generated by evaluated models. These
examples help illuminate various reasoning errors that are often obscured in simpler benchmarks such
as GSM8K. First, models frequently exhibit what is known as the "reversal curse" (e.g. believing 112
- 3x = 85 is not equivalent to 112 - 85 = 3x), where they mistakenly claim that "A equals to B" is not
equivalent to "B equals to A" Berglund et al. (2023a). Second, inconsistencies and errors in quantity
unit usage by the models (e.g. adding speed 5 km/h to time 3 hours) suggest a fundamental lack of
ontological understanding regarding the properties of the quantities they manipulate. Third, many
models display insensitivity to numerical computation errors, highlighting an inherent weakness in
arithmetic processing by language models. These observations underscore the critical gaps in model
training and evaluation, pointing to an over-reliance on correct solution paths that neglects the broader
context and complexity of real-world reasoning.

6.2 IS SOLUTION SCORING A DIFFERENT SKILL THAN QUESTION ANSWERING ?

When we test LLMs on math problems, we are essentially evaluating their ability to recognize patterns,
understand relationships between objects, correctly apply formulas, and logically combine conditions
and assumptions. Traditionally, metrics have focused on the final computation result as a proxy for
reasoning ability, mainly due to implementation convenience and lack of annotated process oriented
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Figure 3: This figure aims to illustrate the fundamental limitations of the current training and
evaluation paradigms for LLMs. The left side of the figure demonstrates that utilizing only correct
solutions limits coverage of the solution space despite various data augmentation techniques. The
right side depicts potential solutions that might contain incorrect steps or reach the final computation
result through an incorrect reasoning path. Models trained exclusively on correct reasoning paths
often fail to assess the validity or discern nuanced differences of alternative reasoning paths for the
same problem. This highlights a critical gap in the training paradigm, where models exhibit basic
imitation skills but lack a deep understanding of the underlying logical rules, leading to a superficial
grasp of reasoning processes.

data and corresponding evaluation methods. However, this result oriented approach overlooks the
accuracy of intermediate steps, which are crucial in assessing the quality of the reasoning process.

Our meta-reasoning paradigm addresses this gap. When models are asked to score the correctness
of solutions, they engage in the same fundamental skills: discerning patterns/relations/conditions,
performing counterfactual reasoning that includes similar applications of formulas and computation
but with an extra step of contrastive comparison. Thus, our solution-scoring benchmark serves
the same overarching goal of assessing robust reasoning abilities but does so in a more holistic,
challenging and process-oriented manner.

6.3 WHAT IS THE SIGNIFICANCE OF REASON ABOUT REASONING?

In this paper, we have demonstrated that simply observing computation results is insufficient to
uncover the cognitive depth of evaluated models. Equally important is the validity and logic of the
reasoning process employed by these models. As illustrated by Figure-3, for a model to successfully
diagnose solution correctness, it must infer the correct result and also engage in counterfactual
reasoning along different reasoning paths, actively examining the conditions and assumptions made at
various steps. Success in this paradigm is unlikely without a holistic understanding and a sophisticated
reasoning process, which is often neglected in the current training and finetuning stage. The success
of o1-series of models support our hypothesis that effective exploration and coverage of the solution
space achieved by conscious self-reflection and iterative improvement can indeed enhance the
performance dramatically. Thus, the "reason about reasoning" paradigm emerges as an ideal meta-
evaluative tool for assessing system-2 thinking ability, where deliberate and methodical reasoning is
required to pinpoint and evaluate errors.

Another key significance of this paradigm is its capability to transform any existing benchmark
into a more robust and holistic assessment tool. As highlighted by Balloccu et al. (2024) and
Yang et al. (2023), data contamination issues are becoming increasingly prevalent and elusive to
detect. Our paradigm not only facilitates modifications to existing benchmarks but also demonstrates
robustness against potential data contamination, as evidenced by our experiments across a wide array
of state-of-the-art LLMs.
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7 CONCLUSION

Throughout this paper, we have explored the inadequacies of prevalent math reasoning benchmarks
and introduced a pioneering evaluation paradigm that compels models to engage in meta-reasoning.
Our empirical findings demonstrate that this novel paradigm enables our benchmark to effectively
differentiate between models and uncover their various deficiencies. This differentiation has been
particularly evident in the performance struggles of state-of-the-art language models when confronted
with our benchmark, revealing significant shortcomings in current training methodologies.

These revelations underscore the need for a critical reevaluation of existing training and evaluation
practices in the realm of large language models. By advocating for the widespread adoption of our
"reason about reasoning" evaluation paradigm, we encourage researchers to adapt and broaden other
reasoning benchmarks similarly. Such transformation is vital not only for a more rigorous assessment
of LLMs but also for fostering a deeper and more holistic understanding of these models’ capabilities.

REFERENCES

Anthropic. Introducing claude, 2023. URL https://www.anthropic.com/index/
introducing-claude.

Konstantine Arkoudas. GPT-4 can’t reason. CoRR, abs/2308.03762, 2023. doi: 10.48550/ARXIV.
2308.03762. URL https://doi.org/10.48550/arXiv.2308.03762.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan,
Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin
Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng
Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou,
Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. CoRR, abs/2309.16609, 2023. doi: 10.
48550/ARXIV.2309.16609. URL https://doi.org/10.48550/arXiv.2309.16609.

Simone Balloccu, Patr’icia Schmidtov’a, Mateusz Lango, and Ondvrej Duvsek. Leak, cheat, repeat:
Data contamination and evaluation malpractices in closed-source llms. In Annual Meeting of the
Association for Computational Linguistics, 2024. URL https://api.semanticscholar.
org/CorpusID:267499939.

Lukas Berglund, Meg Tong, Max Kaufmann, Mikita Balesni, Asa Cooper Stickland, Tomasz Ko-
rbak, and Owain Evans. The reversal curse: Llms trained on "a is b" fail to learn "b is a".
ArXiv, abs/2309.12288, 2023a. URL https://api.semanticscholar.org/CorpusID:
262083829.

Lukas Berglund, Meg Tong, Max Kaufmann, Mikita Balesni, Asa Cooper Stickland, Tomasz Korbak,
and Owain Evans. The reversal curse: Llms trained on "a is b" fail to learn "b is a". CoRR,
abs/2309.12288, 2023b. doi: 10.48550/ARXIV.2309.12288. URL https://doi.org/10.
48550/arXiv.2309.12288.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, Huazuo Gao, Kaige Gao, Wenjun Gao, Ruiqi Ge, Kang Guan, Daya
Guo, Jianzhong Guo, Guangbo Hao, Zhewen Hao, Ying He, Wenjie Hu, Panpan Huang, Erhang Li,
Guowei Li, Jiashi Li, Yao Li, Y. K. Li, Wenfeng Liang, Fangyun Lin, Alex X. Liu, Bo Liu, Wen
Liu, Xiaodong Liu, Xin Liu, Yiyuan Liu, Haoyu Lu, Shanghao Lu, Fuli Luo, Shirong Ma, Xiaotao
Nie, Tian Pei, Yishi Piao, Junjie Qiu, Hui Qu, Tongzheng Ren, Zehui Ren, Chong Ruan, Zhangli
Sha, Zhihong Shao, Junxiao Song, Xuecheng Su, Jingxiang Sun, Yaofeng Sun, Minghui Tang,
Bingxuan Wang, Peiyi Wang, Shiyu Wang, Yaohui Wang, Yongji Wang, Tong Wu, Y. Wu, Xin Xie,
Zhenda Xie, Ziwei Xie, Yiliang Xiong, Hanwei Xu, R. X. Xu, Yanhong Xu, Dejian Yang, Yuxiang
You, Shuiping Yu, Xingkai Yu, B. Zhang, Haowei Zhang, Lecong Zhang, Liyue Zhang, Mingchuan
Zhang, Minghua Zhang, Wentao Zhang, Yichao Zhang, Chenggang Zhao, Yao Zhao, Shangyan
Zhou, Shunfeng Zhou, Qihao Zhu, and Yuheng Zou. Deepseek LLM: scaling open-source language
models with longtermism. CoRR, abs/2401.02954, 2024. doi: 10.48550/ARXIV.2401.02954. URL
https://doi.org/10.48550/arXiv.2401.02954.

10

https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude
https://doi.org/10.48550/arXiv.2308.03762
https://doi.org/10.48550/arXiv.2309.16609
https://api.semanticscholar.org/CorpusID:267499939
https://api.semanticscholar.org/CorpusID:267499939
https://api.semanticscholar.org/CorpusID:262083829
https://api.semanticscholar.org/CorpusID:262083829
https://doi.org/10.48550/arXiv.2309.12288
https://doi.org/10.48550/arXiv.2309.12288
https://doi.org/10.48550/arXiv.2401.02954


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, John A. Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuan-Fang Li, Scott M. Lundberg, Harsha Nori, Hamid Palangi,
Marco Tulio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments
with gpt-4. ArXiv, abs/2303.12712, 2023. URL https://api.semanticscholar.org/
CorpusID:257663729.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks. ArXiv, abs/2211.12588,
2022. URL https://api.semanticscholar.org/CorpusID:253801709.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. ArXiv, abs/2305.14314, 2023. URL https://api.semanticscholar.
org/CorpusID:258841328.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jian, Bill Yuchen Lin, Peter West,
Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal, Sean Welleck, Xiang
Ren, Allyson Ettinger, Zaïd Harchaoui, and Yejin Choi. Faith and fate: Limits of transformers on
compositionality. ArXiv, abs/2305.18654, 2023. URL https://api.semanticscholar.
org/CorpusID:258967391.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Minlie Huang, Nan Duan,
and Weizhu Chen. Tora: A tool-integrated reasoning agent for mathematical problem solving.
ArXiv, abs/2309.17452, 2023. URL https://api.semanticscholar.org/CorpusID:
263310365.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. ArXiv, abs/2310.01798,
2023. URL https://api.semanticscholar.org/CorpusID:263609132.

Daniel Kahneman. Thinking, fast and slow. Farrar, Straus and Giroux, 2011.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi. Mawps:
A math word problem repository. In North American Chapter of the Association for Computational
Linguistics, 2016. URL https://api.semanticscholar.org/CorpusID:2228719.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harrison Edwards, Bowen Baker, Teddy Lee,
Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step.
ArXiv, abs/2305.20050, 2023. URL https://api.semanticscholar.org/CorpusID:
258987659.

Xiao Liu, Xuanyu Lei, Sheng-Ping Wang, Yue Huang, Zhuoer Feng, Bosi Wen, Jiale Cheng, Pei
Ke, Yifan Xu, Weng Tam, Xiaohan Zhang, Lichao Sun, Hongning Wang, Jing Zhang, Minlie
Huang, Yuxiao Dong, and Jie Tang. Alignbench: Benchmarking chinese alignment of large
language models. ArXiv, abs/2311.18743, 2023. URL https://api.semanticscholar.
org/CorpusID:265506600.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical
reasoning for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583,
2023.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang, and Graham Neubig. Language models
of code are few-shot commonsense learners. ArXiv, abs/2210.07128, 2022. URL https:
//api.semanticscholar.org/CorpusID:252873120.

11

https://api.semanticscholar.org/CorpusID:257663729
https://api.semanticscholar.org/CorpusID:257663729
https://api.semanticscholar.org/CorpusID:253801709
https://api.semanticscholar.org/CorpusID:258841328
https://api.semanticscholar.org/CorpusID:258841328
https://api.semanticscholar.org/CorpusID:258967391
https://api.semanticscholar.org/CorpusID:258967391
https://api.semanticscholar.org/CorpusID:263310365
https://api.semanticscholar.org/CorpusID:263310365
https://api.semanticscholar.org/CorpusID:263609132
https://api.semanticscholar.org/CorpusID:2228719
https://api.semanticscholar.org/CorpusID:258987659
https://api.semanticscholar.org/CorpusID:258987659
https://api.semanticscholar.org/CorpusID:265506600
https://api.semanticscholar.org/CorpusID:265506600
https://api.semanticscholar.org/CorpusID:252873120
https://api.semanticscholar.org/CorpusID:252873120


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Brian W. Matthews. Comparison of the predicted and observed secondary structure of t4
phage lysozyme. Biochimica et biophysica acta, 405 2:442–51, 1975. URL https://api.
semanticscholar.org/CorpusID:44596673.

Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su. A diverse corpus for evaluating and developing
english math word problem solvers. In Annual Meeting of the Association for Computational Lin-
guistics, 2020. URL https://api.semanticscholar.org/CorpusID:220047831.

OpenAI. Chatgpt: Optimizing language models for dialogue, 2022. URL https://openai.
com/blog/chatgpt.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023. URL https://api.
semanticscholar.org/CorpusID:257532815.

OpenAI. Learning to reason with llms, 2024. URL https://openai.com/index/
learning-to-reason-with-llms/.

Keiran Paster. Testing language models on a held-out high school national finals
exam. https://huggingface.co/datasets/keirp/hungarian_national_hs_
finals_exam, 2023.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
ArXiv, abs/2009.03393, 2020. URL https://api.semanticscholar.org/CorpusID:
221535103.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. CoRR, abs/2402.03300, 2024. doi: 10.48550/ARXIV.2402.03300. URL
https://doi.org/10.48550/arXiv.2402.03300.

Mike Sharples, David C. Hogg, Chris Hutchinson, Steve Torrance, and David J. Young. Com-
puters and thought: A practical introduction to artificial intelligence. In Proceedings of the
Conference on Innovative Applications of Artificial Intelligence, 1989. URL https://api.
semanticscholar.org/CorpusID:61039423.

Christian Szegedy. A promising path towards autoformalization and general artificial intelligence.
In International Conference on Intelligent Computer Mathematics, 2020. URL https://api.
semanticscholar.org/CorpusID:220729524.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Vernon Toh, Ratish Puduppully, and Nancy F. Chen. Veritymath: Advancing mathematical reasoning
by self-verification through unit consistency. ArXiv, abs/2311.07172, 2023. URL https://api.
semanticscholar.org/CorpusID:265149887.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Huai hsin Chi, F. Xia, Quoc
Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models.
ArXiv, abs/2201.11903, 2022. URL https://api.semanticscholar.org/CorpusID:
246411621.

Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E. Gonzalez, and Ion Stoica. Rethinking
benchmark and contamination for language models with rephrased samples. ArXiv, abs/2311.04850,
2023. URL https://api.semanticscholar.org/CorpusID:265050721.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models.
ArXiv, abs/2305.10601, 2023. URL https://api.semanticscholar.org/CorpusID:
258762525.

12

https://api.semanticscholar.org/CorpusID:44596673
https://api.semanticscholar.org/CorpusID:44596673
https://api.semanticscholar.org/CorpusID:220047831
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://huggingface.co/datasets/keirp/hungarian_national_hs_finals_exam
https://huggingface.co/datasets/keirp/hungarian_national_hs_finals_exam
https://api.semanticscholar.org/CorpusID:221535103
https://api.semanticscholar.org/CorpusID:221535103
https://doi.org/10.48550/arXiv.2402.03300
https://api.semanticscholar.org/CorpusID:61039423
https://api.semanticscholar.org/CorpusID:61039423
https://api.semanticscholar.org/CorpusID:220729524
https://api.semanticscholar.org/CorpusID:220729524
https://github.com/tatsu-lab/stanford_alpaca
https://api.semanticscholar.org/CorpusID:265149887
https://api.semanticscholar.org/CorpusID:265149887
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:265050721
https://api.semanticscholar.org/CorpusID:258762525
https://api.semanticscholar.org/CorpusID:258762525


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

An-Zi Yen and Wei-Ling Hsu. Three questions concerning the use of large language mod-
els to facilitate mathematics learning. ArXiv, abs/2310.13615, 2023. URL https://api.
semanticscholar.org/CorpusID:264405766.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv preprint arXiv:2309.12284, 2023.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu
Chen. Mammoth: Building math generalist models through hybrid instruction tuning.
ArXiv, abs/2309.05653, 2023. URL https://api.semanticscholar.org/CorpusID:
261696697.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Haotong Zhang, Joseph Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena. ArXiv, abs/2306.05685, 2023. URL
https://api.semanticscholar.org/CorpusID:259129398.

Prompt for Zero-Shot Scoring 
Act as a grade school math teacher and score the following problem solution.

Question:
{data['question']}

Student Solution:
{sol_steps}

Your task involves three parts:
1. **Step-by-step Evaluation:** Go through the student solution carefully and identify 
key errors and potential misunderstandings that led to the incorrect solution.
2. **Final Judgement:** Provide an overall judgement on the correctness of the 
student's solution.
3. **First Error Step:** If the solution is incorrect, generate the step number where 
the first error occurs, otherwise generate N/A here
4. **Error Analysis:** If the solution is incorrect, analyse the cause and reasons for 
the first error step, otherwise generate N/A here 

Here's the format I want:
Step-by-step Evaluation: [Provide a step by step examination of the student solution and 
identify key errors and misunderstandings here.]
Final Judgement: [Insert only **correct** or **wrong** here]
First Error Step: [Insert either N/A or the step number where the first error occurs]
Error Analysis: [Insert either N/A or the analysis of error in the first error among 
solution steps]

Please follow this format without any additional introductory or concluding statements.

Figure 4: This is the zero shot prompt we used to evaluate all the models

A LIMITATIONS

Does MR-GSM8k Require Human Labeling?

In this study, we proposed the MR-Score as a unified and normalized metric to evaluate the language
models. The MR-Score consists of three sub-metrics, with the error reason being just one of the
evaluation criteria. Similar to translation tasks, where expressions in one language may correspond
to many variations in another, it is challenging to develop an automatic evaluator that scores the
error reason perfectly. Despite these limitations, this does not undermine the arguments we present,
nor does it affect the cognitive deficiencies unveiled by this metric. To the best of our knowledge,
GPT-4 has been the most popular choice for serving as an automatic evaluator across different metrics
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Prompt for Few-Shot Scoring 
Act as a grade school math teacher and score the following problem solution.
      

Your task involves three parts:
1. **Step-by-step Evaluation:** Go through the student solution carefully and identify key errors 
and potential misunderstandings that led to the incorrect solution.
2. **Final Judgement:** Provide an overall judgement on the correctness of the student's 
solution.
3. **First Error Step:** If the solution is incorrect, generate the step number where the first 
error occurs, otherwise generate N/A here
4. **Error Analysis:** If the solution is incorrect, analyse the cause and reasons for the first 
error step, otherwise generate N/A here 

Here's the format I want:
Step-by-step Evaluation: [Provide a step by step examination of the student solution and identify 
key errors and misunderstandings here.]
Final Judgement: [Insert only **correct** or **wrong** here]
First Error Step: [Insert either N/A or the step number where the first error occurs]
Error Analysis: [Insert either N/A or the analysis of error in the first error among solution 
steps]

Here is some demo examples:
{k_shot_demos}

Here is the question and solution for you to solve, please follow the desired format without any 
additional introductory or concluding statements
Question:
{data['question']}

Student Solution:
{sol_steps}

Figure 5: This is the few shot prompt we used to evaluate all the models

(Zheng et al., 2023; Liu et al., 2023). In Appendix-C, we empirically demonstrate that GPT-4 can
serve as a decent automatic evaluator, with the final MR-Score based on its labeling results closely
matching those of manual labeling.

Limitations of the Meta Reasoning Evaluation Paradigm and MR-GSM8k Dataset

Reflecting on Goodhart’s law, which states that "When a measure becomes a target, it ceases to
be a good measure," it’s evident that the "reason about reasoning" paradigm is not immune to
this phenomenon. This paradigm, like any other, can be targeted for optimization. However, our
evaluation paradigm presents a greater challenge to overfitting compared to others, due to its demand
for a comprehensive understanding within a broad error space, as illustrated in Section-B.

On the other hand, the meta-reasoning evaluation framework in MR-GSM8K, while innovative, is
not without its limitations. Firstly, its applicability may be restricted when it comes to subjects that are
inherently holistic or creative in nature, such as humanities or sociology. These subjects often require
a comprehensive understanding and modification (e.g. essay writing), which can be challenging
to break down into specific, sequential reasoning steps and corrections. Secondly, MR-GSM8K
is currently confined to questions in English. This could potentially limit the scope of reasoning
challenges that can be explored, as different languages may present unique cognitive and linguistic
hurdles. Lastly, the analysis and correction of errors in the reasoning steps are currently based
on solutions generated by MetaMath-7B model only. It’s important to note that different LLMs
and different individuals, may exhibit distinct reasoning and error patterns. Therefore, it would be
beneficial to broaden the spectrum of solutions analyzed, incorporating a more diverse range of LLMs
and even human responses. This would not only enhance the robustness of the evaluation framework
but also provide a more nuanced understanding of the reasoning processes at play.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Pos Neg

Pred-Pos 960/1042 218/626

Pred-Neg 82/1042 408/626

Table 3: This confusion matrix represents the accuracy of GPT4-Turbo-1106 in assessing 1668
incorrect solutions that were correctly identified with the right error step. The task for GPT4-
Turbo-1106 was to evaluate the correctness of the error reason provided by the evaluated model, in
comparison with the actual ground truth labelled by expert. ’Pos’ and ’Neg’ represent the ground
truth correctness of the provided explanation, while ’Pred-Pos’ and ’Pred-Neg’ indicate GPT4’s
prediction about the correctness.

Models Step Step+Reason/M Step+Reason/A MR-Score/M MR-Score/A
GPT4 823/1573 677/1573 732/1573 0.495 0.512
Claude2 331/1573 185/1573 224/1573 0.191 0.203
llama2-70B-MR 327/1573 99/1573 139/1573 0.105 0.118
GPT3.5 179/1573 73/1573 73/1573 0.097 0.097
MetaMath-70B 22/1573 6/1573 7/1573 0.013 0.013
Mammoth-70B 4/1573 1/1573 2/1573 0.012 0.012
WizardMath-70B 6/1573 1/1573 1/1573 0.001 0.001

Table 4: Comparison of the manual labelling results and GPT4-Turbo-1106 labelling results. Step
column shows the number that each evaluated models successfully located the first error steps among
incorrect solutions. Step+Reason/M stands for the manual labelling results of the error reasons where
its first error step is correct. Step+Reason/A corresponds to the labelling results of GPT4-Turbo-1106.
llama2-70B-MR are llama2-70B model finetuned on the GSM8k training set and its meta-reasoning
augmentation by GPT4.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Few Shot Demonstration Content
Here is some demo examples: 

Question:
Henry and 3 of his friends order 7 pizzas for lunch. Each pizza is cut into 8 slices. If 
Henry and his friends want to share the pizzas equally, how many slices can each of them 
have?

Student Solution:
Step 1:  We know that 7 pizzas have been ordered and that each pizza has 8 slices. So, 7 
pizzas * 8 slices/pizza = <<7*8=56>>56 slices.
Step 2: If Henry and his friends want to share the pizzas equally, that means each of 
them will have 56 slices / 4 people = <<56/4=14>>14 slices/person
Step 3: #### 14

Step-by-step Evaluation:
Let's think step by step. 
This question requires calculating the total slices and then figure out the portion for 
each one. 
The student correctly identified that the total slices will be the number of pizzas 
times the slice per pizza, which is 56 in Step 1. 
For the portion for each one, the student also correctly figured out that the total 
number of persons (Henry and 3 of his friends )is 1+3=4 and the slice per person is the 
total number of slices divided by the number of persons, which is 14 in Step 2.

Final Judgement: correct 
First Error Step: N/A
Error Analysis: N/A

Figure 6: This is the few shot demonstration content we used in the few shot prompt.
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Figure 7: This is how the true positive and true negative rates change with the number of correct
solutions in the 3-shot demonstrations. Note for the smaller models like Phi-3 and Llama3-8B, their
susceptibility trend is opposite with that of Llama3-70B.

B IN DOMAIN FINETUNING

Given the challenges posed by the novel "reason about reasoning" task paradigm, we explored how
much targeted task-specific training data could enhance the performance of current state-of-the-art
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Prompt for creating DiagGSM8K training data by GPT4
Hi ChatGPT, I need your assistance in creating a math dataset that focuses on annotated incorrect 
solutions. The dataset is intended for grade school math.

Provided Information:
Question: {question}
Correct Solution Steps: {steps}

Procedure:
Understand the Question and Solution: Ensure you comprehend the question and the correct solution.
Fabricate Error Step and Reason: Randomly select a step and come up with an error that is both 
realistic and commonly observed among students such as calculation mistake, conceptual 
misunderstanding, or incorrect formula application etc.
Develop the Incorrect Solution: Base on the error step and error reason, rewrite the solution, 
ensuring they are internally consistent but incorrect due to the initial error. **Do not mention 
anything about incorrectness or deliberate error in the error step in your solution**.
Independent Analysis: Provide a step-by-step analysis of the solution, including the error, as if 
encountering the problem for the first time. Do not reference the fact that the error was 
intentionally created.
Summarize the Error: Based on your analysis, summarize the error reason for the first incorrect step.

Format:
Error Step: [Identify a step number where the first error in the correct solution should occur. Any 
step from either the beginning, middle or the end will work.]
Error Reason: [Describe the nature of the error]
Incorrect Solution: [Present the solution, starting correctly but deviating post error step. DO NOT 
MENTION ANYTHING ABOUT THE INCORRECTNESS.]
Independent Step-by-Step Analysis: [Analyse the solution independently, as if unaware of the 
intentional error]
Independent Error Reason: [Conclude with a summary of the perceived error reason]

Please adhere strictly to this format, avoiding any additional introductory or concluding remarks.

Figure 8: This is the prompt we used for GPT4 to create in-domain training data.

models on this task. We considered augmenting the GSM8K training set with diagnostics data in
a similar format. However, due to the labor-intensive nature of manual annotation, we opted for a
more feasible approach using an expert-designed procedure where GPT-4 generates the training data
based solely on the original GSM8K problems, excluding any Program of Thought (POT) or reversed
transformations.

This process involved presenting GPT-4 with a question and its correct solution, then instructing it to
introduce an error at a randomly chosen step and complete the solution accordingly. The step-by-step
analysis was subsequently generated, focusing on the fabricated error. Despite GPT-4’s modest
40+% accuracy in correctly identifying incorrect solutions in the test set, this procedure successfully
generated accurate diagnostic training data with over 90 percent accuracy, as verified by expert
annotation on a sub-sampled set. This is largely due to the expert designed procedure (Figure-8)
that greatly lowered the difficulties for instruction following. Note, occasionally GPT4 will fail to
fabricate a valid error due to the lack of true understanding of errors (e.g., switch the fraction 8/3 to 2
and 2/3 then claims this is an error).

For our base model, we used llama-2-70B-base, consistent with the approach of other open-source
SOTA math models. We merged the GSM8K training set with the GPT-4 generated diagnostic data,
consisting of 5k incorrect solutions and 4k correct solutions. For fine-tuning, we employed the Qlora
method (Dettmers et al., 2023), maintaining the same hyperparameters as used for MetaMath-70B.
The evaluated results indicate a 31.74% true positive rate and 73.49% true negative rate, which lead
to a 5.8% score in MCC. The accuracy for first-error-step and error-reason is 20.79% and 6.29%
respectively. The MR-Score for this finetuned model is 10.5%.

Notably, the fine-tuned Llama2 model demonstrated a distinct tendency from that of GPT3.5 and
other open-source models; it was less inclined to accept solutions uncritically, tending instead to
over-reject solutions regardless of their correctness. As depicted in Figure-9, of the 99 questions
where the model accurately predicted both correctness and the first error step, a significant portion
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Original
65%

POT
12%

Backward
23%

Problem Types of Solutions Llama2-70B Correctly 
Identified

Original POT Backward
Figure 9: Problem types of incorrect solutions for which the llama2-70B-MR model has successfully
identified both the error step and error reason. Note that the training set only included solutions from
original problems.

involved questions with POT and reversed reasoning types. This is particularly noteworthy given that
the model was trained exclusively on original questions.

Caution is necessary when interpreting the outcomes of in-domain fine-tuning. Although the fine-
tuned model achieved improved results, it is important to recognize that the overall number of
correct diagnoses for incorrect solutions remains relatively low (e.g., 6.29%). This underscores the
challenging nature of our MR-GSM8k benchmark, where effective diagnosis across diverse solution
spaces requires a comprehensive understanding of the problem. Consequently, simple fine-tuning
strategies may not yield substantial improvements in performance.

C DESIGN THINKING OF MR-SCORE

The MR-Score consists of three sub-metrics, each corresponding to a sequential reasoning sub-task.
For the first sub-task, solution correctness prediction, we empirically observed that some specialized
math models tend to either blindly classify solutions as correct or incorrect, leading to low true-
positive/true-negative rates, as shown in Table-2. To address this, we opted for the MCC score
instead of metrics like F1 or Balanced Accuracy, due to its wider value range. Models with a high
true-positive rate but a low true-negative rate, or vice versa, will receive a near-zero score under the
MCC metric, preventing bias from skewing results.

For the second and third sub-tasks—locating the first error step and elucidating the error reason—we
used simple accuracy metrics. This choice is motivated by the nature of these tasks: identifying the
first error step is a multi-class classification problem, where large prediction biases are unlikely to
result in high accuracy. Similarly, the task of explaining the error reason is a free-form generation
challenge that requires substantial understanding, making accuracy a sufficient measure for capturing
model behavior. Notably, we never encountered any model that excelled at determining solution
correctness but performed poorly in locating the error step or explaining the error reason. As
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demonstrated in Table-2, the Pearson Correlation Coefficients between solution correctness and the
tasks of locating the first error step and explaining the error reason are 0.80 and 0.75, respectively,
indicating moderate correlation and supporting this approach.

Since the MR-Score is a weighted metric that aggregates the sub-metrics, the weighting mechanism is
crucial for both differentiability and interpretability. In our experiments, we collected the raw outputs
from each sub-metric and conducted grid searches with a delta weighting of 0.1. The final weightings
selected were those that maximized the differentiability of the models.

As discussed in Section-A, we used GPT-4-Turbo as a proxy evaluator for error reasoning. Table-3
presents the confusion matrix based on GPT-4’s labeling of error reasons, where human experts
provided the ground truth annotations. Despite a higher false positive rate than false negative rate,
GPT-4 achieved an overall accuracy of 82%. Although GPT-4 is not perfect, the MR-Scores calculated
from manual labeling versus automatic labeling are very close, as shown in Table-4, demonstrating
the robustness of using GPT-4 as a proxy evaluator.

There are several reasons for this robustness. First, although scoring solutions in terms of correctness,
error location, and error reasoning is challenging, it is easier for a proxy model to evaluate error
reasons when provided with ground truth information about solution correctness and error locations.
The proxy model is prompted to determine whether the given error reason aligns with the ground
truth. Second, while GPT-4 occasionally makes mistakes, since the three sub-tasks are sequential
and progressive, only responses that correctly identify the solution correctness and error location
are evaluated for their error reasoning. As shown in Table-4, the number of responses requiring
proxy model evaluation for weaker models is limited. For stronger models with more error reasons to
evaluate, the minor inaccuracies in error reasoning have negligible impact due to the weighted nature
of the MR-Score.

D ANNOTATION MANUALS, EXAMPLES AND CASE STUDIES
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1 MR-GSM8K Annotation Manual

Annotation Manual This annotation task involves annotating math problems in grade school level. Specif-
ically, for each math problem and its solution process, it is necessary to judge whether it is correct or not.
If there is an error in the solution process, the erroneous step number and the reason for the error must be
annotated.
Below is the format description of the annotation data.
Problem: The ”problem” part provides the math problem.

ground-truth-solution: ”ground-truth-solution” refers to the reference standard answer for the math prob-
lem. For some problems, the solution process in this reference answer may be incorrect, but their final answers
are correct. Nevertheless, please read this reference answer carefully and ensure you understand the problem
before judging the annotated solution process. Report any problem if you believe the question is incorrect
or missing any condition.

model-output-steps ”model-output-steps” is the answer output by the language model and the object we
need to annotate. Read each step of this solution process carefully and judge whether the thought process
is correct. If there is an error, identify at which step the error begins. Note each step can be categorized as
positive, neutral, or negative. Positive and neutral steps represent stages in the reasoning process where the
correct final output remains attainable, whereas negative steps indicate a divergence from the path leading
to the correct solution. We need to find the first step where an error occurs. Reasons for errors include,
but are not limited to, calculation errors (e.g., 11*11=133 is a calculation error), formula errors (such as
multiplying speed by days instead of hours, which is a unit error), misunderstanding errors (such as not
understanding the problem and making nonsensical statements), or missing positive/negative signs. If a step
is unnecessary, redundant, or repetitive, but does not directly cause an error or prevent reaching the final
result, do not judge this step as an error.
Note: (It was found that the solution steps of ten problems are not correctly segmented. If encountered,
please manually segment them into Step 1, Step 2, etc., in the same format before annotating.)

model-output-answer-correctness ”model-output-answer-correctness” compares the language model’s out-
put with the standard answer. Its value can be ”correct” or ”wrong.” Even if some answers are marked as
”correct,” the solution process may still be incorrect, so the solution steps must still be judged step by
step. Generally, this option does not need modification. If modification is necessary, please report the UUID
number and keep a record.

model-output-solution-correctness ”model-output-solution-correctness” is the first field we need to an-
notate. If ”model-output-answer-correctness” is ”correct,” you need to judge the solution process. If it is
confirmed that the correct result is reached through the correct steps, this column should be marked ”correct;”
otherwise, mark ”wrong.” If ”model-output-answer-correctness” is ”wrong,” this column defaults to ”wrong.”

model-output-solution-first–error-step ”model-output-solution-first-error-step” is the second field we
need to annotate. If the solution process in the first column is correct, then this column and the next column
for the reason of the error should be filled with ”N/A.” If the solution process is incorrect, identify the first
erroneous step and fill in this column with Arabic numerals ”1”, ”2”, ”3”, etc.

model-output-solution-first-error-reason ”model-output-solution-first-error-reason” is the third column
that needs annotation. If the solution process is correct, fill in ”N/A;” if incorrect, specify the reason for
the first error in detail. Describe the erroneous process, what misunderstanding led to the incorrect infer-
ence, then provide the correct answer, rather than just stating the misunderstanding followed by the correct
answer. The purpose of annotating reasons for errors is mainly for later evaluation of some open-source
and closed-source models, like ChatGPT, GPT4, to assess their accuracy in identifying erroneous steps and
reasons, and to compare their provided reasons for errors with those marked by humans. So, when explaining
the reason for an error, assume you are explaining to another person why it is wrong, and the explanation
should be as comprehensive as possible. Since there might be multiple perspectives to judge the model’s
reasons for errors. All possible viewpoints should be mentioned. The ultimate goal is for another annotator,
seeing your reasons for error and the model’s reasons, to be able to quickly compare and understand whether
the model has correctly identified the reasons for the error.

- Some examples of how to write reasons for errors:
”According to the problem, John was stuck in traffic for the first two hours and did not immediately turn
around to head home. A misunderstanding of the total time allocation for the return journey affected the
calculation for each subsequent time segment.” ”Because Raymond is 6 years older than Samantha, and
Samantha is currently 31 years old, Raymond should be 37 years old (31+6), not 25 years old (31-6). The
model misunderstood the age difference.” ”The step incorrectly set up the equation. If the running speed
is 300/x miles per hour, then the walking speed is one-quarter of the running speed, so the total distance
traveled in six hours would be (300/x)*2 for running plus (300/x)*(1/4)*4 for walking, and their sum should
be 18 miles.”

This is the partial annotation manual we provide to the annotators. In the full annotation
manual, we have an extra section including several examples detailing frequent asked
questions, as well as cases for desired and undesired annotation results.
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2 MR-GSM8K Examples

uuid: f25b796f-bc99-49c7-a6cd-ac5bb98412ce
question: There are 6 girls in the park. If there are twice the number of boys in the park, how many kids
are in the park?
ground truth solution:
There are 6 girls x 2 boys/girl = 6*2=12, 12 boys in the park.
In total there are 6 girls + 12 boys = 6+12=18,18 kids in the park
#### 18”,
ground truth answer: 18
model output steps:
Step 1: There are twice the number of boys in the park, so there are 2 boys/girl * 6 girls = 2*6=12, 12 boys
in the park.
Step 2: In total there are 12 boys + 6 girls = 12+6=18,18 kids in the park.
Step 3: #### 18
model output answer correctness: correct
model output solution correctness: correct
model output solution first error step: N/A
model output solution first error reason: N/A
question type: original

———————————————————————————————————
uuid: d4ec7076-6dcb-48e3-ba5b-b29d2adc483f
question: If Chester eats 3 eggs a day for 30 days and then increases it to 5 eggs a day for 30 days, how
many dozens of eggs will Chester need for 60 days?
ground truth solution:
He starts off eating 3 eggs a day for 30 days for a total of 3*30=90 eggs.Then he increases it to 5 eggs a day
for 30 days for a total of 5*30 = 150 eggs. All total he will eat 90+150 = 240 eggs. There are 12 eggs in 1
dozen and he will 240 eggs which is 240/12 = 20 dozen eggs. #### 20”,
ground truth answer: 20
model output steps:
Step 1: months eating 3 eggs=2.
Step 2: increased eggs=5
Step 3: days eating 5 eggs=30
Step 4: months eating 5 eggs=6
Step 5: total days=60
Step 6: total months=6+2
Step 7: total eggs months=months eating 3 eggs*30+months eating 5 eggs*days eating 5 eggs+total months
Step 8: total dozen eggs=total eggs months/12
Step 9: print(total dozen eggs)
model output answer correctness: wrong
model output solution correctness: wrong
model output solution first error step: 1
model output solution first error reason: The solution assumes the months eating three eggs are 2
which is unsupported since there is only 30 days for eating three eggs per day.
question type: Program of Thought

———————————————————————————————————
uuid: 18eb1c66-ede5-4504-8831-a3154eae6938
question: Tom gets X car washes a month. If each car wash costs 15 how much does he pay in a year? If
we know the answer to the above question is 720, what is the value of unknown variable ’X’?
ground truth solution:
Since there are 12 months a year and the total amount Tom paid for is known to be 720, then the monthly
pay is 720/12=60. Given that each car wash costs 15 dollars, we know that the car Tom washes a month
equals to 60/15=4. #### 4”,
ground truth answer: 4
model output steps:
Step 1: We know that Tom gets X car washes a month.
Step 2: Each car wash costs 15.
Step 3: To find out how much Tom pays in a year, we need to multiply the monthly cost by the number of
months in a year.
Step 4: So, the total cost for a year is 15*X * 12 = 180X.
Step 5: We are given that the total cost for a year is 720, so we can write: 180X = 720.
Step 6: Dividing both sides of the equation by 180, we get: X = 4.
Step 7: The value of X is 4.
Step 8: 4
Step 9: The answer is: 4
model output answer correctness: correct
model output solution correctness: correct
model output solution first error step: N/A
model output solution first error reason: N/A
question type: Reversed

Above are the annotated samples extracted from the MR-GSM8K dataset, with one
question from each type. The same problems can be found in the MR-GSM8K.json file in
our open sourced repository.
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3 Case Studies of Response from Evaluated Models

question: two sports coaches went shopping together. The baseball coach bought x new baseballs for $3
each. The basketball coach bought 8 new basketballs for $14 each. How much more did the basketball coach
spend than the baseball coach? If we know the answer of the above question is 85, what is the value of
unknown variable x?
model output steps:
Step 1: The baseball coach bought x new baseballs for $3 each, so the total cost for the baseballs is 3x.
Step 2: The basketball coach bought 8 new basketballs for $14 each, so the total cost for the basketballs is
8 * $14 = $112.
Step 3: To find out how much more the basketball coach spent than the baseball coach, we need to subtract
the cost of the baseballs from the cost of the basketballs: $112 - 3x.
Step 4: We are given that the difference in cost is $85, so we can write: $112 - 3x = $85.
Step 5: Simplifying the left side, we get: $112 - $85 = 3x.
Step 6: Subtracting $85 from $112, we get: $27 = 3x.
Step 7: Dividing both sides by 3, we get: $9 = x.
Final Judgement by GPT-4-Turbo: wrong
First Error Step by GPT-4-Turbo: step 4
Error Analysis by GPT-4-Turbo: The student incorrectly simplified the equation in Step 4. The correct
equation should be 3x = $112 - $85, not $112 - 3x = $85. This error led to the incorrect calculation in Step 5.

———————————————————————————————————
question: Trinity sells magazines at 11/8 of the price she bought the magazines. If she bought the magazines
at $72, what is her profit?
model output steps:
Step 1: If Trinity bought the magazines at $72, then she sells them at 11/8 * $72 = $90
Step 2: Her profit is the selling price minus the buying price, so her profit is $90 - $72 = $18
Step 3: #### 18
Final Judgement by GPT-4-Turbo: Correct
First Error Step by GPT-4-Turbo: N/A
Error Analysis by GPT-4-Turbo: N/A

———————————————————————————————————
question: Christina is planning a birthday party and needs .75 gift bags per invited guest, because 1/4 of
attendees don’t show up. She invited 16 friends. Gift bags are $2 each. How much will she spend?

model output steps:
Step 1: no show = 1/4
Step 2: invited guests = 16
Step 3: gift bags needed = invited guests * 0.75
Step 4: total gift bags = no show + gift bags needed
Step 5: total cost = total gift bags * 2
Step 6: print(total cost)

Final Judgement by Claude-3-Sonnet: Wrong
First Error Step by Claude-3-Sonnet: Step 4
Error Analysis by Claude-3-Sonnet: The student incorrectly adds the no-show fraction (1/4) to the
gift bags needed instead of subtracting it from the invited guests before multiplying by the required gift
bags per guest (0.75). This error likely stems from a misunderstanding of how to account for the no-show
guests in the calculation.

Above are the response from the evaluated models. A number of errors can be observed in
their responses. For the first response we sampled, GPT-4-Turbo fail to realize that the
two equations it is referring to are actually equivalent, thus demonstrating the typical
’reversal curse’. For the second example, GPT-4-Turbo fail to capture the obvious
calculation error despite the simplicity of the problem. For the last response,
Claude-3-Sonnet hallucinate on the error reason and provide a correction with yet another
unit error, demonstrating a lack of ontological understanding on the objects involved in
the calculation.
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