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Abstract

Accelerated MRI reconstruction involves solving
an ill-posed inverse problem where noise in ac-
quired data propagates to the reconstructed im-
ages. Noise analyses are central to MRI recon-
struction for providing an explicit measure of solu-
tion fidelity and for guiding the design and deploy-
ment of novel reconstruction methods. However,
deep learning (DL)-based reconstruction methods
have often overlooked noise propagation due to
inherent analytical and computational challenges,
despite its critical importance. This work pro-
poses a theoretically grounded, memory-efficient
technique to calculate voxel-wise variance for
quantifying uncertainty due to acquisition noise in
accelerated MRI reconstructions. Our approach
approximates noise covariance using the DL net-
work’s Jacobian, which is intractable to calcu-
late. To circumvent this, we derive an unbi-
ased estimator for the diagonal of this covariance
matrix—voxel-wise variance—, and introduce a
Jacobian sketching technique to efficiently imple-
ment it. We evaluate our method on knee and
brain MRI datasets for both data- and physics-
driven networks trained in supervised and unsu-
pervised manners. Compared to empirical refer-
ences obtained via Monte-Carlo simulations, our
technique achieves near-equivalent performance
while reducing computational and memory de-
mands by an order of magnitude or more. Fur-
thermore, our method is robust across varying in-
put noise levels, acceleration factors, and diverse
undersampling schemes, highlighting its broad
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applicability. Our work reintroduces accurate and
efficient noise analysis as a central tenet of recon-
struction algorithms, holding promise to reshape
how we evaluate and deploy DL-based MRI.

1. Introduction

Magnetic Resonance Imaging (MRI) has become indispens-
able in clinical diagnostics, yet prolonged acquisition times
can reduce patient throughput and exacerbate motion arti-
facts. Parallel imaging (pMRI) (Pruessmann et al., 1999;
Griswold et al., 2002) was developed to mitigate these chal-
lenges by undersampling k-space and exploiting multiple
receiver coils with distinct sensitivity profiles. Despite
successfully reducing scan duration, pMRI inevitably in-
troduces spatially varying noise amplification—commonly
quantified by the g-factor—due to the need to invert an
ill-conditioned system. In regions where coil sensitivities
overlap or are highly attenuated, the reconstruction leads
to locally elevated noise levels (Pruessmann et al., 1999;
Sodickson et al., 1999). Early pMRI research rigorously
analyzed this spatial noise amplification, culminating in
precise formulations that ensured reliable signal-to-noise
ratio (SNR) performance to guide algorithm design and
clinical implementation (Pruessmann et al., 1999; Sodick-
son et al., 1999; Aja-Fernandez et al., 2014). For instance,
the widely used SENSE algorithm explicitly incorporates
coil sensitivities to minimize noise, reflecting how classical
pMRI approaches typically maintain a clear link between
measurement noise and the reconstructed image.

In contrast, most deep learning (DL) reconstruction methods
(Akgakaya et al., 2019; Knoll et al., 2020a; Yaman et al.,
2022; Jalal et al., 2021; Jun et al., 2021; Wang et al., 2024,
Sriram et al., 2020b) have not provided an explicit account
of how noise from undersampled k-space propagates into
the final image. A major obstacle lies in the highly nonlin-
ear and complex nature of DL reconstructions (Chen et al.,
2022) making it nontrivial to derive analytical frameworks
to characterize how undersampling and learned regulariza-
tion affect localized noise amplification. In response, the
core emphasis in the design of DL methods typically sought
maximization of summary metrics like peak signal-to-noise
ratio (PSNR) or structural similarity index (SSIM) that do



Efficient Noise Calculation in Deep Learning-based MRI Reconstructions

not provide an acute assessment on the spatial noise distri-
bution (Heckel et al., 2024; Adamson et al., 2023; Muckley
et al., 2021). Thus, the interplay between noise propagation
and neural network parameters—and its influence on re-
construction robustness—has received comparatively little
attention (Darestani et al., 2021; Dalmaz et al., 2024).

Nevertheless, characterizing noise in reconstructions is
pivotal for advancing DL-MRI, as noise directly impacts
SNR—a fundamental image quality metric in MRI that
strongly influences clinical utility (Breuer et al., 2009; Diet-
rich et al., 2007). Although metrics such as PSNR and SSIM
remain common in DL, these metrics provide image-wide
summary measures of performance and do not capture local
variations in noise or SNR across the image (Mason et al.,
2020). Consequently, important diagnostic regions may
be obscured by unpredictable noise amplification patterns
that that are either invisible or averaged out when using
these global metrics (Adamson et al., 2021; Knoll et al.,
2020b). In contrast, explicit noise quantification by means
of spatial variance maps can yield critical insights into how
reconstruction algorithms handle and potentially amplify
noise, shaping design decisions to improve robustness and
reliability (Kellman & McVeigh, 2005; Knoll et al., 2019),
paving the way for clinically meaningful performance im-
provements.

In modern unsupervised (Yaman et al., 2020; Xiang et al.,
2023) or semi-supervised paradigms (Yurt et al., 2022),
SNR metrics can be especially valuable by enabling bench-
marking of reconstructions without relying on fully sampled
ground-truth data (Kastryulin et al., 2023). Moreover, un-
derstanding noise propagation can inform tailored sampling
schemes—enabling the identification of k-space points that
contribute disproportionately to image variability (Alkan
et al., 2024; Peng et al., 2022) and guide development
of noise-aware architectures and training strategies (De-
sai et al., 2023). Additionally, accurate noise characteriza-
tion benefits downstream imaging tasks—such as denois-
ing, segmentation, and diagnostic analysis—by providing
voxel-wise variance estimates that enhance algorithm ro-
bustness and clinical interpretability (Dou et al., 2025; Wei
et al., 2022). Ultimately, noise characterization strengthens
image-quality assessments, fosters reliable DL-based MRI
algorithms, and increases clinical confidence in deployed
models (Chaudhari et al., 2021).

Our contributions are threefold: (i) We provide a com-
prehensive theoretical framework that provides insights into
how acquisition noise in k-space propagates to image uncer-
tainty in DL-based MRI reconstructions. Voxel-wise vari-
ance of reconstructed images is linked to row vectors of DL
network’s Jacobian, modulated by k-space correlations and
the imaging operator. To circumvent calculation of the full
Jacobian, an unbiased estimator for the diagonal elements

of the noise covariance matrix is introduced; (ii) We show
how the derived estimator can be efficiently implemented
through a novel Jacobian sketching algorithm that lever-
ages a complex-valued sketching matrix with random-phase
columns, modulated by the adjoint operator and the noise
covariance. This approach offers significant advantages
over traditional Monte-Carlo (MC) simulation-based meth-
ods by reducing computational and memory demands by
an order of magnitude or more; (iii) We rigorously evaluate
the proposed method on knee and brain MRI datasets us-
ing various network architectures, including data-driven and
physics-driven models trained in paradigms ranging from su-
pervised to unsupervised. Experimental results demonstrate
that the technique matches MC simulation-based empiri-
cal references in noise calculation with average correlation
99.8% and error 0.8%. We further validate effectiveness of
our method across different input noise levels, acceleration
factors, and undersampling schemes, showing robustness
across clinically relevant imaging scenarios. Collectively,
our method aims to reestablish accurate and efficient noise
analysis in reconstruction algorithms, enhancing the evalua-
tion and deployment of DL-based MRI.

2. Related Work

Jacobian Sketching in Machine Learning. Jacobian
sketching has been utilized in machine learning for diverse
objectives, such as mitigating catastrophic forgetting in con-
tinual learning (Heckel, 2022; Li et al., 2021) or reducing
the variance of stochastic quasi-gradient methods (Gower
et al., 2021). In such applications, the primary aim is typi-
cally to approximate Jacobian- or Hessian-related quantities
to improve model optimization or regularization. Our work,
however, leverages Jacobian sketching for a fundamentally
different purpose: computationally efficient quantitative
analysis of noise propagation in nonlinear multi-coil deep
MRI reconstructions. Specifically, we employ sketching
to efficiently estimate the diagonal elements of the image
covariance matrix (i.e., voxel-wise noise variances) arising
from propagation of the measurement noise, rather than
optimization or regularization objectives.

Noise Calculation in DL-MRI. Related work on quantify-
ing noise in DL-based MRI reconstructions often employs
MC simulations (Robson et al., 2008; Thunberg & Zetter-
berg, 2007; Akcakaya et al., 2014; Dalmaz et al., 2024),
repeatedly injecting synthetic perturbations into k-space
and reconstructing numerous noisy realizations. This ap-
proach can produce accurate estimates via a large number of
trials which require considerable computational and mem-
ory resources—and is thus impractical for large 3D or 4D
volumes. Moreover, treating the network as a black box
limits interpretability by obscuring how noise propagates
or is amplified within the deep reconstruction pipeline. A
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recent theoretical result (Dawood et al., 2024) derives analyt-
ical noise estimates for k-space interpolation networks, and
thereby is not generalizable across different architectures.
Furthermore, it involves computing the entire network Jaco-
bian, which quickly becomes impractical for typical 2D or
3D MRI volumes. These limitations highlight the need for
a versatile, scalable, and theoretically grounded approach
to noise analysis—one that avoids intensive sampling, pre-
serves interpretability, and can be seamlessly integrated into
diverse reconstruction paradigms.

Uncertainty Quantification in MRI. Prior works on uncer-
tainty quantification (UQ) in MRI generally fall into three
categories: (1) classical compressed sensing approaches, of-
ten using Monte Carlo (MC) reconstructions from perturbed
measurements to derive confidence intervals (Hoppe et al.,
2024); (2) Bayesian methods (Narnhofer et al., 2021) or
generative modeling techniques (Tezcan et al., 2020), such
as Variational Autoencoders (VAEs) or those assuming i.i.d.
Gaussian priors, to capture uncertainty, primarily epistemic;
and (3) ensemble-based analyses focusing on epistemic un-
certainty, for instance, by training multiple networks in
parallel (Kiistner et al., 2024).

Some recent approaches utilize a conformal prediction
framework to construct distribution-free uncertainty inter-
vals at the level of downstream task outputs (Wen et al.,
2024). However, this method treats the reconstruction
pipeline as a black box, does not model voxel-level uncer-
tainty intrinsically, does not incorporate the physics of MRI
acquisition, and requires calibration data to guarantee finite-
sample statistical coverage; it does not estimate how acqui-
sition noise propagates through multi-coil systems or non-
linear reconstructions. Another distinct approach by Edupu-
ganti et al. (Edupuganti et al., 2021) introduced a VAE-based
probabilistic framework that models epistemic reconstruc-
tion uncertainty in a latent space. It utilizes SURE-based
estimators—relying on approximate Jacobian traces—and
MC sampling to compute uncertainty maps, but under the
assumption of uncorrelated, i.i.d., single-coil noise.

Our work uniquely closes a longstanding gap by providing
the first rigorous, first-principles derivation of how multi-
coil k-space acquisition noise propagates through both MRI
physics and nonlinear deep learning (DL) networks. While
exact voxel-wise variance requires the full, computation-
ally intractable network Jacobian, our core innovation is a
statistically rigorous, unbiased estimator for this variance.
This estimator, derived from imaging and statistical theory,
uniquely handles complex-valued signals, multi-coil encod-
ing, physics-based models, and DL nonlinearities simulta-
neously. We implement this via a practical, model-agnostic
matrix sketching algorithm using Jacobian-vector products
(JVPs) with random-phase vectors, achieving scalable, in-
terpretable, and memory-efficient voxel-wise noise variance

(NV) estimates. This targets the aleatoric uncertainty due
to acquisition noise, offering a mathematically transparent
solution distinct from prior UQ and noise calculation meth-
ods.

3. Theory
3.1. Accelerated MRI

We acquire k-space measurements y € C™ from an un-
known image * € C" via a linear imaging operator
A € C™*", comprising coil sensitivity maps, Fourier en-
coding, and sampling mask. In practice, y is often un-
dersampled, and corrupted by noise n € C™. Thus, the
forward model is:

y = Ax + n. €))]

Acquisition noise n is modeled as complex Additive White
Gaussian Noise (AWGN) with zero mean:

n ~ CN(0,%), @

where 3, € C"™*™ is the sample covariance matrix of
the k-space data. At each k-space point, noise is corre-
lated across coils but is independent across distinct k-space
locations. This implies that a coil covariance matrix 3y,
fully captures the noise statistics. Yet, for simplicity in our
linear-algebraic treatment and factorizations, we focus on
the Hermitian positive semi-definite (HPSD) sample covari-
ance matrix Xy, € C™*™ (see Appendix A).

3.2. Neural Network MRI Reconstruction

In practice, deep MRI reconstructions often follow one of
two paradigms: (1) Unrolled Architectures, where a series
of learned regularization blocks and data-consistency (DC)
steps are iterated for K cycles (Hammernik et al., 2023;
Liang et al., 2020; Fabian et al., 2022), or (2) Purely Data-
Driven Mappings, where a feed-forward network performs
a direct mapping (Mardani et al., 2019)). Despite their
structural differences, both networks can be viewed as a non-
linear function f(A y), where A¥ is the adjoint operator
that yields a naive zero-filled (ZF) estimate. Without loss of
generality, any least-squares or pseudo-inverse initialization
could be used (e.g. AT 1); such choices would simply alter
the linear operator involved in subsequent derivations. Thus,
our analyses are agnostic to these architectural details, and
simply require that f be differentiable so that its Jacobian
exists (See Appendix B).

3.3. Noise Propagation

In MRI, we seek to quantify the voxel-wise variance of the
reconstructed image x € C" induced by the acquisition
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noise in k-space. Let f : C* — C™ denote a learned

reconstruction function (e.g., an unrolled network), with

Jacobian Jf(:c) = [ a%fl aé;fn ] c Cnxn,

DL pipelines commonly initialize (®) = A y with the
“noisy” measured data y = yo +n, where yo = A «. Then:

0 = AH (yo+n)=A"yo+ A n =27+ A" n,
3)

with g = A gy, indicating the noise-free component of
this initial estimate. A first-order Taylor expansion of the
reconstruction function f(-): C® — C™ around x( approx-
imates:

F(@®) ~ f(zo) + Jy(®o) (2 —m0), ¥

where J (o) € C™*" is the Jacobian matrix of f evaluated
at x¢. From 3 and 4 the perturbation in the reconstructed
image due to the noise n is:

ox = f(2V) — f(zo) ~ Jf(xo) (An)

Note that d also remains zero-mean:

E[éz] = Js(zo) A"E[n] =0. )
It is also worthwhile to note that due to linearity, approxi-
mate reconstruction noise shares the same Gaussian nature,
with the covariance matrix:
e = E[dzoz] = Jp(zo) A" Enn] A Js(zo)"
Ji(xo) AT 2y A Jp(z0)". (6)

Even though the Jacobian J; = Jy(xg) € C™*™ exists,
storing or explicitly computing the full matrix is intractable
for MR images, due to dimensionality and massive data size.
Nonetheless, (6) shows propagation of k-space covariance
X, through the adjoint operator A and the network’s
Jacobian J. Similar constructs for the noise matrix exist in
other pMRI approaches (Pruessmann et al., 1999).

Factorization and Diagonal Entries. To simplify compu-
tations, we first perform Cholesky decomposition of 3y:

Yy =orol, @)

where o7, is the Cholesky factor of ¥;. Substituting into
(6), we obtain

e = Jp A" (ool ) AT, (8)
H
- (Jf AT o'k> (Jf AT ak.) . ©)
Here, we see that 3, = L L7, with Cholesky factor:

L = JfAHO'k, (10)

The variance of the i-th voxel (i.e., the ¢-th diagonal entry
of ) is then:

Var(x;) = diag(Ze)i = [LL"]s = [[L]5, (D
where I; € C" is the i-th row of L:
L=V'fiA"a,

In principle, the variance of each voxel could be iteratively
obtained via taking the ¢ norm of i-th row of Jacobian,
transformed and scaled by A’ and o,. Although this direct
approach would be computationally heavy (see Algorithm
1 in Appendix), the analysis reveals how X, A and Jy
together determine the voxel-wise noise distribution.

3.4. Estimating Noise via Jacobian Sketching

Here we present an algorithm for estimating the diagonal
of the covariance matrix X, in an unrolled MRI recon-
struction, without explicitly forming or storing the Jacobian
Jy € C™ " or the image covariance 3, € C"*". We
instead rely on Jacobian-Vector Products (JVPs), enabling
a sketch-based approach that efficiently probes the Jacobian
and covariance structure through random vectors. We first
present the following results regarding the diagonal entries
of implicit, complex-valued Hermitian covariance matrices.

Theorem 3.1 (UNBIASED DIAGONAL ESTIMATOR). Let
3} € C"*™ be Hermitian, and let v € C" satisfy

E[v] = 0, E[vvf] = I (12)

Define y = (X v) © v*, where © is the Hadamard product,
and x is scalar complex conjugation. Then:

E[y] = diag (E)

Proof. Write ¥ = [£,;] and v = (vy, ..
each index i:

., ) . Then for

(2 ’U)l‘ = Z Eij Uj.
j=1
Multiplying by v} yields y;:
yi = (Zw)iv) = Y Tijv0].
j=1

Taking expectation:

Bl = E[> 5y 0y)'] = iw[% d

J=1

From 12, we note E[v; v} | = §;;:

n

Ely:] = Zzij 0ij = Y.
j=1

Since this holds for all i, we have E[y] = diag(X). O
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Lemma 3.2. Let 3 € C"*" be HPSD with a Cholesky
factorization ¥ = L LY. Suppose v € C" satisfies (12).
Defining u = L v, we claim:

Elu©u*] = diag(X).

Proof. Since u = L v, its ith component is

n
U; = E Lij Vj.
j=1

Hence, the ith entry of the Hadamard product u ® w* is

ol = u ) = (3 Lyv) (30 Liei)
j=1 k=1

Rewriting and taking expectation:
j=1k=1

By (12), E[v; v}] = 6;%. Thus,
j=1

Because this holds for each 7, we conclude
Elu ® u*] = diag(X).
O

Returning to (10), we have, L = Jy A" g, Then, by
Lemma 3.2,

u=Lv=Jy (AH(ak. v)) = E[uou’] = diag(Zz).

Thus, applying J; to suitably distributed random vectors
reveals each diagonal entry of 3.

3.4.1. VECTORIZED IMPLEMENTATION: JACOBIAN
SKETCHING

A naive approach would sample each v; € C™, compute
Lv; = J;(A" o v;) individually, and accumulate w . In-
stead, we provide a vectorized algorithm that improves com-
putational and efficiency (See Algorithm 2 in Appendix):

1. Generate random matrix: Vg € C™*° with
columns v; s.t. E[v;] = 0, and E[v; v}'] = I,,.

2. Transform by o} and Af: Wy = o4 Vg, then
Ws = A" Wy

3. Sketch J; via W : Ug = J; Wy € C"%5,

4. Hadamard product w/Hermitian & Average:
‘/s:amples =Us® Ug'{ € RnXS’

"

diag(zm) = % ‘/samples 1S~

3.4.2. CHOICE OF RANDOM VECTORS

For unbiased estimation, we require random vectors v € C"
satisfying (12). A natural design choice would be stan-
dard complex Gaussian vectors where each v; is drawn
from ~ CN(0, 1) independently. Yet, in real-valued ma-
trix diagonal estimation problems, Rademacher vectors (i.e.,
+1) have been shown to reduce estimator variance com-
pared to Gaussian vectors (Hutchinson, 1990; Bekas et al.,
2007). In MR reconstruction, however, data and operators
are inherently complex, thus we propose using a complex
analogue, namely complex Rademacher (random-phase)
vectors, where each v; has unit magnitude and uniformly
random phase:

v; = €% 6; ~ Uniform|0, 2n].

We show in Appendix D that both choices satisfy (12),
though random-phase vectors yield strictly lower estimator
variance; ergo, selected for consequent experiments. Theo-
retical error bounds for the estimator using random-phase
vectors are provided in Appendix E.

4. Experiments and Results
4.1. Datasets and Experimental Setup

We performed experiments on two publicly available
datasets—Stanford knee dataset and a subset of the
fastMRI brain dataset (Knoll et al., 2020c). The Stanford
knee dataset consists of 8-channel 3D FSE PD-weighted
scans, which we split into 14 subjects for training, 2 for val-
idation, and 3 for testing. Each 3D scan was demodulated
and decoded via a 1D inverse Fourier transform along the
readout dimension, yielding 2D Axial slices with matrix size
320 x 256. The fastMRI brain dataset comprises 16-channel
Axial T2-weighted scans with matrix size 384 x 384, split
into 54 training, 20 validation, and 30 testing subjects. We
focus on using these test volumes primarily to evaluate the
variance estimation performance of our framework, rather
than to compare the reconstruction quality of different meth-
ods. k-space data were retrospectively undersampled via 2D
Poisson Disc undersampling masks; and coil sensitivities
were estimated via J-SENSE (Ying & Sheng, 2007). We
estimated the coil covariance matrix 3, for each slice using
the outermost 5% of k-space points, where signals are mini-
mal (Robson et al., 2008; Pruessmann et al., 1999). During
inference, a unique and deterministic undersampling mask
was used on each test slice for reproducibility.

Reconstruction Methods To comprehensively evaluate
our approach, we selected six deep MRI reconstruction
algorithms spanning different learning paradigms: super-
vised (E2E-VarNet (Sriram et al., 2020a), MoDL (Ag-
garwal et al., 2019), U-Net (Ronneberger et al., 2015)),
semi-supervised (N2R (Noise2Recon), VORTEX (Desai
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Figure 1. Each column corresponds to a distinct deep reconstruction method at R = 8, a = 1 on knee data. In each column: (top row)
shows ZF and reconstructed images; (middle row) displays NV maps derived by the proposed method and empirical simulations; (bottom
row) presents difference and amplified (x10) difference maps between the proposed and empirical variance maps to highlight spatial
discrepancies. Color bars indicate each panel’s relative noise map display window.

et al., 2022a)), self-supervised (SSDU (Yaman et al., 2020));
and network architectures: fully data-driven (U-Net (Ron-
neberger et al., 2015)) vs. physics-driven unrolled (the
rest). These methods cover a broad spectrum of deep recon-
struction models for examining the generalizability of the
proposed noise analysis framework across different architec-
tures and learning paradigms. Additional details regarding
methods including training, hyperparameters, architectures,
and results are provided in Appendix H.

Simulating Noise Levels. To investigate performance un-
der varying noise scenarios, we simulate different input
noise levels by scaling the estimated covariance matrix
Y, = aXy, where is o € {1,5,10,---,200} so that
n ~ N(O, Z‘k)

Reference Empirical Baseline. For each experimental
setting (noise level, acceleration rate, dataset) and image,
we performed N = 3,000 MC trials (See Appendix G),
each time adding simulated noise n drawn from X;. We
reconstruct each noisy measurement and compute empirical
variance maps by measuring voxelwise sample variance
across all trials. The empirical variance maps serve as a
gold standard reference.

Variance Estimation. Variance maps computed by our
proposed randomized Jacobian sketching algorithm were
compared to the empirical variance maps (our benchmark)
to assess the accuracy of the proposed method for captur-
ing voxel-wise noise propagation. The sketching matrix
Vs had S = 1000 column probing vectors, which provides
a balance between the estimation accuracy and computa-
tion (See Appendix F). Percent (%) Pearson Correlation
Coefficient (PCC), and Normalized Root-Mean-Square Er-

ror (NRMSE) between computed and empirical variance
maps were measured, and mean-=£std across all test slices
were calculated to quantify the performance of our method.
Significance of the distributional differences between voxel-
wise noise maps were assessed by using Wilcoxon signed-
rank tests. Our code is available at https://github.com/onat-
dalmaz/deep_recon_noise.

4.2. Generalizability Across Reconstruction Methods

To assess how well our variance estimator generalizes across
different DL-based reconstruction methods, we fix R = 8
and ¥ = 3, then train each model (knee and brain)
and estimate N'V. Table 1 shows that our method achieves
near-perfect correlations to the gold standard, with no sta-
tistically significant difference betweeen noise distributions
(p > 0.05). Although the U-Net yields slightly higher
NRMSE (1.7%), these values remain small in absolute
terms. One contributing factor to this might be U-Net’s
lack of iterative data-consistency, which applies a single-
pass nonlinear denoising. This leads to both lower-fidelity
reconstructions (See Table 9 in Appendix), and deviations
from our method’s linear approximation, resulting in minor
local estimation errors.

Figures 1 and 6 (Appendix) illustrate representative noise-
variance maps from knee and brain slices, respectively. Our
estimator generally reproduces the intensity ranges and spa-
tial patterns observed in the empirical reference, showing
only minor deviations near regions of sharp intensity transi-
tions, such as tissue boundaries or areas with rapid signal
variation. These localized discrepancies remain negligible
relative to the overall noise distribution and do not affect
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Table 1. Mean=std PCC and NRMSE between noise-variance
maps calculated by our method and by reference empirical baseline,
across different DL reconstruction methods for knee and brain data
atR=8, a=1.

Method Knee Brain
PCC (%) NRMSE (%) PCC (%) NRMSE (%)

E2E-VarNet 99.94+0.0 0.7£0.0 999400 0.5+0.1
MoDL 99.9+0.0 054+00 99.7+0.0 1.1+£0.1
U-Net 99.4+0.0 17402 99.7+0.0 1.8£0.2
VORTEX 999400 0.64+0.0 99.94+0.0 0.6+0.1
N2R 99.9+0.0 0.6£+0.0 999+0.0 0.7+£0.1
SSDU 99.94+0.0 044+0.0 99.8+£0.0 09+£0.1

Table 2. Computational and memory efficiency (per slice) on knee
dataset for standard unrolled architecture, i.e. as used in E2E-
VarNet, VORTEX, N2R, SSDU.

Metric Empirical Proposed Naive
Time 54.0s 1.3s 880.2 s
Storage 3513.3 MB 1.1 MB 1.1 MB

the overall reliability of the framework. Across a variety of
DL models, our estimator consistently provides robust noise
estimates that align well with empirical simulations.

4.3. Computational and Memory Benefits

Table 2 compares the computational time and memory usage
for three variance-estimation strategies for a single slice on
the unrolled architecture from the knee dataset: Empirical,
Proposed, and Naive (based on Eq. 11). Empirical sim-
ulations take about a minute and require storing multiple
reconstructions. In contrast, Naive avoids large storage over-
head, but its exhaustive row-by-row Jacobian calculation
is significantly more time-consuming. In comparison, our
proposed estimator balances the two ends: reducing the
computation by over an order of magnitude relative to the
empirical baseline by leveraging JVPs, while circumventing
storage of reconstructed images. These results illustrate
how the proposed algorithm attains substantial speed and
memory advantages, making it a practical tool for routine
use, especially on large datasets. See Appendix I for effi-
ciency/scalability of our method with regards to network
complexity and architecture, and Appendix J for a practical
comparison with the empirical baseline at low trial counts.

4.4. Generalization to Various Undersampling Schemes

For the baseline noise level (a« = 1), we vary the accelera-
tion factor R € {4, 8, 12,16, 24}, training a separate model
for each R. Figures 7, 8 (Appendix) illustrate variance
maps for representative knee and brain slices, respectively.
Although higher acceleration factors R decrease the num-
ber of k-space samples—thus elevating ill-posedness and
noise—our noise estimations continue to align closely with
empirical references across all R, remaining their accuracy
over a broad range of undersampling rates.

1D Cartesian 1D Random 2D Uniform

2D Poisson

Figure 2. Each column corresponds to a different undersampling
pattern (E2E-VarNet on knee data at R = 8, o = 1). In each col-
umn: (top row) shows ZF and reconstructed images; (middle row)
displays NV maps derived by the proposed method and empiri-
cal simulations; (bottom row) presents difference and amplified
(x10) difference maps between the proposed and empirical vari-
ance maps to highlight spatial discrepancies. Color bars indicate
each panel’s relative noise map display window.

We also assessed the generalizability of our method un-
der varying undersampling patterns, including 1D uniform
Cartesian and 1D random Cartesian undersampling, and
2D uniformly random and Poisson-disc (default sampling
pattern used in this study) undersampling (see Figure 10 in
Appendix). For each pattern, we train a dedicated model,
then estimate variance in representative slices. Figure 2
demonstrates that our noise maps retain strong agreement
with empirical results under all sampling schemes—whether
uniform or random. This consistency arises because the op-
erator A inherently encodes the sampling mask; our method
only relies on A as an implicit linear operator, making it
undersampling-agnostic. These results demonstrate robust-
ness to substantial changes in sampling pattern and accel-
eration rate, underscoring its versatility in diverse imaging
scenarios.

4.5. Robustness to k-space Noise Level

We systematically increase the k-space noise magnitude
by varying o as described in Section 4.1, thereby simu-
lating growing covariance matrices (and thus SNR levels).
Figures 3, 11 (Appendix) show variance maps for repre-
sentative brain and knee slices from the proposed method
and from empirical simulations, and Figure 13 (Appendix)
shows the error between them as alpha grows. Although
the reconstructed images become visibly noisier at higher «,
networks still perform noticeable denoising. As « increases,
empirical maps spread variability more uniformly across
tissues, leading to a more homogeneous noise pattern with-
out accentuating different tissue types. For moderate noise
scaling (o < 50), the proposed and empirical variance maps
closely match. Note that extreme noise levels (50 x—200x)
correspond to SNR values well below 10-15 dB and thus
far beyond what is considered clinically relevant in routine
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Clinically relevant
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Figure 3. Each column corresponds to a different noise scaling factor « resulting in varying SNR scenarios (E2E-VarNet on knee data
at R = 8). In each column: (top row) shows ZF and reconstructed images; (middle row) displays NV maps derived by the proposed
method and empirical simulations; (bottom row) presents difference and amplified (x10) difference maps between the proposed and
empirical variance maps to highlight spatial discrepancies. Color bars indicate each panel’s relative noise map display window. Note that
a = 50, 200 corresponds to SNR values well under a 10dBs, which is often cited as a threshold for diagnostic utility (Brown et al., 2014).

practice (Brown et al., 2014; Westbrook et al., 2018). At
these regimes, differences emerge in low-intensity tissue or
around sharp edges, reflecting how the network’s learned
regularization systematically suppresses part of the injected
noise compared to our estimation. Nevertheless, these dif-
ference maps remain small under practical SNR conditions,
indicating that our approach effectively captures noise prop-
agation for typical or moderately elevated noise. We provide
additional analyses and discussions in Appendices L and M.

5. Discussion and Conclusion

Our localization at x, presupposes that ||A¥n| <
||o||—i-e., the noise perturbation in the image domain must
not significantly deviate from the baseline signal, for the
first-order Taylor approximation to remain valid. Clinically,
typical MRI acquisitions usually have sufficiently high SNR
for this condition to hold, so the linear approximation re-
mains valid (Brown et al., 2014; Westbrook et al., 2018).
However, once noise levels become so large that || A n|
approaches or exceeds ||« ||, the nonlinearities in f can no
longer be ignored. In such extreme cases—such as noise
magnitudes exceeding the baseline signal—our method may
under- or over-estimate variance, as the learned regulariza-
tion could reshape these large perturbations in ways that
can not be accounted for by a linear approximation. Despite
these nuances at high noise regimes, the strong agreement
between our method and empirical simulations under realis-
tic acquisition conditions highlights the practical value and
efficacy of our approach.

Noise distribution in fully-sampled or linear reconstructions
tends to be fairly uniform, modulated by coil sensitivities

(Robson et al., 2008). However, different DL reconstruc-
tions exhibit distinct noise profile for the same slice, shaped
by factors such as regularization, optimization criteria, and
the network’s learned biases. Moreover noise distribution
often depends on the underlying anatomy and k-space data,
rather than being uniformly distributed. Indeed, inspection
of the noise maps suggests that spatial noise amplification in
DL reconstructions mirrors features in ZF inputs and final
outputs. This localized noise amplification has important
clinical implications. In routine MRI assessments, radiol-
ogists focus on specific regions of interest (ROI) such as
cartilage in knee scans or pathology-affected areas in the
brain, rather than examining the entire field of view uni-
formly (Rubenstein et al., 1997). Therefore, even if global
metrics indicate high reconstruction quality, a locally ele-
vated NV in diagnostically relevant ROIs could compromise
clinical interpretation (Sijbers et al., 1998; Lerski et al.,
1993). The ability to accurately quantify noise and preserve
reliable diagnostic signal in crucial ROIs is pivotal for the
successful clinical translation of DL-MRI methods (Kiryu
et al., 2023). Our method efficiently provides accurate spa-
tially resolved NV maps that highlight regions with elevated
uncertainty, enabling radiologists to review diagnostically
vulnerable areas and supporting better clinical decisions.

The variance estimation framework presented in this work
naturally aligns with the broader concept of uncertainty
quantification in deep neural networks and primarily cap-
tures aleatoric uncertainty, arising from measurement noise
in k-space. By interpreting voxel-wise variance as an indi-
cator of low SNR or ill-conditioned regions, this approach
facilitates reliable confidence assessments in clinical set-
tings, helping guide diagnostic decisions (“Is this subtle
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lesion credible?”) and acquisition strategies (‘“Should addi-
tional k-space samples be acquired here?””). Our proposed
estimator efficiently computes voxel-wise uncertainty via
JVPs, making it a promising approach for large deep MRI
reconstruction pipelines to explicitly characterize noise and
enhance interpretability. In the future, this method could
be combined with inherently stochastic reconstruction tech-
niques, i.e. diffusion models (Ozturkler et al., 2023; Chung
& Ye, 2022), to also capture epistemic uncertainty arising
from the model. While our current focus is on estimating
the diagonal elements of the image covariance matrix (i.e.,
voxelwise variances), extending these techniques to cap-
ture off-diagonal terms also remains an important frontier.
For instance, in functional MRI, cross-covariance structures
could illuminate shared noise sources or functional connec-
tivity across different brain regions (Varoquaux et al., 2010;
Behrouz et al., 2024).

Many imaging modalities, such as CT and PET share similar
challenges related to noise characterization, reconstruction
under limited data, and estimating uncertainty in predictions
(Wang et al., 2020). For instance, in CT and PET, where
dose reduction is a key objective, quantifying uncertainty
due to measurement noise could enhance confidence in low-
dose reconstructions, improving clinical decision-making
(Yang et al., 2018). While our primary goal in this study was
to specifically address multi-coil accelerated MRI due to
its complex acquisition model and the widespread adoption
of DL-based reconstructions where explicit noise propa-
gation has been relatively understudied, our framework is
fundamentally generalizable. It is not limited solely to Gaus-
sian noise assumptions and can be extended beyond MRI.
The method requires only a known forward operator A de-
scribing the measurement process (e.g., X-ray projections
in CT) and an appropriate noise covariance Y reflecting
the modality-specific noise statistics. For instance, extend-
ing our voxel-wise NV estimation approach to CT could
involve incorporating Poisson-Gaussian noise models or
variance-stabilizing transformations directly into . Thus,
while we consider such extensions an important future direc-
tion, the current manuscript lays the foundational theoretical
and computational framework necessary to address these
broader applications.

The principles developed in this study hold significant po-
tential for broader image-to-image tasks in computer vision,
including super-resolution, denoising, inpainting, or synthe-
sis by appropriate modifications based on the input noise
distribution and forward corruption model (Ledig et al.,
2017; Zhang et al., 2017; Pathak et al., 2016; Dalmaz et al.,
2022; Ozbey et al., 2023). In these applications, accurately
estimating the spatial distribution of uncertainty at the pixel
level can improve interpretability and trustworthiness, espe-
cially in high-stakes scenarios such as medical diagnostics
or autonomous systems (Kendall & Gal, 2017).

Voxel-wise NV information has been demonstrated to en-
hance downstream imaging tasks—such as denoising and
segmentation—across multiple medical imaging modali-
ties, including MRI, CT, and ultrasound. Classical adaptive
filters like BM3D have been shown to significantly bene-
fit from accurate NV information, enabling effective noise
reduction without sacrificing critical diagnostic details (Han-
chate & Joshi, 2020; Li et al., 2014). Similarly, adaptive
filtering methods that incorporate spatially varying noise
variance maps improve diagnostic quality in low-dose CT
and ultrasound imaging scenarios (Hariharan et al., 2020;
Yu & Acton, 2002). In contemporary DL, explicitly incor-
porating voxel-wise NV maps has consistently been demon-
strated to reduce false positives and increase accuracy in
segmentation and denoising networks (Dou et al., 2025; Wei
et al., 2022). Thus, our proposed NV estimation frame-
work not only enhances the interpretability of DL-based
MRI reconstructions but also offers direct practical benefits
by supporting robust performance improvements in critical
downstream clinical tasks.

In conclusion, we introduced a model-agnostic Jacobian
sketching algorithm for estimating voxel-wise NV in DL
MRI reconstructions. Our approach efficiently and accu-
rately captures how acquisition noise propagates through
nonlinear, multi-coil reconstructions without costly MC sim-
ulations. Extensive experiments demonstrate strong align-
ment with reference variance maps across diverse architec-
tures, suggesting that our method can be readily incorpo-
rated into existing deep reconstruction pipelines. Beyond
improving interpretability of DL reconstructions, these noise
estimates hold promise for guiding adaptive acquisition, as-
sessing image quality, and facilitating clinically actionable
uncertainty quantification.
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A. Detailed Noise Model for Multi-Coil MRI

A.1. Coil Noise as Linear Combinations of Independent Sources

We assume that noise in each coil 7y arises from an ensemble of zero-mean independent Gaussian sources {&; }, each with
standard deviation o, (Macovski, 1996). Concretely,

77’7(75) = Z W(y,r) g‘r(t)- (13)

Because each & is Gaussian, 7, (t) must also be Gaussian. The weight w
couples to coil ~.

~,) indicates how strongly the 7-th noise source

A.2. Coil Covariance Matrix 3 b

Summarizing these noise contributions yields an n. X n. coil covariance matrix 3, where

(ik)w’ = ZUE W(y,m) (w(’Y'»T)>*‘ (14)

Here, (f]k)nm is the NV in coil v, and off-diagonal elements encode coil-to-coil covariances, and n. is the number
of channels in the imaging system. Since noise originates from physical sources that induce real-valued fluctuations,
the cross-correlations between coils must satisfy Hermitian symmetry due to Maxwellian reciprocity in electromagnetic
induction (Roemer et al., 1990; Brown et al., 2014). Consequently, Xy, is Hermitian (vy,~' swap with a conjugate to see
mathematically) and positive semidefinite by construction (as all covariance matrices), since it can be expressed in the form

WDWH,
where W contains wy, -y, and D is diagonal of {o2}. Thus, for any vector v € C"e,
v S0 = IDYV2WH |2 > o0,
confirming positive semidefiniteness.

A.3. Block-Diagonal Sample Covariance X,

Suppose noise is uncorrelated across n distinct k-space frequency locations, while retaining a coil-to-coil covariance

3 € CmeXme at each frequency (where n. is the number of coils). If n € C™, with m = ny - n., denotes the stacked
multi-coil noise over ny frequency bins, then the sample covariance matrix of n can be expressed as a block diagonal:

Y = diag(f]k, ey ik) e Ccmxm,

n s blocks

Equivalently, we may write _
S = L, @ 3,

where I, is the ny X ny identity matrix and ® denotes the Kronecker product. Each n. x n. diagonal block > & captures the
coil-to-coil noise correlation structure for one frequency index, and repeating these blocks n; times encodes independence
across frequencies.

In practice, one can exploit a compact representation in which 3, is used directly during linear-algebraic factorizations
or operator-based manipulations, rather than forming the full m x m block diagonal. Such a compact approach reduces
both memory and computational overhead significantly, as the repeated blocks need not be explicitly stored or inverted.
Consequently, we directly utilize the coil covariance matrix 3, in our computational framework for efficiency. Nevertheless,
for theoretical analysis and proofs carried out in this study, it is more convenient to leverage the sample covariance matrix
3y, thereby making explicit how noise correlations factor into the imaging operator A and the subsequent derivations. We
now show that if 3, is Hermitian positive semidefinite (HPSD), then X, inherits these properties.
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Hermitian. A block-diagonal matrix is Hermitian if and only if each diagonal block is Hermitian. Since SH =%, we
have N i )
S = (L, 080" =1 oS = I,, 0 5 = 5.

Hence, 32 is Hermitian.

Positive Semidefinite (PSD). A Hermitian 3, is PSD if and only if xH¥,x > 0 for every x € C™. Partition x into n ¢

sub-vectors, x = (X1, ... ,xnf), each x; € C"<. Because X is block diagonal, we get
nf
xT Y. x = Z(xZH Ekxl-).
i=1

If §~)k is PSD, then each sz f]k x; > 0. Summing these terms yields a nonnegative result, thus 3 is PSD.

B. Existence of the Network Jacobian

Unrolled MRI networks alternate between regularization and data-consistency updates for K iterations, yielding a final
reconstruction z(¥) (Hammernik et al., 2023; Liang et al., 2020). Concretely, each iteration has two steps:

1. Regularization:
a0 — ;(k)(m(kfn)’

where F(*)(-) is a neural network or learned operator (e.g., a CNN block) that acts as a trainable regularizer. Neural
networks are well-known to be differentiable with respect to their inputs, assuming standard operations (convolution,
ReLU, batch norm, etc.) (Goodfellow et al., 2016). Hence, the map xz*=1 — £(*) ig differentiable.

2. Data Consistency (DC):
2® = 0 _ AH(Asi:(k) —y>.

Here, A € C™*" is the linear imaging operator, and y € C™ is the measured data. Since matrix-vector multiplication
and addition/subtraction are linear (and thus differentiable) operations, the map ") — 2(¥) is also differentiable.

Composing Differentiable Steps. Because each iteration composes two differentiable transformations, the combined k-th

iteration step
(k—1) (k)
x — T

is itself differentiable. Consequently, unrolling K times yields a chain of such transformations, implying the final recon-
struction (¥ is a differentiable function of the initial estimate x(®). Formally,

fi2® o g = (DCo]—'(k) o~--0DC’o]-'(1))(ac(0)).

K times

By the chain rule in multivariate calculus, this implies that f has a well-defined Jacobian J; € C™*™ at each input x(0),

C. Verification of Random Vector Properties

Here, we first demonstrate that the introduced random vectors—complex Gaussian and Rademacher—satisfies the conditions
stipulated in Theorem 3.1: zero mean and unit covariance.

C.1. Complex Gaussian Vectors

Definition C.1. A Complex Gaussian vector v € C" is defined such that each element v; is independently sampled from
a complex normal distribution with zero mean and unit variance, denoted as v; ~ CN(0, 1). This implies:

'Uj = aj +ij,

where a; and b; are independent real-valued Gaussian random variables with a;, b; ~ N (0,0.5).
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Algorithm 1 Naive Per-Voxel Variance Calculation (Row-by-Row Jacobian)

Require: * Reconstruction function f : C* — C" with Jacobian J; € C"*™,
* Imaging operator A € C™*",

* k-space sample covariance matrix 3 € C"™*™,
Ensure: Voxel-wise variance map { Var(x;) }
Compute the Cholesky factor of 3 :

n
i=1"
Ek = 0Ok 0’,?.

Initialize an empty array for variances:
Var(x) = 0 € R™.

for each voxel: = 1,...,ndo
Create one-hot vector e; € R™ with 1 at index 7, 0 otherwise.
Backpropagate e; through f to get row ¢ of J:

Vif « (JFe)'
Form
L = (V'f) A" oy

{Imaging operator and noise correlations included. }
Compute variance:
Var(z;) = [[Lil3-

Store in Var(x); < Var(x;).
end for

C.1.1. ZERO MEAN
The mean of each element v; is calculated as:
Elv;] = E[a;] +iE[b;] =0+i-0=0

Therefore,
Ev]=0

C.1.2. UNIT COVARIANCE
Since a; and b; are independent and each has a variance of 0.5, the covariance between v; and vy, is:
E[v;vi'] = E[(a; + ib;)(ar, — ibx)] = Elajax] + E[b;bs]

Given that a; and b; are independent across different indices:

1, ifj=k
Efof] =4 0
0, ifj#k.
Thus,
Elvof] =T

C.2. Complex Rademacher Vectors

Definition C.2. A Complex Rademacher vector v € C” is defined such that each element v; is independently sampled
from the set {€? | § ~ Uniform[0, 27)}. In other words, each v; is of the form:
vj = el

)

where 6, is uniformly distributed over the interval [0, 27).
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C.2.1. ZERO MEAN

Since 6; is uniformly distributed over [0, 27), the expectation of each v; is:
. 1 [
Elv;] = ]E[ejej] = %/0 el%de =0
Therefore,
Ev]=0

C.2.2. UNIT COVARIANCE
For j =k,

E[vjuf] = E[e/lie %) = E[1] = 1

For j # k, ) ) )
E[vvf] = E[e/% 7% = E[e/%] - E[e %] =0-0=0

This separation of expectations is valid due to the independence of ¢; and 60;,. Hence,

Elvv?] =T

D. Variance of Complex Gaussian vs. Complex Random-Phase

Let 3 € C™*™ be a Hermitian positive semi-definite matrix (e.g., a covariance matrix), and let v € C™ be a random vector
satisfying
Ejv] = 0, E[vv"] = I.

We define the following unbiased estimator for the diagonal entry ¥;;:
Y; = (Zv), (v)", = E[] = Sy

Below, we derive the variance of Y; under two complex random-vector distributions: (i) complex Gaussian and (ii) complex
random-phase (Rademacher). In both cases, the key difference lies in the fourth moment of the entries.

D.1. General Expansion of |Y;|?

First, we write out
*
E Yijv; X vZ
Hence,

|Yi\2 (ZZ”%) vz (ZEzkvk) vl **.

Since ¥ is Hermitian, ¥}, = Xy, and (v;)** = v;. Expanding yields
Yi|* = (Z i Uj) (Z Lik 'Uk-) X Juil?.
j=1 k=1

Taking expectation,

E[lYiP] = Y Sy S Efv; vf o]

j=1k=1
Because E[v v!’] = I, we know E[v; v}] = §;;. For j # i, k # i, the entries v; and v; are uncorrelated in magnitude, so
E[|vi|?vj vi] = E[|v;]*] 6 = 1- ;5. When j = i or k = i, we retain the fourth moment term E[ |v;|*]. Thus, generically,
E[Yi["] = D I%y[* Eflu; [oif*] + [Sul*EfJu"].

J#i
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Given E[|v;]?] = 1 for all j, we ultimately get

|Y‘ Z|Elj|2 + |En|2 [|U1‘4]
J#i

Subtracting |;;|* (which is [E[Y}] |2) then gives the variance:
Varly] = [SIZaP + Sl El]] - 12l
J#

Thus the crux is: E[|v;[*].

D.2. Complex Gaussian Case

Distribution. Let each v; be drawn from a circularly symmetric Gaussian (CN (0, 1)), implying
]EUUZF} = 1, EUU2|4] = 2

L (331' +J yi) with x;, y; ~ ./\/'(O7 1) 1.1.d.)

(That is, if v; = 7

Variance Calculation. Substitute E[|v;|*] = 2 into the generic formula:

E[Yil?] = ) |5, + 2/8ul>
J#i

Therefore,

VarlYi] = Y I%,7 + 2[Zul® — [Zul? = Y [Tyl
i i=1

Hence, for complex Gaussian:

Var[Y; Z’Z”’

D.3. Complex Random-Phase (Rademacher) Case

Distribution. Now let each v; have unit magnitude and uniformly random phase,
il =1, v = €%, 6; ~ Uniform[0,2n].

Then

E[|Ui\4] = L

Variance Calculation. Substituting E[|v;|*] = 1 into our generic formula:

n
E[ViP] = YISyl + 118l = YIZy)
j=1

J#i
Subtracting |3;;|? from this, we get

VarlY; Z\E,JP HES

Thus, for complex random-phase (or “complex Rademacher”):
Var[Y; Z\zmﬁ HES
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E. Bounds on the Estimation (sketching) Error

Theorem E.1 (Bounds on the Sketching Error). Let 3, € C™*"™ be a Hermitian positive semidefinite matrix and define its
off-diagonal component by

Y, =X, —diag(XZ,).
Let 1, (X)) be the diagonal estimator obtained by averaging m independent complex random-phase (Rademacher) sketches.

Then, for any 6 € (0, 1], with probability at least 1 — 6,

. log(2/6) —
I (8) — ing(B2) 2 < e/ B s ),

where ¢ > 0 is an absolute constant independent of ¥, and m.

Proof. Define the error vector
e= m(rm(Ez) — diag(Ez)).

By construction, e is the sum of m i.i.d. mean-zero random vectors:

m
€= E €2,
z=1

where each e, arises from a single sketch of our estimator for 3,.. In our case, by design the expected squared norm of the
error in a single sketch is given by
2 SHIE
Ellez[l5 = [[3Zz/%-

The key observation is that the variance of the scalar estimator for the ¢th diagonal entry is (From Appendix D.3):

2

9

Var[Y] = Y S50 — [T
j=1

so that the contribution of the diagonal is subtracted, yielding a tighter bound.
We now follow a symmetrization and scalar-comparison argument (Vershynin, 2018)):

1. Symmetrization. Let ¢’ be an independent copy of e. Since f(z) = ||z||3 is convex and E[e] = 0, by Jensen’s inequality
we have
Elle]3* <Elle —¢'[l3". (15)

2. Scalar Comparison. For each sketch index z, let e, ; and e, » be independent copies of the single-sketch error
e, € C", and define
W, = €1 —€;2.

Although w, may have complex entries (due to complex random-phase vectors in the estimation process), its squared norm
|lw. |13 is a real, nonnegative scalar.

Next, introduce an independent real Rademacher random variable r, € {—1, +1} for each z, and define
W, =r, ||WZH§

Because w, has a symmetric (mean-zero) distribution in C", one can show that E[W.] = 0. Moreover, for any integer
k > 1, since 72 = 1, we obtain

EW2] = E[(r: Iw-13)"] = E[lw.[I#].
Let

E=Sw. = fj(r Iw.13)-
z=1 z=1
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Algorithm 2 Noise Calculation in DL-based MRI reconstruction via Sketching the Network Jacobian

Require: ¢ Imaging operator A € C™*",
* k-space sample covariance matrix 3 € C"™*™
* Reconstruction network f : C* — C™ with Jacobian J,

¢ S, size of random matrix V.
Ensure: Approximate diag (Em) ~ diag(Em), where X, = Jg AT, A J]{{
Compute Cholesky factorization: ¥j, = akaf
Vs € C™*% with columns {v;} sampled from a complex random-phase distribution:
vl(j) = el 95'7), 92@ ~ Uniform|0, 27].
Ws «+ o1 Vs (6 (meS)
Wg AH Wy (E CnxS)
US — Jf (Ws)
‘/samples < USQUé{ (E RnXS)

—

diag (Ew) — % ‘/samples 1s (E Rn)

A careful term-by-term expansion (exploiting the symmetry of each w, — —w ) shows that
. 2k
Efllells"] < E[Z[7].

Hence, we reduce bounding ||e||2 (a vector norm in C™) to analyzing E (a sum of real scalars). This paves the way for
standard sub-Gaussian/sub-Exponential tail bounds to be applied in a straightforward manner.

3. Concentration. Standard hypercontractivity and concentration results (Roosta-Khorasani & Ascher, 2013)) imply that £
is sub-Gaussian with parameter

K =Cym|Z:|F,

for an absolute constant C' > 0. Consequently, 2 is sub-exponential with parameter proportional to m || X, |%. In particular,
applying Proposition 2.7.1 from (Vershynin, 2018), we obtain that for any ¢ > 0,

2 t
Pr(”e”222t> <2exp| ——=5 |
m co [ X%

for some constant c¢g > 0.
Setting
— 2
= co |[Zal} log 5.

we deduce that with probability at least 1 — 9,
lell3 5 2
U2 < 5 Tog -
Recalling that e = m (Tm(Ex) - diag(Zr)) , it follows that

log(2/3)

I (Be) — diag(3a)ll2 < Vo |/ — = [ Zallr-

Renaming /¢y as ¢ completes the proof. O
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F. Sketching Matrix

Figure 4 varies S, size of the sketching matrix Vs, and measures the resulting NRMSE of our variance estimator. As S
increases from 100 to 1,900, there is a subtle decrease in error. This trend reflects the improved accuracy of the diagonal
estimator when more random vectors probe the Jacobian structure. However, beyond a certain point (approximately
S = 1,000-1, 200 in our experiments), the NRMSE decreases more gradually, indicating diminishing returns in accuracy.
Thus, while a large S' can yield more precise variance maps, it also incurs higher computational cost; our choice of
S = 1,000 would yield a favorable balance between accuracy and runtime for most practical settings.
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Figure 4. NRMSE of the proposed method over test slices vs. size of the sketching matrix (S) (E2E-VarNet on brain dataat R = 8, a = 1).
As the size S of the sketching matrix Vs grows from 100 to 1,900, the Normalized Root-Mean-Square Error (NRMSE) of the variance
estimator decreases. While additional probing vectors generally improve accuracy by capturing more of the Jacobian’s structure, the
marginal benefit tapers off beyond about 1,000-1,200 vectors, suggesting a practical trade-off between improved precision and increased
computation time.

G. Empirical Noise Calculation

MC Trials. For each experiment (reconstruction method, noise level, acceleration rate, dataset) and slice, we simulated
N = 3,000 MC trials. Specifically, we draw the noise vector n from X, for each trial, add it to the measured k-space, then
reconstruct the image. Across these 3,000 reconstructions, we compute voxelwise sample variance to form an empirical
variance map, which serves as the “gold standard” reference.

Convergence. Although we typically fix 3,000 trials to ensure a stable reference variance, Figure 5 illustrates the effect of
varying the trial count from 100 to 5,000. For smaller trial counts, the empirical variance estimate shows notably larger
NRMSE relative to a high-sample baseline (e.g., 10,000 trials), but this error diminishes as we approach 2,500-3,000 trials,
thereafter offering only gradual improvements. Consequently, while increasing the number of MC samples monotonically
improves estimation accuracy, it quickly becomes computationally prohibitive to reconstruct each perturbed k-space many
thousands of times.
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Figure 5. Mean NRMSE of empirical baseline over test slices vs. the number of MC Trials (N) (E2E-VarNet on brain dataat R = 8, a« = 1).
We vary the total number of MC realizations from 100 up to 5,000 and compare the resulting variance maps to a high-sample reference
(e.g., 10,000 trials). As more trials are included, the empirical variance estimation converges around N = 3000, shown here by the
decreasing NRMSE.

H. Reconstruction Methods

Here we provide detailed descriptions of the six deep MRI reconstruction algorithms evaluated in our study. Each algorithm
falls under a distinct combination of learning paradigm and architecture design, ranging from supervised to self-supervised,
and from fully data-driven to physics-driven unrolled models. All neural architectures incorporate complex-valued inputs via
stacking real and imaginary parts, resulting in 2 input and output channels. Note that hyperparameters for each method were
tuned on the validation dataset to ensure optimal performance. Unless otherwise stated, all models were trained via Adam
optimizer (Kingma & Ba, 2017), with 51 = 0.965, B2 = 0.99. Here, we provide detailed descriptions for each method. We
used PyTorch for modeling (Paszke et al., 2019), and NVIDIA NVIDIA RTX A6000 for GPU acceleration.

H.1. Supervised, Physics-Driven Unrolled
H.1.1. E2E-VARNET (SRIRAM ET AL., 2020A)

E2E-VarNet is a multi-coil unrolled reconstruction method that alternates between learned regularization blocks and
data-consistency (DC) steps. Each iteration applies a trainable neural network (often a ResNet or similar CNN) to refine the
current image estimate, followed by a DC step enforcing agreement with the measured multi-coil k-space data.

We configure E2E-VarNet with 4 unrolled steps, each containing 2 ResNet blocks (256 channels, kernel size 3). An
¢1-norm reconstruction loss is used, and the network is optimized with Adam (Ir=10~%). Table 3 summarizes additional
hyperparameters for knee and brain MRI datasets.

H.1.2. MODL (AGGARWAL ET AL., 2019)

MoDL (Model-Based Deep Learning) integrates conjugate-gradient (CG) steps for data-consistency with a CNN denoiser
block for learned regularization. Each unrolled iteration iteratively solves a least-squares subproblem via CG and then
applies a trainable ResNet denoiser.

We set MoDL to 4 unrolled iterations, each containing 10 internal CG steps. A ResNet (256 channels, 2 blocks per iteration)
serves as the learned regularizer. Table 4 details these hyperparameters, including ¢; reconstruction loss, Adam (Ir=10"%),
and separate CG tolerances for knee vs. brain.
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Table 3. Key Hyperparameters used for training E2E-VarNet on knee and brain datasets.

Hyperparameter Knee Brain
Architecture

Unrolled Steps 4 4
Block Architecture ResNet  ResNet
ResNet Channels 256 256
# ResNet Blocks / Step 2 2
Kernel Size 3 3
Training

Loss Function {1 /1
Batch Size 4 4
Grad. Accum. Steps 4 4
Base Learning Rate 1074 107
Weight Decay 1074 1074
Max Iterations 120,000 50,000

Table 4. Key Hyperparameters used for training MoDL on knee and brain datasets.

Hyperparameter Knee Brain
Architecture

Unrolled Steps 4 4
DC Solver CG (10 iterations, ¢ = 10™°)  CG (10 iterations, ¢ = 10™*)
Block Architecture ResNet ResNet
ResNet Channels 256 256
# ResNet Blocks / Step 2 2
Kernel Size 3 3
Training

Loss Function /1 /1
Batch Size 2 2
Grad. Accum. Steps 8 4
Base Learning Rate 107* 107
Weight Decay 1074 1074
Max Iterations 80,000 80,000

H.2. Supervised, Data-Driven
H.2.1. U-NET (RONNEBERGER ET AL., 2015)

Unlike unrolled methods that tightly integrate the MRI forward model with iterative DC, U-Net is a fully data-driven,
“one-shot” approach, mapping the zero-filled (or coil-combined) image directly to the reconstructed output. This yields
faster inference, but it lacks physics-based constraints.

We use a standard U-Net with 4 levels of down/up-sampling, 32 base channels, and blocks of {conv, relu, conv,
relu, batchnorm, dropout}. An/; reconstruction loss and Adam (Ir=1073) train the network. Table 5 summarizes
key parameters for knee and brain datasets.

H.3. Semi-Supervised, Physics-Driven Unrolled

H.3.1. N2R (NOISE2RECON) (DESAI ET AL., 2023)

N2R leverages both a limited set of fully sampled ground-truth data and a larger set of undersampled data to train an
unrolled network. Each iteration alternates between DC blocks and learned ResNet-based regularization blocks, enforcing
consistency only on sampled k-space points. Table 6 outlines key hyperparameters, including the k-space ¢; loss, 4 unrolled
steps, 256-channel ResNet blocks, and consistency noise levels ([0.2, 0.5]) .
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Table 5. Key Hyperparameters used for training U-Net on knee and brain datasets.

Hyperparameter Knee Brain
Architecture

Base Channels 32 32

Depth (Pool Layers) 4 4

Block Sequence {conv, relu, conv, relu, bn, dropout}  {conv, relu, conv, relu, bn, dropout}
Training

Loss Function 4y 4y

Batch Size 16 12

Grad. Accum. Steps 1 2

Base Learning Rate 1073 1073
Weight Decay 1074 1074
Training Length 200 epochs 80,000 iterations

Table 6. Key hyperparameters used for training N2R on knee and brain datasets.

Hyperparameter Knee Brain
Architecture

Total Training Scans 14 (13 undersamp.) 54 (50 undersamp.)
Acceleration Factor 8 8
Unrolled Steps 4 4

Block Architecture ResNet (256 ch) ResNet (256 ch)
# ResNet Blocks / Step 2 2

Kernel Size 3 3
Semi-Supervision

Consistency noise std o Range [0.2,0.5] [0.2, 0.5]
Training

Loss Function k-space {1 k-space ¢4
Batch Size 2 1

Grad. Accum. Steps 8 4

Base Learning Rate 107 1074
Weight Decay 1074 1074

Max Iterations 80,000 80,000

H.3.2. VORTEX (DESAI ET AL., 2022A)

VORTEX is another semi-supervised unrolled method, leveraging partial fully-sampled references alongside motion/noise
augmentations. Each iteration incorporates DC steps and 256-channel ResNet blocks. Random motion/noise transformations
align with MR physics, enforcing consistent reconstructions under both fully and partially sampled data.

Like N2R, VORTEX employs 4 unrolled steps (2 ResNet blocks/step, 256 channels, kernel size=3). Loss is a mixture of /1
and /5 in the k-space domain. Table 7 summarizes these hyperparameters, showing how motion/noise augmentations are
tuned slightly differently between knee vs. brain data.

H.3.3. SSDU (YAMAN ET AL., 2020)

Self-Supervised Learning via Data Undersampling (SSDU) obviates the need for fully sampled targets by splitting
acquired k-space data into “label” and “mask” sets. The “label” portion defines the reconstruction loss, while the “mask”
portion is used within DC steps during the unrolled network’s forward pass. Mask ratio p = 0.2 partitions 20% of acquired
samples as “label,” with the remaining 80% guiding DC.

SSDU’s unrolled network matches E2E-VarNet’s structure (4 steps, ResNet blocks at 256 channels). All training references
were undersampled, partitioning k-space into label vs. mask sets. Table 8 outlines the key hyperparameters, highlighting the
uniform mask, ¢; k-space loss, and typical Adam optimization (Ir=10"%).
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Table 7. Key hyperparameters used for training VORTEX on knee and brain datasets.

Hyperparameter Knee Brain

Architecture

Acceleration Factor 8 8

Total Training Scans 14 (13 undersamp.) 54 (50 undersamp.)
Unrolled Steps 4 4

Block Architecture ResNet (256 ch) ResNet (256 ch)
# ResNet Blocks / Step 2 2

Kernel Size 3 3
VORTEX Motion/Noise Augmentations

Motion Severity (c) Range [0.2, 0.5] [0.1,0.2]
Noise STD (o) Range [0.2,0.5] [0.1,0.2]
Training

Loss Function k-space {1 /{2 k-space {1 /02
Batch Size 1 1

Grad. Accum. Steps 4 4

Base Learning Rate 1074 107
Weight Decay 1074 1074

Max Iterations 80,000 80,000

Table 8. Key hyperparameters used for training SSDU on knee and brain datasets.

Hyperparameter Knee Brain
Architecture

Unrolled Steps 4 4
Block Architecture ResNet (256 ch)  ResNet (256 ch)
# ResNet Blocks / Step 2 2
Kernel Size 3 3
Self-supervision & Masking Setup

Mask Type uniform uniform
p (Label Fraction) 0.2 0.2
Training

Loss Function k-space {1 k-space {1
Batch Size 2 1
Grad. Accum. Steps 8 4
Base Learning Rate 1074 1074
Weight Decay 1074 107
Max Iterations 80,000 80,000

H.4. Reconstruction Results

All methods were trained and evaluated on clean, non-noisy data. Table 9 lists the mean Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index (SSIM) for knee and brain test sets across the six analyzed reconstruction methods. Overall,
E2E-VarNet and MoDL achieve the highest PSNR values on knee scans, whereas N2R and VORTEX perform strongly on
brain data—particularly evident in SSIM. U-Net and SSDU yield somewhat lower scores, potentially reflecting their more
limited regularization strategies (fully data-driven in U-Net, fully self-supervised in SSDU). Notably, the reconstruction
performances are comparable to those reported in the original studies or similar benchmarks, indicating that the networks
were trained effectively. Overall, all methods surpass typical parallel imaging baselines in fidelity, confirming sufficient
training convergence and general image quality for subsequent noise-variance analyses.

I. Computational Efficiency vs. Network Architecture

Table 10 compares empirical versus proposed variance method computation times for different neural architectures on
the knee dataset. In unrolled frameworks (E2E-VarNet, N2R, VORTEX, SSDU), the computation time increases with
more “Steps” (i.e., DC/regularization blocks), reflecting the deeper or more recurrent structure of the unrolled pipeline.
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Table 9. Quantitative reconstruction performance across methods on knee and brain datasets

Method Knee Brain
PSNR (dB) SSIM PSNR (dB) SSIM
E2E-VarNet 40.52 0.899 36.31 0.895

MoDL 40.60 0.899 36.44 0.847
U-Net 38.81 0.852 36.12 0.849
N2R 39.52 0.892 36.57 0.918
VORTEX 40.47 0.894 35.78 0914
SSDU 39.88 0.862 35.51 0.885

Table 10. Computation Times Across Different Neural Architectures. Each entry lists the average time (in seconds) required to
compute variance maps per slice on the knee dataset, comparing Empirical (MC) versus our Proposed (Jacobian-sketched) noise
calculation. Unrolled architectures vary in steps, indicating the number of DC/regularization blocks. MoDL uses Conjugate Gradient
(CG) steps within each DC block, and U-Net is a single-shot CNN without explicit unrolled steps.

Architecture Variant Empirical time | Proposed time

2 Steps 27.9 0.2

4 Steps 54.0 1.3
Unrolled (E2E-VarNet, N2R, VORTEX, SSDU) 6 Steps 73.8 3.4

8 Steps 97.8 12.1

10 Steps 120.6 20.6
U-Net (Ronneberger et al., 2015) 9.6 04
Unrolled w/CG-DC (MoDL) 4 Steps 181.5 36.9

Nevertheless, our proposed method always remains an order of magnitude faster than empirical references. U-Net requires
fewer parameters (one-shot CNN without DC blocks), so the empirical approach is already relatively fast, yet we still
observe a significant speedup with the proposed method. Finally, MoDL includes CG iterations within each DC step, driving
up the empirical runtime significantly (181.5 s for 4 steps), while our method’s runtime increases more modestly (36.9 s).

These results indicate that both the unrolled depth (number of repeated modules) and type of network layers (e.g. CG-
based DC, convolutional blocks, or potential self-attention units) can influence the total variance-computation time in our
framework, albeit to a lesser extent than empirical MC. For instance, substituting convolutional layers with self-attention
could raise per-iteration overhead but might not drastically inflate the overall Jacobian-sketch cost, since our approach only
requires Jacobian-vector products rather than a full Jacobian matrix. Ultimately, the proposed sketching method retains
its computational advantage across diverse architectures, enabling efficient variance estimation without imposing strict
constraints on layer choices or unrolling depth.

J. Practical Comparison with Low-Trial Monte Carlo

A natural question arises regarding whether empirical reference maps with smaller number of MC trials (e.g., 50-100) might
suffice to achieve competitive accuracy without incurring the high computational cost typically associated with MC sampling.
To explore this, we compared the proposed sketching method (with sketch size S) and MC (with [V trials), each varied over
a range from 5 to 130, and measured the NRMSE against a high-accuracy reference map computed using N = 10,000.
Experiments were performed on E2E-VarNet at R = 8, & = 1. As shown in Figure 9, MC exhibits large estimation errors
for N < 50, whereas our method maintains relatively lower errors even at small S. At larger values of S ~ N, our approach
remains more accurate while also being faster to compute: for instance, at S = N = 100, MC requires ~ 1.8 seconds,
whereas our method takes only ~0.12 seconds. This behavior aligns with our convergence experiments (see G), indicating
that MC variance estimates tend to require three orders of magnitude trials (e.g., N ~ 1,000-10,000) to reach a reliable
accuracy. In contrast, the sketching-based method attains lower error with at very few sample regimes. Hence, even when
MC is reduced to 50100 trials to speed up computation, the resulting noise estimates suffer in accuracy compared to the
proposed sketching approach, highlighting a clear advantage in both performance and speed.
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Figure 6. Each column corresponds to a distinct deep reconstruction method (E2E-VarNet, MoDL, U-Net, VORTEX, N2R, SSDU) on
brain data at R = 8, & = 1. In each column: (top row) shows the zero-filled (ZF) image and the final reconstructed; (middle row)
displays variance maps derived by the proposed method and empirical simulations; (bottom row) presents the difference map between
the proposed and empirical variance estimates, plus an “amplified” difference to further highlight spatial discrepancies. The color bars
indicate each map’s display window in arbitrary units of variance. Because MoDL integrates an iterative congute-gradient CG-based data
consistency step that repeatedly applies the imaging and adjoint operator, the resulting noise map often mirrors the specific coil geometry
and undersampling scheme. Regions with poorer coil coverage or unsampled k-space lines accumulate higher residuals, as the iterative
solver relies more heavily on the learned prior in those areas. Consequently, MoDL’s noise distribution visibly reflects the interplay of coil
sensitivities, the mask pattern, and the iterative gradient updates compared to data-dependent Jacobian structure, resulting in the distinct
patterns

K. Undersampling Patterns

In this study, we analyzed a range of undersampling schemes to evaluate their impact on noise propagation and variance
estimation. These include sampling patterns widely used in musculoskeletal imaging, such as 1D Cartesian uniform and
random undersampling, as well as 2D pseudo-random schemes like Poisson Disc and uniform random sampling (Johnson
et al., 2023; Desai et al., 2022b) (See Fig. 10. Each pattern introduces distinct aliasing artifacts in the image domain—ranging
from coherent aliasing artifacts in uniform Cartesian sampling for parallel imaging to noise-like incoherent artifacts in 2D
pseudo-random patterns that are better suited for DL algorithms. Here we investigate these diverse schemes to provide
insights into how different undersampling strategies influence the efficacy our noise calculation method (4.4).

L. Additional Results for Robustness to k-space Noise Level

Figure 14 demonstrates tight alignment around the diagonal, exhibiting near-unity R? values that confirm a strong match
between empirical and theoretical STD at lower fo high noise (1x-30x). As noise gets excessively larger to the clinically
irrelevant regimes (50x—200x ), our model overestimates the output noise relative to the reference: the best-fit regression
line lies above the diagonal, and the scatter broadens. Nevertheless, the correlation remains consistently high, indicating
that the model still captures the main trend in noise propagation while modestly overestimating variance in these extreme
scenarios.

M. Additional Visualizations of Voxel-wise Noise Estimation

We provide additional visualizations in Figure 12 to offer an improved quantitative perspective on how closely our method
aligns with empirical references and where noise tends to concentrate. These visualizations, derived from our voxel-wise
noise map estimations, provide further insights. For instance, a histogram of the relative estimation error ((theoretical STD -
empirical STD) / empirical STD), as shown in the second panel of Figure 12, reveals the full distribution of voxel-wise
deviations, demonstrating that most errors cluster near zero. Furthermore, a scatter plot of the calculated theoretical standard
deviation (STD) versus reconstructed voxel intensity, presented in the third panel of Figure 12, shows a moderate positive
correlation (R? ~ 0.51), which is consistent with typical MRI acquisition where noise can scale with signal magnitude.
Correspondingly, a scatter plot of the absolute estimation error (the absolute difference between theoretical and empirical
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Figure 7. Each column corresponds to a different acceleration factor R (MoDL on knee at o = 1). In each column: (top row) shows the
zero-filled (ZF) image and the final reconstructed; (middle row) displays variance maps derived by the proposed method and empirical
simulations; (bottom row) presents the difference map between the proposed and empirical variance estimates, plus an “amplified”
difference to further highlight spatial discrepancies. The color bars indicate each map’s display window in arbitrary units of variance.

STD) versus voxel intensity, depicted in the fourth panel of Figure 12, likewise indicates a mild positive correlation
(R? ~ 0.16), suggesting that regions with larger estimation discrepancies can coincide with brighter intensities.
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Figure 8. Each column corresponds to a different acceleration factor R (E2E-VarNet on brain at « = 1). In each column: (top row) shows
the zero-filled (ZF) image and the final reconstructed; (middle row) displays variance maps derived by the proposed method and empirical
simulations; (bottom row) presents the difference map between the proposed and empirical variance estimates, plus an “amplified”
difference to further highlight spatial discrepancies. The color bars indicate each map’s display window in arbitrary units of variance.
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Figure 9. Comparison of the proposed method with S (sketching matrix size) and empirical baseline with N (MC trials). NRMSE
(%) is measured against a high-accuracy reference map obtained with N = 10,000 (VORTEX on brain at « = 1). For small sample
sizes (< 50), Monte Carlo exhibits markedly higher error, while our method yields lower error at all examined sketch sizes. Even at
S = N = 100, the proposed approach offers less error with an order-of-magnitude reduction in computational time (0.12s vs. 1.8s for
MO).
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Figure 10. Different undersampling schemes analyzed in this study. For a representative slice, ZF images generated by the undersampling
masks are showcased, along with the fully-sampled reference. Coherent and incoherent aliasing artifacts are generally exhibited by 1D
and 2D undersampling masks, respectively.
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Figure 11. Each column corresponds to a different noise scaling factor « resulting in varying SNR scenarios (E2E-VarNet on knee, at
R = 8). In each column: (top row) shows the zero-filled (ZF) image and the final reconstructed; (middle row) displays variance maps
derived by the proposed method and empirical simulations; (bottom row) presents the difference map between the proposed and empirical
variance estimates, plus an “amplified” difference to further highlight spatial discrepancies. The color bars indicate each map’s display
window in arbitrary units of variance. Note that o = 50-200 corresponds to SNR values below ~ 10dB (i.e., well under an SNR of
10-15 that is often cited as a threshold for diagnostic utility.
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Figure 12. Additional visualizations for voxel-wise noise standard deviation (STD) analysis. (Left) Scatter plot of theoretical STD vs.
empirical STD, showing high correlation (R? a2 1.00). (Second from left) Histogram of relative errors between theoretical and empirical
STD, indicating errors are centered around zero. (Third from left) Scatter plot of theoretical STD vs. reconstructed voxel intensity,
showing a positive correlation (R? = 0.51). (Right) Scatter plot of absolute error in STD estimation vs. reconstructed voxel intensity,
indicating a mild positive correlation (R? ~ 0.16).
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Figure 13. Mean NRMSE between reference empirical variance maps and variance maps from our method across test slices were plotted
against increased noise levels (E2E-VarNet on knee, at R = 8). Here, a is plotted on a log scale and progressively scales the noise
covariance matrix ¥, = a3, simulating higher noise, and accordingly lower SNR levels.
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Figure 14. For a representative brain slice, empirical variances (horizontal axes) were compared to variances calculated our method
(vertical axes) under successively larger noise scales: o = 110, 30, 50, 100, 200 (E2E-VarNet, at R = 8). In each panel, the diagonal line
represents ideal one-to-one correspondence between empirical and calculated estimates, while the solid line indicates the best-fit linear
regression (with its R? value indicated). Each data point corresponds to a single voxel’s empirical vs. calculated variance, visualizing how
closely they match at different noise levels.
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