

000 001 002 003 004 005 006 007 008 009 010 TIMESEED: EFFECTIVE TIME SERIES FORECASTING WITH SPARSE ENDOGENOUS VARIABLES

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Time series forecasting is widely applied across various domains. In real-world
012 applications, there are many scenarios where endogenous variables are missing.
013 Recent studies show that incorporating exogenous variables can significantly en-
014 hance the predictive accuracy of endogenous variables. However, the lack of a
015 complete historical context introduces significant uncertainty in temporal depen-
016 dence capture, particularly in systems characterized by non-stationary behavior.
017 To address these challenges, we propose TimeSeed, specifically designed for sce-
018 narios with sparsely observed endogenous variables. Technically, TimeSeed re-
019 constructs 1 sufficient endogenous series from both complete exogenous series
020 and sparsely observed endogenous series, utilizing two types of data to extract
021 stable information. Building on this foundation, we effectively transform the chal-
022 lenging original prediction task into a sequence-based prediction task. Moreover,
023 TimeSeed is built entirely upon linear layers, which significantly reduces compu-
024 tational costs. Experiments conducted on seven real-world datasets demonstrate
025 that TimeSeed consistently outperforms state-of-the-art models in forecasting ac-
026 curacy, achieving an average reduction of 13.01% in MSE and 7.54% in MAE,
027 with a model size of only 0.19M parameters. Code is available at this repository:
028 <https://anonymous.4open.science/r/Alistair-7>.

029 1 INTRODUCTION

031 Nowadays, time series forecasting has become an important tool widely applied in various domains.
032 However, in many real-world scenarios, endogenous variables are often sparsely observed, as illus-
033 trated in Figure 1 (a), encompassing applications such as weather forecasting (Ren et al., 2021; Lin
034 et al., 2022; Lam et al., 2023), industrial forecasting (Weron, 2014; Alfares & Nazeeruddin, 2002),
035 and battery life prediction (Sulzer et al., 2021; Fei et al., 2021).

036 Recent studies have demonstrated that incorporating the influence of *exogenous variables*(Huang
037 et al., 2025; Pandit et al., 2023; Lu et al., 2024) can substantially enhance the predictive performance
038 of *endogenous variables*(Motrenko et al., 2016). This enhancement is primarily attributed to the
039 strong correlations between exogenous and endogenous variables, as illustrated in Figure 1 (b).
040 Gradually, forecasting with exogenous variables (Gianfreda & Grossi, 2012) has emerged as a new
041 paradigm. However, in sparse forecasting scenarios, this paradigm may become ineffective due to
042 the absence of target information and the rigidity of the input structure.

043 To tackle such complex scenarios, it is essential to develop methods that leverage exogenous infor-
044 mation and sparse endogenous observations for prediction. However, the main challenges stem from
045 the following three aspects: **(1) Context Incompleteness:** The substantial absence of historical con-
046 text for the endogenous variable leads to high uncertainty in causal discovery, especially in systems
047 exhibiting non-stationary behavior (Moritz & Bartz-Beielstein, 2017). **(2) Instable Dependencies:**
048 Sparse observational data fail to reveal dependency structures within historical time series, making
049 it difficult for models to capture trends and dynamic patterns (Liu et al., 2022b). **(3) Uncontrolled**
050 **Anomalies:** Relying on sparse endogenous observations, especially when they are outliers, may
051 exacerbate prediction biases (Su et al., 2019).

052 To fill this gap, we propose TimeSeed, which reconstructs historical endogenous sequences from
053 both endogenous and exogenous perspectives, maximally exploiting the potential of forecasting
under sparse observations. Technically, we leverage the physical similarity (Huang et al., 2025;

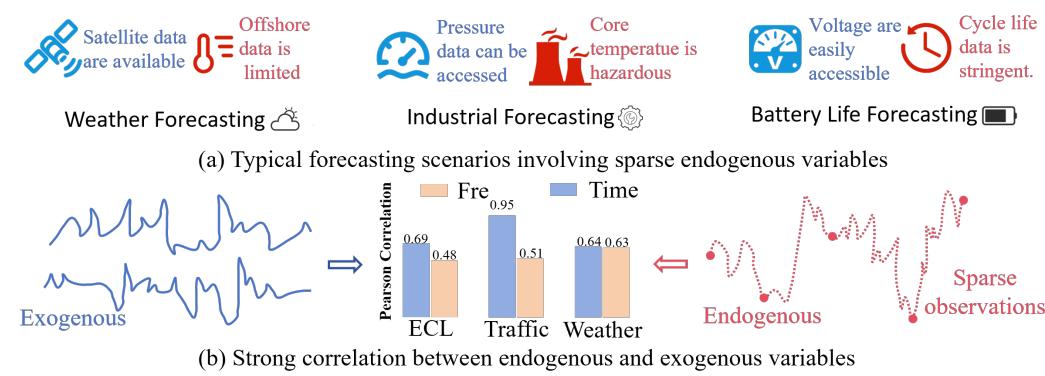


Figure 1: Scenario analysis: (a): Common real-world scenarios of sparse forecasting (b): Correlation analysis between exogenous and endogenous variables in both frequency and time domains.

Pandit et al., 2023; Lu et al., 2024) between exogenous and endogenous variables by extracting more stable sequential features from exogenous sequences that are homogeneous to the endogenous variable. Furthermore, to further enhance reconstruction stability, we propose the Adaptive Scale Reconstructor, which constructs multi-resolution representations of sparse endogenous sequences and adaptively supplements the reconstruction of the endogenous context. By reconstructing the historical context, we transform the challenging original prediction task into a sequence-based prediction task, thereby significantly reducing the forecasting difficulty. Besides, TimeSeed is built entirely on linear layers, which greatly reduces computational cost. We conduct extensive experiments on seven real-world datasets, and the results demonstrate that the proposed model achieves outstanding performance in terms of both MAE and MSE. This confirms that it can effectively utilize limited data to produce highly accurate forecasts, even under conditions of data scarcity. The main contributions can be summarized as follows:

- We propose a new prediction paradigm that relies exclusively on exogenous variables and sparse observations of the endogenous variable to forecast its future values. This effectively addresses the challenge of limited historical data for endogenous variables.
- We propose TimeSeed, a lightweight model that leverages dense exogenous and sparse endogenous sequences within a two-stage paradigm of context reconstruction and hierarchical prediction. Endogenous periodic and trend components are captured via Time Domain Aggregator (TDA) and Frequency Domain Aggregator (FDA), and refined with an Adaptive Scale Reconstructor (ASR), thereby enabling more accurate forecasts.
- We conduct comprehensive experiments on seven real-world time series forecasting datasets. Our model achieves an average reduction of 13.01% in MSE and 7.54% in MAE, with only 0.19M parameters, demonstrating its ability to significantly enhance forecasting accuracy in data-sparse settings while maintaining a compact architecture.

2 RELATED WORK

Exogenous variables, as key factors in improving the accuracy of endogenous variable prediction, are receiving increasing attention (Tayal et al., 2024). In traditional statistical methods, ARIMAX (Williams, 2001) has been widely used across various fields, while SARIMAX (Vagropoulos et al., 2016) further introduces radiation forecasting as an exogenous variable to enhance the accuracy of photovoltaic power generation prediction. In recent years, with the advancement of computing power and deep learning techniques, researchers have proposed various enhanced models that integrate exogenous variables. TiDE (Das et al., 2023) constructs an MLP-based encoder-decoder architecture, integrating exogenous information through feature projection and a temporal decoder. TimeXer (Wang et al., 2024b) is the first to empower the Transformer with the ability to process exogenous variables, establishing a bridge between endogenous and exogenous information through an interaction mechanism between patch-level endogenous representations and variable-level exogenous representations. In addition, NBEATSx (Olivares et al., 2023) combines neural basis functions with exogenous variables to effectively enhance power price forecasting performance.

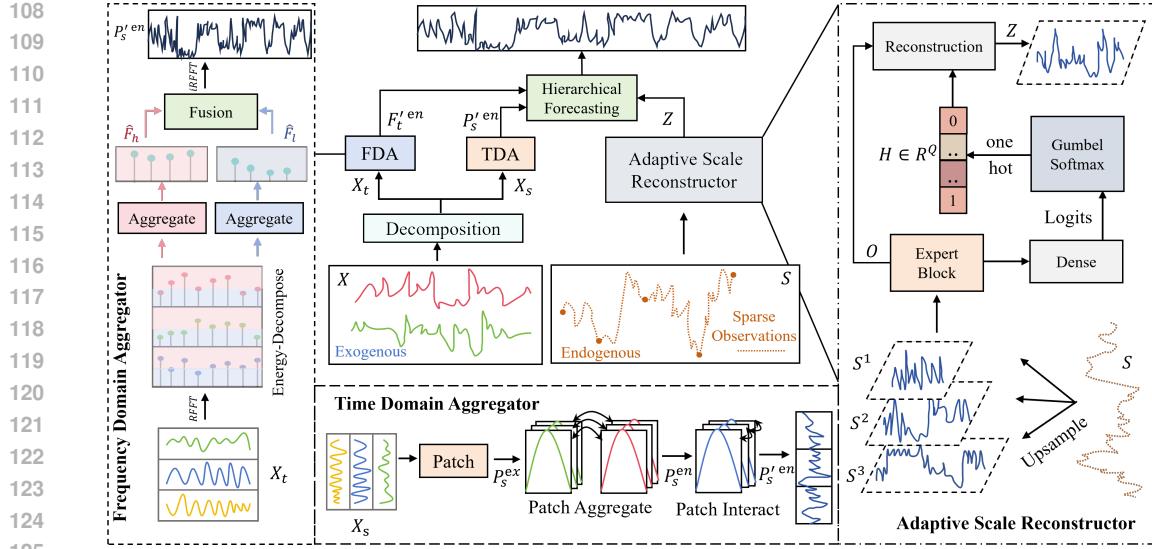


Figure 2: Overall architecture of TimeSeed, consisting of Frequency Domain Aggregator, Time Domain Aggregator, and Adaptive Scale Reconstructor, designed for sparse endogenous variables.

However, these models overly rely on exogenous-to-endogenous mapping, which becomes unreliable under sparse endogenous observations due to scale misalignment, leading to degraded predictive performance. Therefore, it is necessary to explore both sparse endogenous-to-endogenous and exogenous-to-endogenous perspectives to offset information loss and improve endogenous prediction accuracy.

3 METHOD

3.1 PROBLEM SETTINGS

Unlike traditional time series prediction, we rely only on sparse endogenous series S as auxiliary information rather than full endogenous inputs. Using less endogenous variables for prediction means less information is available. Given an exogenous variable time series $X = \{x_{1:T}^{(1)}, x_{1:T}^{(2)}, \dots, x_{1:T}^{(N)}\} \in \mathbb{R}^{T \times N}$ and sparse endogenous variable series $S \in \mathbb{R}^{T^{en}}$, where $x_{1:T}^{(i)}$ represents the i -th exogenous variable, T represents the length of the lookback window, $T^{en} \ll T$ indicates the length of the sparse endogenous sequence, and N represents the number of exogenous variables, the task goal is to predict the future multi-step endogenous time series $Y = \{y_{T+1}, y_{T+2}, \dots, y_{T+L}\} \in \mathbb{R}^{L \times 1}$. Here, L represents the number of future time steps to predict. The overall process can be described as a function mapping: $f(X, S) \rightarrow Y$.

3.2 STRUCTURE OVERVIEW

Since the absence of endogenous variables can substantially degrade predictive performance, our motivation is to transform the inherently complex sparse forecasting task into a sequence-based prediction task by reconstructing historical endogenous sequences. This multi-stage problem decomposition approach effectively enhances the robustness of prediction. Specifically, the reconstruction leverages the intrinsic consistency between endogenous and exogenous variables by aligning with the trends (Figure 2, left) and periodic patterns (Figure 2, middle-bottom) of exogenous variables, as well as by utilizing the sparse endogenous sequence itself (Figure 2, right).

As illustrated in Figure 2 (middle-top), our proposed model accepts exogenous sequences X and sparse endogenous observations S as inputs. Following mainstream decomposition-based models (Wu et al., 2021; Wang et al., 2023; Zhou et al., 2022b), we use a moving average method, denoted as $\text{Decomposition}(X; o)$, to downsample the input exogenous sequences X , yielding the separated trend component $X_t \in \mathbb{R}^{T \times N}$ and periodic component $X_s \in \mathbb{R}^{T \times N}$, where o denotes the kernel size of average pooling. For these two distinct components extracted from the exogenous sequences, we

design the TDA and FDA blocks to reconstruct trend and periodic components, respectively. For the sparse endogenous observations, we propose the ASR to perform multi-scale reconstruction. Finally, the reconstruction outputs of these three modules are integrated via the Hierarchical Forecasting module to generate the final prediction results.

3.3 TIME DOMAIN AGGREGATOR

For different variables, similar time series patterns exist within the same period. Even in cases where endogenous variables are missing, the periodic of the endogenous variable can be restored by learning the periodicity of other variables. Based on this observation, the TDA is designed to learn the periodic features of endogenous variables by leveraging exogenous variables. Specifically, for the periodic term, we first apply the patch operation to separate the features of each patch:

$$P_s^{ex} = \text{Patch}(X_s, \text{stride}) \quad (1)$$

Here, $\text{Patch}(\cdot)$ represents the sub-patch operation on historical exogenous variables. $P_s^{ex} \in \mathbb{R}^{P \times C \times N}$ is output of $\text{Patch}(\cdot)$. C represents the length of the patch, and $P = \frac{T-C}{\text{stride}} + 1$ represents the number of patches. More detailed analysis can be found in the Appendix L.

Then we aggregate the same period of different variables. Thus, a mapping from the period of the exogenous variable to the period of the endogenous variable is established:

$$P_s^{en} = \text{Patch-Agg}(P_s^{ex}) \quad (2)$$

$\text{Patch-Agg}(\cdot)$ is implemented through a linear layer along the variable axis. $P_s^{en} \in \mathbb{R}^{C \times P}$ is the aggregated one-variable feature, which could be expressed as the reconstructed endogenous variable.

Each variable exhibits a continuous time series pattern within the same period. We obtain the future period changes of endogenous variables by aggregating the same phases in the period terms of the endogenous variables during different periods:

$$P_s'^{en} = \text{Patch-Interact}(\text{Transpose}(P_s^{en})) \quad (3)$$

$\text{Patch-Interact}(\cdot)$ is implemented through linear layer, and $P_s'^{en} \in \mathbb{R}^{C \times P}$ is the endogenous feature after patch interaction. We merge specified dimensions to obtain the output $P_s'^{en} = \text{Reshape}(P_s'^{en}) \in \mathbb{R}^{T \times 1}$, which represents the period term for predicting endogenous variables.

3.4 FREQUENCY DOMAIN AGGREGATOR

It is observed that different variables share similar trend patterns, and these patterns can be reconstructed by aggregating trends across variables. Since trends are usually concentrated in the low-frequency domain, directly modeling them poses the risk of either overlooking local variations or distorting the main trend. Therefore, we perform operations in the frequency domain, where dominant trend-related components and local variation-related components are more clearly separated.

Specifically, we map trend signals to the frequency domain through real Fast Fourier Transform to more directly identify the dominant trend components:

$$F_t = \text{RFFT}(X_t) \quad (4)$$

Here $\text{RFFT}(\cdot)$ represents real Fast Fourier Transform. $F_t \in \mathbb{R}^{(T/2+1) \times N}$ is the frequency domain representation of the trend component of the exogenous variable.

We then perform secondary decomposition on the frequency-domain signals based on their amplitude, obtaining high-energy components that correspond to dominant trends and low-energy components that correspond to local fluctuations:

$$A_t = \text{Abs}(F_t) \quad (5)$$

$$F_h, F_l = \text{Energy-Decompose}(F_t, A_t, K) \quad (6)$$

Here, $\text{Abs}(\cdot)$ computes the energy, and $A_t \in \mathbb{R}^{(T/2+1) \times N}$ represents the distribution of energy. $\text{Energy-Decompose}(\cdot)$ separates K high-energy and $T - K$ low-energy components according to the magnitude of the frequency amplitude by analyzing the spectrum. $F_h \in \mathbb{R}^{K \times N}$ and

216 $F_l \in \mathbb{R}^{(T/2+1-K) \times N}$ represent the high-energy and low-energy components within the trend of
 217 the exogenous variable, respectively.

218 Modeling these two components separately effectively leverages local details to refine predictions,
 219 while avoiding the domination of predictions by high-energy components. Specifically, we learn the
 220 mapping relationships between the dominant trends and local details of exogenous variables , and
 221 those of endogenous variables.
 222

$$\hat{F}_h, \hat{F}_l = \text{AggHigh}(F_h), \text{AggLow}(F_l) \quad (7)$$

223 Here, $\text{AggHigh}(\cdot)$ and $\text{AggLow}(\cdot)$ are both implemented through frequency domain linear layer
 224 along the variable axis. $\hat{F}_h \in \mathbb{R}^{K \times 1}$ and $\hat{F}_l \in \mathbb{R}^{(T/2+1-K) \times 1}$ represent univariate features, which
 225 can be regarded as the high-energy and low-energy components within the trend of the endogenous
 226 variable, respectively.

227 Finally, through the inverse real Fast Fourier Transform, we obtain the trend of the reconstructed
 228 endogenous variable:

$$F_t'^{en} = \text{iRFFT}(\hat{F}_h + \hat{F}_l) \quad (8)$$

229 Here, iRFFT represents inverse real Fast Fourier Transform, and $F_t'^{en} \in \mathbb{R}^{T \times 1}$ represents the
 230 reconstructed trend term of the endogenous variable.

231 3.5 ADAPTIVE SCALE RECONSTRUCTOR

232 In order to fully reconstruct the endogenous variables, our proposed Adaptive Scale Reconstructor
 233 generates multi-resolution sequence representations through multi-scale upsampling. The original
 234 sequence is compressed into a broader representation space, allowing the model to automatically
 235 select the most appropriate scale based on the input features.

236 Specifically, we construct endogenous representations cross different resolutions $q \in \{1, 2, \dots, Q\}$:

$$S^q = \text{Upsample}_q(S) \quad (9)$$

237 where $\text{Upsample}_q(\cdot)$ denotes the q -th upsampling operation applied to the input sequence S . At the
 238 q -th layer, the output sequence length is expanded from the original T^{en} to $T^{en} \times 2^q$. This hier-
 239 archical upsampling progressively enlarges the temporal resolution, enabling the model to perform
 240 reconstructions from multiple perspectives.

$$O^q = \text{ExpertBlock}_q(S^q) \quad (10)$$

241 where $\text{ExpertBlock}_q(\cdot)$ the q -th expert module, which can be flexibly replaced with different task-
 242 specific networks, and $O^q \in \mathbb{R}^d$ represents the output of the q -th expert with d denoting the hidden
 243 dimension. Each expert learns scale-specific feature representations, thereby effectively avoiding
 244 feature entanglement across different scales.

245 To enable the model to adaptively select the optimal scale according to the data characteristics, we
 246 further introduce the Gumbel Softmax (Jang et al., 2016) to optimize the scale selection process:

$$H = \text{Gumbel Softmax}(\text{Dense}(\{O^1, \dots, O^Q\})) \quad (11)$$

247 where $\text{Dense}(\cdot)$ generates the corresponding logits, and $H \in \mathbb{R}^Q$ indicates the model’s adaptive
 248 selection of resolution. After obtaining the most appropriate scale, the model performs feature
 249 reconstruction based on the selected representation:

$$Z = \text{Reconstruction}(\{O^1, \dots, O^Q\}, H) \quad (12)$$

250 where $\text{Reconstruction}(\cdot)$ reconstructs the historical time series at the most appropriate resolution
 251 O according to the selection scheme H , and Z denotes the reconstructed sequence.

270 3.6 HIERARCHICAL FORECASTING
271

272 The final forecast is obtained by combining the reconstructed trend $F_t^{'en}$ and periodic components
273 $P_s^{'en}$ (both derived from exogenous variables), with the reconstructed historical endogenous se-
274 quence Z (derived from the sparse endogenous sequence). This combined result is then passed
275 through the model’s prediction head. The specific process is as follows:

$$\hat{Y}_{1:T} = F_t^{'en} + P_s^{'en} + Z \quad (13)$$

$$\hat{Y}_{T+1:T+L} = \text{Prediction}(\hat{Y}_{1:T}) \quad (14)$$

280 Here, $\text{Prediction}(\cdot)$ is implemented through a linear layer along the temporal axis, $\hat{Y}_{1:T}$ corresponds
281 to the reconstruction of historical endogenous variables, and $\hat{Y}_{T+1:T+L}$ represents the prediction.

283 4 EXPERIMENTS
284

285 To evaluate the performance of TimeSeed under scenarios with sparse endogenous observations, we
286 conduct extensive experiments based on a novel time series forecasting paradigm $f(X, S) \rightarrow Y$.

288 **Datasets** We use datasets that span multiple domains, including Energy (ETT (Zhou et al., 2021),
289 ECL (Wu et al., 2021)), Weather (Wu et al., 2021), and Traffic (Wu et al., 2021). For dataset
290 partitioning, we follow standard protocols (Lin et al., 2024a;b). Specifically, the ETT datasets are
291 split into training, validation, and test sets with a ratio of 6:2:2, while the remaining datasets follow
292 a 7:1:2 split. More details are provided in the Appendix B.

293 **Baselines** We compare TimeSeed with several state-of-the-art time series forecasting models. In-
294 clude: Complex Transformer-based architectures: DUET (Qiu et al., 2024), TimeXer (Wang et al.,
295 2024b), iTransformer (Liu et al., 2023), and PatchTST (Nie et al., 2022); Lightweight MLP-based
296 models: TimeMixer (Wang et al., 2024a), FITS (Xu et al., 2023), CycleNet (Lin et al., 2024a),
297 FilterNet (Yi et al., 2024)¹, SparseTSF (Lin et al., 2024b), and DLinear (Zeng et al., 2023).

298 **Implementation Details** For TimeSeed, we fix the patch length P to 16, use a historical input
299 window T of 96 time steps, and T_{en} is set to 4 by uniformly sampling the 96-step sequence at
300 24-step intervals. Forecasting performance is evaluated at horizons $L \in \{96, 192, 336, 720\}$. The
301 number of high-energy components K is set to 10, the number of resolutions Q is set to 3, and
302 ExpertBlock is implemented using a multi-layer perceptron. We upsample the sparse endogenous
303 series and maintain the length of the exogenous sequences, ensuring compatibility with baseline
304 inputs and enabling fair comparison across models. In addition, we unify the hyperparameters across
305 all models and report the rerun results. More details are provided in the Appendix B.

306 4.1 MAIN RESULTS
307

308 We validate the effectiveness of TimeSeed on long-term time series forecasting tasks under sparse
309 scenarios (sparsity ratio of 4%) across seven mainstream benchmark datasets. As shown in the ex-
310 perimental results in Table 1, TimeSeed achieves nearly optimal performance across all datasets.
311 Specifically, under sparse settings, it yields an average MSE improvement of 15.04% on the ETTh1
312 dataset and 19.24% on the Traffic dataset, demonstrating a clear advantage over DLinear and
313 PatchTST, which represent competitive Linear-based and Transformer-based models, respectively.
314 Notably, as shown in the experimental results in Table 2, when endogenous variables are missing,
315 several state-of-the-art models exhibit performance degradation, likely due to their heavy reliance on
316 complete endogenous sequences particularly under more challenging single-point sparse forecasting
317 scenarios. More detailed results are provided in Appendix N and G.

318 4.2 EFFECT OF SPARSITY RATIOS
319

320 Table 3 presents TimeSeed’s performance under varying sparsity ratios. The results demonstrate
321 that as the sparsity ratio increases (i.e., a higher proportion of endogenous variables), predictive
322 accuracy improves consistently across both ETTh2 and ETTm2 datasets. Specifically, on the ETTh2

323 ¹Implemented in TexFilter and PaiFilter, respectively

324

325
326
Table 1: Unified hyperparameter for long-term time series forecasting results are **based on sparse**
endogenous variable setting, with a 24-hour sampling interval.

Model	TimeSeed		DUET		iTrans		DLinear		TimeXer		TimeMixer		PatchTST		FITS		CycleNet		TexFilter		PaiFilter		SparseTSF	
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTh1	0.096	0.242	0.159	0.311	0.186	0.345	0.113	0.262	0.444	0.569	0.162	0.309	0.228	0.381	0.142	0.297	0.116	0.261	0.144	0.294	0.152	0.306	0.158	0.316
ETTh2	0.272	0.410	0.381	0.491	0.902	0.811	0.409	0.493	0.342	0.465	0.274	0.412	0.574	0.617	0.553	0.587	0.291	0.423	0.328	0.456	0.475	0.545	0.622	0.635
ETTm1	0.068	0.194	0.157	0.303	0.143	0.282	0.075	0.205	0.344	0.499	0.141	0.305	0.104	0.245	0.079	0.216	0.104	0.246	0.145	0.294	0.109	0.254	0.499	0.466
ETTm2	0.149	0.289	0.284	0.417	0.373	0.495	0.165	0.303	0.266	0.404	0.179	0.325	0.208	0.362	0.202	0.343	0.157	0.296	0.176	0.318	0.176	0.320	0.193	0.339
Weather	0.002	0.034	0.006	0.058	0.011	0.080	0.009	0.066	0.827	0.789	0.394	0.552	0.004	0.050	0.007	0.067	0.003	0.039	0.005	0.052	0.012	0.077	0.007	0.068
ECL	0.529	0.558	0.641	0.618	0.749	0.676	0.832	0.699	0.575	0.573	1.674	0.987	0.714	0.659	1.087	0.817	0.822	0.690	0.775	0.677	1.027	0.809	0.709	0.656
Traffic	0.403	0.433	0.574	0.561	0.483	0.493	0.584	0.542	1.396	1.028	1.251	0.828	0.499	0.509	0.790	0.672	0.876	0.678	0.584	0.548	0.703	0.619	1.276	0.886

335
336
Table 2: Unified hyperparameter for long-term time series forecasting results are **based on a single**
endogenous variable setting, with the point selection strategy choosing the most recent time step.

Model	TimeSeed		DUET		iTrans		DLinear		TimeXer		TimeMixer		PatchTST		FITS		CycleNet		TexFilter		PaiFilter		SparseTSF	
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTh1	0.101	0.249	0.189	0.332	0.179	0.332	0.116	0.268	0.380	0.525	0.538	0.632	0.168	0.321	0.123	0.278	0.343	0.492	0.125	0.276	0.121	0.273	0.168	0.328
ETTh2	0.269	0.409	0.367	0.481	0.912	0.816	0.296	0.430	0.344	0.466	0.540	0.576	0.621	0.648	0.723	0.680	0.343	0.465	0.400	0.499	0.462	0.537	0.676	0.661
ETTm1	0.061	0.189	0.096	0.237	0.083	0.223	0.065	0.196	0.325	0.489	0.488	0.566	0.080	0.218	0.061	0.190	0.233	0.400	0.073	0.206	0.083	0.222	0.090	0.231
ETTm2	0.176	0.321	0.283	0.417	0.345	0.468	0.209	0.347	0.266	0.401	0.239	0.377	0.200	0.345	0.248	0.424	0.283	0.415	0.216	0.356	0.231	0.377	0.249	0.392
ECL	0.569	0.580	0.715	0.659	0.838	0.716	1.083	0.799	0.619	0.594	0.662	0.628	0.813	0.701	1.099	0.812	0.747	0.657	0.853	0.708	0.813	0.699	0.886	0.734
Traffic	0.482	0.489	0.585	0.570	0.505	0.507	0.602	0.553	1.549	1.078	1.405	1.041	0.477	0.498	0.916	0.741	1.555	1.083	0.763	0.646	1.027	0.805	1.597	0.990
Weather	0.002	0.034	0.006	0.059	0.009	0.073	0.009	0.074	0.742	0.737	2.527	1.406	0.004	0.048	0.007	0.065	0.833	0.789	0.005	0.056	0.012	0.078	0.005	0.059

346
347
348
349
dataset, increasing the sparsity ratio yields a 16.5% reduction in average MSE. On the ETTm2
dataset, we observe a similar trend with an 18.8% decrease in average MSE. These performance
gains are sustained across all forecasting horizons, confirming that incorporating richer endogenous
information substantially enhances forecasting capability under sparse endogenous settings.351
352
Table 3: Forecasting performance on ETTh2 and ETTm2 under different sparsity ratios of endoge-
nous to exogenous features (4%–50%). SR denotes sparsity ratios (endogenous : exogenous).

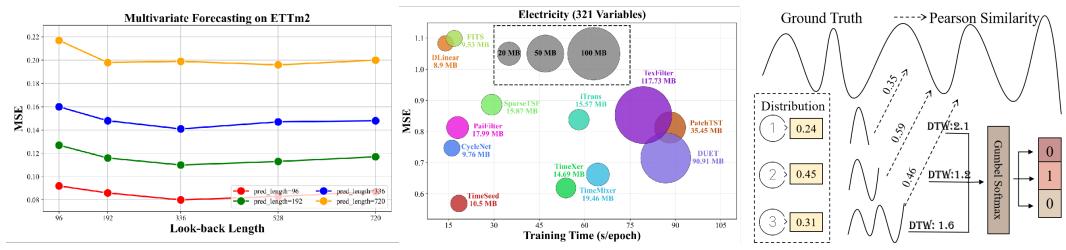
SR	4% (default)		8%		16%		25%		33%		50%		
	Metric	MSE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
ETTh2	96	0.186	0.336	0.167	0.318	0.154	0.304	0.152	0.303	0.147	0.297	0.144	0.293
	192	0.234	0.379	0.212	0.361	0.204	0.352	0.195	0.343	0.198	0.347	0.189	0.337
	336	0.288	0.426	0.267	0.410	0.265	0.409	0.250	0.396	0.249	0.396	0.241	0.389
	720	0.380	0.499	0.374	0.495	0.364	0.489	0.350	0.480	0.344	0.476	0.334	0.470
AVG		0.272	0.410	0.255	0.396	0.247	0.388	0.237	0.381	0.234	0.379	0.227	0.372
ETTm2	96	0.092	0.224	0.075	0.202	0.071	0.197	0.070	0.194	0.070	0.195	0.070	0.194
	192	0.127	0.269	0.109	0.249	0.103	0.240	0.102	0.239	0.102	0.238	0.103	0.239
	336	0.160	0.304	0.139	0.283	0.135	0.278	0.132	0.275	0.131	0.274	0.131	0.274
	720	0.217	0.360	0.192	0.337	0.183	0.327	0.184	0.328	0.183	0.327	0.182	0.325
AVG		0.149	0.289	0.129	0.268	0.123	0.261	0.122	0.259	0.122	0.259	0.121	0.258

362
363
4.3 ABLATION STUDY364
365
366
367
368
369
370
371
372
373
374
375
376
377
To further analyze the contribution of each component to the model’s performance, we performed
ablation analysis on the Time Domain Aggregator, Frequency Domain Aggregator, and Adaptive
Scale Reconstructor to assess their individual impacts. As shown in Table 4, we draw the following
three conclusions: (1) All modules positively contribute to the performance of TimeSeed, with
improvements in MSE ranging from 5.31% to 12.30%. (2) Comparatively, the contribution of high-
energy information to the prediction results is slightly lower, leading to an MSE improvement of
about 5.31%. (3) Based on a two-stage decomposition and forecasting paradigm, outperforms the
Direct Forecasting approach in terms of evaluation metrics. Notably, on the ETTh2 and ETTm2
datasets, TimeSeed achieves average improvements of 27.4% and 14.2% in MSE and MAE, re-
spectively. This is because the two-stage approach decouples the sequence features, allowing the
reconstruction stage to focus more on capturing trends and periodic patterns, thereby enhancing
robustness. (4) Furthermore, different datasets rely to varying degrees on information from the time
domain, the frequency domain, and the multi-resolution reconstructions derived from sparse
endogenous series. More details can be found in the Appendix H.

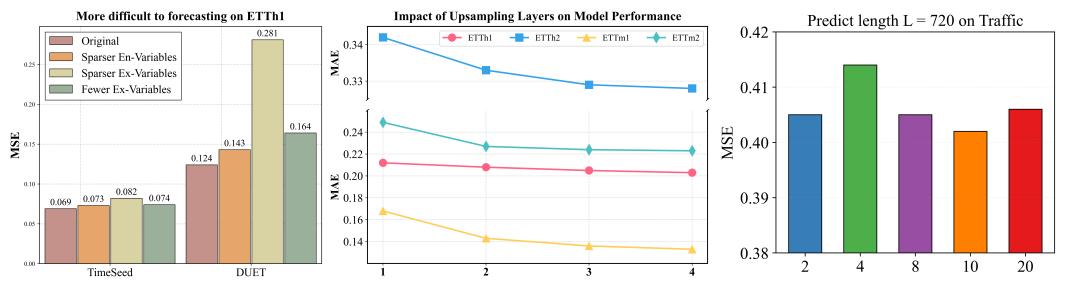
378

379 Table 4: Ablation study results. FDA denotes Frequency Domain Aggregator, ASR denotes Adaptive
380 Scale Reconstructor and TDA denotes Time Domain Aggregator.

Datasets	ETTh1		ETTm1		ETTh2		ETTm2	
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
TimeSeed	0.096	0.242	0.068	0.194	0.272	0.410	0.149	0.289
w/o Agghigh (Eq. 7)	0.112	0.242	0.084	0.215	0.284	0.420	0.155	0.295
w/o Agglow (Eq. 7)	0.110	0.257	0.077	0.206	0.285	0.420	0.159	0.299
w/o Patch-Interact (Eq. 3)	0.119	0.265	0.074	0.202	0.291	0.424	0.156	0.298
w/o FDA	0.118	0.265	0.088	0.222	0.299	0.432	0.154	0.293
w/o TDA	0.117	0.263	0.083	0.219	0.376	0.488	0.154	0.295
w/o ASR	0.099	0.246	0.082	0.218	0.279	0.415	0.176	0.322
Direct Forecasting	0.124	0.274	0.074	0.204	0.400	0.493	0.160	0.300

390 Figure 3: Analysis of the TimeSeed. Left : Performance across various prediction lengths with
391 different look-back window sizes. Middle : Comparison of model efficiency. Right: Selection
392 distribution of TimeSeed across multi-level sequences.

401 4.4 MODEL ANALYSIS

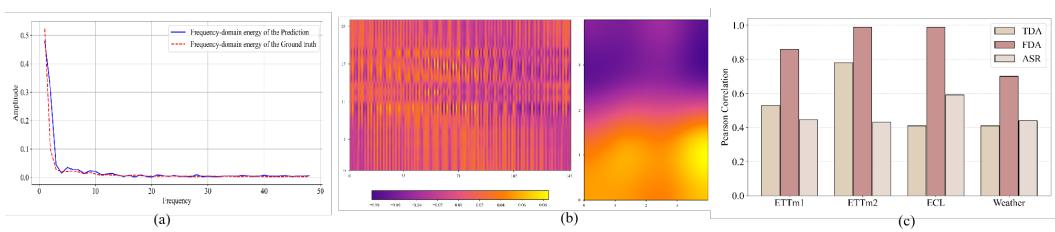
402 **Different Look-back Window Sizes** To assess robustness, we vary look-back lengths on ETTm2. 403 Longer windows provide richer history but may cause redundancy for linear models. As shown in 404 Figure 3 (Left), TimeSeed benefits from longer windows, with clear MSE gains at horizons 192 and 405 336, demonstrating stable performance across input lengths. Detailed results are in Appendix C. 406407 **Efficiency Analysis** To assess computational efficiency, we compared TimeSeed with 11 state-of- 408 the-art models on GPU memory and training time. Under the same settings of hidden dimension 409 128 and batch size 1, results in Figure 3 (Middle) demonstrate that TimeSeed achieves superior 410 performance in both memory efficiency and predictive accuracy. It consumes only 10.5MB of memory, 411 approximately 71.5% of TimeXer's 14.69MB. In addition, its training time is roughly 30% of that 412 of TimeXer, further emphasizing its computational efficiency. More results are in the Appendix D. 413414 **Case Study** To validate the effectiveness of the adaptive multi-resolution selection mechanism in 415 the proposed ASR, we analyze a representative case from the ETTh1 dataset. As shown in Figure 416 3 (Right), we further report the correlation and Dynamic Time Warping (DTW) between the 417 reconstructed sequences at each resolution and the ground truth. The second resolution exhibits 418 the highest correlation with the ground truth, achieving a Pearson coefficient of 0.59 and a DTW 419 of 1.2, which indicates its superiority as the most appropriate resolution. Furthermore, ASR 420 accurately identifies this candidate sequence, thereby validating the effectiveness of its adaptive 421 multi-resolution selection mechanism.422 Figure 4: Sensitivity Analysis to different Data Scales, Resolutions and High-energy Components.
423

432 4.5 SENSITIVITY ANALYSIS
433

434 **Different Data Scale** To further explore the potential of TimeSeed under sparse settings, we design
435 three more challenging forecasting scenarios: sparser endogenous series, fewer exogenous variables,
436 and shorter historical exogenous series. As shown in Figure 4 (left), the performance of TimeSeed
437 decreases by 5.80%, 18.84%, and 7.25% compared to the original setting under the three different
438 configurations. In contrast, DUET shows a larger decline, with decreases of 15.32%, 126.61%, and
439 32.26%, respectively. it is evident that among these three factors, the length of the historical exoge-
440 nous series has the greatest impact on forecasting performance. TimeSeed consistently maintains
441 the best predictive performance across all cases.

442 **Different Resolution** To further investigate the impact of ASR under different resolution choices,
443 we vary the number of upsampling layers from 1 to 4. As shown in Figure 4 (middle), with more
444 upsampling layers, the number of available resolutions increases. On the ETT datasets, performance
445 improves progressively, with a particularly significant gain when increasing the layer count from 1
446 to 2. Considering both performance and efficiency, we set the number of resolutions Q to 3.

447 **Different High-energy Components** As shown in Figure 4 (Right), increasing the decomposition
448 factor initially improves performance; however, beyond a certain point (e.g., 8), the gains plateau or
449 even diminish. This phenomenon suggests that an appropriately chosen number of high-energy com-
450 ponents is beneficial for model performance. Therefore, we unify $K = 10$ in our implementation
451 for experiments. More detailed results can be found in the Appendix F.



460 Figure 5: Reliability analysis of reconstruction. (a) Frequency spectrum of the reconstructed trend
461 component of historical endogenous variables. (b) Visualization of the weights in the TDA. (c)
462 Correlation between reconstruction by TDA, FDA and ASR and those of the ground truth.
463

464 4.6 RELIABILITY ANALYSIS OF RECONSTRUCTION
465

466 **Frequency-domain Reconstruction** Figure 5 (a) shows that the reconstructed and true trend com-
467 ponents on ETTh1. It is clearly observable that the two curves almost completely overlap. This
468 indicates that TimeSeed can accurately reconstruct endogenous trends from exogenous inputs, ef-
469 fectively capturing the relationship between exogenous and endogenous trends and validating the
470 effectiveness of our frequency domain multi-granularity modeling. More results are in Appendix E.

471 **Time-domain Visualization** Figure 5 (b) shows weight heatmaps of the Time Domain Aggrega-
472 tor. The left panel corresponds to the implementation of Patch-Agg(\cdot), and the right panel to
473 Patch-Interact(\cdot). The repeated horizontal purple stripes on the left indicate that Patch-Agg(\cdot)
474 is sensitive to periodic features in the input sequence. In contrast, the heatmap on the right exhibits
475 a smooth top-down gradient, suggesting that Patch-Interact(\cdot) effectively captures cross-period
476 feature correlations. These distributions suggest the model adaptively emphasizes phase-aligned
477 information, enhancing temporal structure modeling.

478 **Reconstruction Correlation** In Figure 5 (right), we report the Pearson correlation coefficients be-
479 tween the reconstructed endogenous periodic and trend components obtained by TDA and FDA and
480 the corresponding ground truth. Overall, both TDA and FDA achieve sufficiently high reconstruc-
481 tion fidelity, with average correlations of 0.532 and 0.885, respectively. This further highlights the
482 effectiveness of our two-stage decomposition and forecasting paradigm based on reconstruction.

483 4.7 MORE EXPERIMENTS
484

485 **Why not Choose Weighted Combination from All Reconstructed Resolution:** In scenarios with
486 extremely sparse data, the quality of upsampled sequences across resolutions can differ substantially.

486
487
488
489
490
491
492
493

Table 5: Comparison of Soft and Hard choose for multi-resolution selection

Model	TimeSeed		TimeSeed(Soft)	
Metric	MSE	MAE	MSE	MAE
ETTh1	0.096	0.242	0.119	0.266
ETTm1	0.068	0.194	0.092	0.226
Traffic	0.403	0.433	0.545	0.567
Weather	0.002	0.034	0.009	0.071

Soft weighted combinations (e.g., using all O_q) may blend high-quality signals with low-quality or noisy ones, degrading performance. In contrast, a hard-selection mechanism alleviates this issue while keeping model complexity in check and reducing overfitting. For a lightweight model with only 0.19M parameters, attending to a single resolution is both more efficient and more robust, as it encourages the model to focus on fundamental patterns rather than noise. As shown in Table 13, hard selection consistently outperforms soft weighting on all datasets, benefiting from its ability to exclude unreliable resolutions and thereby lower overfitting risk.

501
502
503
504

Table 6: Results on the sparse real-world PhysioNet dataset

Model	TimeSeed		DUET		DLinear		TimeXer		FilterNet		SparseTSF	
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
PhysioNet	0.30	0.24	0.34	0.24	0.33	0.24	0.78	0.53	0.33	0.24	0.35	0.25

Real-world Benchmark: We have incorporated the real clinical dataset *PhysioNet*, where physiological variables naturally exhibit sparsity. We use reliably obtainable signals such as HR, RespRate, Temp, SysABP, DiasABP, and MAP as exogenous variables, while the more sparsely observed Glucose serves as the endogenous variable. We use the first 24 hours of observations to forecast the subsequent 24 hours. As shown in Table 6, TimeSeed still achieves the best or highly competitive performance under these genuinely sparse conditions, demonstrating the robustness and practical applicability of our method.

511

Table 7: Comparison between the imputation+forecasting pipeline and TimeSeed

Model	TimeSeed		PatchT/PatchT		PatchT/TimeX	
Metric	MSE	MAE	MSE	MAE	MSE	MAE
ETTh1	0.096	0.242	0.153	0.322	0.388	0.498
ETTh2	0.272	0.410	0.502	0.561	0.281	0.412
ETTm1	0.068	0.194	0.041	0.196	0.283	0.428
ETTm2	0.149	0.289	0.154	0.293	0.197	0.336

Imputation model + forecasting model: We first use PatchTST to impute the sparse endogenous series, and then apply another state-of-the-art forecasting model (PatchTST or TimeXer) to predict future values. As shown in Table 7, TimeSeed outperforms both combinations on most datasets. On average, relative to PatchTST/PatchTST, TimeSeed reduces MSE and MAE by about 36% and 24%, and relative to PatchTST/TimeXer, by about 26% and 30%, respectively. These gains stem from the two-stage paradigm, which decouples sequence features and enables the reconstruction stage to more effectively capture trends and periodicity, improving robustness. The limited benefit of the imputation model likely results from the extreme sparsity of the endogenous observations, while adding another imputation module increases parameter count and thus the risk of overfitting.

527

5 CONCLUSION

530
531
532
533
534
535
536
537
538
539

We propose TimeSeed, a novel prediction architecture tailored for scenarios with sparse endogenous variables. From both the endogenous and exogenous perspectives, TimeSeed can robustly reconstruct historical endogenous sequences by uncovering the periodic and trend-related relationships between exogenous and endogenous variables. Moreover, it leverages ASR to supplement the reconstructed endogenous information with signals from the sparse endogenous sequences. All experimental results show that TimeSeed achieves the best performance across all benchmarks, demonstrating its ability to deliver high-accuracy predictions even under extreme data scarcity. Furthermore, thanks to its linear-based architecture, TimeSeed exhibits excellent computational efficiency. These advantages provide a practical and effective solution to the challenge of missing data in real-world applications. In future work, we plan to explore more advanced prediction methods for more complex scenarios, such as when *endogenous variables are entirely missing*.

540
541
ETHICS STATEMENT542
543
544
545
All authors have read and adhered to the ICLR Code of Ethics. This work does not involve hu-
man subjects, private data, or sensitive content. The research is based solely on publicly available
datasets and standard benchmarks, with no foreseeable harmful societal or environmental impacts.
No conflicts of interest or external sponsorships that could bias the results are involved.546
547
REPRODUCIBILITY STATEMENT
548549
550
551
552
553
554
We have made significant efforts to ensure the reproducibility of our work. The proposed model
and training procedure are described in detail in Sections 3 and 4. All hyperparameters, imple-
mentation details, and evaluation protocols are provided in the appendix B. The datasets used in
our experiments are publicly accessible, and we include the preprocessing steps in the supple-
mentary material. In addition, we provide anonymized source code and instructions as supplementary
materials to facilitate replication of our results.555
556
REFERENCES
557

- 558
-
- 559
-
- Hesham K Alfares and Mohammad Nazeeruddin. Electric load forecasting: literature survey and
-
- classification of methods.
- International journal of systems science*
- , 33(1):23–34, 2002.

560
561
Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan Mathur, Rajat Sen, and Rose Yu. Long-term
forecasting with tide: Time-series dense encoder. *arXiv preprint arXiv:2304.08424*, 2023.562
563
Zicheng Fei, Fangfang Yang, Kwok-Leung Tsui, Lishuai Li, and Zijun Zhang. Early prediction of
battery lifetime via a machine learning based framework. *Energy*, 225:120205, 2021.564
565
Angelica Gianfreda and Luigi Grossi. Forecasting italian electricity zonal prices with exogenous
variables. *Energy Economics*, 34(6):2228–2239, 2012.566
567
Qihe Huang, Zhengyang Zhou, Kuo Yang, and Yang Wang. Exploiting language power for time
series forecasting with exogenous variables. In *Proceedings of the ACM on Web Conference*
2025, pp. 4043–4052, 2025.568
569
Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. *arXiv*
preprint arXiv:1611.01144, 2016.570
571
Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
arXiv:1412.6980, 2014.572
573
Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirsberger, Meire Fortunato, Fer-
ran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, et al. Learning skillful
medium-range global weather forecasting. *Science*, 382(6677):1416–1421, 2023.574
575
Haitao Lin, Zhangyang Gao, Yongjie Xu, Lirong Wu, Ling Li, and Stan Z Li. Conditional local con-
volution for spatio-temporal meteorological forecasting. In *Proceedings of the AAAI conference*
on *artificial intelligence*, volume 36, pp. 7470–7478, 2022.576
577
Shengsheng Lin, Weiwei Lin, Wentai Wu, Feiyu Zhao, Ruichao Mo, and Haotong Zhang. Seg-
rnn: Segment recurrent neural network for long-term time series forecasting. *arXiv preprint*
arXiv:2308.11200, 2023.578
579
Shengsheng Lin, Weiwei Lin, Xinyi Hu, Wentai Wu, Ruichao Mo, and Haocheng Zhong. Cyclenet:
enhancing time series forecasting through modeling periodic patterns. *Advances in Neural Infor-
mation Processing Systems*, 37:106315–106345, 2024a.580
581
Shengsheng Lin, Weiwei Lin, Wentai Wu, Haojun Chen, and Junjie Yang. Sparsesf: Modeling
long-term time series forecasting with 1k parameters. *arXiv preprint arXiv:2405.00946*, 2024b.582
583
Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
Time series modeling and forecasting with sample convolution and interaction. *Advances in*
Neural Information Processing Systems, 35:5816–5828, 2022a.

- 594 Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
 595 the stationarity in time series forecasting. *Advances in neural information processing systems*, 35:
 596 9881–9893, 2022b.
- 597
- 598 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
 599 itriformer: Inverted transformers are effective for time series forecasting. *arXiv preprint*
 600 *arXiv:2310.06625*, 2023.
- 601 Jiecheng Lu, Xu Han, Yan Sun, and Shihao Yang. Cats: Enhancing multivariate time se-
 602 ries forecasting by constructing auxiliary time series as exogenous variables. *arXiv preprint*
 603 *arXiv:2403.01673*, 2024.
- 604 Aitian Ma, Dongsheng Luo, and Mo Sha. Mixlinear: Extreme low resource multivariate time series
 605 forecasting with 0.1 k parameters. *arXiv preprint arXiv:2410.02081*, 2024.
- 606
- 607 Steffen Moritz and Thomas Bartz-Beielstein. imputets: time series missing value imputation in r.
 608 2017.
- 609 AP Motrenko, KV Rudakov, and VV Strijov. Combining endogenous and exogenous variables in a
 610 special case of non-parametric time series forecasting model. *Moscow University Computational*
 611 *Mathematics and Cybernetics*, 40(2):71–78, 2016.
- 612
- 613 Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
 614 words: Long-term forecasting with transformers. *arXiv preprint arXiv:2211.14730*, 2022.
- 615 Kin G Olivares, Cristian Challu, Grzegorz Marcjasz, Rafał Weron, and Artur Dubrawski. Neural
 616 basis expansion analysis with exogenous variables: Forecasting electricity prices with nbeatsx.
 617 *International Journal of Forecasting*, 39(2):884–900, 2023.
- 618
- 619 Pramit Pandit, Atish Sagar, Bikramjeet Ghose, Prithwiraj Dey, Moumita Paul, Saeed Alqadhi, Javed
 620 Mallick, Hussein Almohamad, and Hazem Ghassan Abdo. Hybrid time series models with ex-
 621ogenous variable for improved yield forecasting of major rabi crops in india. *Scientific Reports*,
 622 13(1):22240, 2023.
- 623 A Paszke. Pytorch: An imperative style, high-performance deep learning library. *arXiv preprint*
 624 *arXiv:1912.01703*, 2019.
- 625
- 626 Xiangfei Qiu, Xingjian Wu, Yan Lin, Chenjuan Guo, Jilin Hu, and Bin Yang. Duet: Dual clustering
 627 enhanced multivariate time series forecasting. *arXiv preprint arXiv:2412.10859*, 2024.
- 628
- 629 Xiaoli Ren, Xiaoyong Li, Kaijun Ren, Junqiang Song, Zichen Xu, Kefeng Deng, and Xiang Wang.
 Deep learning-based weather prediction: a survey. *Big Data Research*, 23:100178, 2021.
- 630
- 631 Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detection for
 632 multivariate time series through stochastic recurrent neural network. In *Proceedings of the 25th*
 633 *ACM SIGKDD international conference on knowledge discovery & data mining*, pp. 2828–2837,
 634 2019.
- 635
- 636 Valentin Sulzer, Peyman Mohtat, Antti Aitio, Suhak Lee, Yen T Yeh, Frank Steinbacher, Muham-
 637 mad Umer Khan, Jang Woo Lee, Jason B Siegel, Anna G Stefanopoulou, et al. The challenge and
 opportunity of battery lifetime prediction from field data. *Joule*, 5(8):1934–1955, 2021.
- 638
- 639 Peiwang Tang and Weitai Zhang. Unlocking the power of patch: Patch-based mlp for long-term time
 640 series forecasting. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39,
 pp. 12640–12648, 2025.
- 641
- 642 Kshitij Tayal, Arvind Renganathan, Xiaowei Jia, Vipin Kumar, and Dan Lu. Exotst: Exogenous-
 643 aware temporal sequence transformer for time series prediction. *arXiv preprint arXiv:2410.12184*,
 644 2024.
- 645
- 646 Stylianos I Vagropoulos, GI Chouliaras, Evangelos G Kardakos, Christos K Simoglou, and Anas-
 647 tasios G Bakirtzis. Comparison of sarimax, sarima, modified sarima and ann-based models for
 short-term pv generation forecasting. In *2016 IEEE international energy conference (ENERGY-
 CON)*, pp. 1–6. IEEE, 2016.

- 648 Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. Micn: Multi-
 649 scale local and global context modeling for long-term series forecasting. In *The eleventh interna-*
 650 *tional conference on learning representations*, 2023.
- 651
- 652 Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang,
 653 and Jun Zhou. Timemixer: Decomposable multiscale mixing for time series forecasting. *arXiv*
 654 *preprint arXiv:2405.14616*, 2024a.
- 655 Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Guo Qin, Haoran Zhang, Yong Liu, Yunzhong Qiu, Jian-
 656 min Wang, and Mingsheng Long. Timexer: Empowering transformers for time series forecasting
 657 with exogenous variables. *arXiv preprint arXiv:2402.19072*, 2024b.
- 658
- 659 Rafał Weron. Electricity price forecasting: A review of the state-of-the-art with a look into the
 660 future. *International journal of forecasting*, 30(4):1030–1081, 2014.
- 661
- 662 Billy M Williams. Multivariate vehicular traffic flow prediction: evaluation of arimax modeling.
 663 *Transportation Research Record*, 1776(1):194–200, 2001.
- 664
- 665 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
 666 formers with auto-correlation for long-term series forecasting. *Advances in neural information*
 667 *processing systems*, 34:22419–22430, 2021.
- 668
- 669 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Tem-
 670 poral 2d-variation modeling for general time series analysis. *arXiv preprint arXiv:2210.02186*,
 671 2022.
- 672
- 673 Zhijian Xu, Ailing Zeng, and Qiang Xu. Fits: Modeling time series with 10^k parameters. *arXiv*
 674 *preprint arXiv:2307.03756*, 2023.
- 675
- 676 Kun Yi, Jingru Fei, Qi Zhang, Hui He, Shufeng Hao, Defu Lian, and Wei Fan. Filternet: Harnessing
 677 frequency filters for time series forecasting. *Advances in Neural Information Processing Systems*,
 678 37:55115–55140, 2024.
- 679
- 680 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
 681 forecasting? In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp.
 682 11121–11128, 2023.
- 683
- 684 Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
 685 for multivariate time series forecasting. In *The eleventh international conference on learning*
 686 *representations*, 2023.
- 687
- 688 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
 689 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings*
 690 *of the AAAI conference on artificial intelligence*, volume 35, pp. 11106–11115, 2021.
- 691
- 692 Tian Zhou, Ziqing Ma, Qingsong Wen, Liang Sun, Tao Yao, Wotao Yin, Rong Jin, et al. Film:
 693 Frequency improved legendre memory model for long-term time series forecasting. *Advances in*
 694 *neural information processing systems*, 35:12677–12690, 2022a.
- 695
- 696 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
 697 enhanced decomposed transformer for long-term series forecasting. In *International conference*
 698 *on machine learning*, pp. 27268–27286. PMLR, 2022b.
- 699
- 700
- 701

702
 703
 704
 705
 706
 707
 708
 709
 710
TimeSeed: Effective Time Series Forecasting with
Sparse Endogenous Variables

711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
Appendix

709
 710
CONTENTS

1	Introduction	1
2	Related Work	2
3	Method	3
3.1	Problem Settings	3
3.2	Structure Overview	3
3.3	Time Domain Aggregator	4
3.4	Frequency Domain Aggregator	4
3.5	Adaptive Scale Reconstructor	5
3.6	Hierarchical Forecasting	6
4	Experiments	6
4.1	Main Results	6
4.2	Effect of Sparsity Ratios	6
4.3	Ablation Study	7
4.4	Model Analysis	8
4.5	Sensitivity Analysis	9
4.6	Reliability Analysis of Reconstruction	9
4.7	More Experiments	9
5	Conclusion	10
A	Relate Work of Lightweight Forecasting	16
B	Implementation Details	17
C	Full Results of Different Look-back Window Size	18
D	Full Results of Runtime Efficiency Analysis	19
E	Full Results of Frequency-domain Analysis	19
F	Full Results of Hyperparameter Sensitivity Analysis	20
G	Full Result of Randomly Sampling Endogenous Variable	23

756	H Full Results of Ablation	25
757		
758	I Full Results of Hard and Soft Choose	25
759		
760	J Full Results with Exogenous Variables Only	26
761		
762	K ERROR BARS	26
763		
764	L Full Results of Non-Overlap vs Overlap Patch	27
765		
766		
767	M Case Study	29
768		
769	N Full Main Results	30
770		
771		
772	O Limitation	32
773		
774	P LLM Usage	32
775		
776		
777		
778		
779		
780		
781		
782		
783		
784		
785		
786		
787		
788		
789		
790		
791		
792		
793		
794		
795		
796		
797		
798		
799		
800		
801		
802		
803		
804		
805		
806		
807		
808		
809		

810 A RELATE WORK OF LIGHTWEIGHT FORECASTING
811

812 In recent years, the field of long-term time series forecasting (LTSF) (Lin et al., 2023; Zhang & Yan,
813 2023; Wu et al., 2022; Liu et al., 2022a; Zhou et al., 2022a; Tang & Zhang, 2025; Qiu et al., 2024) has
814 seen a surge in lightweight models. DLinear (Zeng et al., 2023) achieves accurate forecasting using
815 only linear layers and a decomposition strategy. CycleNet(Lin et al., 2024a) utilizes learnable param-
816 eters to simulate periodic variations across datasets, enabling plug-and-play lightweight forecasting.
817 FITS (Xu et al., 2023) introduces a low-pass filter in the frequency domain to reduce parameter
818 requirements, compressing the model size to approximately 10k parameters. SparseTSF(Lin et al.,
819 2024b) decouples periodicity and trend through cross-period sparse forecasting. It first downsam-
820 ples the original series using a fixed periodicity and then predicts each downsampled subsequence.
821 MixLinear (Ma et al., 2024) further combines temporal and frequency domain feature extraction.
822 By downsampling the series, it reduces the parameter complexity of linear models from $O(N^2)$ to
823 $O(N)$, achieving efficient computation.
824

825 However, the above methods focus solely on lightweight modeling of the temporal characteristics of
826 the target variable, without considering the crucial relationship between exogenous and endogenous
827 variables (Huang et al., 2025; Das et al., 2023; Wang et al., 2024b), where a factor that is particularly
828 important in endogenous variable prediction scenarios. Therefore, to facilitate lightweight extraction
829 of external (exogenous) knowledge in such contexts, it is crucial to develop a compact modeling
830 approach that captures deep correlations between endogenous and exogenous variables, enabling
831 efficient and accurate endogenous prediction.
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864 B IMPLEMENTATION DETAILS

866 **DataSets** We evaluated the performance of TimeSeed on seven widely used datasets. These include
 867 the Traffic (Wu et al., 2021), Weather (Wu et al., 2021), Electricity (Wu et al., 2021), and the ETT
 868 dataset (Zhou et al., 2021). Specifically, Traffic records traffic flow freeway system of the San
 869 Francisco area, collected at hourly intervals via inductive loop detectors installed on roadways, and
 870 has been collected since 2015. Weather collects 21 weather metrics from the National Weather Ser-
 871 vice (NWS), including temperature, humidity, wind speed, and barometric pressure, covering nearly
 872 400 weather stations across the United States. This data is collected every 10 minutes. Electricity
 873 records hourly power consumption data for 321 customers. The ETT contains electrical load and oil
 874 temperature data from two substations, which are organized into four sub-datasets: ETTh1, ETTh2,
 875 ETTm1, and ETTm2, where “h” stands for hourly sampling intervals and “m” stands for 15-minute
 876 sampling intervals. For the ETT dataset, the time period spanning from July 2016 to July 2018
 877 includes electrical load, oil temperature, and six other relevant metrics. Overall, the datasets we
 878 use cover diverse domains such as transportation, meteorology, energy, etc., with varying temporal
 879 granularities. Detailed information about these datasets is provided in Table 8.

880
 881 Table 8: Comparison of dataset characteristics, including key information such as the definitions of
 882 endogenous (En.Explanation) and exogenous (Ex.Explanation), prediction horizon, sampling fre-
 883 quency, and dataset size (training, validation, and test sets).

884 Dataset	ETTh1	ETTh2	ETTm1	ETTm2	ECL	Traffic	Weather
885 Ex.Explanation	Energy Load	Energy Load	Energy Load	Energy Load	Power consumption	Road Occupancy	Weather Indicators
886 En.Explanation	Oil Temperature	Oil Temperature	Oil Temperature	Oil Temperature	Power consumption	Road Occupancy	CO2-Concentration
887 Predict Length	(96,192,336,720)	(96,192,336,720)	(96,192,336,720)	(96,192,336,720)	(96,192,336,720)	(96,192,336,720)	(96,192,336,720)
888 Ex.Count	6	6	6	6	320	861	20
889 Sampling Frequency	1 Hour	1 Hour	15 Minutes	15 Minutes	1 Hour	1 Hour	10 Minutes
890 Dataset Size	(8449,2785,2785)	(8449,2785,2785)	(34369,11425,11425)	(34369,11425,11425)	(15591,5167,5165)	(110335,3415,3415)	(31426,10445,10445)

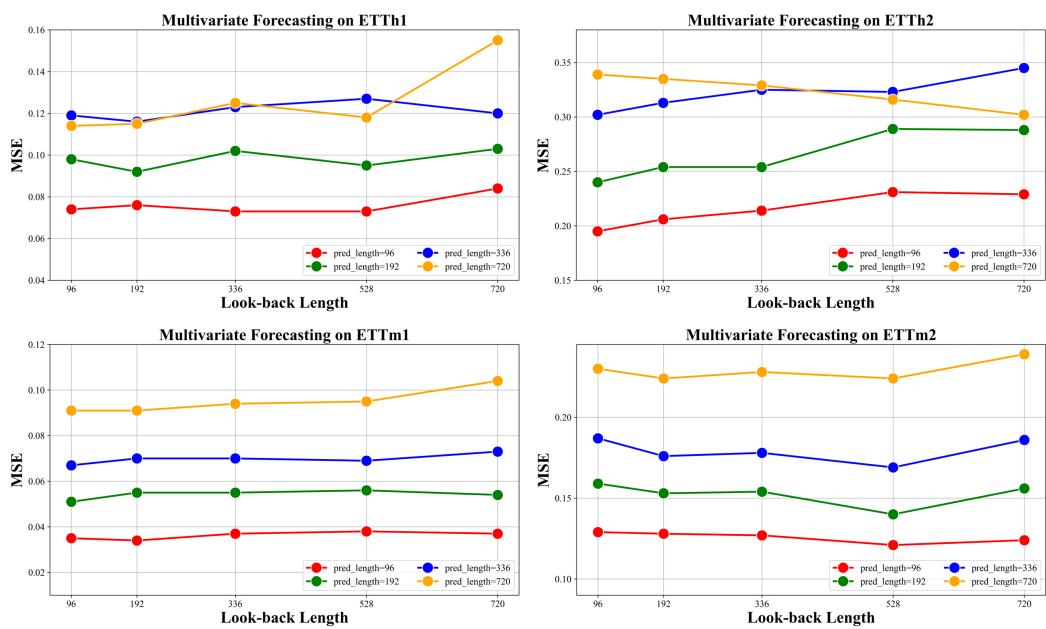
892 **Unified Hyperparameter Settings** Under our newly proposed forecasting paradigm, we fix the
 893 hyperparameters for all models and adopt the same optimization strategy to ensure fair and repro-
 894ducible experiments. The detailed settings are shown in Table 9. All the experiments are imple-
 895mented in PyTorch (Paszke, 2019) and conducted on a single NVIDIA 2080Ti 10GB GPU.

896
 897 Table 9: Unified hyperparameter settings for all experiments. All models are optimized using the
 898 ADAM optimizer (Kingma & Ba, 2014). K the number of high-energy components corresponding
 899 to those extracted by the FDA. D_{model} represents the hidden dimension of the baseline model, and
 900 D_{ff} is the baseline model’s dimension of the hidden layer in the feed-forward layer.

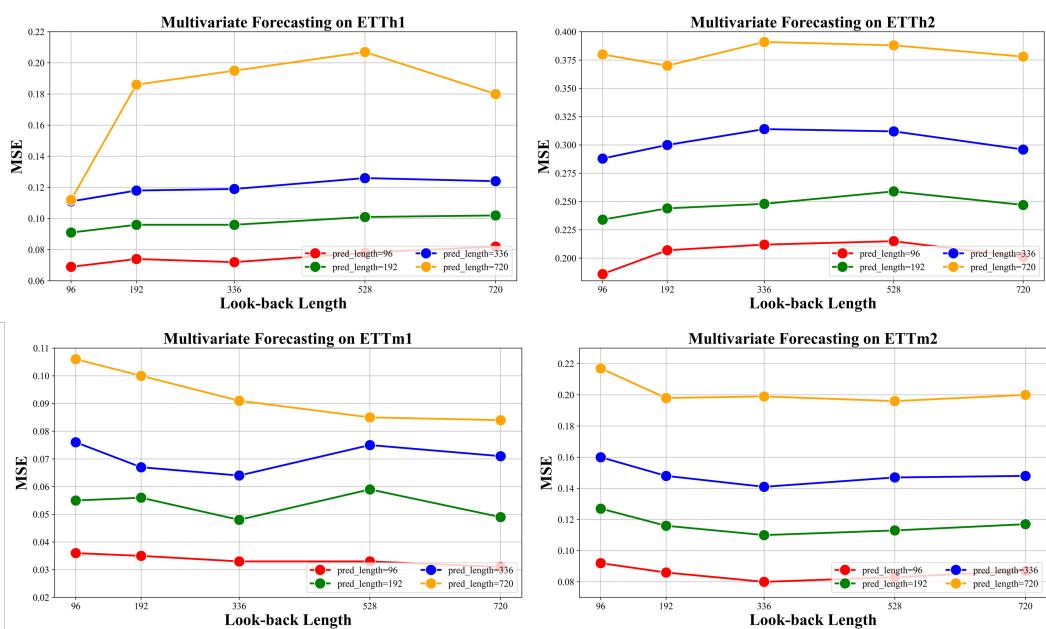
902 Dataset / Configurations	903 Model Hyper-parameter			904 Training Process				
	905 K	906 D_{model}	907 D_{ff}	908 Batchsize	909 Lr	910 Epoch	911 Early_stop	912 Loss
913 ETTh1	914 10	915 128	916 512	917 128	0.001	10	3	MSE
918 ETTh2	919 10	920 128	921 512	922 128	0.001	10	3	MSE
923 ETTm1	924 10	925 128	926 512	927 128	0.001	10	3	MSE
928 ETTm2	929 10	930 128	931 512	932 128	0.001	10	3	MSE
933 ECL	934 10	935 128	936 512	937 4	0.001	10	3	MSE
938 Traffic	939 10	940 128	941 512	942 4	0.001	10	3	MSE
943 Weather	944 10	945 128	946 512	947 64	0.001	10	3	MSE

918 C FULL RESULTS OF DIFFERENT LOOK-BACK WINDOW SIZE

919
 920 Figure 6 and 7 presents the impact of varying look-back window sizes on the prediction accuracy of
 921 TimeSeed across the ETT series datasets.
 922



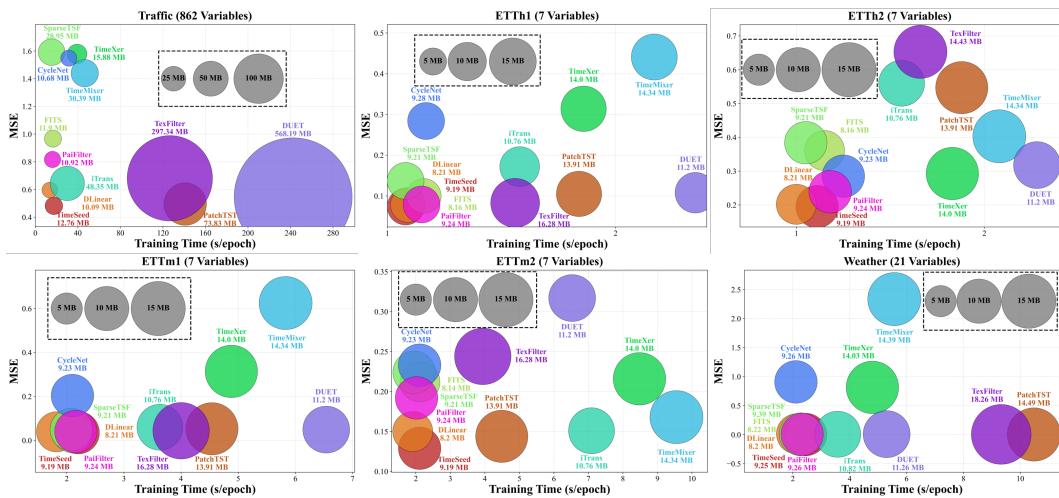
933
 934 Figure 6: Performance across various prediction lengths with different look-back window sizes
 935 $T = \{96, 192, 336, 528, 720\}$ under a single endogenous setting. Each colored curve represents the
 936 performance of a specific look-back window.
 937
 938
 939
 940
 941



959
 960 Figure 7: Performance across various prediction lengths with different look-back window sizes
 961 $T = \{96, 192, 336, 528, 720\}$ under sparse endogenous setting. Each colored curve represents the
 962 performance of a specific look-back window.
 963
 964
 965
 966
 967

972 D FULL RESULTS OF RUNTIME EFFICIENCY ANALYSIS 973

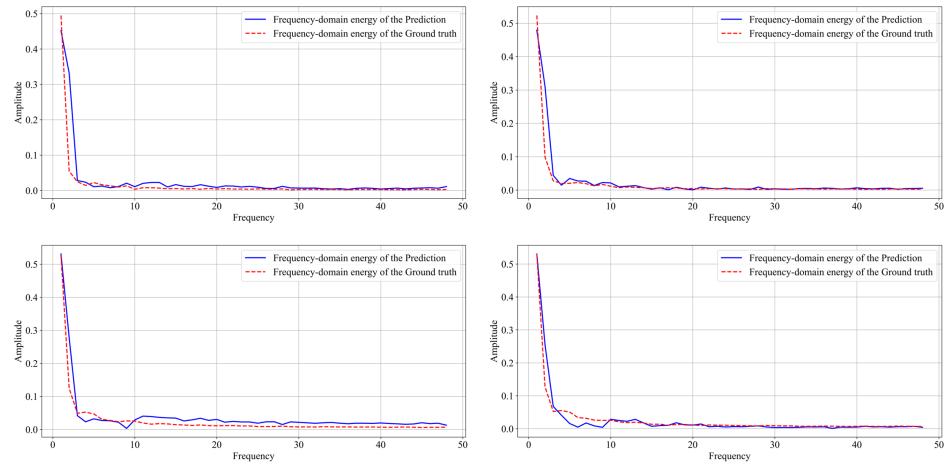
974 We report the runtime efficiency of all models across all datasets in terms of training time (s/epoch)
975 and GPU memory usage, along with predictive performance measured by MSE. As shown in Figure
976 8, TimeSeed fully unleashes the potential of linear layers, achieving accurate predictions while
977 maintaining a lightweight design.



955 Figure 8: Comparison of model efficiency in the input-96-predict-96 setting.
956
957

995 E FULL RESULTS OF FREQUENCY-DOMAIN ANALYSIS 996 997

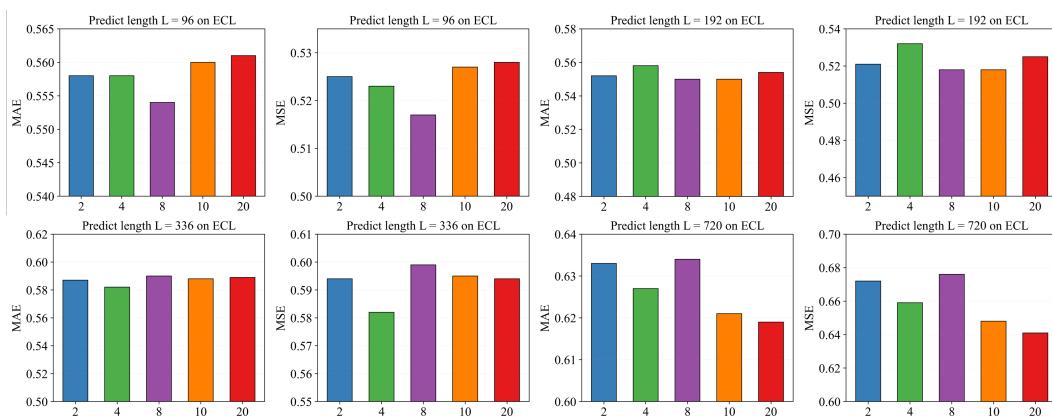
1000 To further evaluate the ability of the Frequency-Domain Aggregator (FDA) to reconstruct the trend
1001 component of historical endogenous variables, we provide additional prediction cases in Figure 9.
1002 The results demonstrate that Frequency-domain Aggregator effectively leverages the trend-related
1003 information in exogenous variables and establishes robust correlations between the trends of exogenous
1004 variables and those of historical endogenous variables, thereby enabling effective reconstruc-
1005 tion of the target trend components.
1006



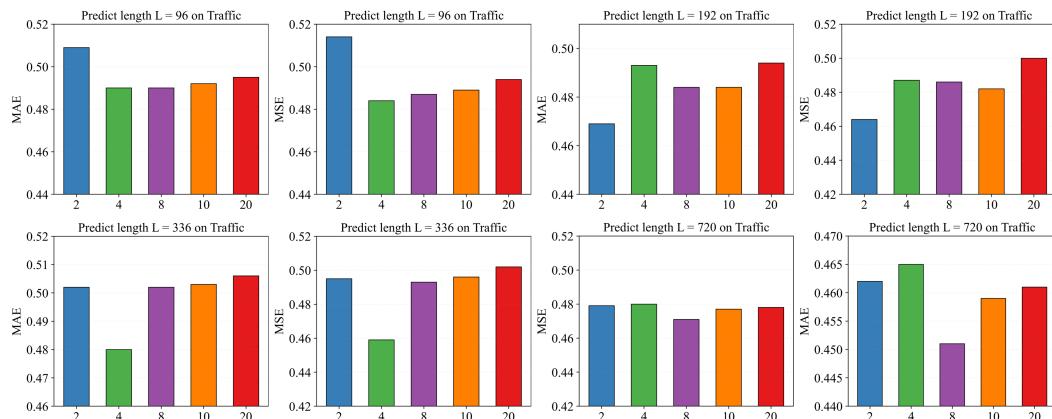
1023 Figure 9: Frequency spectrum of the reconstructed trend component of historical endogenous vari-
1024 ables (blue) and the ground truth (red) in the frequency domain. The closer the two curves, the better
1025 the reconstruction performance.
1026
1027

1026 F FULL RESULTS OF HYPERPARAMETER SENSITIVITY ANALYSIS

1028 In the frequency-domain decomposition module, we further split the input trend component based
 1029 on an energy-oriented perspective. To explore how different decomposition thresholds affect model
 1030 performance, we report the complete results of varying K values on the ECL and Traffic datasets in
 1031 Figures 10, 11, 12 and 13. It is evident that the choice of decomposition threshold, reflected by dif-
 1032 ferent values of K , has a considerable impact on model performance. Overall, on both the ECL and
 1033 Traffic datasets, as K increases, the error metrics first decrease and then gradually stabilize, with a
 1034 slight rise in some cases. This indicates that excessively small thresholds fail to adequately capture
 1035 the energy characteristics of the input sequence, whereas overly large thresholds may introduce re-
 1036 dundant decomposition components, thereby impairing the model’s generalization ability. The best
 1037 performance is generally observed at moderate K values, suggesting that an appropriate threshold
 1038 strikes a balance between preserving dominant trends and retaining local variations. In summary,
 1039 the predictive performance across different K values does not vary drastically, further demonstrating
 1040 the robustness of the TimeSeed.



1055 Figure 10: Impact of different K values in Energy-Decompose within the Frequency Domain Ag-
 1056 ggregator, evaluated on the ECL dataset with various prediction lengths $\{96, 192, 336, 720\}$ based
 1057 on a single endogenous setting.



1074 Figure 11: Impact of different K values in Energy-Decompose within the Frequency Domain Ag-
 1075 ggregator, evaluated on the Traffic dataset with various prediction lengths $\{96, 192, 336, 720\}$ based
 1076 on a single endogenous setting.

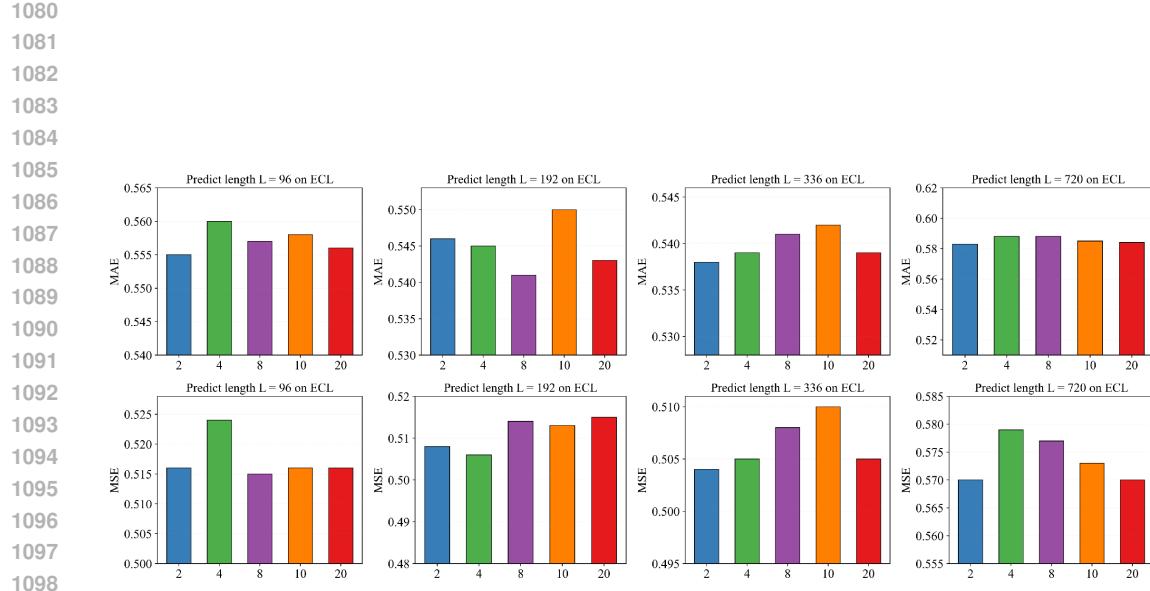


Figure 12: Impact of different K values in Energy-Decompose within the Frequency Domain Aggregator, evaluated on the ECL dataset with various prediction lengths $\{96, 192, 336, 720\}$ based on sparse endogenous variable setting.

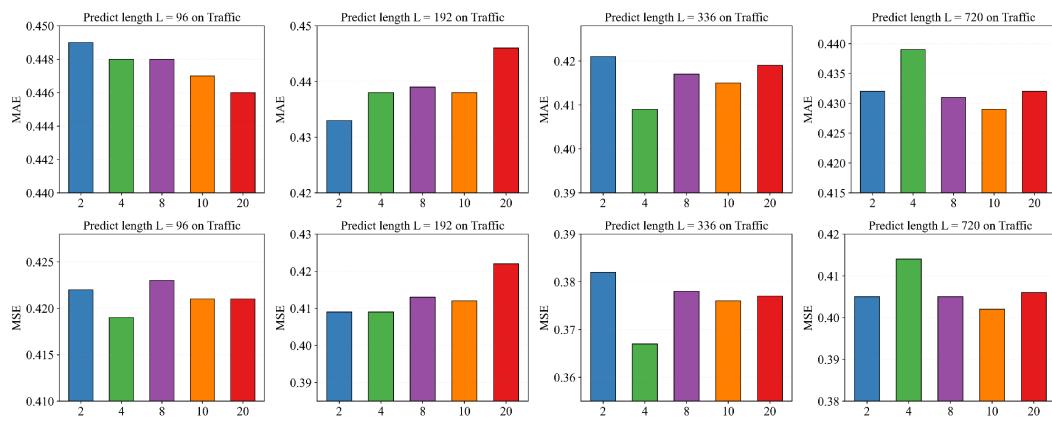


Figure 13: Impact of different K values in Energy-Decompose within the Frequency Domain Aggregator, evaluated on the Traffic dataset with various prediction lengths $\{96, 192, 336, 720\}$ based on sparse endogenous variable setting.

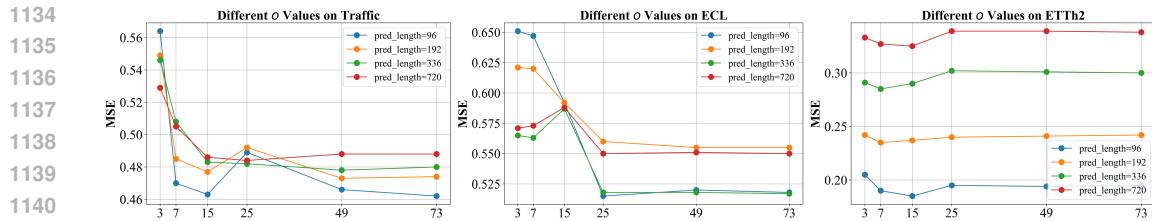


Figure 14: Performance of different downsampling kernels in the Decompose module for long-term time series forecasting on Traffic, ECL and ETTh2 with input-96-predict-96 setting.

We evaluate the sensitivity of TimeSeed across different average pooling kernel sizes (o) and high-energy component numbers (K). As shown in Figure 14, we investigate the impact of different downsampling kernel sizes (o) on the forecasting performance of TimeSeed across various prediction lengths. The results indicate that as the value of o increases, the model performance tends to stabilize or improve. This trend is particularly evident on the Traffic and ECL datasets. In contrast, the ETTh2 dataset exhibits relatively consistent performance regardless of kernel size variations. We also observe that the most effective kernel sizes often align with the data's inherent daily, weekly, or monthly periodicities. Based on these findings, we fix the downsampling kernel size to $o = 25$ for all subsequent experiments.

1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188 G FULL RESULT OF RANDOMLY SAMPLING ENDOGENOUS VARIABLE
1189

1190 Table 10 reports the complete prediction results of TimeSeed, DLinear, TimeXer, and FITS under
1191 the strategy based on randomly sampling and uniform interval sampling. Random sampling is closer
1192 to real-world forecasting scenarios, and the comparison between the two sampling strategies reflects
1193 the impact of different sampling schemes on model performance. The results demonstrate that ran-
1194 dom sampling consistently yields inferior results relative to uniform interval sampling across most
1195 datasets, with this performance gap widening as forecasting horizons extend. This may be attributed
1196 to the fact that maintaining uniform temporal structure is more conducive to reconstructing complete
1197 historical endogenous sequences, whereas the uncertainty introduced by random sampling can re-
1198 duce the model’s generalization ability. Notably, across both sampling strategies and all forecasting
1199 horizons, TimeSeed consistently outperforms the baseline methods, demonstrating its robustness
1200 and effectiveness even in challenging sparse scenarios.

1201
1202 Table 10: Full results of unified hyperparameter for long-term time series forecasting results are
1203 based on sparse endogenous setting, with the point selection strategy randomly choosing a time step.
1204 The look-back window length is fixed at 96. The reported results represent the average performance
1205 across different forecasting horizons $L = \{96, 192, 336, 720\}$. * indicates the use of a random
1206 sampling strategy. Lower MSE and MAE values indicate better forecasting performance.

Model	TimeSeed		TimeSeed*		DLinear		DLinear*		TimeXer		TimeXer*		FITS		FITS*		
	Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTh1	96	0.069	0.203	<u>0.074</u>	<u>0.209</u>	0.079	0.218	0.081	0.219	0.438	0.572	0.513	0.625	0.089	0.230	0.089	0.230
	192	0.091	0.236	<u>0.100</u>	<u>0.241</u>	0.105	0.251	0.106	0.251	0.442	0.565	0.413	0.540	0.211	0.372	0.211	0.372
	336	0.111	0.262	0.121	<u>0.269</u>	0.138	0.292	0.138	0.292	0.429	0.552	0.537	0.635	<u>0.120</u>	0.273	0.120	0.273
	720	0.112	0.265	0.189	0.350	0.131	<u>0.288</u>	<u>0.130</u>	0.288	0.464	0.588	0.643	0.715	0.149	0.311	0.148	0.310
	AVG	0.096	0.242	0.121	0.267	<u>0.113</u>	<u>0.262</u>	0.114	0.263	0.444	0.569	0.527	0.629	0.142	0.297	0.142	0.296
ETTh2	96	0.186	0.336	<u>0.192</u>	<u>0.342</u>	0.201	0.350	0.201	0.350	0.289	0.423	0.284	0.418	0.303	0.431	0.326	0.446
	192	0.234	0.379	<u>0.234</u>	<u>0.380</u>	0.255	0.397	0.252	0.396	0.330	0.457	0.325	0.455	0.333	0.460	0.355	0.475
	336	0.288	0.426	<u>0.289</u>	<u>0.427</u>	0.306	0.440	0.307	0.441	0.358	0.479	0.356	0.478	0.496	0.571	0.507	0.578
	720	0.380	0.499	0.397	0.510	0.873	0.786	0.848	0.769	0.390	0.501	<u>0.389</u>	<u>0.500</u>	1.079	0.887	1.076	0.882
	AVG	0.272	0.410	<u>0.278</u>	<u>0.415</u>	0.409	0.493	0.402	0.489	0.342	0.465	0.339	0.463	0.553	0.587	0.566	0.595
ETTm1	96	0.036	0.143	<u>0.038</u>	<u>0.148</u>	0.043	0.157	0.047	0.166	0.290	0.468	0.292	0.472	0.051	0.175	0.051	0.175
	192	0.055	0.179	<u>0.058</u>	<u>0.183</u>	0.064	0.191	0.066	0.193	0.301	0.468	0.329	0.490	0.083	0.226	0.082	0.223
	336	0.076	0.210	<u>0.077</u>	<u>0.211</u>	0.083	0.218	0.085	0.222	0.359	0.508	0.333	0.491	0.092	0.231	0.096	0.236
	720	0.106	0.246	0.105	0.244	0.111	0.253	0.115	0.258	0.426	0.551	0.451	0.563	0.088	<u>0.232</u>	<u>0.088</u>	0.229
	AVG	0.068	0.194	<u>0.070</u>	<u>0.196</u>	0.075	0.205	0.078	0.210	0.344	0.499	0.351	0.504	0.079	0.216	0.079	0.216
ETTm2	96	0.092	0.224	0.119	0.260	<u>0.093</u>	<u>0.224</u>	0.132	0.272	0.239	0.377	0.228	0.365	0.118	0.260	0.192	0.338
	192	0.127	0.269	0.151	0.297	<u>0.135</u>	<u>0.276</u>	0.164	0.309	0.245	0.384	0.259	0.395	0.151	0.298	0.201	0.346
	336	0.160	0.304	0.182	0.327	<u>0.171</u>	<u>0.315</u>	0.198	0.342	0.261	0.404	0.283	0.417	0.212	0.357	0.250	0.388
	720	0.217	0.360	<u>0.231</u>	<u>0.373</u>	0.262	0.398	0.292	0.423	0.317	0.448	0.320	0.449	0.328	0.457	0.436	0.534
	AVG	0.149	0.289	0.170	0.314	<u>0.165</u>	<u>0.303</u>	0.196	0.337	0.266	0.404	0.273	0.406	0.202	0.343	0.269	0.402

1236
1237
1238
1239
1240
1241

1242 To further evaluate the model's performance under extreme conditions, we increased the prediction
 1243 difficulty by considering scenarios where the endogenous series is extremely sparse, retaining only
 1244 a single observation. As shown in Table 11, under this more challenging setting, the overall per-
 1245 formance of all models declines. Notably, TimeSeed still achieves the best predictive performance.
 1246 This can likely be attributed to our multi-stage problem decomposition strategy and reconstruction-
 1247 based learning mechanism, which effectively enhance TimeSeed's generalization ability, allowing it
 1248 to maintain high prediction accuracy even when available information is severely limited.
 1249

1250 Table 11: Full results of unified hyperparameter for long-term time series forecasting results are
 1251 based on a single endogenous setting, with the point selection strategy randomly sampling a time
 1252 step. The look-back window length is fixed at 96. The reported results represent the average per-
 1253 formance across different forecasting horizons $L = \{96, 192, 336, 720\}$. * indicates the use of a
 1254 random sampling strategy. Lower MSE and MAE values indicate better forecasting performance.

Model	TimeSeed*		TimeSeed		DLinear*		DLinear		TimeXer*		TimeXer		FITS*		FITS		
	Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTh1	96	0.096	0.243	0.074	0.213	0.104	0.262	0.078	0.221	0.402	0.529	0.314	0.469	0.131	0.291	0.100	0.251
	192	0.113	0.266	0.098	0.244	0.132	0.292	0.104	0.253	0.405	0.543	0.340	0.491	0.140	0.301	0.115	0.268
	336	0.126	0.283	0.119	0.271	0.151	0.309	0.133	0.287	0.474	0.596	0.393	0.537	0.156	0.317	0.139	0.293
	720	0.117	0.272	0.114	0.267	0.156	0.319	0.148	0.310	0.509	0.621	0.476	0.602	0.148	0.310	0.137	0.297
	AVG	0.113	0.266	0.101	0.249	0.136	0.295	0.116	0.268	0.448	0.572	0.380	0.525	0.144	0.305	0.123	0.278
ETTh2	96	0.291	0.432	0.195	0.343	0.297	0.437	0.202	0.350	0.370	0.488	0.293	0.427	0.367	0.484	0.361	0.472
	192	0.340	0.471	0.240	0.386	0.346	0.478	0.254	0.404	0.424	0.525	0.316	0.445	0.545	0.596	0.501	0.570
	336	0.378	0.500	0.302	0.439	0.393	0.509	0.308	0.444	0.425	0.526	0.358	0.479	0.788	0.732	0.603	0.635
	720	0.398	0.508	0.339	0.467	0.545	0.596	0.420	0.521	0.436	0.531	0.409	0.513	1.619	1.119	1.430	1.043
	AVG	0.352	0.478	0.269	0.409	0.395	0.505	0.296	0.430	0.414	0.518	0.344	0.466	0.830	0.733	0.723	0.680
ETThm1	96	0.054	0.184	0.035	0.143	0.054	0.184	0.039	0.151	0.331	0.500	0.314	0.492	0.054	0.183	0.035	0.144
	192	0.066	0.204	0.051	0.175	0.068	0.206	0.054	0.179	0.359	0.519	0.324	0.495	0.065	0.200	0.051	0.172
	336	0.077	0.219	0.067	0.202	0.081	0.226	0.071	0.207	0.370	0.520	0.317	0.478	0.077	0.220	0.067	0.203
	720	0.097	0.246	0.091	0.235	0.106	0.261	0.098	0.248	0.347	0.496	0.344	0.491	0.102	0.257	0.092	0.242
	AVG	0.073	0.213	0.061	0.189	0.077	0.219	0.065	0.196	0.352	0.509	0.325	0.489	0.074	0.215	0.061	0.190
ETThm2	96	0.214	0.367	0.129	0.271	0.222	0.371	0.150	0.290	0.271	0.409	0.216	0.348	0.258	0.397	0.212	0.360
	192	0.237	0.385	0.159	0.304	0.247	0.392	0.179	0.325	0.288	0.422	0.248	0.387	0.274	0.411	0.242	0.376
	336	0.260	0.402	0.187	0.335	0.263	0.404	0.205	0.350	0.334	0.456	0.285	0.418	0.399	0.508	0.269	0.421
	720	0.295	0.434	0.230	0.376	0.381	0.493	0.289	0.424	0.347	0.472	0.323	0.452	0.479	0.563	0.270	0.540
	AVG	0.251	0.397	0.176	0.321	0.278	0.415	0.206	0.347	0.310	0.440	0.268	0.401	0.353	0.470	0.248	0.424

1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

1296 H FULL RESULTS OF ABLATION

1298 To validate the effectiveness of the TimeSeed architecture, we conducted comprehensive ablation
 1299 studies on all modules. The results are presented in Tables 12.

1301 Table 12: Full results of Ablation study results on the key components of TimeSeed. PI denotes
 1302 Patch-Interact (Eq. (3)), ASR denotes Adaptive Scale Reconstructor, FDA denotes Frequency Do-
 1303 main Aggregator, and TDA denotes Time Domain Aggregator. Moreover, AggHigh and AggLow
 1304 are defined in Eq. (7).

Model	Ours		w/o Agghigh		w/o Agglow		w/o P-I		w/o FDA		w/o TDA		w/o Sparse point		Direct Forecasting	
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTh1	96	0.069 0.203	0.078	0.203	0.075	0.213	0.072	0.206	0.073	0.207	0.073	0.204	0.071	0.209	0.083	0.223
	192	0.091 0.236	0.098	0.236	0.098	0.245	0.097	0.238	0.097	0.238	0.095	0.234	0.095	0.240	0.122	0.268
	336	0.111 0.262	0.118	0.263	0.124	0.275	0.123	0.272	0.121	0.269	0.119	0.266	0.114	0.266	0.147	0.303
	720	0.112 0.265	0.153	0.265	0.142	0.295	0.183	0.344	0.182	0.344	0.183	0.345	0.117	0.271	0.143	0.302
	AVG	0.096 0.242	0.112	0.242	0.110	0.257	0.119	0.265	0.118	0.265	0.117	0.263	0.099	0.246	0.124	0.274
ETTm1	96	0.036 0.143	0.037	0.145	0.043	0.155	0.037	0.146	0.039	0.151	0.040	0.154	0.042	0.160	0.044	0.159
	192	0.055 0.179	0.057	0.181	0.058	0.182	0.057	0.181	0.059	0.184	0.058	0.184	0.058	0.186	0.064	0.190
	336	0.076 0.210	0.097	0.238	0.078	0.213	0.078	0.212	0.099	0.241	0.086	0.231	0.088	0.233	0.079	0.216
	720	0.106 0.246	0.146	0.297	0.127	0.272	0.125	0.268	0.154	0.311	0.148	0.308	0.142	0.296	0.110	0.253
	AVG	0.068 0.194	0.084	0.215	0.077	0.206	0.074	0.202	0.088	0.222	0.083	0.219	0.083	0.219	0.074	0.204
ETTh2	96	0.186 0.336	0.197	0.345	0.194	0.343	0.202	0.350	0.205	0.354	0.287	0.422	0.194	0.343	0.217	0.364
	192	0.234 0.379	0.237	0.380	0.260	0.397	0.259	0.399	0.270	0.410	0.336	0.461	0.239	0.386	0.287	0.423
	336	0.288 0.426	0.299	0.438	0.297	0.434	0.296	0.433	0.304	0.441	0.390	0.501	0.294	0.433	0.341	0.465
	720	0.380 0.499	0.403	0.515	0.388	0.505	0.406	0.516	0.417	0.522	0.488	0.566	0.388	0.496	0.754	0.719
	AVG	0.272 0.410	0.284	0.420	0.285	0.420	0.291	0.424	0.299	0.432	0.376	0.488	0.279	0.415	0.400	0.493
ETTm2	96	0.092 0.224	0.097	0.229	0.096	0.229	0.099	0.234	0.093	0.225	0.100	0.233	0.129	0.272	0.096	0.228
	192	0.127 0.269	0.132	0.275	0.131	0.273	0.135	0.279	0.132	0.275	0.132	0.274	0.158	0.304	0.131	0.273
	336	0.160 0.304	0.165	0.310	0.179	0.323	0.168	0.313	0.166	0.315	0.167	0.312	0.186	0.333	0.186	0.329
	720	0.217 0.360	0.224	0.367	0.229	0.371	0.220	0.363	0.223	0.357	0.219	0.362	0.231	0.377	0.228	0.371
	AVG	0.149 0.289	0.155	0.295	0.159	0.299	0.156	0.298	0.154	0.293	0.154	0.295	0.176	0.322	0.160	0.300

I FULL RESULTS OF HARD AND SOFT CHOOSE

The results are presented in Tables 13.

Table 13: Full Results of Hard and Soft Choose

Model	TimeSeed		TimeSeed(Soft)		
	Metric	MSE	MAE	MSE	MAE
ETTh1	96	0.069 0.203	0.075	0.211	
	192	0.091 0.236	0.097	0.238	
	336	0.111 0.262	0.121	0.269	
	720	0.112 0.265	0.185	0.346	
	AVG	0.096 0.242	0.119	0.266	
ETTm1	96	0.036 0.143	0.038	0.147	
	192	0.055 0.179	0.087	0.225	
	336	0.076 0.210	0.077	0.211	
	720	0.106 0.246	0.168	0.323	
	AVG	0.068 0.194	0.092	0.226	
Traffic	96	0.421 0.447	0.547	0.572	
	192	0.412 0.438	0.508	0.547	
	336	0.376 0.417	0.561	0.572	
	720	0.402 0.429	0.563	0.579	
	AVG	0.403 0.433	0.545	0.567	
Weather	96	0.002 0.028	0.007	0.063	
	192	0.002 0.033	0.003	0.042	
	336	0.002 0.035	0.014	0.092	
	720	0.003 0.040	0.013	0.088	
	AVG	0.002 0.034	0.009	0.071	

1350 **J FULL RESULTS WITH EXOGENOUS VARIABLES ONLY**
1351

1352 To further investigate the reconstruction capability of TimeSeed for endogenous variables, we re-
 1353 port in Table 14 the complete prediction results obtained using only exogenous variables, without
 1354 endogenous inputs. It is worth noting that a small number of models become distorted under these
 1355 conditions, with prediction performance completely deteriorating, such as TimeMixer’s performance
 1356 on Weather. In contrast, TimeSeed models the trend and cyclical components of historical endoge-
 1357 nous variables through decomposition, thereby enhancing robustness. Finally, it uses reconstructed
 1358 historical endogenous variables to predict future changes in endogenous variables. This complex
 1359 prediction problem is decomposed into several simpler subproblems for solution. As a result, it
 1360 achieves satisfactory performance even under this challenging prediction setting.

1361
1362 Table 14: Comparison of model performance using exogenous variables only.

Model	TimeSeed		iTrans		TimeXer		TimeMixer		
	Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
Traffic	96	0.408	0.459	0.262	0.332	0.595	0.659	0.502	0.593
	192	0.434	0.453	0.798	0.740	0.601	0.662	0.581	0.648
	336	0.436	0.455	0.386	0.414	0.622	0.672	0.611	0.663
	720	0.417	0.447	1.031	0.860	0.713	0.726	0.671	0.705
	AVG	0.424	0.453	0.619	0.587	0.633	0.680	0.591	0.652
Weather	96	0.007	0.069	0.011	0.091	0.885	0.809	2.200	1.291
	192	0.007	0.069	0.006	0.062	0.754	0.732	2.363	1.370
	336	0.007	0.068	0.008	0.077	0.810	0.765	2.216	1.330
	720	0.007	0.071	0.010	0.076	0.757	0.742	2.127	1.277
	AVG	0.007	0.069	0.009	0.076	0.801	0.762	2.227	1.317

1375 **K ERROR BARS**
1376

1378 Here, we repeat all the experiments five times and report the standard deviation and the statistical
 1379 significance test in Table 15.
1380

1381 Table 15: Standard deviation and statistical tests for our method.

Model	TimeSeed		Confidence
	MSE	MSE	
Dataset	MSE	MSE	Interval
Weather	0.002 ± 0.002	0.035 ± 0.007	0.99
ECL	0.533 ± 0.035	0.560 ± 0.019	0.99
Traffic	0.404 ± 0.017	0.435 ± 0.014	0.99
ETTh1	0.097 ± 0.003	0.243 ± 0.005	0.99
ETTh2	0.271 ± 0.004	0.409 ± 0.003	0.99
ETTm1	0.068 ± 0.003	0.194 ± 0.004	0.99
ETTm2	0.148 ± 0.002	0.289 ± 0.001	0.99

1404 L FULL RESULTS OF NON-OVERLAP VS OVERLAP PATCH

1405
 1406 In order to better establish the mapping between the periodic components of exogenous and endoge-
 1407 nous variables, TimeSeed employs the Patch mechanism in the Time Domain Aggregator (TDA) to
 1408 more efficiently fit the periodicity that inherently exists in the dataset. Here, we report the complete
 1409 results for both non-overlapping (TimeSeed) and overlapping patches (TimeSeed-OL). Based on the
 1410 patch parameter settings in (Nie et al., 2022), we adopt a step size of 12 and a patch length of 24.
 1411 As shown in Tables 16 and 17, the non-overlapping patch strategy (TimeSeed) and the overlapping
 1412 patch strategy (TimeSeed-OL) exhibit substantial performance differences across datasets. The most
 1413 pronounced disparity is observed on the ETTh1 dataset, where the performance gap reaches 61.6%
 1414 in the 720-step forecasting task. Furthermore, TimeSeed consistently achieves superior average per-
 1415 formance on ETTh1, which may be attributed to its ability to more effectively capture independent
 1416 temporal features while mitigating the information redundancy introduced by overlapping regions.
 1417 This conclusion is consistent with the experimental results in (Wang et al., 2024b).

1418
 1419 Table 16: Comprehensive performance results of models using overlapping patches based on sparse
 1420 endogenous variable setting (OL indicates the use of overlapping patches).

Model	TimeSeed		TimeSeed-OL		
	Metric	MSE	MAE	MSE	MAE
ETTh1	96	0.069	0.203	0.075	0.211
	192	0.091	0.236	0.094	0.236
	336	0.111	0.262	0.122	0.271
	720	0.112	0.265	0.181	0.342
	AVG	0.096	0.242	0.118	0.265
ETTh2	96	0.186	0.336	0.191	0.341
	192	0.234	0.379	0.232	0.378
	336	0.288	0.426	0.287	0.425
	720	0.380	0.499	0.386	0.504
	AVG	0.272	0.410	0.274	0.412
ETTm1	96	0.036	0.143	0.037	0.146
	192	0.055	0.179	0.06	0.185
	336	0.076	0.210	0.077	0.211
	720	0.106	0.246	0.105	0.244
	AVG	0.068	0.194	0.07	0.197
ETTm2	96	0.092	0.224	0.094	0.226
	192	0.127	0.269	0.128	0.27
	336	0.160	0.304	0.161	0.306
	720	0.217	0.360	0.213	0.356
	AVG	0.149	0.289	0.149	0.29
Traffic	96	0.421	0.447	0.422	0.446
	192	0.412	0.438	0.423	0.447
	336	0.376	0.417	0.407	0.44
	720	0.402	0.429	0.383	0.417
	AVG	0.403	0.433	0.409	0.437
ECL	96	0.516	0.555	0.512	0.554
	192	0.514	0.550	0.508	0.546
	336	0.510	0.542	0.539	0.563
	720	0.576	0.586	0.572	0.584
	AVG	0.529	0.558	0.532	0.562

1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466

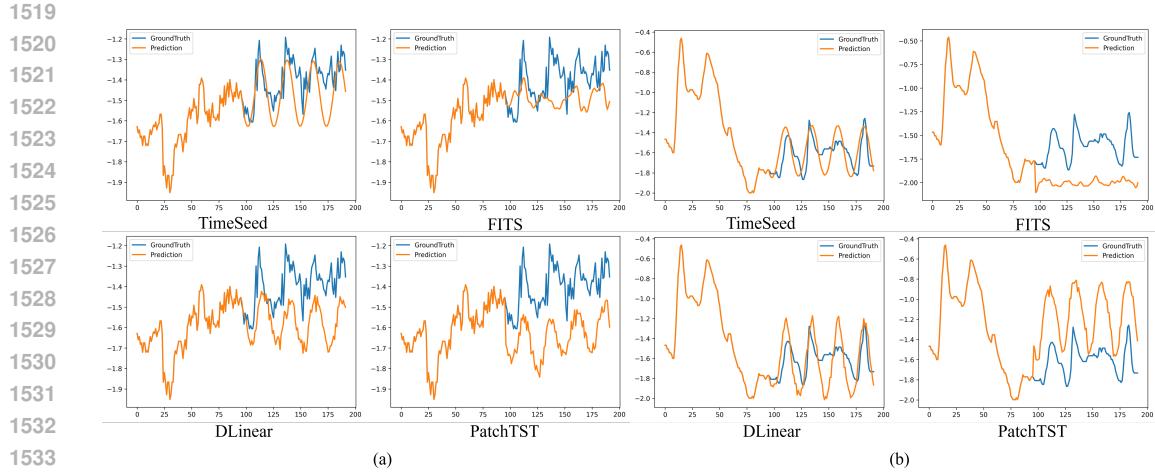
Table 17: Comprehensive performance results of models using overlapping patches based on a single endogenous variable setting (OL indicates the use of overlapping patches).

Model	TimeSeed		TimeSeed-OL	
	Metric	MSE	MAE	MSE
ERTh1	96	0.074	0.213	0.070
	192	0.098	0.244	0.093
	336	0.119	0.271	0.117
	720	0.114	0.267	0.114
	AVG	0.101	0.249	0.099
ERTh2	96	0.195	0.343	0.190
	192	0.240	0.386	0.238
	336	0.302	0.439	0.299
	720	0.339	0.467	0.328
	AVG	0.269	0.409	0.264
ETTm1	96	0.035	0.143	0.036
	192	0.051	0.175	0.053
	336	0.067	0.202	0.068
	720	0.091	0.235	0.092
	AVG	0.061	0.189	0.062
ETTm2	96	0.129	0.271	0.129
	192	0.159	0.304	0.159
	336	0.187	0.335	0.188
	720	0.230	0.376	0.230
	AVG	0.176	0.321	0.177
ECL	96	0.515	0.560	0.511
	192	0.518	0.550	0.611
	336	0.595	0.588	0.621
	720	0.648	0.621	0.621
	AVG	0.569	0.580	0.591
Traffic	96	0.489	0.492	0.464
	192	0.482	0.484	0.477
	336	0.496	0.503	0.489
	720	0.459	0.477	0.490
	AVG	0.482	0.489	0.480

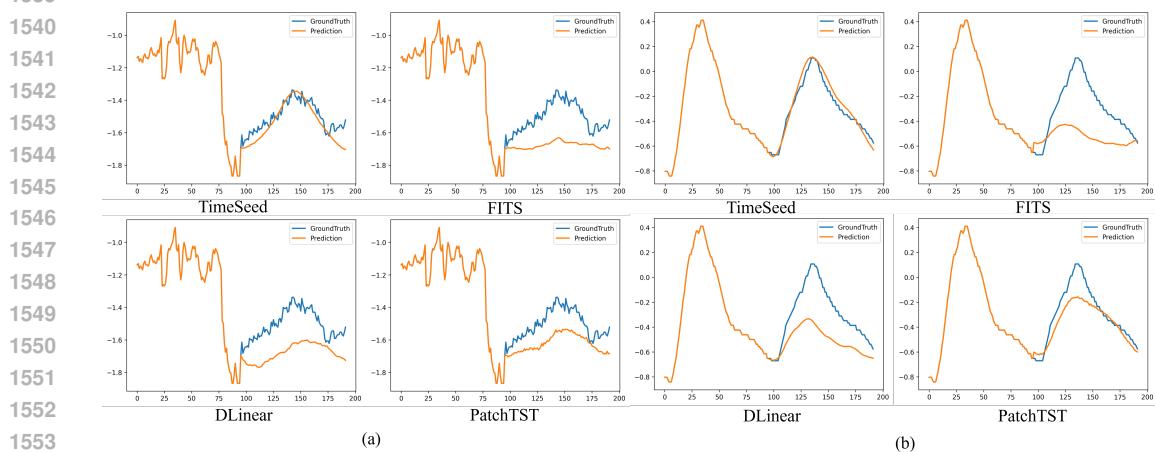
1505
 1506
 1507
 1508
 1509
 1510
 1511

1512 M CASE STUDY
1513

1514 To further evaluate our proposed model, we report complementary predictive visualization results
1515 on the ETT dataset. For baseline selection, we select representative models, including FITS (Xu
1516 et al., 2023), PatchTST (Nie et al., 2022), and DLinear (Zeng et al., 2023). As shown in Figures
1517 15 and 16, TimeSeed performs best in fitting the ground truth, demonstrating excellent predictive
1518 performance.



1535 Figure 15: Prediction cases from TimeSeed, FITS, DLinear, and PatchTST on the ETTh1 (a) and
1536 ETTh2 (b) datasets under the input-96-predict-96 setting. Blue lines are the ground truths and orange
1537 lines are the model predictions.



1555 Figure 16: Prediction cases from TimeSeed, FITS, DLinear, and PatchTST on the ETTm1 (a) and
1556 ETTm2 (b) datasets under the input-96-predict-96 setting. Blue lines are the ground truths and orange
1557 lines are the model predictions.

1566 N FULL MAIN RESULTS

1568 Here, we report the results of long time series prediction based on sparse endogenous settings (with
 1569 missing observations) and one single endogenous settings (without exogenous variables), with pre-
 1570 diction lengths including $\{96, 192, 336, 720\}$, where the size of the look back window is fixed to
 1571 96. All experiments are performed with the unified hyperparameter settings as described earlier.
 1572 As shown in Tables 18 and 19, TimeSeed achieves optimal performance on almost all metrics com-
 1573 pared with baseline models. Notably, under the sparse and single endogenous settings, TimeSeed
 1574 attains the highest ranking across 59 and 62 evaluation cases (1st Count), respectively, which is
 1575 substantially more frequent than any baseline model.

1577 Table 18: Full results of unified hyperparameter for long-term time series forecasting results are
 1578 based on sparse endogenous setting, with the point selection strategy choosing the most recent time
 1579 step. The look-back window length is fixed at 96. Lower MSE and MAE values indicate better
 1580 forecasting performance. The best results are highlighted in red, and the second-best results are
 1581 highlighted in blue.

Model		TimeSeed		DUET		iTrans		DLinear		TimeXer		TimeMixer		PatchTST		FITS		CycleNet		TexFilter		PaiFilter		SparseTSF	
		Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
ETH1	96	0.069 0.203	0.124	0.276	0.170	0.334	0.079	0.218	0.438	0.572	0.102	0.243	0.106	0.259	0.089	0.230	0.078 0.212	0.100	0.245	0.079	0.222	0.123	0.277		
	192	0.091 0.236	0.123	0.268	0.157	0.316	0.105	0.251	0.442	0.565	0.109	0.253	0.320	0.467	0.211	0.372	0.097 0.237	0.108	0.254	0.155	0.309	0.156	0.315		
	336	0.111 0.262	0.180	0.336	0.248	0.403	0.138	0.292	0.429	0.552	0.267	0.413	0.205	0.356	0.120	0.273	0.109 0.255	0.133	0.287	0.242	0.402	0.178	0.338		
	720	0.112 0.265	0.210	0.364	0.168	0.326	0.131 0.288	0.464	0.588	0.170	0.328	0.281	0.442	0.149	0.311	0.180	0.340	0.235	0.389	0.133	0.290	0.175	0.334		
	AVG	0.096 0.242	0.159	0.311	0.186	0.345	0.113	0.262	0.444	0.569	0.162	0.309	0.228	0.381	0.142	0.297	0.116	0.261	0.144	0.294	0.152	0.306	0.158	0.316	
ETH2	96	0.186 0.336	0.363	0.475	0.581	0.655	0.201	0.350	0.289	0.423	0.213	0.355	0.436	0.535	0.303	0.431	0.198 0.345	0.368	0.482	0.251	0.395	0.377	0.490		
	192	0.234 0.379	0.334	0.461	1.071	0.890	0.255	0.397	0.330	0.457	0.255	0.393	1.017	0.887	0.333	0.460	0.243 0.387	0.314	0.446	0.321	0.453	0.477	0.555		
	336	0.288 0.426	0.423	0.512	0.922	0.825	0.306	0.440	0.358	0.479	0.299	0.438	0.458	0.552	0.496	0.571	0.309	0.441	0.283 0.423	0.413	0.517	0.607	0.637		
	720	0.380	0.499	0.406	0.517	1.034	0.873	0.873	0.786	0.390	0.501	0.331 0.462	0.384	0.494	1.079	0.887	0.414	0.519	0.347 0.473	0.915	0.815	1.028	0.859		
	AVG	0.272 0.410	0.381	0.491	0.902	0.811	0.409	0.493	0.342	0.465	0.274 0.412	0.574	0.617	0.553	0.587	0.291	0.423	0.328	0.456	0.475	0.545	0.622	0.635		
ETTm1	96	0.036 0.143	0.068	0.202	0.046	0.164	0.043 0.157	0.290	0.468	0.107	0.274	0.046	0.166	0.051	0.175	0.044	0.158	0.114	0.266	0.050	0.172	0.046	0.164		
	192	0.055 0.179	0.094	0.237	0.074	0.209	0.064	0.191	0.301	0.468	0.137	0.306	0.068	0.196	0.083	0.226	0.094	0.241	0.055 0.180	0.069	0.205	0.065	0.196		
	336	0.076 0.210	0.200	0.363	0.357	0.524	0.083 0.218	0.359	0.508	0.152	0.306	0.123	0.275	0.092	0.231	0.126	0.280	0.225	0.388	0.194	0.362	0.086	0.227		
	720	0.106	0.246	0.265	0.409	0.095 0.232	0.111	0.253	0.426	0.551	0.170	0.336	0.181	0.341	0.088 0.232	0.153	0.306	0.186	0.343	0.123	0.279	1.800	1.277		
	AVG	0.068 0.194	0.157	0.303	0.143	0.282	0.075 0.205	0.344	0.499	0.141	0.305	0.104	0.245	0.079	0.216	0.104	0.246	0.145	0.294	0.109	0.254	0.499	0.466		
ETTm2	96	0.092 0.224	0.247	0.392	0.140	0.294	0.093 0.224	0.239	0.377	0.103	0.248	0.197	0.368	0.118	0.260	0.096	0.226	0.119	0.259	0.106	0.243	0.127	0.273		
	192	0.127 0.269	0.225	0.365	0.399	0.543	0.135	0.276	0.245	0.384	0.177	0.330	0.225	0.384	0.151	0.298	0.133 0.273	0.151	0.297	0.168	0.317	0.164	0.315		
	336	0.160 0.304	0.313	0.443	0.381	0.517	0.171	0.315	0.261	0.404	0.160 0.310	0.188	0.333	0.212	0.357	0.171	0.315	0.178	0.324	0.200	0.345	0.201	0.350		
	720	0.217 0.360	0.350	0.471	0.573	0.627	0.262	0.398	0.317	0.448	0.276	0.411	0.224 0.365	0.328	0.457	0.230	0.371	0.257	0.394	0.231	0.376	0.279	0.418		
	AVG	0.149 0.289	0.284	0.417	0.373	0.495	0.165	0.303	0.266	0.404	0.179	0.325	0.208	0.362	0.202	0.343	0.157 0.296	0.176	0.318	0.176	0.320	0.193	0.339		
Weather	96	0.002 0.028	0.007	0.059	0.009	0.078	0.014	0.081	0.758	0.751	0.005	0.063	0.003 0.041	0.005	0.060	0.004	0.043	0.003	0.038	0.005	0.050	0.005	0.059		
	192	0.002 0.033	0.005	0.054	0.020	0.109	0.003 0.045	0.831	0.793	0.468	0.680	0.006	0.059	0.009	0.072	0.003	0.039	0.007	0.061	0.008	0.070	0.008	0.077		
	336	0.002 0.035	0.005	0.060	0.005	0.058	0.008	0.066	0.814	0.782	0.409	0.636	0.005	0.054	0.008	0.072	0.002 0.035	0.004	0.049	0.005	0.053	0.008	0.073		
	720	0.003 0.040	0.006	0.058	0.008	0.076	0.009	0.074	0.905	0.831	0.692	0.828	0.004	0.046	0.006	0.062	0.003 0.040	0.006	0.060	0.030	0.134	0.006	0.064		
	AVG	0.002 0.034	0.006	0.058	0.011	0.080	0.009	0.066	0.827	0.789	0.394	0.552	0.004	0.050	0.007	0.067	0.003 0.039	0.005	0.052	0.012	0.077	0.007	0.068		
ECL	96	0.516 0.555	0.605	0.606	1.047	0.820	0.800	0.684	0.558 0.563	1.869	1.060	0.776	0.683	1.499	1.007	0.784	0.675	0.811	0.700	0.983	0.787	0.712	0.655		
	192	0.514 0.550	0.579	0.582	0.693	0.666	0.824	0.695	0.533 0.549	2.369	1.239	0.624	0.620	1.329	0.912	0.780	0.669	0.724	0.640	1.043	0.823	0.764	0.684		
	336	0.510 0.542	0.665	0.629	0.603	0.595	0.710	0.642	0.571 0.569	1.978	1.120	0.605	0.592	0.696	0.640	0.850	0.701	0.911	0.737	0.817	0.698	0.641	0.624		
	720	0.576 0.586	0.713	0.654	0.652	0.624	0.994	0.776	0.638	0.611	0.480 0.526	0.851	0.741	0.822	0.707	0.872	0.715	0.655	0.630	1.267	0.927	0.717	0.662		
	AVG	0.529 0.558	0.641	0.618	0.749	0.676	0.832	0.699	0.575 0.573	1.674	0.987	0.714	0.659	1.087	0.817	0.822	0.690	0.775	0.677	1.027	0.809	0.709	0.656		
Traffic	96	0.421 0.447	0.668	0.621	0.441 0.457	0.569	0.537	1.345	1.012	0.635	0.603	0.531	0.527	0.629	0.595	0.885	0.684	0.583	0.552	0.473	0.475	1.236	0.876		
	192	0.412 0.438	0.543	0.538	0.646	0.607	0.485 0.481	1.436	1.056	1.363	0.874	0.516	0.516	0.653	0.609	0.875	0.676	0.683	0.597	0.946	0.764	1.220	0.859		
	336	0.376 0.417	0.571	0.570	0.425 0.458	0.671	0.590	1.363	0.995	1.627	0.951	0.431	0.474	0.909	0.722	0.875	0.678	0.476	0.491	0.461	0.485	1.287	0.896		
	720	0.402 0.429	0.515	0.515	0.419 0.452	0.611	0.558	1.441	1.047	1.379	0.885	0.518	0.519	0.970	0.764	0.869	0.672	0.594	0.554	0.932	0.750	1.361	0.913		
	AVG	0.403 0.433	0.574	0.561	0.483 0.493	0.584	0.542	1.396	1.028	1.251	0.828	0.499	0.509	0.790	0.672	0.876	0.678	0.584	0.548	0.703	0.619	1.276	0.886		

1st Count **30** **29** 0 0 0 1 0 0 1 2 2 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632

Table 19: Full results of unified hyperparameter for long-term time series forecasting results are based on a single endogenous setting, with the point selection strategy choosing the most recent time step. The look-back window length is fixed at 96. Lower MSE and MAE values indicate better forecasting performance. The best results are highlighted in red, and the second-best results are highlighted in blue.

Model Metric	TimeSeed		DUET		iTrans		DLinear		TimeXer		TimeMixer		PatchTST		FITS		CycleNet		TexFilter		PaiFilter		SparseTSF	
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTh1	96	0.074 0.213	0.108	0.259	0.172	0.332	0.078 0.221	0.314	0.460	0.441	0.582	0.105	0.257	0.100	0.251	0.284	0.444	0.083	0.230	0.079	0.221	0.137	0.295	
	192	0.098 0.244	0.124	0.276	0.151	0.308	0.104 0.253	0.340	0.491	0.470	0.579	0.201	0.365	0.115	0.268	0.327	0.475	0.110	0.259	0.142	0.297	0.165	0.328	
	336	0.119 0.271	0.169	0.323	0.203	0.348	0.133	0.287	0.393	0.537	0.793	0.789	0.159	0.304	0.139	0.293	0.332	0.485	0.133	0.288	0.132 0.284	0.188	0.348	
	720	0.114 0.267	0.357	0.472	0.189	0.342	0.148	0.310	0.476	0.602	0.448	0.578	0.205	0.359	0.137	0.297	0.431	0.564	0.175	0.327	0.134 0.291	0.181	0.340	
	AVG	0.101 0.249	0.189	0.332	0.179	0.332	0.116 0.268	0.380	0.525	0.538	0.632	0.168	0.321	0.123	0.278	0.343	0.492	0.125	0.276	0.121	0.273	0.168	0.328	
ETTh2	96	0.195 0.343	0.318	0.440	0.560	0.637	0.202 0.350	0.293	0.427	0.403	0.492	0.547	0.605	0.361	0.472	0.285	0.420	0.653	0.651	0.239	0.386	0.384	0.493	
	192	0.240 0.386	0.362	0.481	1.228	0.980	0.254 0.404	0.316	0.445	0.536	0.568	0.920	0.827	0.501	0.570	0.312	0.445	0.313	0.444	0.275	0.420	0.498	0.567	
	336	0.302 0.439	0.356	0.474	0.788	0.755	0.308	0.444	0.358	0.479	0.562	0.592	0.419	0.530	0.603	0.635	0.366	0.484	0.307 0.443	0.452	0.544	0.641	0.657	
	720	0.339 0.467	0.432	0.528	1.071	0.891	0.420	0.521	0.409	0.513	0.661	0.652	0.598	0.629	1.430	1.043	0.410	0.513	0.328 0.458	0.883	0.797	1.179	0.926	
	AVG	0.269 0.409	0.367	0.481	0.912	0.816	0.296 0.430	0.344	0.466	0.540	0.576	0.621	0.648	0.723	0.680	0.343	0.465	0.400	0.499	0.462	0.537	0.676	0.661	
ETTml	96	0.035 0.143	0.049	0.170	0.060	0.187	0.039	0.151	0.314	0.492	0.625	0.655	0.053	0.176	0.035 0.144	0.204	0.381	0.044	0.159	0.040	0.152	0.049	0.170	
	192	0.051 0.175	0.077	0.214	0.074	0.211	0.054	0.179	0.324	0.495	0.476	0.559	0.059	0.190	0.051 0.172	0.224	0.396	0.054	0.178	0.074	0.211	0.073	0.211	
	336	0.067 0.202	0.102	0.249	0.100	0.244	0.071	0.207	0.317	0.478	0.458	0.542	0.106	0.254	0.067 0.203	0.237	0.399	0.095	0.242	0.106	0.257	0.099	0.247	
	720	0.091 0.235	0.154	0.313	0.099	0.249	0.098	0.248	0.344	0.491	0.394	0.507	0.101	0.253	0.092 0.242	0.267	0.422	0.099	0.246	0.112	0.267	0.139	0.297	
	AVG	0.061 0.189	0.096	0.237	0.083	0.223	0.065	0.196	0.325	0.489	0.488	0.566	0.080	0.218	0.061 0.190	0.233	0.400	0.073	0.206	0.083	0.222	0.090	0.231	
ETTm2	96	0.129 0.271	0.317	0.449	0.151	0.292	0.150	0.290	0.216	0.348	0.168	0.311	0.144 0.286	0.212	0.360	0.233	0.370	0.244	0.377	0.192	0.344	0.224	0.373	
	192	0.159 0.304	0.215	0.358	0.383	0.527	0.179	0.325	0.248	0.387	0.223	0.366	0.170 0.310	0.319	0.242	0.376	0.262	0.399	0.172	0.314	0.261	0.399	0.233	0.379
	336	0.187 0.335	0.280	0.417	0.304	0.441	0.205	0.350	0.285	0.418	0.252	0.393	0.230	0.374	0.269	0.421	0.301	0.429	0.189 0.336	0.214	0.362	0.248	0.392	
	720	0.230 0.376	0.321	0.443	0.544	0.613	0.289	0.424	0.323	0.452	0.314	0.439	0.254 0.401	0.270	0.540	0.336	0.463	0.259	0.397	0.258	0.402	0.292	0.426	
	AVG	0.176 0.321	0.283	0.417	0.345	0.468	0.206	0.347	0.268	0.401	0.239	0.377	0.200 0.345	0.248	0.424	0.283	0.415	0.216	0.356	0.231	0.377	0.249	0.392	
ECL	96	0.515 0.560	0.822	0.712	1.185	0.892	1.018	0.773	0.570 0.570	0.609	0.605	0.752	0.666	1.711	1.061	0.698	0.636	0.729	0.652	0.821	0.706	0.941	0.763	
	192	0.518 0.550	0.741	0.687	0.649	0.923	0.739	0.580 0.573	0.707	0.651	0.801	0.686	1.141	0.830	0.725	0.645	0.953	0.748	0.779	0.680	0.994	0.779	0.779	
	336	0.595 0.588	0.622	0.600	0.647	0.611	0.724	0.644	0.609 0.591	0.674	0.630	0.758	0.673	0.680	0.631	0.748	0.654	0.856	0.711	0.862	0.719	0.781	0.686	
	720	0.648 0.621	0.675	0.636	0.833	0.712	1.666	1.041	0.718	0.644	0.658 0.627	0.943	0.781	0.866	0.727	0.818	0.695	0.872	0.719	0.788	0.690	0.829	0.707	
	AVG	0.569 0.580	0.715	0.659	0.838	0.716	1.083	0.799	0.619 0.594	0.662	0.628	0.813	0.701	1.099	0.812	0.747	0.657	0.853	0.708	0.813	0.699	0.886	0.734	
Traffic	96	0.489 0.492	0.663	0.609	0.490	0.491 0.479	0.479 0.490	1.514	1.081	1.334	1.008	0.490	0.493	0.784	0.674	1.436	1.030	0.803	0.667	1.377	0.964	1.532	0.972	
	192	0.482 0.484	0.547	0.549	0.644	0.612	0.596	0.551	1.578	1.064	1.440	1.061	0.495 0.507	0.967	0.771	1.548	1.079	0.681	0.603	0.817	0.714	1.592	0.986	
	336	0.496	0.503	0.526	0.541	0.410 0.443	0.626	0.566	1.499	1.056	1.393	1.040	0.453 0.491	0.936	0.748	1.559	1.093	0.937	0.733	1.038	0.812	1.457	0.944	
	720	0.459 0.477	0.605	0.580	0.477	0.483	0.708	0.605	1.606	1.112	1.452	1.056	0.470 0.503	0.977	0.773	1.678	1.131	0.630	0.582	0.875	0.732	1.806	1.059	
	AVG	0.482 0.489	0.585	0.570	0.505	0.507	0.602	0.553	1.549	1.078	1.405	1.041	0.477 0.498	0.916	0.741	1.555	1.083	0.763	0.646	1.027	0.805	1.597	0.990	
Weather	96	0.002 0.028	0.009	0.075	0.007	0.065	0.014	0.087	0.815	0.778	2.336	1.354	0.003 0.041	0.003 0.041	0.043	0.909	0.829	0.005	0.058	0.005	0.052	0.006	0.062	
	192	0.002 0.032	0.004 0.046	0.007	0.064	0.004	0.049	0.738	0.733	2.137	1.295	0.004	0.051	0.008	0.071	0.783	0.760	0.004	0.048	0.008	0.070	0.004	0.050	
	336	0.002 0.035	0.004	0.053	0.013	0.092	0.011	0.086	0.731	0.730	3.159	1.575	0.004 0.048	0.011	0.084	0.850	0.798	0.006	0.061	0.005	0.058	0.006	0.065	
	720	0.003 0.040	0.006	0.062	0.008	0.073	0.008	0.073	0.684	0.707	2.475	1.398	0.004 0.051	0.006	0.060	0.790	0.767	0.005	0.056	0.029	0.132	0.005	0.058	
	AVG	0.002 0.034	0.006	0.059	0.009	0.073	0.009	0.074	0.742	0.737	2.527	1.406	0.004 0.048	0.007	0.065	0.833	0.789	0.005	0.056	0.012	0.078	0.005	0.059	
1 st Count	31	31	0	0	1	1	1	1	0	0	0	0	1	0	4	1	0	0	1	1	0	0	0	0

1667
1668
1669
1670
1671
1672
1673

1674 O LIMITATION

1675

1676 The limitations of TimeSeed can be categorized into three main aspects:

1677 **Dataset scope limitations:** TimeSeed has not been evaluated on a broader range of datasets, which
1678 hinders a comprehensive validation of its generalizability across diverse scenarios.

1680 **Performance gap in specific scenarios:** TimeSeed exhibits a small MSE gap compared to iTrans-
1681 former on the Traffic dataset. This may be attributed to its relatively small number of parameters.

1682 **Sensitivity to outliers:** TimeSeed relies on exogenous variables to reconstruct the historical se-
1683 quence of endogenous variables for forecasting future values. When exogenous variables contain a
1684 high proportion of outliers, the reconstruction becomes unstable, ultimately compromising predic-
1685 tion accuracy.

1686 To address these limitations, future work could explore evaluating on more diverse and larger
1687 datasets, and adaptively scaling the model’s parameter size in a controlled manner to enhance pre-
1688 dictive performance. Additionally, incorporating outlier detection and mitigation techniques to pre-
1689 process exogenous variables could enhance their quality and the model’s overall robustness. While
1690 TimeSeed achieves accurate forecasting in scenarios with missing endogenous variables, forecasting
1691 in scenarios with completely missing endogenous data remains an open research challenge.

1693 P LLM USAGE

1694

1695 In accordance with the conference policy on large language models (LLMs), we declare that LLMs
1696 were only used as auxiliary tools to refine the grammar and fluency of sentences. No part of the
1697 research ideation, experimental design, analysis, or substantive writing was generated by LLMs.

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727