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ABSTRACT

Time series forecasting is widely applied across various domains. In real-world
applications, there are many scenarios where endogenous variables are missing.
Recent studies show that incorporating exogenous variables can significantly en-
hance the predictive accuracy of endogenous variables. However, the lack of a
complete historical context introduces significant uncertainty in temporal depen-
dence capture, particularly in systems characterized by non-stationary behavior.
To address these challenges, we propose TimeSeed, specifically designed for sce-
narios with sparsely observed endogenous variables. Technically, TimeSeed re-
constructs l sufficient endogenous series from both complete exogenous series
and sparsely observed endogenous series, utilizing two types of data to extract
stable information. Building on this foundation, we effectively transform the chal-
lenging original prediction task into a sequence-based prediction task. Moreover,
TimeSeed is built entirely upon linear layers, which significantly reduces compu-
tational costs. Experiments conducted on seven real-world datasets demonstrate
that TimeSeed consistently outperforms state-of-the-art models in forecasting ac-
curacy, achieving an average reduction of 13.01% in MSE and 7.54% in MAE,
with a model size of only 0.19M parameters. Code is available at this repository:
https://anonymous.4open.science/r/Alistair-7.

1 INTRODUCTION

Nowadays, time series forecasting has become an important tool widely applied in various domains.
However, in many real-world scenarios, endogenous variables are often sparsely observed, as illus-
trated in Figure 1 (a), encompassing applications such as weather forecasting (Ren et al., 2021; Lin
et al., 2022; Lam et al., 2023), industrial forecasting (Weron, 2014; Alfares & Nazeeruddin, 2002),
and battery life prediction (Sulzer et al., 2021; Fei et al., 2021).

Recent studies have demonstrated that incorporating the influence of exogenous variables(Huang
et al., 2025; Pandit et al., 2023; Lu et al., 2024) can substantially enhance the predictive performance
of endogenous variables(Motrenko et al., 2016). This enhancement is primarily attributed to the
strong correlations between exogenous and endogenous variables, as illustrated in Figure 1 (b).
Gradually, forecasting with exogenous variables (Gianfreda & Grossi, 2012) has emerged as a new
paradigm. However, in sparse forecasting scenarios, this paradigm may become ineffective due to
the absence of target information and the rigidity of the input structure.

To tackle such complex scenarios, it is essential to develop methods that leverage exogenous infor-
mation and sparse endogenous observations for prediction. However, the main challenges stem from
the following three aspects: (1) Context Incompleteness: The substantial absence of historical con-
text for the endogenous variable leads to high uncertainty in causal discovery, especially in systems
exhibiting non-stationary behavior (Moritz & Bartz-Beielstein, 2017). (2) Instable Dependencies:
Sparse observational data fail to reveal dependency structures within historical time series, making
it difficult for models to capture trends and dynamic patterns (Liu et al., 2022b). (3) Uncontrolled
Anomalies: Relying on sparse endogenous observations, especially when they are outliers, may
exacerbate prediction biases (Su et al., 2019).

To fill this gap, we propose TimeSeed, which reconstructs historical endogenous sequences from
both endogenous and exogenous perspectives, maximally exploiting the potential of forecasting
under sparse observations. Technically, we leverage the physical similarity (Huang et al., 2025;
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Figure 1: Scenario analysis: (a): Common real-world scenarios of sparse forecasting (b): Correla-
tion analysis between exogenous and endogenous variables in both frequency and time domains.

Pandit et al., 2023; Lu et al., 2024) between exogenous and endogenous variables by extracting
more stable sequential features from exogenous sequences that are homogeneous to the endogenous
variable. Furthermore, to further enhance reconstruction stability, we propose the Adaptive Scale
Reconstructor, which constructs multi-resolution representations of sparse endogenous sequences
and adaptively supplements the reconstruction of the endogenous context. By reconstructing the
historical context, we transform the challenging original prediction task into a sequence-based pre-
diction task, thereby significantly reducing the forecasting difficulty. Besides, TimeSeed is built
entirely on linear layers, which greatly reduces computational cost. We conduct extensive experi-
ments on seven real-world datasets, and the results demonstrate that the proposed model achieves
outstanding performance in terms of both MAE and MSE. This confirms that it can effectively uti-
lize limited data to produce highly accurate forecasts, even under conditions of data scarcity. The
main contributions can be summarized as follows:

• We propose a new prediction paradigm that relies exclusively on exogenous variables and
sparse observations of the endogenous variable to forecast its future values. This effectively
addresses the challenge of limited historical data for endogenous variables.

• We propose TimeSeed, a lightweight model that leverages dense exogenous and sparse en-
dogenous sequences within a two-stage paradigm of context reconstruction and hierarchical
prediction. Endogenous periodic and trend components are captured via Time Domain Ag-
gregator (TDA) and Frequency Domain Aggregator (FDA), and refined with an Adaptive
Scale Reconstructor (ASR), thereby enabling more accurate forecasts.

• We conduct comprehensive experiments on seven real-world time series forecasting
datasets. Our model achieves an average reduction of 13.01% in MSE and 7.54% in MAE,
with only 0.19M parameters, demonstrating its ability to significantly enhance forecasting
accuracy in data-sparse settings while maintaining a compact architecture.

2 RELATED WORK

Exogenous variables, as key factors in improving the accuracy of endogenous variable prediction,
are receiving increasing attention (Tayal et al., 2024). In traditional statistical methods, ARIMAX
(Williams, 2001) has been widely used across various fields, while SARIMAX (Vagropoulos et al.,
2016) further introduces radiation forecasting as an exogenous variable to enhance the accuracy
of photovoltaic power generation prediction. In recent years, with the advancement of computing
power and deep learning techniques, researchers have proposed various enhanced models that in-
tegrate exogenous variables. TiDE (Das et al., 2023) constructs an MLP-based encoder-decoder
architecture, integrating exogenous information through feature projection and a temporal decoder.
TimeXer (Wang et al., 2024b) is the first to empower the Transformer with the ability to process
exogenous variables, establishing a bridge between endogenous and exogenous information through
an interaction mechanism between patch-level endogenous representations and variable-level exoge-
nous representations. In addition, NBEATSx (Olivares et al., 2023) combines neural basis functions
with exogenous variables to effectively enhance power price forecasting performance.
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Figure 2: Overall architecture of TimeSeed, consisting of Frequency Domain Aggregator, Time
Domain Aggregator, and Adaptive Scale Reconstructor, designed for sparse endogenous variables.

However, these models overly rely on exogenous-to-endogenous mapping, which becomes unreli-
able under sparse endogenous observations due to scale misalignment, leading to degraded predic-
tive performance. Therefore, it is necessary to explore both sparse endogenous-to-endogenous and
exogenous-to-endogenous perspectives to offset information loss and improve endogenous predic-
tion accuracy.

3 METHOD

3.1 PROBLEM SETTINGS

Unlike traditional time series prediction, we rely only on sparse endogenous series S as auxiliary in-
formation rather than full endogenous inputs. Using less endogenous variables for prediction means
less information is available. Given an exogenous variable time series X = {x(1)

1:T , x
(2)
1:T , ..., x

(N)
1:T } ∈

RT×N and sparse endogenous variable series S ∈ RT en

, where x
(i)
1:T represents the i-th exogenous

variable, T represents the length of the lookback window, T en ≪ T indicates the length of the
sparse endogenous sequence, and N represents the number of exogenous variables, the task goal
is to predict the future multi-step endogenous time series Y = {yT+1, yT+2, ..., yT+L} ∈ RL×1.
Here, L represents the number of future time steps to predict. The overall process can be described
as a function mapping: f(X,S) → Y .

3.2 STRUCTURE OVERVIEW

Since the absence of endogenous variables can substantially degrade predictive performance, our
motivation is to transform the inherently complex sparse forecasting task into a sequence-based pre-
diction task by reconstructing historical endogenous sequences. This multi-stage problem decom-
position approach effectively enhances the robustness of prediction. Specifically, the reconstruction
leverages the intrinsic consistency between endogenous and exogenous variables by aligning with
the trends (Figure 2, left) and periodic patterns (Figure 2, middle-bottom) of exogenous variables,
as well as by utilizing the sparse endogenous sequence itself (Figure 2, right).

As illustrated in Figure 2 (middle-top), our proposed model accepts exogenous sequences X and
sparse endogenous observations S as inputs. Following mainstream decomposition-based models
(Wu et al., 2021; Wang et al., 2023; Zhou et al., 2022b), we use a moving average method, denoted
as Decomposition(X; o), to downsample the input exogenous sequences X , yielding the separated
trend component Xt ∈ RT×N and periodic component Xs ∈ RT×N , where o denotes the kernel size
of average pooling. For these two distinct components extracted from the exogenous sequences, we

3
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design the TDA and FDA blocks to reconstruct trend and periodic components, respectively. For the
sparse endogenous observations, we propose the ASR to perform multi-scale reconstruction. Finally,
the reconstruction outputs of these three modules are integrated via the Hierarchical Forecasting
module to generate the final prediction results.

3.3 TIME DOMAIN AGGREGATOR

For different variables, similar time series patterns exist within the same period. Even in cases
where endogenous variables are missing, the periodic of the endogenous variable can be restored by
learning the periodicity of other variables. Based on this observation, the TDA is designed to learn
the periodic features of endogenous variables by leveraging exogenous variables. Specifically, for
the periodic term, we first apply the patch operation to separate the features of each patch:

P ex
s = Patch(Xs, stride) (1)

Here, Patch(·) represents the sub-patch operation on historical exogenous variables. P ex
s ∈

RP×C×N is output of Patch(·). C represents the length of the patch, and P = T−C
stride + 1 rep-

resents the number of patches. More detailed analysis can be found in the Appendix L.

Then we aggregate the same period of different variables. Thus, a mapping from the period of the
exogenous variable to the period of the endogenous variable is established:

P en
s = Patch-Agg(P ex

s ) (2)

Patch-Agg(·) is implemented through a linear layer along the variable axis. P en
s ∈ RC×P is the

aggregated one-variable feature, which could be expressed as the reconstructed endogenous variable.

Each variable exhibits a continuous time series pattern within the same period. We obtain the future
period changes of endogenous variables by aggregating the same phases in the period terms of the
endogenous variables during different periods:

P
′en
s = Patch-Interact(Transpose(P en

s )) (3)

Patch-Interact(·) is implemented through linear layer, and P
′en
s ∈ RC×P is the endogenous

feature after patch interaction. We merge specified dimensions to obtain the output P
′en
s =

Reshape(P
′en
s ) ∈ RT×1, which represents the period term for predicting endogenous variables.

3.4 FREQUENCY DOMAIN AGGREGATOR

It is observed that different variables share similar trend patterns, and these patterns can be recon-
structed by aggregating trends across variables. Since trends are usually concentrated in the low-
frequency domain, directly modeling them poses the risk of either overlooking local variations or
distorting the main trend. Therefore, we perform operations in the frequency domain, where domi-
nant trend-related components and local variation-related components are more clearly separated.

Specifically, we map trend signals to the frequency domain through real Fast Fourier Transform to
more directly identify the dominant trend components:

Ft = RFFT(Xt) (4)

Here RFFT(·) represents real Fast Fourier Transform. Ft ∈ R(T/2+1)×N is the frequency domain
representation of the trend component of the exogenous variable.

We then perform secondary decomposition on the frequency-domain signals based on their ampli-
tude, obtaining high-energy components that correspond to dominant trends and low-energy com-
ponents that correspond to local fluctuations:

At = Abs(Ft) (5)
Fh, Fl = Energy-Decompose(Ft, At,K) (6)

Here, Abs(·) computes the energy, and At ∈ R(T/2+1)×N represents the distribution of energy.
Energy-Decompose(·) separates K high-energy and T − K low-energy components according
to the magnitude of the frequency amplitude by analyzing the spectrum. Fh ∈ RK×N and
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Fl ∈ R(T/2+1−K)×N represent the high-energy and low-energy components within the trend of
the exogenous variable, respectively.

Modeling these two components separately effectively leverages local details to refine predictions,
while avoiding the domination of predictions by high-energy components. Specifically, we learn the
mapping relationships between the dominant trends and local details of exogenous variables , and
those of endogenous variables.

F̂h, F̂l = AggHigh(Fh),AggLow(Fl) (7)

Here, AggHigh(·) and AggLow(·) are both implemented through frequency domain linear layer
along the variable axis. F̂h ∈ RK×1 and F̂l ∈ R(T/2+1−K)×1 represent univariate features, which
can be regarded as the high-energy and low-energy components within the trend of the endogenous
variable, respectively.

Finally, through the inverse real Fast Fourier Transform, we obtain the trend of the reconstructed
endogenous variable:

F
′en
t = iRFFT(F̂h + F̂l) (8)

Here, iRFFT represents inverse real Fast Fourier Transform, and F
′en
t ∈ RT×1 represents the

reconstructed trend term of the endogenous variable.

3.5 ADAPTIVE SCALE RECONSTRUCTOR

In order to fully reconstruct the endogenous variables, our proposed Adaptive Scale Reconstructor
generates multi-resolution sequence representations through multi-scale upsampling. The original
sequence is compressed into a broader representation space, allowing the model to automatically
select the most appropriate scale based on the input features.

Specifically, we construct endogenous representations cross different resolutions q ∈ {1, 2, . . . , Q}:

Sq = Upsampleq(S) (9)

where Upsampleq(·) denotes the q-th upsampling operation applied to the input sequence S. At the
q-th layer, the output sequence length is expanded from the original T en to T en × 2q . This hier-
archical upsampling progressively enlarges the temporal resolution, enabling the model to perform
reconstructions from multiple perspectives.

Oq = ExpertBlockq(S
q) (10)

where ExpertBlockq(·) the q-th expert module, which can be flexibly replaced with different task-
specific networks, and Oq ∈ Rd represents the output of the q-th expert with d denoting the hidden
dimension. Each expert learns scale-specific feature representations, thereby effectively avoiding
feature entanglement across different scales.

To enable the model to adaptively select the optimal scale according to the data characteristics, we
further introduce the Gumbel Softmax (Jang et al., 2016) to optimize the scale selection process:

H = Gumbel Softmax(Dense({O1, ..., OQ})) (11)

where Dense(·) generates the corresponding logits, and H ∈ RQ indicates the model’s adaptive
selection of resolution. After obtaining the most appropriate scale, the model performs feature
reconstruction based on the selected representation:

Z = Reconstruction({O1, ..., OQ}, H) (12)

where Reconstruction(·) reconstructs the historical time series at the most appropriate resolution
O according to the selection scheme H , and Z denotes the reconstructed sequence.

5
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3.6 HIERARCHICAL FORECASTING

The final forecast is obtained by combining the reconstructed trend F
′en
t and periodic components

P
′en
s (both derived from exogenous variables), with the reconstructed historical endogenous se-

quence Z (derived from the sparse endogenous sequence). This combined result is then passed
through the model’s prediction head. The specific process is as follows:

Ŷ1:T = F
′en
t + P

′en
s + Z (13)

ŶT+1:T+L = Prediction(Ŷ1:T ) (14)

Here, Prediction(·) is implemented through a linear layer along the temporal axis, Ŷ1:T corresponds
to the reconstruction of historical endogenous variables, and ŶT+1:T+L represents the prediction.

4 EXPERIMENTS

To evaluate the performance of TimeSeed under scenarios with sparse endogenous observations, we
conduct extensive experiments based on a novel time series forecasting paradigm f(X,S) → Y .

Datasets We use datasets that span multiple domains, including Energy (ETT (Zhou et al., 2021),
ECL (Wu et al., 2021)), Weather (Wu et al., 2021), and Traffic (Wu et al., 2021). For dataset
partitioning, we follow standard protocols (Lin et al., 2024a;b). Specifically, the ETT datasets are
split into training, validation, and test sets with a ratio of 6:2:2, while the remaining datasets follow
a 7:1:2 split. More details are provided in the Appendix B.

Baselines We compare TimeSeed with several state-of-the-art time series forecasting models. In-
clude: Complex Transformer-based architectures: DUET (Qiu et al., 2024), TimeXer (Wang et al.,
2024b), iTransformer (Liu et al., 2023), and PatchTST (Nie et al., 2022); Lightweight MLP-based
models: TimeMixer (Wang et al., 2024a), FITS (Xu et al., 2023), CycleNet (Lin et al., 2024a),
FilterNet (Yi et al., 2024) 1, SparseTSF (Lin et al., 2024b), and DLinear (Zeng et al., 2023).

Implementation Details For TimeSeed, we fix the patch length P to 16, use a historical input
window T of 96 time steps, and Ten is set to 4 by uniformly sampling the 96-step sequence at
24-step intervals. Forecasting performance is evaluated at horizons L ∈ {96, 192, 336, 720}. The
number of high-energy components K is set to 10, the number of resolutions Q is set to 3, and
ExpertBlock is implemented using a multi-layer perceptron. We upsample the sparse endogenous
series and maintain the length of the exogenous sequences, ensuring compatibility with baseline
inputs and enabling fair comparison across models. In addition, we unify the hyperparameters across
all models and report the rerun results. More details are provided in the Appendix B.

4.1 MAIN RESULTS

We validate the effectiveness of TimeSeed on long-term time series forecasting tasks under sparse
scenarios (sparsity ratio of 4%) across seven mainstream benchmark datasets. As shown in the ex-
perimental results in Table 1, TimeSeed achieves nearly optimal performance across all datasets.
Specifically, under sparse settings, it yields an average MSE improvement of 15.04% on the ETTh1
dataset and 19.24% on the Traffic dataset, demonstrating a clear advantage over DLinear and
PatchTST, which represent competitive Linear-based and Transformer-based models, respectively.
Notably, as shown in the experimental results in Table 2, when endogenous variables are missing,
several state-of-the-art models exhibit performance degradation, likely due to their heavy reliance on
complete endogenous sequences particularly under more challenging single-point sparse forecasting
scenarios. More detailed results are provided in Appendix N and G.

4.2 EFFECT OF SPARSITY RATIOS

Table 3 presents TimeSeed’s performance under varying sparsity ratios. The results demonstrate
that as the sparsity ratio increases (i.e., a higher proportion of endogenous variables), predictive
accuracy improves consistently across both ETTh2 and ETTm2 datasets. Specifically, on the ETTh2

1Implemented in TexFilter and PaiFilter, respectively
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Table 1: Unified hyperparameter for long-term time series forecasting results are based on sparse
endogenous variable setting, with a 24-hour sampling interval.

Model TimeSeed DUET iTrans DLinear TimeXer TimeMixer PatchTST FITS CycleNet TexFilter PaiFilter SparseTSF

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.096 0.242 0.159 0.311 0.186 0.345 0.113 0.262 0.444 0.569 0.162 0.309 0.228 0.381 0.142 0.297 0.116 0.261 0.144 0.294 0.152 0.306 0.158 0.316

ETTh2 0.272 0.410 0.381 0.491 0.902 0.811 0.409 0.493 0.342 0.465 0.274 0.412 0.574 0.617 0.553 0.587 0.291 0.423 0.328 0.456 0.475 0.545 0.622 0.635

ETTm1 0.068 0.194 0.157 0.303 0.143 0.282 0.075 0.205 0.344 0.499 0.141 0.305 0.104 0.245 0.079 0.216 0.104 0.246 0.145 0.294 0.109 0.254 0.499 0.466

ETTm2 0.149 0.289 0.284 0.417 0.373 0.495 0.165 0.303 0.266 0.404 0.179 0.325 0.208 0.362 0.202 0.343 0.157 0.296 0.176 0.318 0.176 0.320 0.193 0.339

Weather 0.002 0.034 0.006 0.058 0.011 0.080 0.009 0.066 0.827 0.789 0.394 0.552 0.004 0.050 0.007 0.067 0.003 0.039 0.005 0.052 0.012 0.077 0.007 0.068

ECL 0.529 0.558 0.641 0.618 0.749 0.676 0.832 0.699 0.575 0.573 1.674 0.987 0.714 0.659 1.087 0.817 0.822 0.690 0.775 0.677 1.027 0.809 0.709 0.656

Traffic 0.403 0.433 0.574 0.561 0.483 0.493 0.584 0.542 1.396 1.028 1.251 0.828 0.499 0.509 0.790 0.672 0.876 0.678 0.584 0.548 0.703 0.619 1.276 0.886

Table 2: Unified hyperparameter for long-term time series forecasting results are based on a single
endogenous variable setting, with the point selection strategy choosing the most recent time step.

Model TimeSeed DUET iTrans DLinear TimeXer TimeMixer PatchTST FITS CycleNet TexFilter PaiFilter SparseTSF

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.101 0.249 0.189 0.332 0.179 0.332 0.116 0.268 0.380 0.525 0.538 0.632 0.168 0.321 0.123 0.278 0.343 0.492 0.125 0.276 0.121 0.273 0.168 0.328

ETTh2 0.269 0.409 0.367 0.481 0.912 0.816 0.296 0.430 0.344 0.466 0.540 0.576 0.621 0.648 0.723 0.680 0.343 0.465 0.400 0.499 0.462 0.537 0.676 0.661

ETTm1 0.061 0.189 0.096 0.237 0.083 0.223 0.065 0.196 0.325 0.489 0.488 0.566 0.080 0.218 0.061 0.190 0.233 0.400 0.073 0.206 0.083 0.222 0.090 0.231

ETTm2 0.176 0.321 0.283 0.417 0.345 0.468 0.206 0.347 0.268 0.401 0.239 0.377 0.200 0.345 0.248 0.424 0.283 0.415 0.216 0.356 0.231 0.377 0.249 0.392

ECL 0.569 0.580 0.715 0.659 0.838 0.716 1.083 0.799 0.619 0.594 0.662 0.628 0.813 0.701 1.099 0.812 0.747 0.657 0.853 0.708 0.813 0.699 0.886 0.734

Traffic 0.482 0.489 0.585 0.570 0.505 0.507 0.602 0.553 1.549 1.078 1.405 1.041 0.477 0.498 0.916 0.741 1.555 1.083 0.763 0.646 1.027 0.805 1.597 0.990

Weather 0.002 0.034 0.006 0.059 0.009 0.073 0.009 0.074 0.742 0.737 2.527 1.406 0.004 0.048 0.007 0.065 0.833 0.789 0.005 0.056 0.012 0.078 0.005 0.059

dataset, increasing the sparsity ratio yields a 16.5% reduction in average MSE. On the ETTm2
dataset, we observe a similar trend with an 18.8% decrease in average MSE. These performance
gains are sustained across all forecasting horizons, confirming that incorporating richer endogenous
information substantially enhances forecasting capability under sparse endogenous settings.

Table 3: Forecasting performance on ETTh2 and ETTm2 under different sparsity ratios of endoge-
nous to exogenous features (4%–50%). SR denotes sparsity ratios (endogenous : exogenous).

SR 4% (default) 8% 16% 25% 33% 50%

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.186 0.336 0.167 0.318 0.154 0.304 0.152 0.303 0.147 0.297 0.144 0.293
192 0.234 0.379 0.212 0.361 0.204 0.352 0.195 0.343 0.198 0.347 0.189 0.337
336 0.288 0.426 0.267 0.410 0.265 0.409 0.250 0.396 0.249 0.396 0.241 0.389
720 0.380 0.499 0.374 0.495 0.364 0.489 0.350 0.480 0.344 0.476 0.334 0.470E

T
T

h2

AVG 0.272 0.410 0.255 0.396 0.247 0.388 0.237 0.381 0.234 0.379 0.227 0.372
96 0.092 0.224 0.075 0.202 0.071 0.197 0.070 0.194 0.070 0.195 0.070 0.194
192 0.127 0.269 0.109 0.249 0.103 0.240 0.102 0.239 0.102 0.238 0.103 0.239
336 0.160 0.304 0.139 0.283 0.135 0.278 0.132 0.275 0.131 0.274 0.131 0.274
720 0.217 0.360 0.192 0.337 0.183 0.327 0.184 0.328 0.183 0.327 0.182 0.325

E
T

T
m

2

AVG 0.149 0.289 0.129 0.268 0.123 0.261 0.122 0.259 0.122 0.259 0.121 0.258

4.3 ABLATION STUDY

To further analyze the contribution of each component to the model’s performance, we performed
ablation analysis on the Time Domain Aggregator, Frequency Domain Aggregator, and Adaptive
Scale Reconstructor to assess their individual impacts. As shown in Table 4, we draw the follow-
ing three conclusions: (1) All modules positively contribute to the performance of TimeSeed, with
improvements in MSE ranging from 5.31% to 12.30%. (2) Comparatively, the contribution of high-
energy information to the prediction results is slightly lower, leading to an MSE improvement of
about 5.31%. (3)Based on a two-stage decomposition and forecasting paradigm, outperforms the
Direct Forecasting approach in terms of evaluation metrics. Notably, on the ETTh2 and ETTm2
datasets, TimeSeed achieves average improvements of 27.4% and 14.2% in MSE and MAE, re-
spectively. This is because the two-stage approach decouples the sequence features, allowing the
reconstruction stage to focus more on capturing trends and periodic patterns, thereby enhancing
robustness(4) Furthermore, different datasets rely to varying degrees on information from the time
domain, the frequency domain, and the multi-resolution reconstructions derived from sparse en-
dogenous series. More detailes can be found in the Appendix H.
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Table 4: Ablation study results. FDA denotes Frequency Domain Aggregator, ASR denotes Adap-
tive Scale Reconstructor and TDA denotes Time Domain Aggregator.

Datasets ETTh1 ETTm1 ETTh2 ETTm2

Metric MSE MAE MSE MAE MSE MAE MSE MAE

TimeSeed 0.096 0.242 0.068 0.194 0.272 0.410 0.149 0.289
w/o Agghigh (Eq. 7) 0.112 0.242 0.084 0.215 0.284 0.420 0.155 0.295

w/o Agglow (Eq. 7) 0.110 0.257 0.077 0.206 0.285 0.420 0.159 0.299

w/o Patch-Interact (Eq. 3) 0.119 0.265 0.074 0.202 0.291 0.424 0.156 0.298

w/o FDA 0.118 0.265 0.088 0.222 0.299 0.432 0.154 0.293

w/o TDA 0.117 0.263 0.083 0.219 0.376 0.488 0.154 0.295

w/o ASR 0.099 0.246 0.082 0.218 0.279 0.415 0.176 0.322

Direct Forecasting 0.124 0.274 0.074 0.204 0.400 0.493 0.160 0.300

Figure 3: Analysis of the TimeSeed. Left : Performance across various prediction lengths with
different look-back window sizes. Middle : Comparison of model efficiency. Right: Selection
distribution of TimeSeed across multi-level sequences.

4.4 MODEL ANALYSIS

Different Look-back Window Sizes To assess robustness, we vary look-back lengths on ETTm2.
Longer windows provide richer history but may cause redundancy for linear models. As shown in
Figure 3 (Left), TimeSeed benefits from longer windows, with clear MSE gains at horizons 192 and
336, demonstrating stable performance across input lengths. Detailed results are in Appendix C.

Efficiency Analysis To assess computational efficiency, we compared TimeSeed with 11 state-of-
the-art models on GPU memory and training time. Under the same settings of hidden dimension
128 and batch size 1, results in Figure 3 (Middle) demonstrate that TimeSeed achieves superior per-
formance in both memory efficiency and predictive accuracy. It consumes only 10.5MB of memory,
approximately 71.5% of TimeXer’s 14.69MB. In addition, its training time is roughly 30% of that
of TimeXer, further emphasizing its computational efficiency. More results are in the Appendix D.

Case Study To validate the effectiveness of the adaptive multi-resolution selection mechanism in
the proposed ASR, we analyze a representative case from the ETTh1 dataset. As shown in Fig-
ure 3 (Right), we further report the correlation and Dynamic Time Warping (DTW) between the
reconstructed sequences at each resolution and the ground truth. The second resolution exhibits
the highest correlation with the ground truth, achieving a Pearson coefficient of 0.59 and a DTW
of 1.2, which indicates its superiority as the most appropriate resolution. Furthermore, ASR accu-
rately identifies this candidate sequence, thereby validating the effectiveness of its adaptive multi-
resolution selection mechanism.

Figure 4: Sensitivity Analysis to different Data Scales, Resolutions and High-energy Components.
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4.5 SENSITIVITY ANALYSIS

Different Data Scale To further explore the potential of TimeSeed under sparse settings, we design
three more challenging forecasting scenarios: sparser endogenous series, fewer exogenous variables,
and shorter historical exogenous series. As shown in Figure 4 (left), the performance of TimeSeed
decreases by 5.80%, 18.84%, and 7.25% compared to the original setting under the three different
configurations. In contrast, DUET shows a larger decline, with decreases of 15.32%, 126.61%, and
32.26%, respectively. it is evident that among these three factors, the length of the historical exoge-
nous series has the greatest impact on forecasting performance. TimeSeed consistently maintains
the best predictive performance across all cases.

Different Resolution To further investigate the impact of ASR under different resolution choices,
we vary the number of upsampling layers from 1 to 4. As shown in Figure 4 (middle), with more
upsampling layers, the number of available resolutions increases. On the ETT datasets, performance
improves progressively, with a particularly significant gain when increasing the layer count from 1
to 2. Considering both performance and efficiency, we set the number of resolutions Q to 3.

Different High-energy Components As shown in Figure 4 (Right), increasing the decomposition
factor initially improves performance; however, beyond a certain point (e.g., 8), the gains plateau or
even diminish. This phenomenon suggests that an appropriately chosen number of high-energy com-
ponents is beneficial for model performance. Therefore, we unify K = 10 in our implementation
for experiments. More detailed results can be found in the Appendix F.

Figure 5: Reliability analysis of reconstruction. (a) Frequency spectrum of the reconstructed trend
component of historical endogenous variables. (b) Visualization of the weights in the TDA. (c)
Correlation between reconstruction by TDA, FDA and ASR and those of the ground truth.

4.6 RELIABILITY ANALYSIS OF RECONSTRUCTION

Frequency-domain Reconstruction Figure 5 (a) shows that the reconstructed and true trend com-
ponents on ETTh1. It is clearly observable that the two curves almost completely overlap. This
indicates that TimeSeed can accurately reconstruct endogenous trends from exogenous inputs, ef-
fectively capturing the relationship between exogenous and endogenous trends and validating the
effectiveness of our frequency domain multi-granularity modeling. More results are in Appendix E.

Time-domain Visualization Figure 5 (b) shows weight heatmaps of the Time Domain Aggrega-
tor. The left panel corresponds to the implementation of Patch-Agg(·), and the right panel to
Patch-Interact(·). The repeated horizontal purple stripes on the left indicate that Patch-Agg(·)
is sensitive to periodic features in the input sequence. In contrast, the heatmap on the right exhibits
a smooth top-down gradient, suggesting that Patch-Interact(·) effectively captures cross-period
feature correlations. These distributions suggest the model adaptively emphasizes phase-aligned
information, enhancing temporal structure modeling.

Reconstruction Correlation In Figure 5 (right), we report the Pearson correlation coefficients be-
tween the reconstructed endogenous periodic and trend components obtained by TDA and FDA and
the corresponding ground truth. Overall, both TDA and FDA achieve sufficiently high reconstruc-
tion fidelity, with average correlations of 0.532 and 0.885, respectively. This further highlights the
effectiveness of our two-stage decomposition and forecasting paradigm based on reconstruction.

4.7 MORE EXPERIMENTS

Why not Choose Weighted Combination from All Reconstructed Resolution: In scenarios with
extremely sparse data, the quality of upsampled sequences across resolutions can differ substantially.

9
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Table 5: Comparison of Soft and Hard choose for multi-resolution selection
Model TimeSeed TimeSeed(Soft)

Metric MSE MAE MSE MAE

ETTh1 0.096 0.242 0.119 0.266

ETTm1 0.068 0.194 0.092 0.226

Traffic 0.403 0.433 0.545 0.567

Weather 0.002 0.034 0.009 0.071

Soft weighted combinations (e.g., using all Oq) may blend high-quality signals with low-quality or
noisy ones, degrading performance. In contrast, a hard-selection mechanism alleviates this issue
while keeping model complexity in check and reducing overfitting. For a lightweight model with
only 0.19M parameters, attending to a single resolution is both more efficient and more robust, as
it encourages the model to focus on fundamental patterns rather than noise. As shown in Table 13,
hard selection consistently outperforms soft weighting on all datasets, benefiting from its ability to
exclude unreliable resolutions and thereby lower overfitting risk.

Table 6: Results on the sparse real-world PhysioNet dataset
Model TimeSeed DUET DLinear TimeXer FilterNet SparseTSF

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

PhysioNet 0.30 0.24 0.34 0.24 0.33 0.24 0.78 0.53 0.33 0.24 0.35 0.25

Real-world Benchmark: We have incorporated the real clinical dataset PhysioNet, where physio-
logical variables naturally exhibit sparsity. We use reliably obtainable signals such as HR, RespRate,
Temp, SysABP, DiasABP, and MAP as exogenous variables, while the more sparsely observed Glu-
cose serves as the endogenous variable. We use the first 24 hours of observations to forecast the
subsequent 24 hours. As shown in Table 6, TimeSeed still achieves the best or highly competitive
performance under these genuinely sparse conditions, demonstrating the robustness and practical
applicability of our method.

Table 7: Comparison between the imputation+forecasting pipeline and TimeSeed
Model TimeSeed PatchT/PatchT PatchT/TimeX

Metric MSE MAE MSE MAE MSE MAE

ETTh1 0.096 0.242 0.153 0.322 0.388 0.498

ETTh2 0.272 0.410 0.502 0.561 0.281 0.412
ETTm1 0.068 0.194 0.041 0.196 0.283 0.428

ETTm2 0.149 0.289 0.154 0.293 0.197 0.336

Imputation model + forecasting model: We first use PatchTST to impute the sparse endogenous
series, and then apply another state-of-the-art forecasting model (PatchTST or TimeXer) to predict
future values. As shown in Table 7, TimeSeed outperforms both combinations on most datasets. On
average, relative to PatchTST/PatchTST, TimeSeed reduces MSE and MAE by about 36% and 24%,
and relative to PatchTST/TimeXer, by about 26% and 30%, respectively. These gains stem from
the two-stage paradigm, which decouples sequence features and enables the reconstruction stage to
more effectively capture trends and periodicity, improving robustness. The limited benefit of the
imputation model likely results from the extreme sparsity of the endogenous observations, while
adding another imputation module increases parameter count and thus the risk of overfitting.

5 CONCLUSION

We propose TimeSeed, a novel prediction architecture tailored for scenarios with sparse endoge-
nous variables. From both the endogenous and exogenous perspectives, TimeSeed can robustly
reconstruct historical endogenous sequences by uncovering the periodic and trend-related relation-
ships between exogenous and endogenous variables. Moreover, it leverages ASR to supplement the
reconstructed endogenous information with signals from the sparse endogenous sequences. All ex-
perimental results show that TimeSeed achieves the best performance across all benchmarks, demon-
strating its ability to deliver high-accuracy predictions even under extreme data scarcity. Further-
more, thanks to its linear-based architecture, TimeSeed exhibits excellent computational efficiency.
These advantages provide a practical and effective solution to the challenge of missing data in real-
world applications. In future work, we plan to explore more advanced prediction methods for more
complex scenarios, such as when endogenous variables are entirely missing.
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TimeSeed: Effective Time Series Forecasting with
Sparse Endogenous Variables
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A RELATE WORK OF LIGHTWEIGHT FORECASTING

In recent years, the field of long-term time series forecasting (LTSF) (Lin et al., 2023; Zhang & Yan,
2023; Wu et al., 2022; Liu et al., 2022a; Zhou et al., 2022a; Tang & Zhang, 2025; Qiu et al., 2024) has
seen a surge in lightweight models. DLinear (Zeng et al., 2023) achieves accurate forecasting using
only linear layers and a decomposition strategy. CycleNet(Lin et al., 2024a) utilizes learnable param-
eters to simulate periodic variations across datasets, enabling plug-and-play lightweight forecasting.
FITS (Xu et al., 2023) introduces a low-pass filter in the frequency domain to reduce parameter
requirements, compressing the model size to approximately 10k parameters. SparseTSF(Lin et al.,
2024b) decouples periodicity and trend through cross-period sparse forecasting. It first downsam-
ples the original series using a fixed periodicity and then predicts each downsampled subsequence.
MixLinear (Ma et al., 2024) further combines temporal and frequency domain feature extraction.
By downsampling the series, it reduces the parameter complexity of linear models from O(N2) to
O(N), achieving efficient computation.

However, the above methods focus solely on lightweight modeling of the temporal characteristics of
the target variable, without considering the crucial relationship between exogenous and endogenous
variables (Huang et al., 2025; Das et al., 2023; Wang et al., 2024b), where a factor that is particularly
important in endogenous variable prediction scenarios. Therefore, to facilitate lightweight extraction
of external (exogenous) knowledge in such contexts, it is crucial to develop a compact modeling
approach that captures deep correlations between endogenous and exogenous variables, enabling
efficient and accurate endogenous prediction.
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B IMPLEMENTATION DETAILS

DataSets We evaluated the performance of TimeSeed on seven widely used datasets. These include
the Traffic (Wu et al., 2021), Weather (Wu et al., 2021), Electricity (Wu et al., 2021), and the ETT
dataset (Zhou et al., 2021). Specifically, Traffic records traffic flow freeway system of the San
Francisco area, collected at hourly intervals via inductive loop detectors installed on roadways, and
has been collected since 2015. Weather collects 21 weather metrics from the National Weather Ser-
vice (NWS), including temperature, humidity, wind speed, and barometric pressure, covering nearly
400 weather stations across the United States. This data is collected every 10 minutes. Electricity
records hourly power consumption data for 321 customers. The ETT contains electrical load and oil
temperature data from two substations, which are organized into four sub-datasets: ETTh1, ETTh2,
ETTm1, and ETTm2, where “h” stands for hourly sampling intervals and “m” stands for 15-minute
sampling intervals. For the ETT dataset, the time period spanning from July 2016 to July 2018
includes electrical load, oil temperature, and six other relevant metrics. Overall, the datasets we
use cover diverse domains such as transportation, meteorology, energy, etc., with varying temporal
granularities. Detailed information about these datasets is provided in Table 8.

Table 8: Comparison of dataset characteristics, including key information such as the definitions of
endogenous (En.Explanation) and exogenous (Ex.Explanation), prediction horizon, sampling fre-
quency, and dataset size (training, validation, and test sets).

Dataset ETTh1 ETTh2 ETTm1 ETTm2 ECL Traffic Weather

Ex.Explanation Energy Load Energy Load Energy Load Energy Load Power consumption Road Occupancy Weather Indicators

En.Explanation Oil Temperature Oil Temperature Oil Temperature Oil Temperature Power consumption Road Occupancy CO2-Concentration

Predict Length (96,192,336,720) (96,192,336,720) (96,192,336,720) (96,192,336,720) (96,192,336,720) (96,192,336,720) (96,192,336,720)

Ex.Count 6 6 6 6 320 861 20

Sampling Frequency 1 Hour 1 Hour 15 Minutes 15 Minutes 1 Hour 1 Hour 10 Minutes

Dataset Size (8449,2785,2785) (8449,2785,2785) (34369,11425,11425) (34369,11425,11425) (15591,5167,5165) (110335,3415,3415) (31426,10445,10445)

Unified Hyperparameter Settings Under our newly proposed forecasting paradigm, we fix the
hyperparameters for all models and adopt the same optimization strategy to ensure fair and repro-
ducible experiments. The detailed settings are shown in Table 9. All the experiments are imple-
mented in PyTorch (Paszke, 2019) and conducted on a single NVIDIA 2080Ti 10GB GPU.

Table 9: Unified hyperparameter settings for all experiments. All models are optimized using the
ADAM optimizer (Kingma & Ba, 2014). K the number of high-energy components corresponding
to those extracted by the FDA. Dmodel represents the hidden dimension of the baseline model, and
Dff is the baseline model’s dimension of the hidden layer in the feed-forward layer.

Dataset / Configurations Model Hyper-parameter Training Process

K Dmodel Dff Batchsize Lr Epoch Early stop Loss
ETTh1 10 128 512 128 0.001 10 3 MSE

ETTh2 10 128 512 128 0.001 10 3 MSE

ETTm1 10 128 512 128 0.001 10 3 MSE

ETTm2 10 128 512 128 0.001 10 3 MSE

ECL 10 128 512 4 0.001 10 3 MSE

Traffic 10 128 512 4 0.001 10 3 MSE

Weather 10 128 512 64 0.001 10 3 MSE
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C FULL RESULTS OF DIFFERENT LOOK-BACK WINDOW SIZE

Figure 6 and 7 presents the impact of varying look-back window sizes on the prediction accuracy of
TimeSeed across the ETT series datasets.

Figure 6: Performance across various prediction lengths with different look-back window sizes
T = {96, 192, 336, 528, 720} under a single endogenous setting. Each colored curve represents the
performance of a specific look-back window.

Figure 7: Performance across various prediction lengths with different look-back window sizes
T = {96, 192, 336, 528, 720} under sparse endogenous setting. Each colored curve represents the
performance of a specific look-back window.
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D FULL RESULTS OF RUNTIME EFFICIENCY ANALYSIS

We report the runtime efficiency of all models across all datasets in terms of training time (s/epoch)
and GPU memory usage, along with predictive performance measured by MSE. As shown in Figure
8, TimeSeed fully unleashes the potential of linear layers, achieving accurate predictions while
maintaining a lightweight design.

Figure 8: Comparison of model efficiency in the input-96-predict-96 setting.

E FULL RESULTS OF FREQUENCY-DOMAIN ANALYSIS

To further evaluate the ability of the Frequency-Domain Aggregator (FDA) to reconstruct the trend
component of historical endogenous variables, we provide additional prediction cases in Figure 9.
The results demonstrate that Frequency-domain Aggregator effectively leverages the trend-related
information in exogenous variables and establishes robust correlations between the trends of exoge-
nous variables and those of historical endogenous variables, thereby enabling effective reconstruc-
tion of the target trend components.

Figure 9: Frequency spectrum of the reconstructed trend component of historical endogenous vari-
ables (blue) and the ground truth (red) in the frequency domain. The closer the two curves, the better
the reconstruction performance.
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F FULL RESULTS OF HYPERPARAMETER SENSITIVITY ANALYSIS

In the frequency-domain decomposition module, we further split the input trend component based
on an energy-oriented perspective. To explore how different decomposition thresholds affect model
performance, we report the complete results of varying K values on the ECL and Traffic datasets in
Figures 10, 11, 12 and 13. It is evident that the choice of decomposition threshold, reflected by dif-
ferent values of K, has a considerable impact on model performance. Overall, on both the ECL and
Traffic datasets, as K increases, the error metrics first decrease and then gradually stabilize, with a
slight rise in some cases. This indicates that excessively small thresholds fail to adequately capture
the energy characteristics of the input sequence, whereas overly large thresholds may introduce re-
dundant decomposition components, thereby impairing the model’s generalization ability. The best
performance is generally observed at moderate K values, suggesting that an appropriate threshold
strikes a balance between preserving dominant trends and retaining local variations. In summary,
the predictive performance across different K values does not vary drastically, further demonstrating
the robustness of the TimeSeed.

Figure 10: Impact of different K values in Energy-Decompose within the Frequency Domain Ag-
gregator, evaluated on the ECL dataset with various prediction lengths {96, 192, 336, 720} based
on a single endogenous setting.

Figure 11: Impact of different K values in Energy-Decompose within the Frequency Domain Ag-
gregator, evaluated on the Traffic dataset with various prediction lengths {96, 192, 336, 720} based
on a single endogenous setting.
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Figure 12: Impact of different K values in Energy-Decompose within the Frequency Domain Ag-
gregator, evaluated on the ECL dataset with various prediction lengths {96, 192, 336, 720} based
on sparse endogenous variable setting.

Figure 13: Impact of different K values in Energy-Decompose within the Frequency Domain Ag-
gregator, evaluated on the Traffic dataset with various prediction lengths {96, 192, 336, 720} based
on sparse endogenous variable setting.
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Figure 14: Performance of different downsampling kernels in the Decompose module for long-term
time series forecasting on Traffic, ECL and ETTh2 with input-96-predict-96 setting.

We evaluate the sensitivity of TimeSeed across different average pooling kernel sizes (o) and high-
energy component numbers (K). As shown in Figure 14, we investigate the impact of different
downsampling kernel sizes (o) on the forecasting performance of TimeSeed across various predic-
tion lengths. The results indicate that as the value of o increases, the model performance tends to
stabilize or improve. This trend is particularly evident on the Traffic and ECL datasets. In contrast,
the ETTh2 dataset exhibits relatively consistent performance regardless of kernel size variations. We
also observe that the most effective kernel sizes often align with the data’s inherent daily, weekly, or
monthly periodicities. Based on these findings, we fix the downsampling kernel size to o = 25 for
all subsequent experiments.
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G FULL RESULT OF RANDOMLY SAMPLING ENDOGENOUS VARIABLE

Table 10 reports the complete prediction results of TimeSeed, DLinear, TimeXer, and FITS under
the strategy based on randomly sampling and uniform interval sampling. Random sampling is closer
to real-world forecasting scenarios, and the comparison between the two sampling strategies reflects
the impact of different sampling schemes on model performance. The results demonstrate that ran-
dom sampling consistently yields inferior results relative to uniform interval sampling across most
datasets, with this performance gap widening as forecasting horizons extend. This may be attributed
to the fact that maintaining uniform temporal structure is more conducive to reconstructing complete
historical endogenous sequences, whereas the uncertainty introduced by random sampling can re-
duce the model’s generalization ability. Notably, across both sampling strategies and all forecasting
horizons, TimeSeed consistently outperforms the baseline methods, demonstrating its robustness
and effectiveness even in challenging sparse scenarios.

Table 10: Full results of unified hyperparameter for long-term time series forecasting results are
based on sparse endogenous setting, with the point selection strategy randomly choosing a time step.
The look-back window length is fixed at 96. The reported results represent the average performance
across different forecasting horizons L = {96, 192, 336, 720}. * indicates the use of a random
sampling strategy. Lower MSE and MAE values indicate better forecasting performance.

Model TimeSeed TimeSeed* DLinear DLinear* TimeXer TimeXer* FITS FITS*

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.069 0.203 0.074 0.209 0.079 0.218 0.081 0.219 0.438 0.572 0.513 0.625 0.089 0.230 0.089 0.230

192 0.091 0.236 0.100 0.241 0.105 0.251 0.106 0.251 0.442 0.565 0.413 0.540 0.211 0.372 0.211 0.372

336 0.111 0.262 0.121 0.269 0.138 0.292 0.138 0.292 0.429 0.552 0.537 0.635 0.120 0.273 0.120 0.273

720 0.112 0.265 0.189 0.350 0.131 0.288 0.130 0.288 0.464 0.588 0.643 0.715 0.149 0.311 0.148 0.310

E
T

T
h1

AVG 0.096 0.242 0.121 0.267 0.113 0.262 0.114 0.263 0.444 0.569 0.527 0.629 0.142 0.297 0.142 0.296

96 0.186 0.336 0.192 0.342 0.201 0.350 0.201 0.350 0.289 0.423 0.284 0.418 0.303 0.431 0.326 0.446

192 0.234 0.379 0.234 0.380 0.255 0.397 0.252 0.396 0.330 0.457 0.325 0.455 0.333 0.460 0.355 0.475

336 0.288 0.426 0.289 0.427 0.306 0.440 0.307 0.441 0.358 0.479 0.356 0.478 0.496 0.571 0.507 0.578

720 0.380 0.499 0.397 0.510 0.873 0.786 0.848 0.769 0.390 0.501 0.389 0.500 1.079 0.887 1.076 0.882

E
T

T
h2

AVG 0.272 0.410 0.278 0.415 0.409 0.493 0.402 0.489 0.342 0.465 0.339 0.463 0.553 0.587 0.566 0.595

96 0.036 0.143 0.038 0.148 0.043 0.157 0.047 0.166 0.290 0.468 0.292 0.472 0.051 0.175 0.051 0.175

192 0.055 0.179 0.058 0.183 0.064 0.191 0.066 0.193 0.301 0.468 0.329 0.490 0.083 0.226 0.082 0.223

336 0.076 0.210 0.077 0.211 0.083 0.218 0.085 0.222 0.359 0.508 0.333 0.491 0.092 0.231 0.096 0.236

720 0.106 0.246 0.105 0.244 0.111 0.253 0.115 0.258 0.426 0.551 0.451 0.563 0.088 0.232 0.088 0.229E
T

T
m

1

AVG 0.068 0.194 0.070 0.196 0.075 0.205 0.078 0.210 0.344 0.499 0.351 0.504 0.079 0.216 0.079 0.216

96 0.092 0.224 0.119 0.260 0.093 0.224 0.132 0.272 0.239 0.377 0.228 0.365 0.118 0.260 0.192 0.338

192 0.127 0.269 0.151 0.297 0.135 0.276 0.164 0.309 0.245 0.384 0.259 0.395 0.151 0.298 0.201 0.346

336 0.160 0.304 0.182 0.327 0.171 0.315 0.198 0.342 0.261 0.404 0.283 0.417 0.212 0.357 0.250 0.388

720 0.217 0.360 0.231 0.373 0.262 0.398 0.292 0.423 0.317 0.448 0.320 0.449 0.328 0.457 0.436 0.534E
T

T
m

2

AVG 0.149 0.289 0.170 0.314 0.165 0.303 0.196 0.337 0.266 0.404 0.273 0.406 0.202 0.343 0.269 0.402
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To further evaluate the model’s performance under extreme conditions, we increased the prediction
difficulty by considering scenarios where the endogenous series is extremely sparse, retaining only
a single observation. As shown in Table 11, under this more challenging setting, the overall per-
formance of all models declines. Notably, TimeSeed still achieves the best predictive performance.
This can likely be attributed to our multi-stage problem decomposition strategy and reconstruction-
based learning mechanism, which effectively enhance TimeSeed’s generalization ability, allowing it
to maintain high prediction accuracy even when available information is severely limited.

Table 11: Full results of unified hyperparameter for long-term time series forecasting results are
based on a single endogenous setting, with the point selection strategy randomly sampling a time
step. The look-back window length is fixed at 96. The reported results represent the average per-
formance across different forecasting horizons L = {96, 192, 336, 720}. * indicates the use of a
random sampling strategy. Lower MSE and MAE values indicate better forecasting performance.

Model TimeSeed* TimeSeed DLinear* DLinear TimeXer* TimeXer FITS* FITS

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.096 0.243 0.074 0.213 0.104 0.262 0.078 0.221 0.402 0.529 0.314 0.469 0.131 0.291 0.100 0.251

192 0.113 0.266 0.098 0.244 0.132 0.292 0.104 0.253 0.405 0.543 0.340 0.491 0.140 0.301 0.115 0.268

336 0.126 0.283 0.119 0.271 0.151 0.309 0.133 0.287 0.474 0.596 0.393 0.537 0.156 0.317 0.139 0.293

720 0.117 0.272 0.114 0.267 0.156 0.319 0.148 0.310 0.509 0.621 0.476 0.602 0.148 0.310 0.137 0.297

E
T

T
h1

AVG 0.113 0.266 0.101 0.249 0.136 0.295 0.116 0.268 0.448 0.572 0.380 0.525 0.144 0.305 0.123 0.278

96 0.291 0.432 0.195 0.343 0.297 0.437 0.202 0.350 0.370 0.488 0.293 0.427 0.367 0.484 0.361 0.472

192 0.340 0.471 0.240 0.386 0.346 0.478 0.254 0.404 0.424 0.525 0.316 0.445 0.545 0.596 0.501 0.570

336 0.378 0.500 0.302 0.439 0.393 0.509 0.308 0.444 0.425 0.526 0.358 0.479 0.788 0.732 0.603 0.635

720 0.398 0.508 0.339 0.467 0.545 0.596 0.420 0.521 0.436 0.531 0.409 0.513 1.619 1.119 1.430 1.043

E
T

T
h2

AVG 0.352 0.478 0.269 0.409 0.395 0.505 0.296 0.430 0.414 0.518 0.344 0.466 0.830 0.733 0.723 0.680

96 0.054 0.184 0.035 0.143 0.054 0.184 0.039 0.151 0.331 0.500 0.314 0.492 0.054 0.183 0.035 0.144

192 0.066 0.204 0.051 0.175 0.068 0.206 0.054 0.179 0.359 0.519 0.324 0.495 0.065 0.200 0.051 0.172

336 0.077 0.219 0.067 0.202 0.081 0.226 0.071 0.207 0.370 0.520 0.317 0.478 0.077 0.220 0.067 0.203

720 0.097 0.246 0.091 0.235 0.106 0.261 0.098 0.248 0.347 0.496 0.344 0.491 0.102 0.257 0.092 0.242E
T

T
m

1

AVG 0.073 0.213 0.061 0.189 0.077 0.219 0.065 0.196 0.352 0.509 0.325 0.489 0.074 0.215 0.061 0.190

96 0.214 0.367 0.129 0.271 0.222 0.371 0.150 0.290 0.271 0.409 0.216 0.348 0.258 0.397 0.212 0.360

192 0.237 0.385 0.159 0.304 0.247 0.392 0.179 0.325 0.288 0.422 0.248 0.387 0.274 0.411 0.242 0.376

336 0.260 0.402 0.187 0.335 0.263 0.404 0.205 0.350 0.334 0.456 0.285 0.418 0.399 0.508 0.269 0.421

720 0.295 0.434 0.230 0.376 0.381 0.493 0.289 0.424 0.347 0.472 0.323 0.452 0.479 0.563 0.270 0.540E
T

T
m

2

AVG 0.251 0.397 0.176 0.321 0.278 0.415 0.206 0.347 0.310 0.440 0.268 0.401 0.353 0.470 0.248 0.424
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H FULL RESULTS OF ABLATION

To validate the effectiveness of the TimeSeed architecture, we conducted comprehensive ablation
studies on all modules. The results are presented in Tables 12.

Table 12: Full results of Ablation study results on the key components of TimeSeed. PI denotes
Patch-Interact (Eq. (3)), ASR denotes Adaptive Scale Reconstructor, FDA denotes Frequency Do-
main Aggregator, and TDA denotes Time Domain Aggregator. Moreover,, AggHigh and AggLow
are defined in Eq. (7).

Model Ours w/o Agghigh w/o Agglow w/o P-I w/o FDA w/o TDA w/o Sparse point Direct Forecasting
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.069 0.203 0.078 0.203 0.075 0.213 0.072 0.206 0.073 0.207 0.073 0.204 0.071 0.209 0.083 0.223
192 0.091 0.236 0.098 0.236 0.098 0.245 0.097 0.238 0.097 0.238 0.095 0.234 0.095 0.240 0.122 0.268
336 0.111 0.262 0.118 0.263 0.124 0.275 0.123 0.272 0.121 0.269 0.119 0.266 0.114 0.266 0.147 0.303
720 0.112 0.265 0.153 0.265 0.142 0.295 0.183 0.344 0.182 0.344 0.183 0.345 0.117 0.271 0.143 0.302E

T
T

h1

AVG 0.096 0.242 0.112 0.242 0.110 0.257 0.119 0.265 0.118 0.265 0.117 0.263 0.099 0.246 0.124 0.274

96 0.036 0.143 0.037 0.145 0.043 0.155 0.037 0.146 0.039 0.151 0.040 0.154 0.042 0.160 0.044 0.159
192 0.055 0.179 0.057 0.181 0.058 0.182 0.057 0.181 0.059 0.184 0.058 0.184 0.058 0.186 0.064 0.190
336 0.076 0.210 0.097 0.238 0.078 0.213 0.078 0.212 0.099 0.241 0.086 0.231 0.088 0.233 0.079 0.216
720 0.106 0.246 0.146 0.297 0.127 0.272 0.125 0.268 0.154 0.311 0.148 0.308 0.142 0.296 0.110 0.253

E
T

T
m

1

AVG 0.068 0.194 0.084 0.215 0.077 0.206 0.074 0.202 0.088 0.222 0.083 0.219 0.083 0.219 0.074 0.204

96 0.186 0.336 0.197 0.345 0.194 0.343 0.202 0.350 0.205 0.354 0.287 0.422 0.194 0.343 0.217 0.364
192 0.234 0.379 0.237 0.380 0.260 0.397 0.259 0.399 0.270 0.410 0.336 0.461 0.239 0.386 0.287 0.423
336 0.288 0.426 0.299 0.438 0.297 0.434 0.296 0.433 0.304 0.441 0.390 0.501 0.294 0.433 0.341 0.465
720 0.380 0.499 0.403 0.515 0.388 0.505 0.406 0.516 0.417 0.522 0.488 0.566 0.388 0.496 0.754 0.719E

T
T

h2

AVG 0.272 0.410 0.284 0.420 0.285 0.420 0.291 0.424 0.299 0.432 0.376 0.488 0.279 0.415 0.400 0.493

96 0.092 0.224 0.097 0.229 0.096 0.229 0.099 0.234 0.093 0.225 0.100 0.233 0.129 0.272 0.096 0.228
192 0.127 0.269 0.132 0.275 0.131 0.273 0.135 0.279 0.132 0.275 0.132 0.274 0.158 0.304 0.131 0.273
336 0.160 0.304 0.165 0.310 0.179 0.323 0.168 0.313 0.166 0.315 0.167 0.312 0.186 0.333 0.186 0.329
720 0.217 0.360 0.224 0.367 0.229 0.371 0.220 0.363 0.223 0.357 0.219 0.362 0.231 0.377 0.228 0.371

E
T

T
m

2

AVG 0.149 0.289 0.155 0.295 0.159 0.299 0.156 0.298 0.154 0.293 0.154 0.295 0.176 0.322 0.160 0.300

I FULL RESULTS OF HARD AND SOFT CHOOSE

The results are presented in Tables 13.

Table 13: Full Results of Hard and Soft Choose
Model TimeSeed TimeSeed(Soft)

Metric MSE MAE MSE MAE

96 0.069 0.203 0.075 0.211
192 0.091 0.236 0.097 0.238
336 0.111 0.262 0.121 0.269
720 0.112 0.265 0.185 0.346E

T
T

h1

AVG 0.096 0.242 0.119 0.266

96 0.036 0.143 0.038 0.147
192 0.055 0.179 0.087 0.225
336 0.076 0.210 0.077 0.211
720 0.106 0.246 0.168 0.323

E
T

T
m

1

AVG 0.068 0.194 0.092 0.226

96 0.421 0.447 0.547 0.572
192 0.412 0.438 0.508 0.547
336 0.376 0.417 0.561 0.572
720 0.402 0.429 0.563 0.579Tr

af
fic

AVG 0.403 0.433 0.545 0.567

96 0.002 0.028 0.007 0.063
192 0.002 0.033 0.003 0.042
336 0.002 0.035 0.014 0.092
720 0.003 0.040 0.013 0.088

W
ea

th
er

AVG 0.002 0.034 0.009 0.071
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J FULL RESULTS WITH EXOGENOUS VARIABLES ONLY

To further investigate the reconstruction capability of TimeSeed for endogenous variables, we re-
port in Table 14 the complete prediction results obtained using only exogenous variables, without
endogenous inputs. It is worth noting that a small number of models become distorted under these
conditions, with prediction performance completely deteriorating, such as TimeMixer’s performance
on Weather. In contrast, TimeSeed models the trend and cyclical components of historical endoge-
nous variables through decomposition, thereby enhancing robustness. Finally, it uses reconstructed
historical endogenous variables to predict future changes in endogenous variables. This complex
prediction problem is decomposed into several simpler subproblems for solution. As a result, it
achieves satisfactory performance even under this challenging prediction setting.

Table 14: Comparison of model performance using exogenous variables only.
Model TimeSeed iTrans TimeXer TimeMixer

Metric MSE MAE MSE MAE MSE MAE MSE MAE

96 0.408 0.459 0.262 0.332 0.595 0.659 0.502 0.593
192 0.434 0.453 0.798 0.740 0.601 0.662 0.581 0.648
336 0.436 0.455 0.386 0.414 0.622 0.672 0.611 0.663
720 0.417 0.447 1.031 0.860 0.713 0.726 0.671 0.705Tr

af
fic

AVG 0.424 0.453 0.619 0.587 0.633 0.680 0.591 0.652

96 0.007 0.069 0.011 0.091 0.885 0.809 2.200 1.291
192 0.007 0.069 0.006 0.062 0.754 0.732 2.363 1.370
336 0.007 0.068 0.008 0.077 0.810 0.765 2.216 1.330
720 0.007 0.071 0.010 0.076 0.757 0.742 2.127 1.277

W
ea

th
er

AVG 0.007 0.069 0.009 0.076 0.801 0.762 2.227 1.317

K ERROR BARS

Here, we repeat all the experiments five times and report the standard deviation and the statistical
significance test in Table 15.

Table 15: Standard deviation and statistical tests for our method.
Model TimeSeed Confidence

Dataset MSE MSE Interval
Weather 0.002 ± 0.002 0.035 ± 0.007 0.99

ECL 0.533 ± 0.035 0.560 ± 0.019 0.99
Traffic 0.404 ± 0.017 0.435 ± 0.014 0.99
ETTh1 0.097 ± 0.003 0.243 ± 0.005 0.99
ETTh2 0.271 ± 0.004 0.409 ± 0.003 0.99
ETTm1 0.068 ± 0.003 0.194 ± 0.004 0.99
ETTm2 0.148 ± 0.002 0.289 ± 0.001 0.99
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L FULL RESULTS OF NON-OVERLAP VS OVERLAP PATCH

In order to better establish the mapping between the periodic components of exogenous and endoge-
nous variables, TimeSeed employs the Patch mechanism in the Time Domain Aggregator (TDA) to
more efficiently fit the periodicity that inherently exists in the dataset. Here, we report the complete
results for both non-overlapping (TimeSeed) and overlapping patches (TimeSeed-OL). Based on the
patch parameter settings in (Nie et al., 2022), we adopt a step size of 12 and a patch length of 24.
As shown in Tables 16 and 17, the non-overlapping patch strategy (TimeSeed) and the overlapping
patch strategy (TimeSeed-OL) exhibit substantial performance differences across datasets. The most
pronounced disparity is observed on the ETTh1 dataset, where the performance gap reaches 61.6%
in the 720-step forecasting task. Furthermore, TimeSeed consistently achieves superior average per-
formance on ETTh1, which may be attributed to its ability to more effectively capture independent
temporal features while mitigating the information redundancy introduced by overlapping regions.
This conclusion is consistent with the experimental results in (Wang et al., 2024b).

Table 16: Comprehensive performance results of models using overlapping patches based on sparse
endogenous variable setting (OL indicates the use of overlapping patches).

Model TimeSeed TimeSeed-OL

Metric MSE MAE MSE MAE

E
T

T
h1

96 0.069 0.203 0.075 0.211
192 0.091 0.236 0.094 0.236
336 0.111 0.262 0.122 0.271
720 0.112 0.265 0.181 0.342

AVG 0.096 0.242 0.118 0.265

E
T

T
h2

96 0.186 0.336 0.191 0.341
192 0.234 0.379 0.232 0.378
336 0.288 0.426 0.287 0.425
720 0.380 0.499 0.386 0.504

AVG 0.272 0.410 0.274 0.412

E
T

T
m

1

96 0.036 0.143 0.037 0.146
192 0.055 0.179 0.06 0.185
336 0.076 0.210 0.077 0.211
720 0.106 0.246 0.105 0.244

AVG 0.068 0.194 0.07 0.197

E
T

T
m

2

96 0.092 0.224 0.094 0.226
192 0.127 0.269 0.128 0.27
336 0.160 0.304 0.161 0.306
720 0.217 0.360 0.213 0.356

AVG 0.149 0.289 0.149 0.29

Tr
af

fic

96 0.421 0.447 0.422 0.446
192 0.412 0.438 0.423 0.447
336 0.376 0.417 0.407 0.44
720 0.402 0.429 0.383 0.417

AVG 0.403 0.433 0.409 0.437

E
C

L

96 0.516 0.555 0.512 0.554
192 0.514 0.550 0.508 0.546
336 0.510 0.542 0.539 0.563
720 0.576 0.586 0.572 0.584

AVG 0.529 0.558 0.532 0.562
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Table 17: Comprehensive performance results of models using overlapping patches based on a single
endogenous variable setting (OL indicates the use of overlapping patches).

Model TimeSeed TimeSeed-OL

Metric MSE MAE MSE MAE
E

T
T

h1

96 0.074 0.213 0.070 0.209
192 0.098 0.244 0.093 0.238
336 0.119 0.271 0.117 0.270
720 0.114 0.267 0.114 0.267

AVG 0.101 0.249 0.099 0.246

E
T

T
h2

96 0.195 0.343 0.190 0.340
192 0.240 0.386 0.238 0.386
336 0.302 0.439 0.299 0.437
720 0.339 0.467 0.328 0.460

AVG 0.269 0.409 0.264 0.406

E
T

T
m

1

96 0.035 0.143 0.036 0.146
192 0.051 0.175 0.053 0.179
336 0.067 0.202 0.068 0.204
720 0.091 0.235 0.092 0.236

AVG 0.061 0.189 0.062 0.191

E
T

T
m

2

96 0.129 0.271 0.129 0.271
192 0.159 0.304 0.159 0.305
336 0.187 0.335 0.188 0.334
720 0.230 0.376 0.230 0.375

AVG 0.176 0.321 0.177 0.322

E
C

L

96 0.515 0.560 0.511 0.550
192 0.518 0.550 0.611 0.602
336 0.595 0.588 0.621 0.606
720 0.648 0.621 0.621 0.611

AVG 0.569 0.580 0.591 0.592

Tr
af

fic

96 0.489 0.492 0.464 0.481
192 0.482 0.484 0.477 0.489
336 0.496 0.503 0.489 0.493
720 0.459 0.477 0.490 0.495

AVG 0.482 0.489 0.480 0.489
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M CASE STUDY

To further evaluate our proposed model, we report complementary predictive visualization results
on the ETT dataset. For baseline selection, we select representative models, including FITS (Xu
et al., 2023), PatchTST (Nie et al., 2022), and DLinear (Zeng et al., 2023). As shown in Figures
15 and 16, TimeSeed performs best in fitting the ground truth, demonstrating excellent predictive
performance.

Figure 15: Prediction cases from TimeSeed, FITS, DLinear, and PatchTST on the ETTh1 (a) and
ETTh2 (b) datasets under the input-96-predict-96 setting. Blue lines are the ground truths and orange
lines are the model predictions.

Figure 16: Prediction cases from TimeSeed, FITS, DLinear, and PatchTST on the ETTm1 (a) and
ETTm2 (b) datasets under the input-96-predict-96 setting. Blue lines are the ground truths and
orange lines are the model predictions.
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N FULL MAIN RESULTS

Here, we report the results of long time series prediction based on sparse endogenous settings (with
missing observations) and one single endogenous settings (without exogenous variables), with pre-
diction lengths including {96, 192, 336, 720}, where the size of the look back window is fixed to
96. All experiments are performed with the unified hyperparameter settings as described earlier.
As shown in Tables 18 and 19, TimeSeed achieves optimal performance on almost all metrics com-
pared with baseline models. Notably, under the sparse and single endogenous settings, TimeSeed
attains the highest ranking across 59 and 62 evaluation cases (1st Count), respectively, which is
substantially more frequent than any baseline model.

Table 18: Full results of unified hyperparameter for long-term time series forecasting results are
based on sparse endogenous setting, with the point selection strategy choosing the most recent time
step. The look-back window length is fixed at 96. Lower MSE and MAE values indicate better
forecasting performance. The best results are highlighted in red, and the second-best results are
highlighted in blue.

Model TimeSeed DUET iTrans DLinear TimeXer TimeMixer PatchTST FITS CycleNet TexFilter PaiFilter SparseTSF

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.069 0.203 0.124 0.276 0.170 0.334 0.079 0.218 0.438 0.572 0.102 0.243 0.106 0.259 0.089 0.230 0.078 0.212 0.100 0.245 0.079 0.222 0.123 0.277

192 0.091 0.236 0.123 0.268 0.157 0.316 0.105 0.251 0.442 0.565 0.109 0.253 0.320 0.467 0.211 0.372 0.097 0.237 0.108 0.254 0.155 0.309 0.156 0.315

336 0.111 0.262 0.180 0.336 0.248 0.403 0.138 0.292 0.429 0.552 0.267 0.413 0.205 0.356 0.120 0.273 0.109 0.255 0.133 0.287 0.242 0.402 0.178 0.338

720 0.112 0.265 0.210 0.364 0.168 0.326 0.131 0.288 0.464 0.588 0.170 0.328 0.281 0.442 0.149 0.311 0.180 0.340 0.235 0.389 0.133 0.290 0.175 0.334

E
T

T
h1

AVG 0.096 0.242 0.159 0.311 0.186 0.345 0.113 0.262 0.444 0.569 0.162 0.309 0.228 0.381 0.142 0.297 0.116 0.261 0.144 0.294 0.152 0.306 0.158 0.316

96 0.186 0.336 0.363 0.475 0.581 0.655 0.201 0.350 0.289 0.423 0.213 0.355 0.436 0.535 0.303 0.431 0.198 0.345 0.368 0.482 0.251 0.395 0.377 0.490

192 0.234 0.379 0.334 0.461 1.071 0.890 0.255 0.397 0.330 0.457 0.255 0.393 1.017 0.887 0.333 0.460 0.243 0.387 0.314 0.446 0.321 0.453 0.477 0.555

336 0.288 0.426 0.423 0.512 0.922 0.825 0.306 0.440 0.358 0.479 0.299 0.438 0.458 0.552 0.496 0.571 0.309 0.441 0.283 0.423 0.413 0.517 0.607 0.637

720 0.380 0.499 0.406 0.517 1.034 0.873 0.873 0.786 0.390 0.501 0.331 0.462 0.384 0.494 1.079 0.887 0.414 0.519 0.347 0.473 0.915 0.815 1.028 0.859

E
T

T
h2

AVG 0.272 0.410 0.381 0.491 0.902 0.811 0.409 0.493 0.342 0.465 0.274 0.412 0.574 0.617 0.553 0.587 0.291 0.423 0.328 0.456 0.475 0.545 0.622 0.635

96 0.036 0.143 0.068 0.202 0.046 0.164 0.043 0.157 0.290 0.468 0.107 0.274 0.046 0.166 0.051 0.175 0.044 0.158 0.114 0.266 0.050 0.172 0.046 0.164

192 0.055 0.179 0.094 0.237 0.074 0.209 0.064 0.191 0.301 0.468 0.137 0.306 0.068 0.196 0.083 0.226 0.094 0.241 0.055 0.180 0.069 0.205 0.065 0.196

336 0.076 0.210 0.200 0.363 0.357 0.524 0.083 0.218 0.359 0.508 0.152 0.306 0.123 0.275 0.092 0.231 0.126 0.280 0.225 0.388 0.194 0.362 0.086 0.227

720 0.106 0.246 0.265 0.409 0.095 0.232 0.111 0.253 0.426 0.551 0.170 0.336 0.181 0.341 0.088 0.232 0.153 0.306 0.186 0.343 0.123 0.279 1.800 1.277E
T

T
m

1

AVG 0.068 0.194 0.157 0.303 0.143 0.282 0.075 0.205 0.344 0.499 0.141 0.305 0.104 0.245 0.079 0.216 0.104 0.246 0.145 0.294 0.109 0.254 0.499 0.466

96 0.092 0.224 0.247 0.392 0.140 0.294 0.093 0.224 0.239 0.377 0.103 0.248 0.197 0.368 0.118 0.260 0.096 0.226 0.119 0.259 0.106 0.243 0.127 0.273

192 0.127 0.269 0.225 0.365 0.399 0.543 0.135 0.276 0.245 0.384 0.177 0.330 0.225 0.384 0.151 0.298 0.133 0.273 0.151 0.297 0.168 0.317 0.164 0.315

336 0.160 0.304 0.313 0.443 0.381 0.517 0.171 0.315 0.261 0.404 0.160 0.310 0.188 0.333 0.212 0.357 0.171 0.315 0.178 0.324 0.200 0.345 0.201 0.350

720 0.217 0.360 0.350 0.471 0.573 0.627 0.262 0.398 0.317 0.448 0.276 0.411 0.224 0.365 0.328 0.457 0.230 0.371 0.257 0.394 0.231 0.376 0.279 0.418E
T

T
m

2

AVG 0.149 0.289 0.284 0.417 0.373 0.495 0.165 0.303 0.266 0.404 0.179 0.325 0.208 0.362 0.202 0.343 0.157 0.296 0.176 0.318 0.176 0.320 0.193 0.339

96 0.002 0.028 0.007 0.059 0.009 0.078 0.014 0.081 0.758 0.751 0.005 0.063 0.003 0.041 0.005 0.060 0.004 0.043 0.003 0.038 0.005 0.050 0.005 0.059

192 0.002 0.033 0.005 0.054 0.020 0.109 0.003 0.045 0.831 0.793 0.468 0.680 0.006 0.059 0.009 0.072 0.003 0.039 0.007 0.061 0.008 0.070 0.008 0.077

336 0.002 0.035 0.005 0.060 0.005 0.058 0.008 0.066 0.814 0.782 0.409 0.636 0.005 0.054 0.008 0.072 0.002 0.035 0.004 0.049 0.005 0.053 0.008 0.073

720 0.003 0.040 0.006 0.058 0.008 0.076 0.009 0.074 0.905 0.831 0.692 0.828 0.004 0.046 0.006 0.062 0.003 0.040 0.006 0.060 0.030 0.134 0.006 0.064W
ea

th
er

AVG 0.002 0.034 0.006 0.058 0.011 0.080 0.009 0.066 0.827 0.789 0.394 0.552 0.004 0.050 0.007 0.067 0.003 0.039 0.005 0.052 0.012 0.077 0.007 0.068

96 0.516 0.555 0.605 0.606 1.047 0.820 0.800 0.684 0.558 0.563 1.869 1.060 0.776 0.683 1.499 1.007 0.784 0.675 0.811 0.700 0.983 0.787 0.712 0.655

192 0.514 0.550 0.579 0.582 0.693 0.666 0.824 0.695 0.533 0.549 2.369 1.239 0.624 0.620 1.329 0.912 0.780 0.669 0.724 0.640 1.043 0.823 0.764 0.684

336 0.510 0.542 0.665 0.629 0.603 0.595 0.710 0.642 0.571 0.569 1.978 1.120 0.605 0.592 0.696 0.640 0.850 0.701 0.911 0.737 0.817 0.698 0.641 0.624

720 0.576 0.586 0.713 0.654 0.652 0.624 0.994 0.776 0.638 0.611 0.480 0.526 0.851 0.741 0.822 0.707 0.872 0.715 0.655 0.630 1.267 0.927 0.717 0.662

E
C

L

AVG 0.529 0.558 0.641 0.618 0.749 0.676 0.832 0.699 0.575 0.573 1.674 0.987 0.714 0.659 1.087 0.817 0.822 0.690 0.775 0.677 1.027 0.809 0.709 0.656

96 0.421 0.447 0.668 0.621 0.441 0.457 0.569 0.537 1.345 1.012 0.635 0.603 0.531 0.527 0.629 0.595 0.885 0.684 0.583 0.552 0.473 0.475 1.236 0.876

192 0.412 0.438 0.543 0.538 0.646 0.607 0.485 0.481 1.436 1.056 1.363 0.874 0.516 0.516 0.653 0.609 0.875 0.676 0.683 0.597 0.946 0.764 1.220 0.859

336 0.376 0.417 0.571 0.570 0.425 0.458 0.671 0.590 1.363 0.995 1.627 0.951 0.431 0.474 0.909 0.722 0.875 0.678 0.476 0.491 0.461 0.485 1.287 0.896

720 0.402 0.429 0.515 0.515 0.419 0.452 0.611 0.558 1.441 1.047 1.379 0.885 0.518 0.519 0.970 0.764 0.869 0.672 0.594 0.554 0.932 0.750 1.361 0.913

Tr
af

fic

AVG 0.403 0.433 0.574 0.561 0.483 0.493 0.584 0.542 1.396 1.028 1.251 0.828 0.499 0.509 0.790 0.672 0.876 0.678 0.584 0.548 0.703 0.619 1.276 0.886

1st Count 30 29 0 0 0 1 0 0 0 1 2 2 0 0 1 0 1 1 1 1 0 0 0 0
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Table 19: Full results of unified hyperparameter for long-term time series forecasting results are
based on a single endogenous setting, with the point selection strategy choosing the most recent
time step. The look-back window length is fixed at 96. Lower MSE and MAE values indicate better
forecasting performance. The best results are highlighted in red, and the second-best results are
highlighted in blue.

TimeSeed DUET iTrans DLinear TimeXer TimeMixer PatchTST FITS CycleNet TexFilter PaiFilter SparseTSF
Model Metric

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.074 0.213 0.108 0.259 0.172 0.332 0.078 0.221 0.314 0.469 0.441 0.582 0.105 0.257 0.100 0.251 0.284 0.444 0.083 0.230 0.079 0.221 0.137 0.295

192 0.098 0.244 0.124 0.276 0.151 0.308 0.104 0.253 0.340 0.491 0.470 0.579 0.201 0.365 0.115 0.268 0.327 0.475 0.110 0.259 0.142 0.297 0.165 0.328

336 0.119 0.271 0.169 0.323 0.203 0.348 0.133 0.287 0.393 0.537 0.793 0.789 0.159 0.304 0.139 0.293 0.332 0.485 0.133 0.288 0.132 0.284 0.188 0.348

720 0.114 0.267 0.357 0.472 0.189 0.342 0.148 0.310 0.476 0.602 0.448 0.578 0.205 0.359 0.137 0.297 0.431 0.564 0.175 0.327 0.134 0.291 0.181 0.340

E
T

T
h1

AVG 0.101 0.249 0.189 0.332 0.179 0.332 0.116 0.268 0.380 0.525 0.538 0.632 0.168 0.321 0.123 0.278 0.343 0.492 0.125 0.276 0.121 0.273 0.168 0.328

96 0.195 0.343 0.318 0.440 0.560 0.637 0.202 0.350 0.293 0.427 0.403 0.492 0.547 0.605 0.361 0.472 0.285 0.420 0.653 0.651 0.239 0.386 0.384 0.493

192 0.240 0.386 0.362 0.481 1.228 0.980 0.254 0.404 0.316 0.445 0.536 0.568 0.920 0.827 0.501 0.570 0.312 0.445 0.313 0.444 0.275 0.420 0.498 0.567

336 0.302 0.439 0.356 0.474 0.788 0.755 0.308 0.444 0.358 0.479 0.562 0.592 0.419 0.530 0.603 0.635 0.366 0.484 0.307 0.443 0.452 0.544 0.641 0.657

720 0.339 0.467 0.432 0.528 1.071 0.891 0.420 0.521 0.409 0.513 0.661 0.652 0.598 0.629 1.430 1.043 0.410 0.513 0.328 0.458 0.883 0.797 1.179 0.926

E
T

T
h2

AVG 0.269 0.409 0.367 0.481 0.912 0.816 0.296 0.430 0.344 0.466 0.540 0.576 0.621 0.648 0.723 0.680 0.343 0.465 0.400 0.499 0.462 0.537 0.676 0.661

96 0.035 0.143 0.049 0.170 0.060 0.187 0.039 0.151 0.314 0.492 0.625 0.655 0.053 0.176 0.035 0.144 0.204 0.381 0.044 0.159 0.040 0.152 0.049 0.170

192 0.051 0.175 0.077 0.214 0.074 0.211 0.054 0.179 0.324 0.495 0.476 0.559 0.059 0.190 0.051 0.172 0.224 0.396 0.054 0.178 0.074 0.211 0.073 0.211

336 0.067 0.202 0.102 0.249 0.100 0.244 0.071 0.207 0.317 0.478 0.458 0.542 0.106 0.254 0.067 0.203 0.237 0.399 0.095 0.242 0.106 0.257 0.099 0.247

720 0.091 0.235 0.154 0.313 0.099 0.249 0.098 0.248 0.344 0.491 0.394 0.507 0.101 0.253 0.092 0.242 0.267 0.422 0.099 0.246 0.112 0.267 0.139 0.297E
T

T
m

1

AVG 0.061 0.189 0.096 0.237 0.083 0.223 0.065 0.196 0.325 0.489 0.488 0.566 0.080 0.218 0.061 0.190 0.233 0.400 0.073 0.206 0.083 0.222 0.090 0.231

96 0.129 0.271 0.317 0.449 0.151 0.292 0.150 0.290 0.216 0.348 0.168 0.311 0.144 0.286 0.212 0.360 0.233 0.370 0.244 0.377 0.192 0.344 0.224 0.373

192 0.159 0.304 0.215 0.358 0.383 0.527 0.179 0.325 0.248 0.387 0.223 0.366 0.170 0.319 0.242 0.376 0.262 0.399 0.172 0.314 0.261 0.399 0.233 0.379

336 0.187 0.335 0.280 0.417 0.304 0.441 0.205 0.350 0.285 0.418 0.252 0.393 0.230 0.374 0.269 0.421 0.301 0.429 0.189 0.336 0.214 0.362 0.248 0.392

720 0.230 0.376 0.321 0.443 0.544 0.613 0.289 0.424 0.323 0.452 0.314 0.439 0.254 0.401 0.270 0.540 0.336 0.463 0.259 0.397 0.258 0.402 0.292 0.426E
T

T
m

2

AVG 0.176 0.321 0.283 0.417 0.345 0.468 0.206 0.347 0.268 0.401 0.239 0.377 0.200 0.345 0.248 0.424 0.283 0.415 0.216 0.356 0.231 0.377 0.249 0.392

96 0.515 0.560 0.822 0.712 1.185 0.892 1.018 0.773 0.570 0.570 0.609 0.605 0.752 0.666 1.711 1.061 0.698 0.636 0.729 0.652 0.821 0.706 0.941 0.763

192 0.518 0.550 0.741 0.687 0.687 0.649 0.923 0.739 0.580 0.573 0.707 0.651 0.801 0.686 1.141 0.830 0.725 0.645 0.953 0.748 0.779 0.680 0.994 0.779

336 0.595 0.588 0.622 0.600 0.647 0.611 0.724 0.644 0.609 0.591 0.674 0.630 0.758 0.673 0.680 0.631 0.748 0.654 0.856 0.711 0.862 0.719 0.781 0.686

720 0.648 0.621 0.675 0.636 0.833 0.712 1.666 1.041 0.718 0.644 0.658 0.627 0.943 0.781 0.866 0.727 0.818 0.695 0.872 0.719 0.788 0.690 0.829 0.707

E
C

L

AVG 0.569 0.580 0.715 0.659 0.838 0.716 1.083 0.799 0.619 0.594 0.662 0.628 0.813 0.701 1.099 0.812 0.747 0.657 0.853 0.708 0.813 0.699 0.886 0.734

96 0.489 0.492 0.663 0.609 0.490 0.491 0.479 0.490 1.514 1.081 1.334 1.008 0.490 0.493 0.784 0.674 1.436 1.030 0.803 0.667 1.377 0.964 1.532 0.972

192 0.482 0.484 0.547 0.549 0.644 0.612 0.596 0.551 1.578 1.064 1.440 1.061 0.495 0.507 0.967 0.771 1.548 1.079 0.681 0.603 0.817 0.714 1.592 0.986

336 0.496 0.503 0.526 0.541 0.410 0.443 0.626 0.566 1.499 1.056 1.393 1.040 0.453 0.491 0.936 0.748 1.559 1.093 0.937 0.733 1.038 0.812 1.457 0.944

720 0.459 0.477 0.605 0.580 0.477 0.483 0.708 0.605 1.606 1.112 1.452 1.056 0.470 0.503 0.977 0.773 1.678 1.131 0.630 0.582 0.875 0.732 1.806 1.059

Tr
af

fic

AVG 0.482 0.489 0.585 0.570 0.505 0.507 0.602 0.553 1.549 1.078 1.405 1.041 0.477 0.498 0.916 0.741 1.555 1.083 0.763 0.646 1.027 0.805 1.597 0.990

96 0.002 0.028 0.009 0.075 0.007 0.065 0.014 0.087 0.815 0.778 2.336 1.354 0.003 0.041 0.003 0.043 0.909 0.829 0.005 0.058 0.005 0.052 0.006 0.062

192 0.002 0.032 0.004 0.046 0.007 0.064 0.004 0.049 0.738 0.733 2.137 1.295 0.004 0.051 0.008 0.071 0.783 0.760 0.004 0.048 0.008 0.070 0.004 0.050

336 0.002 0.035 0.004 0.053 0.013 0.092 0.011 0.086 0.731 0.730 3.159 1.575 0.004 0.048 0.011 0.084 0.850 0.798 0.006 0.061 0.005 0.058 0.006 0.065

720 0.003 0.040 0.006 0.062 0.008 0.073 0.008 0.073 0.684 0.707 2.475 1.398 0.004 0.051 0.006 0.060 0.790 0.767 0.005 0.056 0.029 0.132 0.005 0.058W
ea

th
er

AVG 0.002 0.034 0.006 0.059 0.009 0.073 0.009 0.074 0.742 0.737 2.527 1.406 0.004 0.048 0.007 0.065 0.833 0.789 0.005 0.056 0.012 0.078 0.005 0.059

1st Count 31 31 0 0 1 1 1 1 0 0 0 0 1 0 4 1 0 0 1 1 0 0 0 0
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O LIMITATION

The limitations of TimeSeed can be categorized into three main aspects:

Dataset scope limitations: TimeSeed has not been evaluated on a broader range of datasets, which
hinders a comprehensive validation of its generalizability across diverse scenarios.

Performance gap in specific scenarios: TimeSeed exhibits a small MSE gap compared to iTrans-
former on the Traffic dataset. This may be attributed to its relatively small number of parameters.

Sensitivity to outliers: TimeSeed relies on exogenous variables to reconstruct the historical se-
quence of endogenous variables for forecasting future values. When exogenous variables contain a
high proportion of outliers, the reconstruction becomes unstable, ultimately compromising predic-
tion accuracy.

To address these limitations, future work could explore evaluating on more diverse and larger
datasets, and adaptively scaling the model’s parameter size in a controlled manner to enhance pre-
dictive performance. Additionally, incorporating outlier detection and mitigation techniques to pre-
process exogenous variables could enhance their quality and the model’s overall robustness. While
TimeSeed achieves accurate forecasting in scenarios with missing endogenous variables, forecasting
in scenarios with completely missing endogenous data remains an open research challenge.

P LLM USAGE

In accordance with the conference policy on large language models (LLMs), we declare that LLMs
were only used as auxiliary tools to refine the grammar and fluency of sentences. No part of the
research ideation, experimental design, analysis, or substantive writing was generated by LLMs.
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