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ABSTRACT

Time series forecasting is widely applied across various domains. In real-world
applications, there are many scenarios where endogenous variables are missing.
Recent studies show that incorporating exogenous variables can significantly en-
hance the predictive accuracy of endogenous variables. However, the lack of a
complete historical context introduces significant uncertainty in temporal depen-
dence capture, particularly in systems characterized by non-stationary behavior.
To address these challenges, we propose TimeSeed, specifically designed for sce-
narios with sparsely observed endogenous variables. Technically, TimeSeed re-
constructs 1 sufficient endogenous series from both complete exogenous series
and sparsely observed endogenous series, utilizing two types of data to extract
stable information. Building on this foundation, we effectively transform the chal-
lenging original prediction task into a sequence-based prediction task. Moreover,
TimeSeed is built entirely upon linear layers, which significantly reduces compu-
tational costs. Experiments conducted on seven real-world datasets demonstrate
that TimeSeed consistently outperforms state-of-the-art models in forecasting ac-
curacy, achieving an average reduction of 13.01% in MSE and 7.54% in MAE,
with a model size of only 0.19M parameters. Code is available at this repository:
https://anonymous.4open.science/r/Alistair—7.

1 INTRODUCTION

Nowadays, time series forecasting has become an important tool widely applied in various domains.
However, in many real-world scenarios, endogenous variables are often sparsely observed, as illus-
trated in Figure[T] (a), encompassing applications such as weather forecasting (Ren et al., 2021} [Lin
et al., 2022; [Lam et al., 2023), industrial forecasting (Weron) 2014; |Alfares & Nazeeruddin, |2002),
and battery life prediction (Sulzer et al., [2021} |Fei et al.| [2021).

Recent studies have demonstrated that incorporating the influence of exogenous variables(Huang
et al.,[2025} Pandit et al., 2023 |Lu et al.,[2024)) can substantially enhance the predictive performance
of endogenous variables(Motrenko et al. 2016). This enhancement is primarily attributed to the
strong correlations between exogenous and endogenous variables, as illustrated in Figure [I] (b).
Gradually, forecasting with exogenous variables (Gianfreda & Grossi, [2012)) has emerged as a new
paradigm. However, in sparse forecasting scenarios, this paradigm may become ineffective due to
the absence of target information and the rigidity of the input structure.

To tackle such complex scenarios, it is essential to develop methods that leverage exogenous infor-
mation and sparse endogenous observations for prediction. However, the main challenges stem from
the following three aspects: (1) Context Incompleteness: The substantial absence of historical con-
text for the endogenous variable leads to high uncertainty in causal discovery, especially in systems
exhibiting non-stationary behavior (Moritz & Bartz-Beielstein, 2017). (2) Instable Dependencies:
Sparse observational data fail to reveal dependency structures within historical time series, making
it difficult for models to capture trends and dynamic patterns (Liu et al.l 2022b)). (3) Uncontrolled
Anomalies: Relying on sparse endogenous observations, especially when they are outliers, may
exacerbate prediction biases (Su et al., 2019).

To fill this gap, we propose TimeSeed, which reconstructs historical endogenous sequences from
both endogenous and exogenous perspectives, maximally exploiting the potential of forecasting
under sparse observations. Technically, we leverage the physical similarity (Huang et al., 2025;
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Figure 1: Scenario analysis: (a): Common real-world scenarios of sparse forecasting (b): Correla-
tion analysis between exogenous and endogenous variables in both frequency and time domains.

Pandit et al.l 2023} |[Lu et al., 2024) between exogenous and endogenous variables by extracting
more stable sequential features from exogenous sequences that are homogeneous to the endogenous
variable. Furthermore, to further enhance reconstruction stability, we propose the Adaptive Scale
Reconstructor, which constructs multi-resolution representations of sparse endogenous sequences
and adaptively supplements the reconstruction of the endogenous context. By reconstructing the
historical context, we transform the challenging original prediction task into a sequence-based pre-
diction task, thereby significantly reducing the forecasting difficulty. Besides, TimeSeed is built
entirely on linear layers, which greatly reduces computational cost. We conduct extensive experi-
ments on seven real-world datasets, and the results demonstrate that the proposed model achieves
outstanding performance in terms of both MAE and MSE. This confirms that it can effectively uti-
lize limited data to produce highly accurate forecasts, even under conditions of data scarcity. The
main contributions can be summarized as follows:

* We propose a new prediction paradigm that relies exclusively on exogenous variables and
sparse observations of the endogenous variable to forecast its future values. This effectively
addresses the challenge of limited historical data for endogenous variables.

* We propose TimeSeed, a lightweight model that leverages dense exogenous and sparse en-
dogenous sequences within a two-stage paradigm of context reconstruction and hierarchical
prediction. Endogenous periodic and trend components are captured via Time Domain Ag-
gregator (TDA) and Frequency Domain Aggregator (FDA), and refined with an Adaptive
Scale Reconstructor (ASR), thereby enabling more accurate forecasts.

* We conduct comprehensive experiments on seven real-world time series forecasting
datasets. Our model achieves an average reduction of 13.01% in MSE and 7.54% in MAE,
with only 0.19M parameters, demonstrating its ability to significantly enhance forecasting
accuracy in data-sparse settings while maintaining a compact architecture.

2 RELATED WORK

Exogenous variables, as key factors in improving the accuracy of endogenous variable prediction,
are receiving increasing attention (Tayal et al., |2024). In traditional statistical methods, ARIMAX
(Williams|, [2001) has been widely used across various fields, while SARIMAX (Vagropoulos et al.,
2016)) further introduces radiation forecasting as an exogenous variable to enhance the accuracy
of photovoltaic power generation prediction. In recent years, with the advancement of computing
power and deep learning techniques, researchers have proposed various enhanced models that in-
tegrate exogenous variables. TiDE (Das et al., 2023) constructs an MLP-based encoder-decoder
architecture, integrating exogenous information through feature projection and a temporal decoder.
TimeXer (Wang et al) 2024b) is the first to empower the Transformer with the ability to process
exogenous variables, establishing a bridge between endogenous and exogenous information through
an interaction mechanism between patch-level endogenous representations and variable-level exoge-
nous representations. In addition, NBEATSx (Olivares et al.,[2023)) combines neural basis functions
with exogenous variables to effectively enhance power price forecasting performance.
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Figure 2: Overall architecture of TimeSeed, consisting of Frequency Domain Aggregator, Time
Domain Aggregator, and Adaptive Scale Reconstructor, designed for sparse endogenous variables.

However, these models overly rely on exogenous-to-endogenous mapping, which becomes unreli-
able under sparse endogenous observations due to scale misalignment, leading to degraded predic-
tive performance. Therefore, it is necessary to explore both sparse endogenous-to-endogenous and
exogenous-to-endogenous perspectives to offset information loss and improve endogenous predic-
tion accuracy.

3 METHOD

3.1 PROBLEM SETTINGS

Unlike traditional time series prediction, we rely only on sparse endogenous series .S as auxiliary in-
formation rather than full endogenous inputs. Using less endogenous variables for prediction means
less information is available. Given an exogenous variable time series X = {xgl)T, :cf}, e 3:5]\;)} €
RT*N and sparse endogenous variable series S € RT"", where :z:gz)T represents the i-th exogenous
variable, T" represents the length of the lookback window, T°" < T indicates the length of the
sparse endogenous sequence, and N represents the number of exogenous variables, the task goal
is to predict the future multi-step endogenous time series Y = {yry1,y7r12,...,yrsr} € REXL
Here, L represents the number of future time steps to predict. The overall process can be described
as a function mapping: f(X,S) = Y.

3.2 STRUCTURE OVERVIEW

Since the absence of endogenous variables can substantially degrade predictive performance, our
motivation is to transform the inherently complex sparse forecasting task into a sequence-based pre-
diction task by reconstructing historical endogenous sequences. This multi-stage problem decom-
position approach effectively enhances the robustness of prediction. Specifically, the reconstruction
leverages the intrinsic consistency between endogenous and exogenous variables by aligning with
the trends (Figure [2] left) and periodic patterns (Figure [2] middle-bottom) of exogenous variables,
as well as by utilizing the sparse endogenous sequence itself (Figure 2] right).

As illustrated in Figure 2] (middle-top), our proposed model accepts exogenous sequences X and
sparse endogenous observations S as inputs. Following mainstream decomposition-based models
(Wu et al., 20215 Wang et al.| 2023 Zhou et al., [2022b), we use a moving average method, denoted
as Decomposition(X; o), to downsample the input exogenous sequences X, yielding the separated
trend component X; € R”*" and periodic component X, € RT”*¥ where o denotes the kernel size
of average pooling. For these two distinct components extracted from the exogenous sequences, we
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design the TDA and FDA blocks to reconstruct trend and periodic components, respectively. For the
sparse endogenous observations, we propose the ASR to perform multi-scale reconstruction. Finally,
the reconstruction outputs of these three modules are integrated via the Hierarchical Forecasting
module to generate the final prediction results.

3.3 TIME DOMAIN AGGREGATOR

For different variables, similar time series patterns exist within the same period. Even in cases
where endogenous variables are missing, the periodic of the endogenous variable can be restored by
learning the periodicity of other variables. Based on this observation, the TDA is designed to learn
the periodic features of endogenous variables by leveraging exogenous variables. Specifically, for
the periodic term, we first apply the patch operation to separate the features of each patch:

P& = Patch (X, stride) )]

Here, Patch(-) represents the sub-patch operation on historical exogenous variables. Pf* €

RP*EXN s output of Patch(:). C represents the length of the patch, and P = Z=¢ 4 1 rep-
resents the number of patches. More detailed analysis can be found in the Appendixﬁ

Then we aggregate the same period of different variables. Thus, a mapping from the period of the
exogenous variable to the period of the endogenous variable is established:

P = Patch-Agg(P{™) )

Patch-Agg(-) is implemented through a linear layer along the variable axis. P¢" € RE*T is the
aggregated one-variable feature, which could be expressed as the reconstructed endogenous variable.

Each variable exhibits a continuous time series pattern within the same period. We obtain the future
period changes of endogenous variables by aggregating the same phases in the period terms of the
endogenous variables during different periods:

PS,‘S" = Patch-Interact(Transpose(P:")) 3)

Patch-Interact(-) is implemented through linear layer, and Pslen € RE*P is the endogenous
feature after patch interaction. We merge specified dimensions to obtain the output P;G" =
Reshape(Ple”) € RT*1, which represents the period term for predicting endogenous variables.

S

3.4 FREQUENCY DOMAIN AGGREGATOR

It is observed that different variables share similar trend patterns, and these patterns can be recon-
structed by aggregating trends across variables. Since trends are usually concentrated in the low-
frequency domain, directly modeling them poses the risk of either overlooking local variations or
distorting the main trend. Therefore, we perform operations in the frequency domain, where domi-
nant trend-related components and local variation-related components are more clearly separated.

Specifically, we map trend signals to the frequency domain through real Fast Fourier Transform to
more directly identify the dominant trend components:

F, = RFFT(X,) 4)

Here RFFT(-) represents real Fast Fourier Transform. F; € R(T/2+D*N g the frequency domain
representation of the trend component of the exogenous variable.

We then perform secondary decomposition on the frequency-domain signals based on their ampli-
tude, obtaining high-energy components that correspond to dominant trends and low-energy com-
ponents that correspond to local fluctuations:

Ay = Abs(F}) 4)
F},, F) = Energy-Decompose(F;, Ay, K) (6)
Here, Abs(-) computes the energy, and A; € R(T/2D*N represents the distribution of energy.

Energy-Decompose(-) separates K high-energy and T — K low-energy components according
to the magnitude of the frequency amplitude by analyzing the spectrum. Fj, € RE*N and
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F; € RIT/2H1-K)xN represent the high-energy and low-energy components within the trend of
the exogenous variable, respectively.

Modeling these two components separately effectively leverages local details to refine predictions,
while avoiding the domination of predictions by high-energy components. Specifically, we learn the
mapping relationships between the dominant trends and local details of exogenous variables , and
those of endogenous variables.

Fy,, Fy = AggHigh(Fy,), AggLow(F}) @)

Here, AggHigh(-) and AggLow(-) are both implemented through frequency domain linear layer

along the variable axis. £}, € RE*! and F} € R(T/2+1-K)x1 represent univariate features, which
can be regarded as the high-energy and low-energy components within the trend of the endogenous
variable, respectively.

Finally, through the inverse real Fast Fourier Transform, we obtain the trend of the reconstructed
endogenous variable:

F;*" = iRFFT(F), + F}) 8)

Here, iRFF'T represents inverse real Fast Fourier Transform, and Ft/ en ¢ RTx1 represents the
reconstructed trend term of the endogenous variable.

3.5 ADAPTIVE SCALE RECONSTRUCTOR

In order to fully reconstruct the endogenous variables, our proposed Adaptive Scale Reconstructor
generates multi-resolution sequence representations through multi-scale upsampling. The original
sequence is compressed into a broader representation space, allowing the model to automatically
select the most appropriate scale based on the input features.

Specifically, we construct endogenous representations cross different resolutions ¢ € {1,2,...,Q}:
S9 = Upsampleq (S) )

where Upsample,(-) denotes the g-th upsampling operation applied to the input sequence S. At the
g-th layer, the output sequence length is expanded from the original 7" to 7°" x 29. This hier-
archical upsampling progressively enlarges the temporal resolution, enabling the model to perform
reconstructions from multiple perspectives.

07 = ExpertBlock, (S57) (10)

where ExpertBlock, (+) the g-th expert module, which can be flexibly replaced with different task-
specific networks, and 07 € R< represents the output of the g-th expert with d denoting the hidden
dimension. Each expert learns scale-specific feature representations, thereby effectively avoiding
feature entanglement across different scales.

To enable the model to adaptively select the optimal scale according to the data characteristics, we
further introduce the Gumbel Softmax (Jang et al.l 2016) to optimize the scale selection process:

H = Gumbel Softmax(Dense({0?, ..., 09})) (11

where Dense(-) generates the corresponding logits, and H € R indicates the model’s adaptive
selection of resolution. After obtaining the most appropriate scale, the model performs feature
reconstruction based on the selected representation:

Z = Reconstruction({O', ..., 09}, H) (12)

where Reconstruction(-) reconstructs the historical time series at the most appropriate resolution
O according to the selection scheme H, and Z denotes the reconstructed sequence.
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3.6 HIERARCHICAL FORECASTING

The final forecast is obtained by combining the reconstructed trend Ft/ " and periodic components
PSI‘E” (both derived from exogenous variables), with the reconstructed historical endogenous se-
quence Z (derived from the sparse endogenous sequence). This combined result is then passed
through the model’s prediction head. The specific process is as follows:

Vig=FE" + P+ 7 (13)
YT+1:T+L = Prediction(Yl:T) (14)

Here, Prediction(-) is implemented through a linear layer along the temporal axis, Yi.r corresponds
to the reconstruction of historical endogenous variables, and Y7 1.7 1, represents the prediction.

4 EXPERIMENTS

To evaluate the performance of TimeSeed under scenarios with sparse endogenous observations, we
conduct extensive experiments based on a novel time series forecasting paradigm f(X,S) — Y.

Datasets We use datasets that span multiple domains, including Energy (ETT (Zhou et al., |2021)),
ECL (Wu et al.| 2021)), Weather (Wu et al.| |2021), and Traffic (Wu et al., 2021). For dataset
partitioning, we follow standard protocols (Lin et al.} [2024ajb). Specifically, the ETT datasets are
split into training, validation, and test sets with a ratio of 6:2:2, while the remaining datasets follow
a 7:1:2 split. More details are provided in the Appendix [B]

Baselines We compare TimeSeed with several state-of-the-art time series forecasting models. In-
clude: Complex Transformer-based architectures: DUET (Qiu et al., 2024), TimeXer (Wang et al.,
2024b), iTransformer (Liu et al.| 2023), and PatchTST (Nie et al.| [2022); Lightweight MLP-based
models: TimeMixer (Wang et al., 2024a), FITS (Xu et al., 2023), CycleNet (Lin et al., 2024a),
FilterNet (Yi et al., 2024) , SparseTSF (Lin et al.},|2024b), and DLinear (Zeng et al.,|[2023).

Implementation Details For TimeSeed, we fix the patch length P to 16, use a historical input
window T' of 96 time steps, and T, is set to 4 by uniformly sampling the 96-step sequence at
24-step intervals. Forecasting performance is evaluated at horizons L € {96,192, 336,720}. The
number of high-energy components K is set to 10, the number of resolutions @) is set to 3, and
ExpertBlock is implemented using a multi-layer perceptron. We upsample the sparse endogenous
series and maintain the length of the exogenous sequences, ensuring compatibility with baseline
inputs and enabling fair comparison across models. In addition, we unify the hyperparameters across
all models and report the rerun results. More details are provided in the Appendix

4.1 MAIN RESULTS

We validate the effectiveness of TimeSeed on long-term time series forecasting tasks under sparse
scenarios (sparsity ratio of 4%) across seven mainstream benchmark datasets. As shown in the ex-
perimental results in Table [T} TimeSeed achieves nearly optimal performance across all datasets.
Specifically, under sparse settings, it yields an average MSE improvement of 15.04% on the ETTh1
dataset and 19.24% on the Traffic dataset, demonstrating a clear advantage over DLinear and
PatchTST, which represent competitive Linear-based and Transformer-based models, respectively.
Notably, as shown in the experimental results in Table [2] when endogenous variables are missing,
several state-of-the-art models exhibit performance degradation, likely due to their heavy reliance on
complete endogenous sequences particularly under more challenging single-point sparse forecasting
scenarios. More detailed results are provided in Appendix [N]and [G|

4.2 EFFECT OF SPARSITY RATIOS

Table [3] presents TimeSeed’s performance under varying sparsity ratios. The results demonstrate
that as the sparsity ratio increases (i.e., a higher proportion of endogenous variables), predictive
accuracy improves consistently across both ETTh2 and ETTm2 datasets. Specifically, on the ETTh2

'Implemented in TexFilter and PaiFilter, respectively
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Table 1: Unified hyperparameter for long-term time series forecasting results are based on sparse
endogenous variable setting, with a 24-hour sampling interval.

Model ‘ TimeSeed DUET iTrans DLinear TimeXer TimeMixer PatchTST FITS CycleNet TexFilter PaiFilter SparseTSF

Metric MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

ETThl | 0.096 0.242 | 0.159 0311 | 0.186 0.345 | 0.113 0.262 | 0.444 0.569 | 0.162 0.309 | 0.228 0.381 | 0.142 0.297 | 0.116 0.261 | 0.144 0.294 | 0.152 0.306 | 0.158 0.316

ETTh2 | 0272 0410 | 0381 0491 ] 0902 0811

0409 0493 | 0342 0465 | 0274 0412 0574 0617 | 0553 0587 | 0291 0423 | 0328 0456 | 0475 0545 | 0.622 0635

ETTml | 0.068 0.194 | 0.157 0303 | 0.143 0.282 | 0.075 0.205 | 0.344 0.499 | 0.141 0.305 | 0.104 0.245 | 0.079 0216 | 0.104 0246 | 0.145 0294 | 0.109 0.254 | 0.499 0.466

ETTm2 | 0.149 0.289 | 0.284 0417 | 0.373 0495 | 0.165 0.303 | 0.266 0.404 | 0.179 0.325 | 0.208 0.362 | 0.202 0.343 | 0.157 0.296 | 0.176 0.318 | 0.176 0.320 | 0.193 0.339

Weather | 0.002 0034 | 0006 0058 | 0011 0080 [ 0009 0066 | 0827 0789 | 0394 0552 | 0004 0050 | 0007 0067 | 0003 0039 | 0005 0052 | 0012 0077 | 0007 0068

ECL 0.529  0.558 | 0.641 0.618 | 0.749 0.676 | 0.832 0.699 | 0.575 0.573 | 1.674 0.987 | 0.714 0.659 | 1.087 0.817 | 0.822 0.690 | 0.775 0.677 | 1.027 0.809 | 0.709 0.656

Traffic | 0.403 0.433 | 0.574 0.561 | 0.483 0.493 | 0.584 0.542 | 1.396 1.028 | 1.251 0.828 | 0.499 0.509 | 0.790 0.672 | 0.876 0.678 | 0.584 0.548 | 0.703 0.619 | 1.276 0.886

Table 2: Unified hyperparameter for long-term time series forecasting results are based on a single
endogenous variable setting, with the point selection strategy choosing the most recent time step.

Model ‘ TimeSeed DUET iTrans DLinear TimeXer TimeMixer PatchTST FITS CycleNet TexFilter PaiFilter SparseTSF

Metric | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

ETTh1 ‘ 0.101  0.249 ‘ 0.8 0.332 ‘ 0.179 0332 ‘ 0116 0268 ‘ 0380 0.525 ‘ 0538 0.632 ‘ 0.168 0.321 ‘ 0.123 0278 ‘ 0343 0492 ‘ 0.125 0276 ‘ 0.121 0273 ‘ 0.168  0.328

ETTh2 | 0.269 0.409 | 0.367 0.481 | 0.912 0.816 | 0.296 0.430 | 0.344 0.466 | 0.540 0.576 | 0.621 0.648 | 0.723 0.680 | 0.343 0.465 | 0.400 0.499 | 0.462 0.537 | 0.676 0.661

ETTml | 0.061 0.189 | 0.096 0.237 | 0.083 0.223 | 0.065 0.196 | 0.325 0.489 | 0.488 0.566 | 0.080 0.218 | 0.061 0.190 | 0.233 0.400 | 0.073 0.206 | 0.083 0.222 | 0.090 0.231

ETTm2 | 0176 0321 | 0283 0417 | 0345 0468 | 0206 0347 [ 0268 0401 [ 0239 0377

0200 0345 | 0248 0424 | 0283 0415 ] 0216 0356 | 0231 0377 ] 0249 0392

ECL 0.569  0.580 | 0.715 0.659 | 0.838 0.716 | 1.083 0.799 | 0.619 0.594 | 0.662 0.628 | 0.813 0.701 | 1.099 0.812 | 0.747 0.657 | 0.853 0.708 | 0.813 0.699 | 0.886 0.734

Traffic | 0.482 0.489 | 0.585 0.570 | 0.505 0.507 | 0.602 0.553 | 1.549 1.078 | 1.405 1.041 | 0.477 0498 | 0916 0.741 | 1.555 1.083 | 0.763 0.646 | 1.027 0.805 | 1.597 0.990

Weather ‘ 0.002  0.034 ‘ 0.006  0.059 ‘ 0.009 0.073 ‘ 0.009 0.074 ‘ 0742 0737 ‘ 2527 1406 ‘ 0004 0.048 ‘ 0.007  0.065 ‘ 0833 0.789 ‘ 0005 0.056 ‘ 0012 0.078 ‘ 0005 0.059

dataset, increasing the sparsity ratio yields a 16.5% reduction in average MSE. On the ETTm2
dataset, we observe a similar trend with an 18.8% decrease in average MSE. These performance
gains are sustained across all forecasting horizons, confirming that incorporating richer endogenous
information substantially enhances forecasting capability under sparse endogenous settings.

Table 3: Forecasting performance on ETTh2 and ETTm?2 under different sparsity ratios of endoge-
nous to exogenous features (4%-50%). SR denotes sparsity ratios (endogenous : exogenous).
SR 4% (default) 8% 16% 25% 33% 50%
Meiric  MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

96 | 0.186 0.336 | 0.167 0.318 | 0.154 0.304 | 0.152 0.303 | 0.147 0.297 | 0.144 0.293

o | 192 10234 0379 | 0212 0361 | 0204 0352 | 0.195 0.343 | 0.198 0.347 | 0.189 0.337
£ | 336 | 0288 0426 | 0.267 0410 | 0265 0.409 | 0250 0.396 | 0.249 0.396 | 0.241  0.389
E 720 | 0.380 0.499 | 0.374 0.495 | 0.364 0.489 | 0.350 0.480 | 0.344 0.476 | 0.334 0.470
| AVG | 0272 0.410 | 0.255 0.396 | 0.247 0.388 | 0.237 0.381 | 0234 0.379 | 0.227 0.372
96 | 0.092 0224 | 0.075 0.202 | 0.071 0.197 | 0.070 0.194 | 0.070 0.195 | 0.070 0.194

~ | 192 10127 0269 | 0.109 0.249 | 0.103 0240 | 0.102 0.239 | 0.102 0.238 | 0.103 0.239
E | 336 | 0.160 0.304 | 0.139 0.283 | 0.135 0.278 | 0.132 0.275 | 0.131 0.274 | 0.131 0.274
E 720 | 0.217 0.360 | 0.192 0337 | 0.183 0.327 | 0.184 0.328 | 0.183 0.327 | 0.182 0.325

| AVG | 0.149 0.289

0.129  0.268 | 0.123 0261 | 0.122 0259 | 0.122 0.259 | 0.121  0.258

4.3 ABLATION STUDY

To further analyze the contribution of each component to the model’s performance, we performed
ablation analysis on the Time Domain Aggregator, Frequency Domain Aggregator, and Adaptive
Scale Reconstructor to assess their individual impacts. As shown in Table ] we draw the follow-
ing three conclusions: (1) All modules positively contribute to the performance of TimeSeed, with
improvements in MSE ranging from 5.31% to 12.30%. (2) Comparatively, the contribution of high-
energy information to the prediction results is slightly lower, leading to an MSE improvement of
about 5.31%. (3)Based on a two-stage decomposition and forecasting paradigm, outperforms the
Direct Forecasting approach in terms of evaluation metrics. Notably, on the ETTh2 and ETTm?2
datasets, TimeSeed achieves average improvements of 27.4% and 14.2% in MSE and MAE, re-
spectively. This is because the two-stage approach decouples the sequence features, allowing the
reconstruction stage to focus more on capturing trends and periodic patterns, thereby enhancing
robustness(4) Furthermore, different datasets rely to varying degrees on information from the time
domain, the frequency domain, and the multi-resolution reconstructions derived from sparse en-
dogenous series. More detailes can be found in the Appendix [H]
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Table 4: Ablation study results. FDA denotes Frequency Domain Aggregator, ASR denotes Adap-
tive Scale Reconstructor and TDA denotes Time Domain Aggregator.

Datasets \ ETThl ETTml ETTh2 ETTm2
Metric | MSE MAE | MSE MAE | MSE MAE | MSE MAE
TimeSeed [ 0.096 0.242 | 0.068 0.194 | 0.272 0.410 | 0.149 0.289

w/o Agghigh (Eq. 7) | 0.112 0242 | 0.084 0.215 | 0.284 0.420 | 0.155 0.295
w/o Agglow (Eq. 7) | 0.110 0.257 | 0.077 0.206 | 0.285 0.420 | 0.159 0.299
w/o Patch-Interact (Eq. 3) | 0.119  0.265 | 0.074 0.202 | 0.291 0.424 | 0.156 0.298

w/o FDA \ 0.118 0.265 \ 0.088 0.222 \ 0.299  0.432 \ 0.154  0.293
w/o TDA \ 0.117  0.263 \ 0.083 0.219 \ 0.376  0.488 \ 0.154  0.295
w/o ASR \ 0.099 0.246 \ 0.082 0.218 \ 0.279 0415 \ 0.176  0.322
Direct Forecasting \ 0.124  0.274 \ 0.074 0.204 \ 0.400 0.493 \ 0.160  0.300
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Figure 3: Analysis of the TimeSeed. Left : Performance across various prediction lengths with
different look-back window sizes. Middle : Comparison of model efficiency. Right: Selection
distribution of TimeSeed across multi-level sequences.

4.4 MODEL ANALYSIS

Different Look-back Window Sizes To assess robustness, we vary look-back lengths on ETTm?2.
Longer windows provide richer history but may cause redundancy for linear models. As shown in
Figure [3| (Left), TimeSeed benefits from longer windows, with clear MSE gains at horizons 192 and
336, demonstrating stable performance across input lengths. Detailed results are in Appendix [C]

Efficiency Analysis To assess computational efficiency, we compared TimeSeed with 11 state-of-
the-art models on GPU memory and training time. Under the same settings of hidden dimension
128 and batch size 1, results in Figure 3| (Middle) demonstrate that TimeSeed achieves superior per-
formance in both memory efficiency and predictive accuracy. It consumes only 10.5MB of memory,
approximately 71.5% of TimeXer’s 14.69MB. In addition, its training time is roughly 30% of that
of TimeXer, further emphasizing its computational efficiency. More results are in the Appendix [D}

Case Study To validate the effectiveness of the adaptive multi-resolution selection mechanism in
the proposed ASR, we analyze a representative case from the ETThl dataset. As shown in Fig-
ure [3] (Right), we further report the correlation and Dynamic Time Warping (DTW) between the
reconstructed sequences at each resolution and the ground truth. The second resolution exhibits
the highest correlation with the ground truth, achieving a Pearson coefficient of 0.59 and a DTW
of 1.2, which indicates its superiority as the most appropriate resolution. Furthermore, ASR accu-
rately identifies this candidate sequence, thereby validating the effectiveness of its adaptive multi-
resolution selection mechanism.
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Figure 4: Sensitivity Analysis to different Data Scales, Resolutions and High-energy Components.
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4.5 SENSITIVITY ANALYSIS

Different Data Scale To further explore the potential of TimeSeed under sparse settings, we design
three more challenging forecasting scenarios: sparser endogenous series, fewer exogenous variables,
and shorter historical exogenous series. As shown in Figure ] (left), the performance of TimeSeed
decreases by 5.80%, 18.84%, and 7.25% compared to the original setting under the three different
configurations. In contrast, DUET shows a larger decline, with decreases of 15.32%, 126.61%, and
32.26%, respectively. it is evident that among these three factors, the length of the historical exoge-
nous series has the greatest impact on forecasting performance. TimeSeed consistently maintains
the best predictive performance across all cases.

Different Resolution To further investigate the impact of ASR under different resolution choices,
we vary the number of upsampling layers from 1 to 4. As shown in Figure [ (middle), with more
upsampling layers, the number of available resolutions increases. On the ETT datasets, performance
improves progressively, with a particularly significant gain when increasing the layer count from 1
to 2. Considering both performance and efficiency, we set the number of resolutions () to 3.

Different High-energy Components As shown in Figure [ (Right), increasing the decomposition
factor initially improves performance; however, beyond a certain point (e.g., 8), the gains plateau or
even diminish. This phenomenon suggests that an appropriately chosen number of high-energy com-
ponents is beneficial for model performance. Therefore, we unify &' = 10 in our implementation
for experiments. More detailed results can be found in the Appendix [
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Figure 5: Reliability analysis of reconstruction. (a) Frequency spectrum of the reconstructed trend
component of historical endogenous variables. (b) Visualization of the weights in the TDA. (c)
Correlation between reconstruction by TDA, FDA and ASR and those of the ground truth.

4.6 RELIABILITY ANALYSIS OF RECONSTRUCTION

Frequency-domain Reconstruction Figure 5] (a) shows that the reconstructed and true trend com-
ponents on ETTh1. It is clearly observable that the two curves almost completely overlap. This
indicates that TimeSeed can accurately reconstruct endogenous trends from exogenous inputs, ef-
fectively capturing the relationship between exogenous and endogenous trends and validating the
effectiveness of our frequency domain multi-granularity modeling. More results are in Appendix [E}

Time-domain Visualization Figure [3] (b) shows weight heatmaps of the Time Domain Aggrega-
tor. The left panel corresponds to the implementation of Patch-Agg(-), and the right panel to
Patch-Interact(-). The repeated horizontal purple stripes on the left indicate that Patch-Agg(-)
is sensitive to periodic features in the input sequence. In contrast, the heatmap on the right exhibits
a smooth top-down gradient, suggesting that Patch-Interact(-) effectively captures cross-period
feature correlations. These distributions suggest the model adaptively emphasizes phase-aligned
information, enhancing temporal structure modeling.

Reconstruction Correlation In Figure 5] (right), we report the Pearson correlation coefficients be-
tween the reconstructed endogenous periodic and trend components obtained by TDA and FDA and
the corresponding ground truth. Overall, both TDA and FDA achieve sufficiently high reconstruc-
tion fidelity, with average correlations of 0.532 and 0.885, respectively. This further highlights the
effectiveness of our two-stage decomposition and forecasting paradigm based on reconstruction.

4.7 MORE EXPERIMENTS

Why not Choose Weighted Combination from All Reconstructed Resolution: In scenarios with
extremely sparse data, the quality of upsampled sequences across resolutions can differ substantially.
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Table 5: Comparison of Soft and Hard choose for multi-resolution selection

Model | TimeSeed | TimeSeed(Soft)
Metric ‘ MSE MAE ‘ MSE MAE
ETThl ‘ 0.096 0.242 ‘ 0.119  0.266

ETTml | 0.068 0.194 | 0.092 0.226
Traffic | 0.403 0.433 | 0.545  0.567
Weather | 0.002 0.034 | 0.009 0.071

Soft weighted combinations (e.g., using all O,) may blend high-quality signals with low-quality or
noisy ones, degrading performance. In contrast, a hard-selection mechanism alleviates this issue
while keeping model complexity in check and reducing overfitting. For a lightweight model with
only 0.19M parameters, attending to a single resolution is both more efficient and more robust, as
it encourages the model to focus on fundamental patterns rather than noise. As shown in Table T3]
hard selection consistently outperforms soft weighting on all datasets, benefiting from its ability to
exclude unreliable resolutions and thereby lower overfitting risk.

Table 6: Results on the sparse real-world PhysioNet dataset
Model TimeSeed DUET DLinear TimeXer FilterNet SparseTSF
Metric | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

PhysioNel‘ 030 0.24 ‘ 034  0.24 ‘ 033  0.24 ‘ 0.78 0.53 ‘ 033 0.24 ‘ 035 0.25

Real-world Benchmark: We have incorporated the real clinical dataset PhysioN et, where physio-
logical variables naturally exhibit sparsity. We use reliably obtainable signals such as HR, RespRate,
Temp, SysABP, DiasABP, and MAP as exogenous variables, while the more sparsely observed Glu-
cose serves as the endogenous variable. We use the first 24 hours of observations to forecast the
subsequent 24 hours. As shown in Table[6] TimeSeed still achieves the best or highly competitive
performance under these genuinely sparse conditions, demonstrating the robustness and practical
applicability of our method.

Table 7: Comparison between the imputation+forecasting pipeline and TimeSeed
Model | TimeSeed PatchT/PatchT ~ PatchT/TimeX
Metic | MSE MAE | MSE MAE | MSE MAE
ETThl | 0.096 0.242 | 0.153 0.322 | 0.388 0.498
ETTh2 | 0272 0.410 | 0.502 0.561 | 0.281 0.412
ETTml | 0.068 0.194 | 0.041 0.196 | 0.283 0.428
ETTm2 | 0.149 0.289 | 0.154 0.293 | 0.197 0.336

Imputation model + forecasting model: We first use PatchTST to impute the sparse endogenous
series, and then apply another state-of-the-art forecasting model (PatchTST or TimeXer) to predict
future values. As shown in Table[/] TimeSeed outperforms both combinations on most datasets. On
average, relative to PatchTST/PatchTST, TimeSeed reduces MSE and MAE by about 36% and 24%,
and relative to PatchTST/TimeXer, by about 26% and 30%, respectively. These gains stem from
the two-stage paradigm, which decouples sequence features and enables the reconstruction stage to
more effectively capture trends and periodicity, improving robustness. The limited benefit of the
imputation model likely results from the extreme sparsity of the endogenous observations, while
adding another imputation module increases parameter count and thus the risk of overfitting.

5 CONCLUSION

We propose TimeSeed, a novel prediction architecture tailored for scenarios with sparse endoge-
nous variables. From both the endogenous and exogenous perspectives, TimeSeed can robustly
reconstruct historical endogenous sequences by uncovering the periodic and trend-related relation-
ships between exogenous and endogenous variables. Moreover, it leverages ASR to supplement the
reconstructed endogenous information with signals from the sparse endogenous sequences. All ex-
perimental results show that TimeSeed achieves the best performance across all benchmarks, demon-
strating its ability to deliver high-accuracy predictions even under extreme data scarcity. Further-
more, thanks to its linear-based architecture, TimeSeed exhibits excellent computational efficiency.
These advantages provide a practical and effective solution to the challenge of missing data in real-
world applications. In future work, we plan to explore more advanced prediction methods for more
complex scenarios, such as when endogenous variables are entirely missing.

10
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A RELATE WORK OF LIGHTWEIGHT FORECASTING

In recent years, the field of long-term time series forecasting (LTSF) (Lin et al.,2023;|Zhang & Yan,
2023;|Wu et al.,[2022; |Liu et al.,[2022a; Zhou et al.L|2022a; [Tang & Zhang,[2025; |Q1u et al.,[2024) has
seen a surge in lightweight models. DLinear (Zeng et al.| 2023)) achieves accurate forecasting using
only linear layers and a decomposition strategy. CycleNet(Lin et al.,|2024a)) utilizes learnable param-
eters to simulate periodic variations across datasets, enabling plug-and-play lightweight forecasting.
FITS (Xu et al.l 2023) introduces a low-pass filter in the frequency domain to reduce parameter
requirements, compressing the model size to approximately 10k parameters. SparseTSF(Lin et al.,
2024b) decouples periodicity and trend through cross-period sparse forecasting. It first downsam-
ples the original series using a fixed periodicity and then predicts each downsampled subsequence.
MixLinear (Ma et al., |2024)) further combines temporal and frequency domain feature extraction.
By downsampling the series, it reduces the parameter complexity of linear models from O(N?) to
O(N), achieving efficient computation.

However, the above methods focus solely on lightweight modeling of the temporal characteristics of
the target variable, without considering the crucial relationship between exogenous and endogenous
variables (Huang et al., 2025;|Das et al.,[2023; /Wang et al.,|2024b), where a factor that is particularly
important in endogenous variable prediction scenarios. Therefore, to facilitate lightweight extraction
of external (exogenous) knowledge in such contexts, it is crucial to develop a compact modeling
approach that captures deep correlations between endogenous and exogenous variables, enabling
efficient and accurate endogenous prediction.

16
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B IMPLEMENTATION DETAILS

DataSets We evaluated the performance of TimeSeed on seven widely used datasets. These include
the Traffic (Wu et al., [2021), Weather (Wu et al., [2021)), Electricity (Wu et al., 2021), and the ETT
dataset (Zhou et al.| 2021). Specifically, Traffic records traffic flow freeway system of the San
Francisco area, collected at hourly intervals via inductive loop detectors installed on roadways, and
has been collected since 2015. Weather collects 21 weather metrics from the National Weather Ser-
vice (NWS), including temperature, humidity, wind speed, and barometric pressure, covering nearly
400 weather stations across the United States. This data is collected every 10 minutes. Electricity
records hourly power consumption data for 321 customers. The ETT contains electrical load and oil
temperature data from two substations, which are organized into four sub-datasets: ETTh1, ETTh2,
ETTml, and ETTm2, where “h” stands for hourly sampling intervals and “m” stands for 15-minute
sampling intervals. For the ETT dataset, the time period spanning from July 2016 to July 2018
includes electrical load, oil temperature, and six other relevant metrics. Overall, the datasets we
use cover diverse domains such as transportation, meteorology, energy, etc., with varying temporal
granularities. Detailed information about these datasets is provided in Table|[8]

Table 8: Comparison of dataset characteristics, including key information such as the definitions of
endogenous (En.Explanation) and exogenous (Ex.Explanation), prediction horizon, sampling fre-
quency, and dataset size (training, validation, and test sets).

Dataset ETThl ETTh2 ETTml ETTm2 ECL Traffic Weather
Ex.Explanation Energy Load Energy Load Energy Load Energy Load Power consumption Road Occupancy Weather Indicators
En.Explanation Oil Temperature Oil Temperature 0il Temperature Oil Temperature Power consumption Road Occupancy CO2-Concentration
Predict Length (96,192,336,720)  (96,192,336,720) (96,192,336,720) (96,192,336,720) (96,192,336,720) (96,192,336,720) (96,192,336,720)

Ex.Count 6 6 6 6 320 861 20
Sampling Frequency 1 Hour 1 Hour 15 Minutes 15 Minutes 1 Hour 1 Hour 10 Minutes
Dataset Size (8449,2785,2785)  (8449,2785,2785)  (34369,11425,11425)  (34369,11425,11425)  (15591,5167,5165)  (110335,3415,3415)  (31426,10445,10445)

Unified Hyperparameter Settings Under our newly proposed forecasting paradigm, we fix the
hyperparameters for all models and adopt the same optimization strategy to ensure fair and repro-
ducible experiments. The detailed settings are shown in Table 9] All the experiments are imple-
mented in PyTorch (Paszke,|2019) and conducted on a single NVIDIA 2080Ti 10GB GPU.

Table 9: Unified hyperparameter settings for all experiments. All models are optimized using the
ADAM optimizer (Kingma & Bal, 2014). K the number of high-energy components corresponding
to those extracted by the FDA. D, .4 represents the hidden dimension of the baseline model, and
Dy is the baseline model’s dimension of the hidden layer in the feed-forward layer.

Dataset / Configurations | Model Hyper-parameter Training Process

| K | Dyodet | Dy | Batchsize | Lr | Epoch | Early_stop | Loss

ETThl 10| 128 | 512 | 128 [0001| 10 | 3 | MSE
ETTh2 10| 128 | 512 | 128 [0001| 10 | 3 | MSE
ETTml 10| 128 | 512 | 128 [0001| 10 | 3 | MSE
ETTm2 |10 128 | 512 | 128 [0001| 10 | 3 | MSE

ECL |10 128 | 512 | 4 [0001| 10 | 3 |MSE

Traffic 10| 128 | 512 | 4 [0001| 10 | 3 |MSE
Weather 10| 128 | 512 | 64 [0001| 10 | 3 |MSE
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C FULL RESULTS OF DIFFERENT LOOK-BACK WINDOW SIZE

Figure[6]and[7) presents the impact of varying look-back window sizes on the prediction accuracy of
TimeSeed across the ETT series datasets.
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Figure 6: Performance across various prediction lengths with different look-back window sizes
T = {96,192, 336, 528, 720} under a single endogenous setting. Each colored curve represents the
performance of a specific look-back window.
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D FULL RESULTS OF RUNTIME EFFICIENCY ANALYSIS

We report the runtime efficiency of all models across all datasets in terms of training time (s/epoch)
and GPU memory usage, along with predictive performance measured by MSE. As shown in Figure
[B] TimeSeed fully unleashes the potential of linear layers, achieving accurate predictions while
maintaining a lightweight design.
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Figure 8: Comparison of model efficiency in the input-96-predict-96 setting.

E FULL RESULTS OF FREQUENCY-DOMAIN ANALYSIS

To further evaluate the ability of the Frequency-Domain Aggregator (FDA) to reconstruct the trend
component of historical endogenous variables, we provide additional prediction cases in Figure [9]
The results demonstrate that Frequency-domain Aggregator effectively leverages the trend-related
information in exogenous variables and establishes robust correlations between the trends of exoge-
nous variables and those of historical endogenous variables, thereby enabling effective reconstruc-
tion of the target trend components.
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Figure 9: Frequency spectrum of the reconstructed trend component of historical endogenous vari-
ables (blue) and the ground truth (red) in the frequency domain. The closer the two curves, the better
the reconstruction performance.
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F FULL RESULTS OF HYPERPARAMETER SENSITIVITY ANALYSIS

In the frequency-domain decomposition module, we further split the input trend component based
on an energy-oriented perspective. To explore how different decomposition thresholds affect model
performance, we report the complete results of varying K values on the ECL and Traffic datasets in
Figures [T0} [TT] [T2]and [T3] It is evident that the choice of decomposition threshold, reflected by dif-
ferent values of K, has a considerable impact on model performance. Overall, on both the ECL and
Traffic datasets, as K increases, the error metrics first decrease and then gradually stabilize, with a
slight rise in some cases. This indicates that excessively small thresholds fail to adequately capture
the energy characteristics of the input sequence, whereas overly large thresholds may introduce re-
dundant decomposition components, thereby impairing the model’s generalization ability. The best
performance is generally observed at moderate K values, suggesting that an appropriate threshold
strikes a balance between preserving dominant trends and retaining local variations. In summary,
the predictive performance across different K values does not vary drastically, further demonstrating
the robustness of the TimeSeed.
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Figure 10: Impact of different K values in Energy-Decompose within the Frequency Domain Ag-
gregator, evaluated on the ECL dataset with various prediction lengths {96, 192, 336, 720} based
on a single endogenous setting.
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Figure 11: Impact of different K values in Energy-Decompose within the Frequency Domain Ag-
gregator, evaluated on the Traffic dataset with various prediction lengths {96, 192, 336, 720} based
on a single endogenous setting.
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Figure 12: Impact of different K values in Energy-Decompose within the Frequency Domain Ag-
gregator, evaluated on the ECL dataset with various prediction lengths {96, 192, 336, 720} based
on sparse endogenous variable setting.
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Figure 14: Performance of different downsampling kernels in the Decompose module for long-term
time series forecasting on Traffic, ECL and ETTh2 with input-96-predict-96 setting.

We evaluate the sensitivity of TimeSeed across different average pooling kernel sizes (o) and high-
energy component numbers (K). As shown in Figure [T4 we investigate the impact of different
downsampling kernel sizes (o) on the forecasting performance of TimeSeed across various predic-
tion lengths. The results indicate that as the value of o increases, the model performance tends to
stabilize or improve. This trend is particularly evident on the Traffic and ECL datasets. In contrast,
the ETTh2 dataset exhibits relatively consistent performance regardless of kernel size variations. We
also observe that the most effective kernel sizes often align with the data’s inherent daily, weekly, or
monthly periodicities. Based on these findings, we fix the downsampling kernel size to o = 25 for
all subsequent experiments.
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G FULL RESULT OF RANDOMLY SAMPLING ENDOGENOUS VARIABLE

Table [T0] reports the complete prediction results of TimeSeed, DLinear, TimeXer, and FITS under
the strategy based on randomly sampling and uniform interval sampling. Random sampling is closer
to real-world forecasting scenarios, and the comparison between the two sampling strategies reflects
the impact of different sampling schemes on model performance. The results demonstrate that ran-
dom sampling consistently yields inferior results relative to uniform interval sampling across most
datasets, with this performance gap widening as forecasting horizons extend. This may be attributed
to the fact that maintaining uniform temporal structure is more conducive to reconstructing complete
historical endogenous sequences, whereas the uncertainty introduced by random sampling can re-
duce the model’s generalization ability. Notably, across both sampling strategies and all forecasting
horizons, TimeSeed consistently outperforms the baseline methods, demonstrating its robustness
and effectiveness even in challenging sparse scenarios.

Table 10: Full results of unified hyperparameter for long-term time series forecasting results are
based on sparse endogenous setting, with the point selection strategy randomly choosing a time step.
The look-back window length is fixed at 96. The reported results represent the average performance
across different forecasting horizons L = {96,192,336,720}. " indicates the use of a random
sampling strategy. Lower MSE and MAE values indicate better forecasting performance.

Model TimeSeed TimeSeed” DLinear DLinear” TimeXer TimeXer” FITS FITS"

Metric MSE MAE | MSE MAE MSE MAE ‘ MSE MAE MSE MAE ‘ MSE MAE MSE MAE | MSE MAE

96 | 0.069 0.203 | 0.074 0209 | 0.079 0.218 | 0.081 0.219 | 0.438 0.572 | 0.513 0.625 | 0.089 0.230 | 0.089 0.230
192 | 0.091 0.236 | 0.100 0.241 | 0.105 0.251 | 0.106 0.251 | 0.442 0.565 | 0.413 0.540 | 0.211 0.372 | 0.211 0.372
£ 336 | 0.111 0262 | 0.121  0.269 | 0.138  0.292 | 0.138 0.292 | 0.429 0.552 | 0.537 0.635 | 0.120 0.273 | 0.120 0.273
|
m
720 | 0.112  0.265 | 0.189 0.350 | 0.131 0.288 | 0.130 0.288 | 0.464 0.588 | 0.643 0.715 | 0.149 0.311 | 0.148 0.310
‘ AVG ‘ 0.096 0.242 | 0.121 0.267 | 0.113 0.262 | 0.114 0.263 | 0444 0.569 | 0.527 0.629 | 0.142 0.297 | 0.142 0.296
96 0.186 0.336 | 0.192 0.342 | 0.201 0.350 | 0.201  0.350 | 0.289 0.423 | 0.284 0.418 | 0.303 0.431 | 0.326 0.446
192 | 0.234  0.379 | 0.234 0.380 | 0.255 0.397 | 0.252 0.396 | 0.330 0.457 | 0.325 0.455 | 0.333 0.460 | 0.355 0.475
]
E 336 | 0.288 0.426 | 0.289 0.427 | 0.306 0.440 | 0.307 0.441 | 0.358 0.479 | 0.356 0.478 | 0.496 0.571 | 0.507 0.578
m
720 | 0.380 0.499 | 0.397 0.510 | 0.873 0.786 | 0.848 0.769 | 0.390 0.501 | 0.389 0.500 | 1.079 0.887 | 1.076 0.882
‘ AVG ‘ 0.272 0.410 | 0.278 0.415 | 0.409 0.493 | 0402 0.489 | 0.342 0.465 | 0339 0.463 | 0.553 0.587 | 0.566 0.595
96 0.036  0.143 | 0.038 0.148 | 0.043 0.157 | 0.047 0.166 | 0.290 0.468 | 0.292 0.472 | 0.051 0.175 | 0.051 0.175
192 | 0.055 0.179 | 0.058 0.183 | 0.064 0.191 | 0.066 0.193 | 0.301 0.468 | 0.329 0.490 | 0.083 0.226 | 0.082 0.223
E 336 | 0.076 0.210 | 0.077 0.211 | 0.083 0.218 | 0.085 0.222 | 0.359 0.508 | 0.333 0.491 | 0.092 0.231 | 0.096 0.236
=
M1 720 | 0106 0246 | 0.105 0244 | 0.111 0253 | 0.115 0258 | 0426 0551 | 0451 0563 | 0.088 0232 | 0.088 0.229
‘ AVG ‘ 0.068 0.194 | 0.070 0.196 | 0.075 0.205 | 0.078 0.210 | 0.344 0.499 | 0.351 0.504 | 0.079 0.216 | 0.079 0.216
96 | 0.092 0.224 | 0.119 0.260 | 0.093 0.224 | 0.132 0.272 | 0.239 0.377 | 0.228 0.365 | 0.118 0.260 | 0.192 0.338
192 | 0.127 0.269 | 0.151 0.297 | 0.135 0.276 | 0.164 0.309 | 0.245 0.384 | 0.259 0.395 | 0.151 0.298 | 0.201 0.346
]
E 336 | 0.160 0.304 | 0.182 0.327 | 0.171 0315 | 0.198 0.342 | 0.261 0.404 | 0.283 0.417 | 0.212 0.357 | 0.250 0.388
=
M1720 | 0217 0360 | 0231 0373 | 0262 0398 | 0292 0423 | 0317 0448 | 0320 0449 | 0328 0457 | 0436 0534

‘AVG ‘ 0.149  0.289 | 0.170 0.314 | 0.165 0.303 | 0.196 0.337 | 0.266 0.404 | 0.273 0.406 | 0.202 0.343 | 0.269 0.402
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To further evaluate the model’s performance under extreme conditions, we increased the prediction
difficulty by considering scenarios where the endogenous series is extremely sparse, retaining only
a single observation. As shown in Table [T} under this more challenging setting, the overall per-
formance of all models declines. Notably, TimeSeed still achieves the best predictive performance.
This can likely be attributed to our multi-stage problem decomposition strategy and reconstruction-
based learning mechanism, which effectively enhance TimeSeed’s generalization ability, allowing it
to maintain high prediction accuracy even when available information is severely limited.

Table 11: Full results of unified hyperparameter for long-term time series forecasting results are
based on a single endogenous setting, with the point selection strategy randomly sampling a time
step. The look-back window length is fixed at 96. The reported results represent the average per-
formance across different forecasting horizons L = {96,192,336,720}. * indicates the use of a
random sampling strategy. Lower MSE and MAE values indicate better forecasting performance.

Model TimeSeed” TimeSeed DLinear” DLinear TimeXer TimeXer FITS" FITS

Metric MSE MAE | MSE MAE | MSE MAE | MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE | MSE MAE

96 | 0.096 0.243 | 0.074 0.213 | 0.104 0.262 | 0.078 0.221 | 0.402 0.529 | 0.314 0.469 | 0.131 0.291 | 0.100 0.251
192 | 0.113  0.266 | 0.098 0.244 | 0.132 0.292 | 0.104 0.253 | 0.405 0.543 | 0.340 0.491 | 0.140 0.301 | 0.115 0.268
2] 336 | 0126 0.283 | 0.119 0.271 | 0.151 0309 | 0.133 0.287 | 0.474 0.596 | 0.393 0.537 | 0.156 0.317 | 0.139 0.293
=
m
720 | 0.117 0.272 | 0.114 0.267 | 0.156 0.319 | 0.148 0.310 | 0.509 0.621 | 0476 0.602 | 0.148 0.310 | 0.137 0.297
‘ AVG ‘ 0.113  0.266 | 0.101 0.249 | 0.136  0.295 | 0.116 0.268 | 0.448 0.572 | 0.380 0.525 | 0.144 0.305 | 0.123 0.278
96 | 0.291 0.432 | 0.195 0.343 | 0.297 0.437 | 0.202 0.350 | 0.370 0.483 | 0.293 0.427 | 0.367 0.484 | 0.361 0.472
192 | 0.340 0.471 | 0.240 0.386 | 0.346 0.478 | 0.254 0.404 | 0424 0.525 | 0.316 0.445 | 0.545 0.596 | 0.501 0.570
>
2] 336 | 0378 0.500 | 0.302 0.439 | 0.393 0.509 | 0.308 0.444 | 0.425 0.526 | 0.358 0.479 | 0.788 0.732 | 0.603 0.635
=
m
720 | 0.398 0.508 | 0.339 0.467 | 0.545 0.596 | 0.420 0.521 | 0.436 0.531 | 0.409 0.513 | 1.619 1.119 | 1.430 1.043
‘ AVG ‘ 0.352  0.478 | 0.269 0.409 | 0.395 0.505 | 0.296 0.430 | 0.414 0.518 | 0.344 0.466 | 0.830 0.733 | 0.723 0.680
96 | 0.054 0.184 | 0.035 0.143 | 0.054 0.184 | 0.039 0.151 | 0.331 0.500 | 0.314 0.492 | 0.054 0.183 | 0.035 0.144
192 | 0.066 0.204 | 0.051 0.175 | 0.068 0.206 | 0.054 0.179 | 0.359 0.519 | 0.324 0.495 | 0.065 0.200 | 0.051 0.172
E 336 | 0.077 0.219 | 0.067 0.202 | 0.081 0.226 | 0.071 0.207 | 0.370 0.520 | 0.317 0.478 | 0.077 0.220 | 0.067 0.203
=
= 720 | 0.097 0.246 | 0.091 0.235 | 0.106 0.261 | 0.098 0.248 | 0.347 0.496 | 0.344 0491 | 0.102 0.257 | 0.092 0.242
‘ AVG ‘ 0.073  0.213 | 0.061 0.189 | 0.077 0.219 | 0.065 0.196 | 0.352 0.509 | 0.325 0.489 | 0.074 0.215 | 0.061 0.190
96 | 0.214 0.367 | 0.129 0.271 | 0.222 0.371 | 0.150 0.290 | 0.271 0.409 | 0.216 0.348 | 0.258 0.397 | 0.212 0.360
192 | 0.237 0.385 | 0.159 0.304 | 0.247 0.392 | 0.179 0.325 | 0.288 0.422 | 0.248 0.387 | 0.274 0.411 | 0.242 0.376
[
E 336 | 0.260 0.402 | 0.187 0.335 | 0.263 0.404 | 0.205 0.350 | 0.334 0.456 | 0.285 0.418 | 0.399 0.508 | 0.269 0.421
=
- 720 | 0.295 0.434 | 0.230 0.376 | 0.381 0.493 | 0.289 0.424 | 0.347 0.472 | 0.323 0452 | 0479 0.563 | 0.270 0.540

‘AVG ‘ 0.251  0.397 | 0.176 0.321 | 0.278 0.415 | 0.206 0.347 | 0.310 0.440 | 0.268 0.401 | 0.353 0.470 | 0.248 0.424
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H FuULL RESULTS OF ABLATION

To validate the effectiveness of the TimeSeed architecture, we conducted comprehensive ablation
studies on all modules. The results are presented in Tables [I2}

Table 12: Full results of Ablation study results on the key components of TimeSeed. PI denotes
Patch-Interact (Eq. (3)), ASR denotes Adaptive Scale Reconstructor, FDA denotes Frequency Do-
main Aggregator, and TDA denotes Time Domain Aggregator. Moreover,, AggHigh and AgglLow
are defined in Eq. (7).

Model \ Ours w/o Agghigh w/o Agglow w/o P-1 w/o FDA w/o TDA w/o Sparse point  Direct Forecasting
Metric | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE  MAE

96 | 0.069 0.203 | 0.078 0.203 | 0.075 0.213 | 0.072 0.206 | 0.073 0.207 | 0.073 0.204 | 0.071 0.209 0.083 0.223

— | 192 1 0.091 0.236 | 0.098 0.236 | 0.098 0.245 | 0.097 0.238 | 0.097 0.238 | 0.095 0.234 | 0.095 0.240 0.122 0.268
£ 33 | 0111 0262 | 0.118 0.263 | 0.124 0275 | 0.123  0.272 | 0.121  0.269 | 0.119 0.266 | 0.114 0.266 0.147 0.303
5 720 | 0.112 0.265 | 0.153 0.265 | 0.142 0295 | 0.183 0.344 | 0.182 0.344 | 0.183 0.345 | 0.117 0.271 0.143 0.302
| AVG | 0.096 0.242 | 0.112 0.242 | 0.110  0.257 | 0.119 0.265 | 0.118 0.265 | 0.117 0.263 | 0.099 0.246 | 0.124 0.274
96 | 0.036 0.143 | 0.037 0.145 | 0.043 0.155 | 0.037 0.146 | 0.039 0.151 | 0.040 0.154 | 0.042 0.160 0.044 0.159

— | 192 ] 0.055 0.179 | 0.057 0.181 | 0.058 0.182 | 0.057 0.181 | 0.059 0.184 | 0.058 0.184 | 0.058 0.186 0.064 0.190
E 336 | 0.076 0.210 | 0.097 0.238 | 0.078 0.213 | 0.078 0.212 | 0.099 0.241 | 0.086 0.231 | 0.088 0.233 0.079 0.216
= 720 | 0.106  0.246 | 0.146  0.297 | 0.127 0.272 | 0.125 0.268 | 0.154 0.311 | 0.148 0.308 | 0.142 0.296 0.110 0.253
| AVG | 0.068 0.194 | 0.084 0.215 | 0.077 0.206 | 0.074 0.202 | 0.088 0.222 | 0.083 0.219 | 0.083 0.219 | 0.074 0.204
96 | 0.186 0.336 | 0.197 0.345 | 0.194 0.343 | 0.202 0.350 | 0.205 0.354 | 0.287 0.422 | 0.194 0.343 0.217 0.364

o | 192 10234 0379 | 0237 0.380 | 0260 0.397 | 0259 0.399 | 0.270 0.410 | 0.336 0.461 | 0.239 0.386 0.287 0.423
£ | 336 | 0.288 0426 | 0299 0438 | 0.297 0434 | 0296 0433 | 0304 0.441 | 0.390 0.501 | 0.294 0.433 0.341 0.465
g 720 | 0.380 0.499 | 0403 0.515 | 0.388 0.505 | 0.406 0.516 | 0.417 0.522 | 0.488 0.566 | 0.388 0.496 0.754 0.719
| AVG | 0272 0.410 | 0.284 0.420 | 0.285 0.420 | 0.291 0.424 | 0.299 0.432 | 0.376  0.488 | 0.279 0.415 | 0.400 0.493
96 | 0.092 0.224 | 0.097 0.229 | 0.096 0.229 | 0.099 0.234 | 0.093 0.225 | 0.100 0.233 | 0.129 0.272 0.096 0.228

o | 192 | 0127 0.269 | 0.132 0275 | 0.131 0.273 | 0.135 0.279 | 0.132 0275 | 0.132 0.274 | 0.158 0.304 0.131 0.273
E 336 | 0.160 0.304 | 0.165 0.310 | 0.179 0323 | 0.168 0.313 | 0.166 0.315 | 0.167 0.312 | 0.186 0.333 0.186 0.329
= 720 | 0.217 0.360 | 0.224 0.367 | 0.229 0.371 | 0.220 0.363 | 0.223 0.357 | 0.219 0.362 | 0.231 0.377 0.228 0.371

| AVG | 0.149 0289 | 0.155 0.295 | 0.159 0299 | 0.156 0298 | 0.154 0293 | 0.154 0295 | 0.176 0322 | 0.160  0.300

I FULL RESULTS OF HARD AND SOFT CHOOSE
The results are presented in Tables[T3]
Table 13: Full Results of Hard and Soft Choose

Model TimeSeed TimeSeed(Soft)
Metric MSE MAE | MSE MAE

96 | 0.069 0.203 | 0.075 0211
_ | 192 | 0.091 0236 | 0097 0238
=] 336 | 0111 0262 | 0.121  0.269
51 720 | 0112 0.265 | 0.185 0346
| AVG | 0.096 0.242 | 0.119  0.266
96 | 0.036 0.143 | 0.038  0.147

— | 192 {0055 0179 | 0087 0225
E| 336 | 0076 0210 | 0077 0211
£ | 720 | 0106 0246 | 0.168 0323
| AVG | 0.068 0.194 | 0.092  0.226
96 | 0.421 0447 | 0.547 0572

o | 192 | 0412 0438 | 0508 0547
£ ] 336 | 0.376 0417 | 0.561 0572
E | 720 | 0402 0429 | 0563  0.579
| AVG | 0.403 0.433 | 0.545  0.567
96 | 0.002 0.028 | 0.007 0.063

5| 192 ] 0.002 0033|0003 0.042
£ | 336 | 0.002 0.035 | 0.014 0.092
3| 720 | 0003 0.040 | 0013 0088

| AVG | 0.002 0.034 | 0.009 0.071
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J  FULL RESULTS WITH EXOGENOUS VARIABLES ONLY

To further investigate the reconstruction capability of TimeSeed for endogenous variables, we re-
port in Table [I4] the complete prediction results obtained using only exogenous variables, without
endogenous inputs. It is worth noting that a small number of models become distorted under these
conditions, with prediction performance completely deteriorating, such as TimeMixer’s performance
on Weather. In contrast, TimeSeed models the trend and cyclical components of historical endoge-
nous variables through decomposition, thereby enhancing robustness. Finally, it uses reconstructed
historical endogenous variables to predict future changes in endogenous variables. This complex
prediction problem is decomposed into several simpler subproblems for solution. As a result, it
achieves satisfactory performance even under this challenging prediction setting.

Table 14: Comparison of model performance using exogenous variables only.

Model TimeSeed iTrans TimeXer TimeMixer
Metric MSE MAE \ MSE MAE \ MSE MAE \ MSE MAE
96 0.408 0.459 | 0.262 0.332 | 0.595 0.659 | 0.502 0.593

o 192 | 0.434 0.453 | 0.798 0.740 | 0.601 0.662 | 0.581 0.648
€| 336 | 0436 0455 | 0.386 0.414 | 0.622 0.672 | 0.611 0.663
E 720 | 0.417 0.447 | 1.031 0.860 | 0.713 0.726 | 0.671 0.705
\ AVG \ 0.424 0453 \ 0.619 0.587 \ 0.633  0.680 \ 0.591 0.652
96 0.007 0.069 | 0.011 0.091 | 0.885 0.809 | 2.200 1.291

5 192 | 0.007 0.069 | 0.006 0.062 | 0.754 0.732 | 2.363 1.370
< | 336 | 0.007 0.068 | 0.008 0.077 | 0.810 0.765 | 2.216 1.330
§ 720 | 0.007 0.071 | 0.010 0.076 | 0.757 0.742 | 2.127 1.277
\ AVG \ 0.007 0.069 \ 0.009 0.076 \ 0.801 0.762 \ 2227 1317

K ERROR BARS

Here, we repeat all the experiments five times and report the standard deviation and the statistical
significance test in Table

Table 15: Standard deviation and statistical tests for our method.

Model | TimeSeed | Confidence
Dataset | MSE MSE | Interval
Weather | 0.002 £ 0.002 0.035 +0.007 0.99

ECL 0.533 +£0.035 0.560 +£0.019 0.99

Traffic 0.404 £0.017 0.435%+0.014 0.99
ETThl 0.097 £ 0.003 0.243 +£0.005 0.99
ETTh2 | 0.271 £0.004 0.409 + 0.003 0.99
ETTm1 | 0.068 £0.003 0.194 + 0.004 0.99
ETTm?2 | 0.148 £0.002 0.289 = 0.001 0.99
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L  FULL RESULTS OF NON-OVERLAP VS OVERLAP PATCH

In order to better establish the mapping between the periodic components of exogenous and endoge-
nous variables, TimeSeed employs the Patch mechanism in the Time Domain Aggregator (TDA) to
more efficiently fit the periodicity that inherently exists in the dataset. Here, we report the complete
results for both non-overlapping (TimeSeed) and overlapping patches (TimeSeed-OL). Based on the
patch parameter settings in (Nie et al.,|2022), we adopt a step size of 12 and a patch length of 24.
As shown in Tables[I6]and[T7] the non-overlapping patch strategy (TimeSeed) and the overlapping
patch strategy (TimeSeed-OL) exhibit substantial performance differences across datasets. The most
pronounced disparity is observed on the ETTh1 dataset, where the performance gap reaches 61.6%
in the 720-step forecasting task. Furthermore, TimeSeed consistently achieves superior average per-
formance on ETTh1, which may be attributed to its ability to more effectively capture independent
temporal features while mitigating the information redundancy introduced by overlapping regions.
This conclusion is consistent with the experimental results in (Wang et al.| [2024b)).

Table 16: Comprehensive performance results of models using overlapping patches based on sparse
endogenous variable setting (OL indicates the use of overlapping patches).

Model TimeSeed TimeSeed-OL
Metric MSE MAE \ MSE MAE

96 | 0.069 0203 | 0.075 0.211
= | 192 [ 0091 0236 | 0.094 0236
F | 33 | 011 0262 | 0122 0.271
0| 720 | 0.112 0265 | 0.181 0.342
| AVG | 0.096 0242 | 0.118 0.265
96 | 0.186 0.336 | 0.191 0.341

Q| 192 | 0234 0379 [ 0232 0378
F | 336 | 0288 0426 | 0.287 0425
0| 720 | 0380 0.499 | 0.386 0.504
| AVG | 0272 0410 | 0274 0412
96 | 0.036 0.143 | 0.037 0.146

| 192 | 0055 0.179 | 0.06 0.185
£ | 336 | 0076 0210 | 0.077 0211
| 720 | 0.106 0.246 | 0.105 0.244
| AVG | 0.068 0.194 | 0.07 0.197
96 | 0.092 0.224 | 0.094 0.226

Q| 192 | 0127 0269 | 0.128  0.27
£ | 336 | 0.160 0.304 | 0.161 0.306
5| 720 | 0217 0360 | 0213  0.356
| AVG | 0.149 0289 | 0.149  0.29
96 | 0.421 0.447 | 0.422 0.446

2| 192 | 0412 0438 | 0423 0447
€| 336 | 0376 0417 | 0407 0.44
E | 720 | 0402 0.429 | 0.383 0.417
| AVG | 0.403 0433 | 0.409 0.437
96 | 0516 0.555 | 0.512 0.554

| 192 | 0514 0550 | 0.508 0.546
O 336 | 0510 0542 | 0.539 0.563
M1 720 | 0576 0586 | 0.572  0.584

| AVG

0.529 0.558 | 0.532 0.562
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Table 17: Comprehensive performance results of models using overlapping patches based on a single
endogenous variable setting (OL indicates the use of overlapping patches).

Model TimeSeed TimeSeed-OL
Metric MSE MAE \ MSE MAE

96 | 0.074 0213 | 0.070 0.209
= | 192 | 0.098 0244 | 0.093 0238
£ | 33 | 0119 0271 [ 0.117 0270
B 720 | 0.114 0267 | 0.114 0.267
| AVG | 0.101 0.249 | 0.099 0.246
96 | 0.195 0343 | 0.190 0.340

o | 192 | 0240 0.386 | 0238 0.386
£ | 336 | 0302 0439 | 0299 0437
B | 720 | 0339 0467 | 0328  0.460
| AVG | 0269 0.409 | 0.264 0.406
96 | 0.035 0.143 | 0.036 0.146

T | 192 | 0051 0175 | 0053 0.179
£ | 336 | 0.067 0202 | 0.068 0.204
5| 720 | 0.091 0235 | 0.092 0.236
| AVG | 0.061 0.189 | 0.062 0.191
96 |0.129 0271 | 0.129 0.271

Q| 192 | 0159 0304 | 0.159 0305
£ | 336 | 0.187 0335 | 0.188 0.334
5| 720 | 0230 0376 | 0230 0375
| AVG | 0.176 0321 | 0.177 0.322
9 | 0.515 0.560 | 0.511 0.550

| 192 | 0518 0550 | 0.611 0602
O | 336 | 0595 0.588 | 0.621 0.606
720 | 0648 0.621 | 0.621 0.611
| AVG | 0569 0.580 | 0.591 0.592
96 | 0.489 0492 | 0.464 0.481

2| 192 0482 0484 | 0477 0489
€1 336 | 0496 0.503 | 0.489 0.493
= | 720 | 0459 0477 | 0490 0.495

| AVG | 0.482 0.489 | 0.480 0.489
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M CASE STUDY

To further evaluate our proposed model, we report complementary predictive visualization results
on the ETT dataset. For baseline selection, we select representative models, including FITS

et al. , PatchTST [2022), and DLinear 2023). As shown in Figures
and TimeSeed performs best in fitting the ground truth, demonstrating excellent predictive

performance.
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Figure 15: Prediction cases from TimeSeed, FITS, DLinear, and PatchTST on the ETTh1 (a) and
ETTh2 (b) datasets under the input-96-predict-96 setting. Blue lines are the ground truths and orange
lines are the model predictions.
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Figure 16: Prediction cases from TimeSeed, FITS, DLinear, and PatchTST on the ETTm1 (a) and
ETTm?2 (b) datasets under the input-96-predict-96 setting. Blue lines are the ground truths and
orange lines are the model predictions.
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N FULL MAIN RESULTS

Here, we report the results of long time series prediction based on sparse endogenous settings (with
missing observations) and one single endogenous settings (without exogenous variables), with pre-
diction lengths including {96, 192, 336, 720}, where the size of the look back window is fixed to
96. All experiments are performed with the unified hyperparameter settings as described earlier.
As shown in Tables[I8]and[T9] TimeSeed achieves optimal performance on almost all metrics com-
pared with baseline models. Notably, under the sparse and single endogenous settings, TimeSeed
attains the highest ranking across 59 and 62 evaluation cases (15¢ Count), respectively, which is
substantially more frequent than any baseline model.

Table 18: Full results of unified hyperparameter for long-term time series forecasting results are
based on sparse endogenous setting, with the point selection strategy choosing the most recent time
step. The look-back window length is fixed at 96. Lower MSE and MAE values indicate better
forecasting performance. The best results are highlighted in red, and the second-best results are
highlighted in blue.

Model  TimeSeed DUET iTrans DLincar TimeXer  TimeMixer  PatchTST FITS CycleNet TexFilter PaiFilter SparseTSF

Metric  MSE MAE‘MSE MAE‘MSE MAE | MSE MAE‘MSE MAE‘ MSE MAE‘ MSE MAE‘MSE MAE‘MSE MAE‘MSE MAE‘MSE MAE | MSE MAE
96 | 0.069 0203 | 0.124 0276 [ 0170 0334 | 0079 0218 | 0438 0.572 | 0.102 0.243 | 0.106 0259 | 0.089 0230 | 0.078 0212 | 0.100 0245 | 0079 0222 | 0.123 0277
192 | 0.091 0236 | 0.123 0268 | 0.157 0316 [ 0.105 0251 | 0442 0565 | 0.109 0253 | 0.320 0.467 | 0211 0372 | 0.097 0237 | 0.108 0254 | 0.155 0.309 | 0.156 0315

*E 336 [ 0111 0262 | 0.180 0336 | 0248 0403 | 0.138 0292 | 0429 0.552 | 0267 0413 | 0205 0356 | 0.120 0273 | 0.109 0.255 | 0.133 0287 | 0242 0402 | 0.178 0.338

o
720 | 0112 0.265 | 0210 0364 | 0.168 0326 | 0.131 0.288 | 0.464 0.588 | 0.170 0328 | 0281 0442 | 0.149 0311 [ 0.180 0340 | 0235 0389 | 0.133 0290 | 0.175 0.334
AVG | 0.096 0242 | 0150 0311 | 0.186 0345 | 0.113 0262 | 0.444 0.569 | 0.162 0309 | 0228 0381 | 0.142 0297 [ 0.116 0261 | 0.144 0294 | 0.152 0306 | 0.158 0.316
96 | 0.186 0336 | 0.363 0475 | 0581 0655 | 0201 0350 | 0289 0423 | 0.213 0.355 | 0436 0535 | 0303 0431 | 0.198 0345 | 0.368 0482 | 0251 0395 | 0377 0490
192 | 0234 0379 | 0334 0461 | 1.071 0.890 | 0255 0397 | 0330 0457 | 0255 0393 | 1.017 0.887 | 0333 0460 | 0243 0387 | 0.314 0446 | 0.321 0453 | 0477 0555

o

| 3% 0288 0426 | 0423 0512|0922 0825|0306 0440 | 0358 0479 | 0299 0438 | 0458 0552 | 0496 0571 | 0309 0441 | 0283 0423 | 0413 0517|0607 0637

o
720 | 0.380 0499 | 0406 0517 | 1.034 0873 | 0.873 0.786 | 0.390 0.501 | 0331 0.462 | 0384 0494 | 1.079 0.887 [ 0414 0519 | 0347 0473 | 0915 0815 | 1.028 0.859
AVG | 0272 0.410 | 0.381 0491 | 0902 0811 | 0.409 0493 | 0.342 0465 | 0274 0412 | 0574 0617 | 0.553 0.587 [ 0291 0423 | 0328 0456 | 0475 0545 | 0.622 0.635
96 | 0.036 0.143 | 0.068 0202 | 0.046 0.164 | 0.043 0.157 | 0.290 0.468 | 0.107 0.274 | 0.046 0.166 | 0.051 0.175 | 0.044 0.158 | 0.114 0266 | 0050 0.172 | 0.046 0.164
192 | 0055 0.179 | 0.094 0237 | 0.074 0209 | 0.064 0.191 | 0301 0468 | 0.137 0306 | 0.068 0.19 | 0.083 0226 | 0.094 0241 0.180 | 0.069 0205 | 0.065 0.196

E |33 0076 0210 | 0200 0363 | 0357 0524 | 0.083 0218 [ 0359 0508 | 0.152 0306 | 0.123 0275 [ 0.092 0231 | 0.126 0280 | 0.225 0388 | 0.194 0.362 | 0.086 0227

=

=1 720 {0106 0246 | 0265 0409 | 0,005 0232 | 0.111 0253 | 0426 0551 | 0.170 0336 | 0.181 0341 | 0.088 0232 | 0.153 0306 | 0.18 0343 | 0.123 0279 | 1.800 1277
AVG | 0.068 0.194 | 0.157 0303 | 0.143 0282 | 0.075 0205 | 0.344 0499 | 0.141 0305 | 0.104 0245 | 0.079 0216 | 0.104 0246 | 0.145 0294 | 0.109 0254 | 0.499 0.466
96 | 0.092 0224 | 0247 0392 | 0140 0294 | 0.093 0224 | 0239 0377 | 0.103 0248 | 0.197 0368 | 0.118 0260 | 0.09 0226 | 0.119 0259 | 0.106 0243 | 0.127 0273
192 | 0.127 0269 | 0225 0365 | 0.399 0.543 [ 0135 0276 | 0245 0384 | 0.177 0330 | 0.225 0.384 | 0.151 0298 | 0.133 0273 | 0.151 0297 | 0.168 0.317 | 0.164 0315

o

E 133 [ 0160 0304|0313 0443 | 0381 0517 | 0.171 0315 [ 0261 0404 | 0.160 0310 | 0.188 0.333 [ 0212 0.357 | 0171 0315 | 0.178 0324 | 0200 0.345 [ 0201 0350

g

=1 0720 {0217 0360 | 0350 0471 [ 0573 0.627 | 0262 0398 | 0317 0448 | 0276 0411 | 0224 0365 | 0328 0457 | 0230 0371 | 0257 0394 | 0231 0376 | 0279 0418
AVG | 0.149 0289 | 0284 0417 | 0373 0495 | 0.165 0303 | 0.266 0404 | 0.179 0325 | 0208 0362 | 0.202 0343 | 0157 0296 | 0176 0318 | 0.176 0320 | 0.193 0.339
96 | 0.002 0.028 | 0.007 0.059 | 0,000 0078 | 0014 0081 | 0.758 0751 | 0.005 0.063 | 0.003 0041 | 0.005 0.060 | 0.004 0.043 | 0.003 0.038 | 0.005 0050 | 0.005 0.059
192 | 0.002 0.033 | 0.005 0054 | 0.020 0.109 | 0,003 0.045 | 0.831 0793 | 0.468 0.680 | 0.006 0.059 | 0.009 0.072 | 0.003 0039 | 0.007 0.061 | 0.008 0.070 | 0.008 0.077

5

£ 336 | 0.002 0035|0005 0.060 | 0.005 0.058 | 0.008 0066 | 0.814 0782 | 0.409 0.636 | 0.005 0.054 | 0.008 0072 | 0.002 0.035 | 0.004 0.049 | 0005 0.053 | 0.008 0.073

5

Z1 720 | 0003 0040 | 0006 0058 | 0008 0076 | 0009 0.074 | 0905 0831 | 0.692 0528 | 0,004 0046 | 0006 0062 | 0003 0040 [ 0,006 0.060 | 0.030 0.134 | 0.006 0064
AVG | 0.002 0.034 | 0,006 0.058 | 0011 0080 | 0.009 0.066 | 0.827 0.789 | 0394 0552 | 0.004 0050 | 0.007 0.067 [ 0.003 0.039 | 0.005 0052 | 0.012 0.077 | 0.007 0.068
9% | 0516 0605 0606 | 1.047 0.820 | 0.800 0.684 1869 1060 | 0.776  0.683 | 1.499 1.007 | 0.784 0.675 | 0811 0700 | 0.983 0.787 | 0.712 0.655
192 | 0514 0550 | 0.579 0.582 | 0.693 0.666 | 0.824 0.695 2369 1239 [ 0624 0620 | 1329 0912 | 0.780 0.669 | 0.724 0.640 | 1043 0823 | 0.764 0.684

2| 336 | 0510 0542 | 0.665 0.629 | 0.603 0.595 | 0710 0.642 1978 1120 | 0.605 0592 | 0.696 0.640 | 0.850 0701 | 0911 0737 | 0.817 0.698 | 0.641 0.624

o
720 | 0576 0.586 | 0713 0654 | 0652 0.624 | 0.994 0.776 | 0.638 0.611 | 0.480 0526 | 0.851 0741 | 0.822 0707 [ 0.872 0715 | 0655 0630 | 1267 0.927 | 0.717 0.662
AVG | 0529 0.558 | 0.641 0.618 | 0749 0676 | 0.832 0.699 | 0.575 0.573 | 1674 0987 | 0.714 0659 | 1.087 0817 [ 0.822 0.690 | 0.775 0677 | 1.027 0.809 | 0.709 0.656
96 | 0.421 0.447 | 0.668 1345 1012 | 0635 0.603 | 0.531 0.527 | 0629 0.595 | 0.885 0.684 | 0.583 0552 | 0.473 0475 | 1236 0876
192 | 0412 0.438 | 0.543 1436 1056 | 1363 0.874 | 0.516 0.516 | 0.653 0.609 | 0.875 0676 | 0.683 0.597 | 0.946 0.764 | 1220 0.859

N

£ 336 | 0376 0417 | 0571 0570 | 0425 0458 | 0.671 0.590 | 1363 0995 | 1627 0951 | 0.431 0474 | 0.909 0.722 | 0.875 0.678 | 0476 0491 | 0.461 0485 | 1.287 0.896

&
720 | 0402 0429 | 0515 0515 | 0419 0452 | 0.611 0.558 | 1441 1047 | 1379 0885 | 0518 0519 | 0.970 0764 [ 0.869 0672 | 0594 0554 | 0.932 0750 | 1.361 0913
AVG | 0.403 0433 | 0.574 0561 | 0483 0493 | 0.584 0.542 | 1.396 1.028 | 1.251 0.828 | 0.499 0.509 | 0.790 0.672 | 0.876 0.678 | 0.584 0.548 | 0.703 0.619 | 1.276 0.886

1 Count | 30 29 | 0 0 0 1 0 0 0 1 2 2 0 0 1 0 1 1 1 1 0 0 0 0
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Table 19: Full results of unified hyperparameter for long-term time series forecasting results are
based on a single endogenous setting, with the point selection strategy choosing the most recent
time step. The look-back window length is fixed at 96. Lower MSE and MAE values indicate better
forecasting performance. The best results are highlighted in red, and the second-best results are
highlighted in blue.

TimeSeed DUET iTrans DLinear TimeXer TimeMixer PatchTST FITS CycleNet TexFilter PaiFilter SparseTSF
Model Metric
MSE MAE‘MSE MAE‘MSE MAE‘MSE MAE‘MSE MAE‘MSE MAE‘MSE MAE‘MSE MAE‘MSE MAE‘ MSE MAE‘ MSE MAE‘ MSE MAE
96 | 0.074 0213|0108 0259 | 0172 0332 | 0.078 0221 | 0314 0469 | 0.441 0582 | 0.105 0257 | 0.100 0251 | 0284 0.444 | 0,083 0230 | 0079 0221 | 0.137 0295
192 0.098 0.244 | 0.124 0.276 | 0.151 0.308 | 0.104 0.253 | 0.340 0.491 | 0.470 0.579 | 0.201 0.365 | 0.115 0.268 | 0.327 0475 | 0.110 0.259 | 0.142 0.297 | 0.165 0.328
E 336 0.119 0271 | 0.169 0323 | 0.203 0.348 | 0.133 0.287 | 0.393 0.537 | 0.793 0.789 | 0.159 0.304 | 0.139 0.293 | 0.332 0.485 | 0.133 0.288 | 0.132 0.284 | 0.188 0.348
E 2132 D25
m
720 | 0114 0267 [ 0357 0472 | 0.189 0342 | 0.148 0310 | 0476 0602 | 0.448 0578 | 0205 0350 | 0137 0297 | 0431 0564 [ 0175 0327 | 0.13¢ 0291 | 0.181 0.340
AVG | 0101 0249 | 0189 0332 | 0.179 0332 | 0116 0268 | 0.380 0525 | 0538 0.632 | 0.168 0321 | 0.123 0278 | 0.343 0492 | 0.125 0276 | 0.121 0273 | 0.168 0328
96 [ 0.195 0343|0318 0440 | 0560 0.637 | 0.202 0350 | 0293 0427 | 0.403 0492 | 0547 0.605 | 0.361 0472 | 0285 0.420 | 0.653 0651 | 0239 0.386 | 0.384 0493
192 0.240  0.386 | 0.362 0.481 | 1.228 0980 | 0.254 0.404 | 0316 0.445 | 0.536 0.568 | 0.920 0.827 | 0.501 0.570 | 0.312 0.445 | 0313 0444 | 0275 0.420 | 0.498 0.567
o
S| 336 | 0302 0439|0356 0474 | 0788 0308 0444 | 0358 0479 | 0562 0.592 | 0.419 0530 | 0.603 0.635 | 0366 0484 [ 0307 0443 | 0452 0544 | 0.641 0,657
E
m
720 | 0339 0467 [ 0432 0528 | 1071 0891 [ 0420 0521 | 0409 0513 | 0.661 0.652 | 0.598 0620 | 1430 1.043 | 0410 0513 [ 0.328 0.458 | 0.883 0797 [ 1179 0.926
AVG | 0269 0.409 | 0367 0481 | 0912 0816 | 0296 0430 | 0344 0466 | 0.540 0576 | 0621 0.648 | 0.723 0680 | 0343 0.465 | 0.400 0499 | 0462 0.537 | 0.676 0.661
96 0.035  0.143 | 0.049 0.170 | 0.060 0.187 | 0.039 0.151 | 0.314 0492 | 0.625 0.655 | 0.053 0.176 | 0.035 0.144 | 0.204 0.381 | 0.044 0.159 | 0.040 0.152 | 0.049 0.170
192 0.051  0.175 | 0.077 0214 | 0.074 0211 | 0.054 0.179 | 0.324 0.495 | 0.476 0.559 | 0.059 0.190 | 0.051 0.172 | 0.224 0.396 | 0.054 0.178 | 0.074 0211 | 0.073 0.211
E| 33 | 0067 0202|0102 0249 [ 0.100 0244 [ 0.071 0207 | 0317 0478 | 0458 0542 | 0.106 0254 | 0.067 0203 | 0237 0399 | 0,095 0242 | 0.106 0257 [ 0.099 0.247
£
17200 0091 0235|0154 0313 | 0009 0249 | 0.098 0248 | 0344 0491 | 0304 0507 | 0.101 0253 | 0.092 0242 | 0267 0422 | 0,099 0246 | 0112 0267 | 0.139 0297
AVG | 0.061 0.189 | 0.096 0237 | 0083 0223 | 0.065 0.196 | 0325 0.489 | 0.488 0566 | 0.080 0218 | 0.061 0.190 | 0233 0.400 | 0.073 0206 | 0.083 0.222 | 0.090 0231
96 0.129 0271 | 0317 0.449 | 0.151 0292 | 0.150 0.290 | 0.216 0.348 | 0.168 0311 | 0.144 0.286 | 0.212 0.360 | 0.233 0.370 | 0.244 0.377 | 0.192 0344 | 0.224 0.373
192 | 0159 0304 | 0215 0.358 | 0.383 0527 | 0179 0.325 | 0.248 0387 | 0223 0.366 | 0.170 0319 | 0242 0.376 | 0262 0399 | 0.172 0314 | 0.261 0399 | 0233 0379
o
E| 33 | 0187 0335|0280 0417|0304 0441 [ 0205 0350 | 0285 0418 [ 0252 0393 | 0230 0374 | 0269 0421 | 0301 0429 | 0189 0336 | 0214 0362 | 0248 0.392
E
= 720 0.230  0.376 | 0.321 0.443 | 0.544 0.613 | 0.289 0424 | 0.323 0452 | 0.314 0439 | 0254 0401 | 0270 0.540 | 0.336 0.463 | 0.259 0.397 | 0.258 0.402 | 0.292 0.426
AVG 0.176  0.321 | 0.283 0.417 | 0.345 0468 | 0206 0.347 | 0.268 0.401 | 0.239 0.377 | 0.200 0.345 | 0.248 0.424 | 0283 0415 | 0216 0.356 | 0.231 0377 | 0.249 0.392
96 | 0.515 0.560 | 0.822 0712 | 1185 0.892 | 1.018 0773 | 0570 0.570 | 0.609 0605 | 0752 0.666 | 1.711 1061 | 0698 0.636 | 0.729 0652 | 0821 0.706 | 0.941 0763
192 | 0518 0550 | 0741 0.687 | 0.687 0649 | 0923 0.739 | 0.580 0573 | 0707 0.651 [ 0.801 0.686 | 1141 0.830 | 0.725 0.645 | 0953 0748 | 0779 0.680 | 0994 0.79
d 336 0.622  0.600 | 0.647 0.611 | 0.724 0.644 | 0.609 0.591 | 0.674 0.630 | 0.758 0.673 | 0.680 0.631 | 0.748 0.654 | 0.856 0.711 | 0.862 0.719 | 0.781 0.686
=
720 0.648  0.621 | 0.675 0.636 | 0.833 0.712 | 1.666 1.041 | 0.718 0.644 | 0.658 0.627 | 0.943 0.781 | 0.866 0.727 | 0.818 0.695 | 0.872 0.719 | 0.788  0.690 | 0.829 0.707
AVG 0.569  0.580 | 0.715 0.659 | 0.838 0.716 | 1.083 0.799 | 0.619 0.594 | 0.662 0.628 | 0.813 0.701 | 1.099 0.812 | 0.747 0.657 | 0.853 0.708 | 0.813 0.699 | 0.886 0.734
96 | 0489 0492 | 0.663 0609 | 0490 0491 | 0.479 0.490 | 1514 1081 | 1.334 1008 | 0490 0493 | 0.784 0674 | 1436 1030 | 0.803 0667 | 1377 0964 | 1.532 0972
192 | 0.482 0484 | 0547 0.549 | 0.644 0612 | 0596 0.551 | 1578 1064 | 1440 1061 | 0495 0507 | 0967 0771 | 1.548 1079 | 0681 0.603 | 0.817 0714 | 1592 0.986
o
g 336 0496  0.503 | 0.526  0.541 | 0.410 0.443 | 0.626 0.566 | 1.499 1.056 | 1.393 1.040 | 0.453 0491 | 0.936 0.748 | 1.559 1.093 | 0.937 0.733 | 1.038 0.812 | 1.457 0.944
£
720 0.459  0.477 | 0.605 0.580 | 0.477 0.483 | 0.708 0.605 | 1.606 1.112 | 1.452 1.056 | 0.470 0.503 | 0.977 0.773 | 1.678 1.131 | 0.630 0.582 | 0.875 0.732 | 1.806 1.059
‘ AVG ‘0.482 0.489 | 0.585 0.570 | 0.505 0.507 | 0.602 0.553 | 1.549 1.078 | 1.405 1.041 | 0.477 0498 | 0916 0.741 | 1.555 1.083 | 0.763 0.646 | 1.027 0.805 | 1.597 0.990
96 | 0.002 0028|0009 0075 | 0007 0.065 | 0.014 0087 | 0815 0.778 | 2336 1354 | 0.003 0.041 | 0.003 0043 | 0909 0.829 | 0.005 0058 | 0.005 0.052 | 0.006 0.062
192 0.002  0.032 | 0.004 0.046 | 0.007 0.064 | 0.004 0.049 | 0.738 0.733 | 2.137 1.295 | 0.004 0.051 | 0.008 0.071 | 0.783 0.760 | 0.004 0.048 | 0.008 0.070 | 0.004 0.050
’:; 336 0.002  0.035 | 0.004 0.053 | 0.013 0.092 | 0.011 0.086 | 0.731 0.730 | 3.159 1.575 | 0.004 0.048 | 0.011 0.084 | 0.850 0.798 | 0.006 0.061 | 0.005 0.058 | 0.006 0.065
3 - = ==
Z1 70 | 0003 0040 | 0006 0062 | 0008 0073 | 0008 0073 | 0684 0707 | 2475 1398 [ 0004 0051 [ 0.006 0.060 | 0790 0767 [ 0005 0056 [ 0029 0.132 | 0005 0058
AVG [ 0.002 0034 | 0.006 0059 | 0009 0.073 | 0.009 0074 | 0742 0.737 | 2.527 1406 | 0.004 0.048 | 0.007 0.065 | 0.833 0.789 | 0.005 0056 | 0012 0.078 | 0.005 0059
1*! Count 31 31 0 0 1 1 1 1 0 0 0 0 1 0 4 1 0 0 1 1 0 0 0 0
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O LIMITATION

The limitations of TimeSeed can be categorized into three main aspects:

Dataset scope limitations: TimeSeed has not been evaluated on a broader range of datasets, which
hinders a comprehensive validation of its generalizability across diverse scenarios.

Performance gap in specific scenarios: TimeSeed exhibits a small MSE gap compared to iTrans-
former on the Traffic dataset. This may be attributed to its relatively small number of parameters.

Sensitivity to outliers: TimeSeed relies on exogenous variables to reconstruct the historical se-
quence of endogenous variables for forecasting future values. When exogenous variables contain a
high proportion of outliers, the reconstruction becomes unstable, ultimately compromising predic-
tion accuracy.

To address these limitations, future work could explore evaluating on more diverse and larger
datasets, and adaptively scaling the model’s parameter size in a controlled manner to enhance pre-
dictive performance. Additionally, incorporating outlier detection and mitigation techniques to pre-
process exogenous variables could enhance their quality and the model’s overall robustness. While
TimeSeed achieves accurate forecasting in scenarios with missing endogenous variables, forecasting
in scenarios with completely missing endogenous data remains an open research challenge.

P LLM USAGE

In accordance with the conference policy on large language models (LLMs), we declare that LLMs
were only used as auxiliary tools to refine the grammar and fluency of sentences. No part of the
research ideation, experimental design, analysis, or substantive writing was generated by LLM:s.
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