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Abstract

Heatwaves pose a significant threat to public health, especially as global warming
intensifies. However, current routing systems (e.g., online maps) fail to incorporate
shade information due to the difficulty of estimating shades directly from noisy
satellite imagery and the limited availability of training data for generative models.
In this paper, we address these challenges through two main contributions. First,
we build an extensive dataset covering diverse longitude-latitude regions, varying
levels of building density, and different urban layouts. Leveraging Blender-based
3D simulations alongside building outlines, we capture building shadows under
various solar zenith angles throughout the year and at different times of day. These
simulated shadows are aligned with satellite images in terms of the areas, providing
a rich resource for learning shade patterns. Second, we propose the DeepShade,
a diffusion-based model designed to learn and synthesize shade variations over
time. It emphasizes the nuance of edge features by jointly considering RGB
with the Canny edge layer, and incorporates contrastive learning to capture the
temporal change rules of shade. Then, by conditioning on textual descriptions
of known conditions (e.g., time of day, solar angles), our framework provides
improved performance in generating shade images. We demonstrate the utility
of our approach by using our shade predictions to calculate shade ratios for real-
world route planning in Tempe, Arizona. We hope this work could provide a
reference for urban planning in extreme heat weather and reveal its potential
practical applications in the environment.

1 Introduction

Extreme weather is causing an increasing number of deaths worldwide, with heatwaves being a
major contributing factor. According to a report [1], the frequency and intensity of extreme heat
events have surged over the past two decades, with more than 178,700 deaths occurring annually
(average from 2000 to 2019) as a direct result of high temperatures [2]. Research from the World
Health Organization highlights that extreme heat is now one of the leading causes of weather-related
deaths [3], disproportionately affecting vulnerable populations such as the elderly and those working
or staying in outdoor areas with limited access to cooling infrastructure. This trend underscores
the urgent need for adaptive measures, including heat-resilient urban design and shade-aware route-
planning methods [4], to mitigate the public health impact of rising temperatures globally.

Since shade acts as a natural shelter that reduces direct exposure to solar radiation, understanding
how shade changes in real-time is crucial for preparing outdoor activities and aiding urban planning

∗Corresponding Author. † Authors contributed equally.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Meta Data Retrieval

Bu
ild

in
g 

Ex
tr

ac
tio

n
M

ap
 Q

ue
ry

 

+

AOI

Type Name

Levels

Addr.

Roof*HeightRe
tr

ie
va

l

Properties

Simulation Setups. Data Collection Post Process

M
ov

e 
or

bi
t +

Bu
ild

in
g 

Re
nd

er
in

g 
Al

ig
ne

d 
O

bs
. P

oi
nt

 

Se
le

ct
 A

re
as

 (L
at

_m
in

,  
La

t_
m

ax
, L

on
g_

m
in

. L
on

g_
m

ax
) 

Shaded Snapshot

Satellite Image 

Text Descriptions

Skeleton Snapshot

Groundtruth Shade

T

S
…

Angle Time

Phase1 

- =

Temporal and Spatial Dataset

Figure 1: The overview of the pipeline, note that ‘Addr.’ is an abbreviation of Address, and ‘Roof*’
includes: roof shape and roof height, the building shape is approximated by the bird’s-eye view of the
roof shape.

in establishing artificial shelters in areas lacking natural shade. As introduced in [5], by identifying
shaded areas and integrating this information into route-planning systems, individuals can make
more comfortable travel choices, reducing their risk of heat-related illnesses. However, the existing
research faces significant limitations: First, shade analysis using urban simulations is only on static
maps, which lack good generalizability. Second, most of the methods are localized, relying on
resource-intensive LiDAR data; they also lack scalability across different or more extensive areas.
Third, they are unable to capture the real-time shade dynamics, limiting their utility in intelligent
routing. These limitations impede the development of accurate shade modeling and timely planning,
affecting the practical impact of existing studies.

To tackle the above challenges, a more adaptive and scalable approach to dynamically model shade
variations is required. Given the success of Generative AI [6] (particularly diffusion models), in
capturing spatial-temporal patterns in urban scene synthesis [7] and environment simulation [8], they
present a promising direction for overcoming these challenges by generating shades for satellite
images. However, to effectively leverage this method, a well-structured dataset that accurately aligns
ground-truth shade-variance with its satellite-image level geographic information is necessary. Such
a dataset is left blank in the current research domain.

In this paper, we first developed a rigorous and systematic pipeline to construct a comprehensive
dataset for training shade-generation models. The dataset is designed to encompass three critical
dimensions while adhering to a unified standard. The three dimensions include: (1) Geographical
Diversity, covering a wide range of continents with varying latitudinal and longitudinal distributions;
(2) Urban Layout Variability, capturing diverse urban configurations such as dense high-rise building
places and sparse flat areas; and (3) Traffic Rule Variation, accounting for differences in driving
orientations, including left-hand and right-hand traffic systems. The unified standard is that the
cities must suffer from significant heat events as defined by the World Meteorological Organization
(WMO), which guarantees the dataset focuses on regions with high temperatures and their associated
impacts on shade dynamics are most pronounced. We secondly, designed a novel contrastive learning-
based diffusion model approach, with a fine-granularity edge conditional module, that learns the
shade variations based on the skeleton representations of corresponding satellite images. The model
effectively maps shade dynamics to text prompts containing temporal and geographic information,
allowing it to generate realistic shade predictions for arbitrary times of day or specific solar angles.
This solution is unique for its ability to train on a limited satellite image dataset while generalizing to
unseen buildings, provided an available satellite image.

In conclusion, this work contributes to advancing shade-generation research by addressing critical
challenges in data preparation, model design, and real-world application. First, we developed a
comprehensive, globally representative dataset, meticulously crafted to align satellite imagery with
the dataset. Second, we introduced a text-conditioned image generation model leveraging edge
conditioning and contrastive learning, enabling accurate and generalizable shade predictions. Third,
we conducted extensive experiments across diverse cities, showcasing the model’s robustness in
handling varying landscapes, urban layouts, and geospatial features. Finally, we demonstrated a
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practical application of the model in shaded route planning, where it generates shade maps for different
times of the day based on satellite images and textual prompts. These contributions collectively
provide a robust framework for urban planning and heat mitigation strategies.

2 The ShadeBench Dataset

The archived geographical information might be out-of-date, which hinders the feasibility of simulat-
ing shade changes, but it is possible to use accessible ‘satellite image + generalizable models’ to infer
the shade areas.

We construct a comprehensive, generalization-oriented dataset that aligns satellite imagery with
OSM [9] building data across Geographical Diversity, Urban Layout Variability, and Traffic Rule
Variation. The pipeline as in Figure 1, proceeds as follows in a single pass: Metadata Retrieval
gathers OSM-based building attributes (e.g., property type, address, height, levels, and polygo-
nal geometry) as the 3D skeleton input; Simulation Setups then uses Blender [10] to simulate
sun-driven illumination via a controller that follows solar declination or angle at arbitrary dates
and times, rendering the Area-of-interest (AOI) scaled to match prevalent maps (Google map tile
level 13); Data Collection produces four aligned modalities: shaded snapshots xshade (with
sunlight; cast shadows and illuminated surfaces), skeleton snapshots xsk (sun off; pure structure),
satellite images xsat (real scenes co-registered with simulation), and text descriptions T captur-
ing temporal/solar conditions; finally, Post Process extracts a clean ground-truth shade mask
by subtracting structure and thresholding noise from the shaded render, enabling precise supervi-
sion. The following example showcases structured text prompts for different temporal conditions:

Example Text Prompts:
Prompt 1: Solar declination: -20.7°
Prompt 2: Angle: 45°
Prompt 3: Right now, it is 6:00 PM in a day.

We summarize the text-conditioning and ground-
truth extraction below:

T = f(θsun, tday) (1)

xgt = xshade − xsk − I(xshade ≤ α) (2)

This process improves alignment between simulation and real-world imagery and enables controllable
shade generation via images, textual prompts, or their combination. We provide a benchmark split of
70% training and 30% testing (a validation can be split as needed).

3 A Text Conditioned Shaded Image Generation Model

Given a shade dataset D = {xshade, xsk, xsat, T}, where xshade is a sunlit shaded snapshot, xsk is a
skeleton snapshot, xsat is an aligned satellite image, and T encodes solar angle θsun and timestamp
tday. Our goal is to synthesize accurate shade images conditioned on a base map and text prompts.
We adopt the diffusion-based ControlNet [11] as the backbone, leveraging diffusion models’ strengths
in image synthesis and editing [12]. As illustrated in Figure 2, our method builds upon the ControlNet
with (i) edge-information incorporation and (ii) a contrastive-learning module.

Reflection on ControlNet in Our Task ControlNet extends diffusion models by injecting visual
conditions into generation and builds on pretrained Stable Diffusion [13] through an additional control
pathway for precise guidance. For shade synthesis, we condition on structure and description: the
base map xsk gives scene skeleton, and the text prompt T encodes solar angle θsun and timestamp
tday . These inputs form the conditioning c that drives generation: xI = G(T, xsk). At decoder layer
i, ControlNet integrates the conditions as: hi+1 = Di(hi + hi

cond), where hi is the current feature
map and hi

cond is derived from c. Vanilla ControlNet produces shade images yet struggles with subtle
shade signals and time-dependent changes, which motivates the enhancements below.

3.1 Edge Enhanced Conditional Generation

We introduce an edge-enhanced condition to capture fine shade boundaries. The base map xsk ∈
RH×W×3 is a three channel mask of building footprints. Canny detection yields a single channel
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Figure 2: The structure of the proposed DeepShade method, based on the basic control net, we
design two parts, first one on the left hand is the data preparation module, which concatenates the
skeleton image with the Canny edge features, it helps the model focus on the shade edges and capture
the overall skeleton of the building structures. The second on the right part is the contrastive part,
the constructed contrastive buffer takes positive and negative pairs, during the training period, it
optimizes the model by comparing the generated image i′ with two contrastive pairs, and effectively
learns the temporal difference reflected on the edge features.

edge map xedge ∈ RH×W×1. We concatenate them to form a four-channel condition: xcond =[
xsk
R , xsk

G , xsk
B , xedge

]
∈ RH×W×4 This tensor and the text prompt T feed the ControlNet U Net:

xI = G
(
T, xcond

)
(3)

which encourages straight and well-aligned shadow boundaries.

3.2 Contrastive Based Shade Generation

We adopt a contrastive learning paradigm to promote temporal consistency in the image generation.

Contrastive Buffer Pairs Creation Let D = {x1, x2, . . . , xn} with timestamp ti and location li.
Pairs follow:

Labelij =
{
1, if li = lj and abs(|ti − tj |) = h,

0, otherwise.
(4)

Positive pairs share location with a timestamp gap of h hours. Negative pairs differ in location or
have a larger gap. For each xi we sample up to k+ positives and up to k− negatives2. The training set
is P = {(xi, xj ,Labelij), x

edge
i , xsk

i , T}. Unless stated, xi and xj are skeleton images.

Contrastive Learning for Shade Generation For each pair (xi, xj) we obtain embeddings hi

and hj from a pretrained U-Net head and compute Suv = hu·hv

∥hu∥·∥hv∥ , u, v ∈ {1, . . . , N}; we then

optimize temporal consistency with InfoNCE Lcontrastive = − 1
N

∑N
i=1 log

exp(Sii/τ)∑N
j=1 exp(Sij/τ)

; and use

the total objective Ltotal = LControlNet +λ1Lcontrastive with λ1 = 0.1. This joint loss improves temporal
coherence and yields shade patterns that better match real world evolution over a day.

4 Experimental Study

In this section, we conduct experiments to verify the effectiveness of our proposed method. We have
designed three sets of experiments, the first is to verify the model’s performance in dense building
cities, such as Beijing, Phoenix downtown, and São Paulo, The second is to show the performance
in the relatively sparse environment, such as Tempe. The third, we perform an ablation study to
understand the contribution of different components in our methods.

2We set k+ = 5 for efficiency.
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Figure 3: The demo of using our trained DeepShade in Tempe city for shade ratio extraction based
on the generated shade maps, and we can effectively leverage this information to conduct planning
that balances the distance and shade exposure at the Noon of a day (the preference score of shade is
set as 50%, so distance and shade take half of the weight during planning).

Baselines on Scenario1 Beijing (CHN) Phoenix (USA) São Paulo (BRA) Madrid (ESP) Cairo (EGY) Mumbai (IND)

SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓

Diffusion Model 0.610 0.518 0.411 0.446 0.475 0.440 0.388 0.417 0.357 0.437 0.352 0.399
ControlNet 0.941 0.225 0.941 0.265 0.951 0.291 0.936 0.277 0.944 0.265 0.915 0.254

Edge Control 0.934 0.225 0.934 0.254 0.954 0.284 0.946 0.243 0.942 0.267 0.929 0.273
DeepShade 0.945 0.194 0.946 0.164 0.959 0.210 0.948 0.239 0.954 0.257 0.931 0.250

Baselines on Scenario2 Xi’An (CHN) Tempe (USA) Brasilia (BRA) Seville (ESP) Aswan (EGY) Jaipur (IND)

SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓

Diffusion Model 0.425 0.468 0.381 0.347 0.402 0.400 0.342 0.434 0.356 0.456 0.339 0.357
ControlNet 0.930 0.236 0.969 0.330 0.973 0.297 0.934 0.281 0.967 0.352 0.948 0.297

Edge Control 0.930 0.237 0.968 0.335 0.967 0.299 0.936 0.276 0.966 0.379 0.947 0.273
DeepShade 0.932 0.233 0.969 0.329 0.979 0.241 0.936 0.242 0.973 0.283 0.956 0.275

Table 1: Test results from two scenario types (dense* and sparse* building cities): DeepShade
consistently outperforms other baselines on both experimental scenarios, demonstrating superior
language understanding and segmentation accuracy across in-domain and out-of-domain datasets,
even when applied with random transformations. ↑ means the larger, the better, while ↓ vice versa.

5 Demonstration

Besides the quantitative analysis in experiments, it is important to demonstrate the real-world impact
of the work. Thus, we design a proof-of-concept demo as shown in Figure. 3 using a subarea of
Arizona State University. In this demo, we tackle the problem of integrating the shade ratio as a
factor when making the routing suggestions. The input is a skeleton image containing the building
outline, extracted from a satellite image of the interested area. Then, based on the time for planning,
we describe as the text prompt T together with the image that is processed to xcond as in Eq. 3, the
shape map will be generated as output, it will be used for shade ratio calculation by overlaying the
shade map with the road using longitude and latitude ranges. Given the shade ratio, the planning is
made by jointly considering the user’s preference (weight) on shade and distance by a variant of the
Dijkstra algorithm. The green shows a more shaded plan, while the red means the shortest path. This
demo reveals the potential of a real-world application; given that shade-involved planning is crucial
for areas that suffer from extreme heat waves, this demonstration shows a way that could possibly
help decrease heat stroke cases and improve the health of outdoor people.

6 Conclusion

We simulate realistic urban shade patterns by introducing both a novel dataset and a generative
framework. We developed a diverse dataset of building layouts with aligned satellite imagery and
timestamped shade snapshots, paired with text-condition encoding solar zenith angle and time of
day. We then propose DeepShade, a text-conditioned, edge-enhanced diffusion model built on
ControlNet that fuses building skeletons and Canny edges and incorporates a contrastive learning
module to enforce temporal consistency. We have conducted extensive experiments across multiple
cities (Appendix A), showing that DeepShade could function reasonably well in in-domain and
out-of-domain tests. An ablation study further validates the importance of edge conditioning and
contrastive loss, and lastly, we show a proof-of-concept application as Figure. 3, in shaded route
planning task, which demonstrates the work’s practical utility for heat-aware urban navigation.
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A Experimental Study Details

A.1 Metrics

To evaluate the quality of generated shadow shades, we employ five commonly used metrics: Struc-
tural Similarity Index Measure (SSIM), Mean Squared Error (MSE), mean Intersection over Union
(mIoU), Boundary Intersection over Union (B-IoU), and Learned Perceptual Image Patch Similarity
(LPIPS) as in [14], [15] [16]. A more detailed explanation of the latter two metrics is as follows.

Training Steps (Epoch)

Vanilla

Edge

DeepShade

Reconstruct Loss VLB Loss

Figure 4: The training loss curves show that DeepShade shows obvious improvement regarding the
convergence speed, in comparison to two baselines: edge-conditional generation and vanilla control
net. This is attributed to the integration of edge features and the contrastive framework to improve
training efficiency.

Boundary Intersection over Union (B-IoU) ↑ Inspired by the work [17], we proposed a new
metric named: B-IoU, which measures the alignment of boundaries between the generated and ground
truth shadow masks. If Mpred and Mgt are the binary shadow masks, and K is a 3× 3 structuring
element. We extract their boundaries via morphological dilation and erosion:

∂M = dilate(M,K) − erode(M,K) (5)

Let’s denote that ∂Mpred and ∂Mgt are the predicted and ground-truth boundaries, B-IoU is computed
as the Intersection over Union of these boundary sets:

B−IoU =

∣∣∂Mpred ∩ ∂Mgt

∣∣∣∣∂Mpred ∪ ∂Mgt

∣∣ (6)

where |·| denotes the number of boundary pixels. The range of B-IoU is [0, 1], where higher values
indicate better boundary alignment. Detailed implementation can be found in the evaluation code.

Learned Perceptual Image Patch Similarity (LPIPS) ↓ LPIPS quantifies perceptual similarity by
comparing feature embeddings of the generated and ground truth images extracted from a pretrained
network (e.g., AlexNet). It is computed as:

LPIPS(x, y) =
∑
l

1

HlWl

∑
h,w

||ϕl(x)h,w − ϕl(y)h,w||22 (7)

where ϕl denotes the feature map at layer l, and Hl,Wl are its height and width. LPIPS ranges from
[0,∞), where lower values indicate greater perceptual similarity.

A.2 Result Analysis

A. The Efficient Convergence Speed. As shown in Figure. 4, the plotted curves are the reflection
of the mean and standard deviation of the 5-rounds result for each method across two commonly
adopted losses (reconstruction and VLB loss [18]). Our model DeepShade demonstrates a much
more efficient convergence performance in comparison to baseline methods: edge-condition diffusion
and vanilla controller. The training of diffusion models is essentially difficult; however, our proposed
method provides a more rational way in the shade prediction setting.
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Model SSIM↑ mIoU↑ B-IoU↑ MSE↓ LPIPS↓
Backbone Model (direct) 0.4252±0.01 0.0358±0.00 0.0213±0.00 41.2666±1.65 0.7967±0.00
Vanilla Control Net 0.9690±0.04 0.2736±0.13 0.0812±0.05 18.3388±3.37 0.3304±0.03
Edge Condition 0.9684±0.01 0.2898±0.04 0.1040±0.01 18.6686±0.70 0.3358±0.01
Ours (DeepShade) 0.9692±0.04 0.2903±0.20 0.1240±0.07 18.1721±4.09 0.3024±0.29

Table 2: Comparison of different models across various metrics: SSIM, MSE, mIoU, LPIPS, and
B-IoU. In this experiment, each of the trained models is fed with a bird’s-eye view satellite skeleton
image and a text prompt describing the time and solar angle, and our method consistently performs
better than these baseline methods.

B. Accurate Generation Across 12 Cities in the World. In this part, we focus on the Table. 1.
The upper part is the dense areas in the world selected dataset for testing, and the lower part is the
sparse areas. We can observe that our model outperforms most of the baseline methods in the various
metrics (with a total of 50 epochs of training), regardless of the dense or relatively sparse scenario
land covers. It demonstrates the vivid simulation of the conditioned area using the ControlNet-based
method by training on one dataset, with good transferability, it better indicates that this work has
great potential for real-world applications.

C. Ablation Study. We also included an ablation study in the paper, as in Table 2, it is the training
conducted in the Tempe dataset, and the test is the other 30% from the original dataset given by the
default split. This result reveals the importance of each component in our method. We can see that
the edge condition (our method without contrastive learning) suffers the most performance drop in
comparison to the DeepShape full model structure, and if we also remove the edge conditions, the
performance further decreases, the backbone model is the stable diffusion model (all of the above
models are trained 5 times with mean and std reported).

B Dataset Creation

In order to develop generalizable models, we construct a formal pipeline that creates a comprehensive
dataset covering three dimensions: Geographical Diversity, Urban Layout Variability, and Traffic Rule
Variation. This dataset aligns satellite images with Open Street Map (OSM) [9] building information.
The pipeline involves four major steps as shown in Figure 1, which illustrates the overall framework
from input to the collected outcome.

First, Metadata Retrieval obtains all necessary metadata used for the 3-D simulation. To align
with the research community and utilize the large open-source data, we adopt OSM data as the
metadata for shade simulation. Moreover, based on the longitude and latitude information, we can
extract the building’s geographical information, including “property type, address, height, levels,
shape, and geometry set of locations”, this typically provides information such as a list of points that
form a polygon of building’s 3D skeleton.

Second, Simulation Setups. With the necessary data collected, we performed the simulation to
capture the shade changes for our dataset creation. In addition, we use Blender [10] for large-scale
city-wide shade simulation. Based on scientific rules, we set up a controller as the sun’s movement
engine, which can generate the sun’s trajectory following the sun’s solar declination or angle on any
day of the year, and at any time of the day. Then, we rendered the area of interest (AOI) within the
simulation platform and adjusted the scale to ensure it aligns with the prevalent maps. Here, we align
images with Google map tile level 13.

Third, Data Collection. We collected four types of data: (1) skeleton snapshots, (2) shaded
snapshots, (3) satellite images, and (4) text descriptions. These diverse data representations enable
learning models to understand shade variations and their dependencies on environmental factors.

C Limitation and Future Work

The paper proposes a very first dataset that aligns shades to the satellite view of a location; however,
there might be missing building issues in ground truth shades since the OSM data is not always
updated as the time the satellite image is taken. Future development to tackle this problem is
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important; meanwhile, the real-time shade planning would require the pre-generated shade ratios,
and they should be regularly indexed to the real-world road maps to enable large-scale support for the
planning systems. A more accurate and robust framework is worth exploring.

D Reproducibility

The dataset https://huggingface.co/datasets/DARL-ASU/DeepShade and codebase https:
//github.com/LongchaoDa/DeepShade_repo.git will be released.
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